Linux 4.19.168
[linux/fpc-iii.git] / mm / vmscan.c
blobb7d7f6d65bd5b6daba369a93b40c15c8597455e5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
59 #include "internal.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
72 nodemask_t *nodemask;
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
78 struct mem_cgroup *target_mem_cgroup;
80 /* Writepage batching in laptop mode; RECLAIM_WRITE */
81 unsigned int may_writepage:1;
83 /* Can mapped pages be reclaimed? */
84 unsigned int may_unmap:1;
86 /* Can pages be swapped as part of reclaim? */
87 unsigned int may_swap:1;
90 * Cgroups are not reclaimed below their configured memory.low,
91 * unless we threaten to OOM. If any cgroups are skipped due to
92 * memory.low and nothing was reclaimed, go back for memory.low.
94 unsigned int memcg_low_reclaim:1;
95 unsigned int memcg_low_skipped:1;
97 unsigned int hibernation_mode:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
102 /* Allocation order */
103 s8 order;
105 /* Scan (total_size >> priority) pages at once */
106 s8 priority;
108 /* The highest zone to isolate pages for reclaim from */
109 s8 reclaim_idx;
111 /* This context's GFP mask */
112 gfp_t gfp_mask;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
140 } while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
154 } while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
160 * From 0 .. 100. Higher means more swappy.
162 int vm_swappiness = 60;
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
167 unsigned long vm_total_pages;
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
172 #ifdef CONFIG_MEMCG_KMEM
175 * We allow subsystems to populate their shrinker-related
176 * LRU lists before register_shrinker_prepared() is called
177 * for the shrinker, since we don't want to impose
178 * restrictions on their internal registration order.
179 * In this case shrink_slab_memcg() may find corresponding
180 * bit is set in the shrinkers map.
182 * This value is used by the function to detect registering
183 * shrinkers and to skip do_shrink_slab() calls for them.
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
192 int id, ret = -ENOMEM;
194 down_write(&shrinker_rwsem);
195 /* This may call shrinker, so it must use down_read_trylock() */
196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 if (id < 0)
198 goto unlock;
200 if (id >= shrinker_nr_max) {
201 if (memcg_expand_shrinker_maps(id)) {
202 idr_remove(&shrinker_idr, id);
203 goto unlock;
206 shrinker_nr_max = id + 1;
208 shrinker->id = id;
209 ret = 0;
210 unlock:
211 up_write(&shrinker_rwsem);
212 return ret;
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
217 int id = shrinker->id;
219 BUG_ON(id < 0);
221 down_write(&shrinker_rwsem);
222 idr_remove(&shrinker_idr, id);
223 up_write(&shrinker_rwsem);
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
228 return 0;
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
234 #endif /* CONFIG_MEMCG_KMEM */
236 #ifdef CONFIG_MEMCG
237 static bool global_reclaim(struct scan_control *sc)
239 return !sc->target_mem_cgroup;
243 * sane_reclaim - is the usual dirty throttling mechanism operational?
244 * @sc: scan_control in question
246 * The normal page dirty throttling mechanism in balance_dirty_pages() is
247 * completely broken with the legacy memcg and direct stalling in
248 * shrink_page_list() is used for throttling instead, which lacks all the
249 * niceties such as fairness, adaptive pausing, bandwidth proportional
250 * allocation and configurability.
252 * This function tests whether the vmscan currently in progress can assume
253 * that the normal dirty throttling mechanism is operational.
255 static bool sane_reclaim(struct scan_control *sc)
257 struct mem_cgroup *memcg = sc->target_mem_cgroup;
259 if (!memcg)
260 return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 return true;
264 #endif
265 return false;
268 static void set_memcg_congestion(pg_data_t *pgdat,
269 struct mem_cgroup *memcg,
270 bool congested)
272 struct mem_cgroup_per_node *mn;
274 if (!memcg)
275 return;
277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 WRITE_ONCE(mn->congested, congested);
281 static bool memcg_congested(pg_data_t *pgdat,
282 struct mem_cgroup *memcg)
284 struct mem_cgroup_per_node *mn;
286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 return READ_ONCE(mn->congested);
290 #else
291 static bool global_reclaim(struct scan_control *sc)
293 return true;
296 static bool sane_reclaim(struct scan_control *sc)
298 return true;
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 struct mem_cgroup *memcg, bool congested)
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg)
309 return false;
312 #endif
315 * This misses isolated pages which are not accounted for to save counters.
316 * As the data only determines if reclaim or compaction continues, it is
317 * not expected that isolated pages will be a dominating factor.
319 unsigned long zone_reclaimable_pages(struct zone *zone)
321 unsigned long nr;
323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 if (get_nr_swap_pages() > 0)
326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
329 return nr;
333 * lruvec_lru_size - Returns the number of pages on the given LRU list.
334 * @lruvec: lru vector
335 * @lru: lru to use
336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
340 unsigned long lru_size;
341 int zid;
343 if (!mem_cgroup_disabled())
344 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 else
346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 unsigned long size;
352 if (!managed_zone(zone))
353 continue;
355 if (!mem_cgroup_disabled())
356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 else
358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 NR_ZONE_LRU_BASE + lru);
360 lru_size -= min(size, lru_size);
363 return lru_size;
368 * Add a shrinker callback to be called from the vm.
370 int prealloc_shrinker(struct shrinker *shrinker)
372 size_t size = sizeof(*shrinker->nr_deferred);
374 if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 size *= nr_node_ids;
377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 if (!shrinker->nr_deferred)
379 return -ENOMEM;
381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 if (prealloc_memcg_shrinker(shrinker))
383 goto free_deferred;
386 return 0;
388 free_deferred:
389 kfree(shrinker->nr_deferred);
390 shrinker->nr_deferred = NULL;
391 return -ENOMEM;
394 void free_prealloced_shrinker(struct shrinker *shrinker)
396 if (!shrinker->nr_deferred)
397 return;
399 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 unregister_memcg_shrinker(shrinker);
402 kfree(shrinker->nr_deferred);
403 shrinker->nr_deferred = NULL;
406 void register_shrinker_prepared(struct shrinker *shrinker)
408 down_write(&shrinker_rwsem);
409 list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 #endif
414 up_write(&shrinker_rwsem);
417 int register_shrinker(struct shrinker *shrinker)
419 int err = prealloc_shrinker(shrinker);
421 if (err)
422 return err;
423 register_shrinker_prepared(shrinker);
424 return 0;
426 EXPORT_SYMBOL(register_shrinker);
429 * Remove one
431 void unregister_shrinker(struct shrinker *shrinker)
433 if (!shrinker->nr_deferred)
434 return;
435 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 unregister_memcg_shrinker(shrinker);
437 down_write(&shrinker_rwsem);
438 list_del(&shrinker->list);
439 up_write(&shrinker_rwsem);
440 kfree(shrinker->nr_deferred);
441 shrinker->nr_deferred = NULL;
443 EXPORT_SYMBOL(unregister_shrinker);
445 #define SHRINK_BATCH 128
447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448 struct shrinker *shrinker, int priority)
450 unsigned long freed = 0;
451 unsigned long long delta;
452 long total_scan;
453 long freeable;
454 long nr;
455 long new_nr;
456 int nid = shrinkctl->nid;
457 long batch_size = shrinker->batch ? shrinker->batch
458 : SHRINK_BATCH;
459 long scanned = 0, next_deferred;
461 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462 nid = 0;
464 freeable = shrinker->count_objects(shrinker, shrinkctl);
465 if (freeable == 0 || freeable == SHRINK_EMPTY)
466 return freeable;
469 * copy the current shrinker scan count into a local variable
470 * and zero it so that other concurrent shrinker invocations
471 * don't also do this scanning work.
473 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
475 total_scan = nr;
476 delta = freeable >> priority;
477 delta *= 4;
478 do_div(delta, shrinker->seeks);
480 total_scan += delta;
481 if (total_scan < 0) {
482 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
483 shrinker->scan_objects, total_scan);
484 total_scan = freeable;
485 next_deferred = nr;
486 } else
487 next_deferred = total_scan;
490 * We need to avoid excessive windup on filesystem shrinkers
491 * due to large numbers of GFP_NOFS allocations causing the
492 * shrinkers to return -1 all the time. This results in a large
493 * nr being built up so when a shrink that can do some work
494 * comes along it empties the entire cache due to nr >>>
495 * freeable. This is bad for sustaining a working set in
496 * memory.
498 * Hence only allow the shrinker to scan the entire cache when
499 * a large delta change is calculated directly.
501 if (delta < freeable / 4)
502 total_scan = min(total_scan, freeable / 2);
505 * Avoid risking looping forever due to too large nr value:
506 * never try to free more than twice the estimate number of
507 * freeable entries.
509 if (total_scan > freeable * 2)
510 total_scan = freeable * 2;
512 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
513 freeable, delta, total_scan, priority);
516 * Normally, we should not scan less than batch_size objects in one
517 * pass to avoid too frequent shrinker calls, but if the slab has less
518 * than batch_size objects in total and we are really tight on memory,
519 * we will try to reclaim all available objects, otherwise we can end
520 * up failing allocations although there are plenty of reclaimable
521 * objects spread over several slabs with usage less than the
522 * batch_size.
524 * We detect the "tight on memory" situations by looking at the total
525 * number of objects we want to scan (total_scan). If it is greater
526 * than the total number of objects on slab (freeable), we must be
527 * scanning at high prio and therefore should try to reclaim as much as
528 * possible.
530 while (total_scan >= batch_size ||
531 total_scan >= freeable) {
532 unsigned long ret;
533 unsigned long nr_to_scan = min(batch_size, total_scan);
535 shrinkctl->nr_to_scan = nr_to_scan;
536 shrinkctl->nr_scanned = nr_to_scan;
537 ret = shrinker->scan_objects(shrinker, shrinkctl);
538 if (ret == SHRINK_STOP)
539 break;
540 freed += ret;
542 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
543 total_scan -= shrinkctl->nr_scanned;
544 scanned += shrinkctl->nr_scanned;
546 cond_resched();
549 if (next_deferred >= scanned)
550 next_deferred -= scanned;
551 else
552 next_deferred = 0;
554 * move the unused scan count back into the shrinker in a
555 * manner that handles concurrent updates. If we exhausted the
556 * scan, there is no need to do an update.
558 if (next_deferred > 0)
559 new_nr = atomic_long_add_return(next_deferred,
560 &shrinker->nr_deferred[nid]);
561 else
562 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
564 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
565 return freed;
568 #ifdef CONFIG_MEMCG_KMEM
569 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
570 struct mem_cgroup *memcg, int priority)
572 struct memcg_shrinker_map *map;
573 unsigned long ret, freed = 0;
574 int i;
576 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
577 return 0;
579 if (!down_read_trylock(&shrinker_rwsem))
580 return 0;
582 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
583 true);
584 if (unlikely(!map))
585 goto unlock;
587 for_each_set_bit(i, map->map, shrinker_nr_max) {
588 struct shrink_control sc = {
589 .gfp_mask = gfp_mask,
590 .nid = nid,
591 .memcg = memcg,
593 struct shrinker *shrinker;
595 shrinker = idr_find(&shrinker_idr, i);
596 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
597 if (!shrinker)
598 clear_bit(i, map->map);
599 continue;
602 ret = do_shrink_slab(&sc, shrinker, priority);
603 if (ret == SHRINK_EMPTY) {
604 clear_bit(i, map->map);
606 * After the shrinker reported that it had no objects to
607 * free, but before we cleared the corresponding bit in
608 * the memcg shrinker map, a new object might have been
609 * added. To make sure, we have the bit set in this
610 * case, we invoke the shrinker one more time and reset
611 * the bit if it reports that it is not empty anymore.
612 * The memory barrier here pairs with the barrier in
613 * memcg_set_shrinker_bit():
615 * list_lru_add() shrink_slab_memcg()
616 * list_add_tail() clear_bit()
617 * <MB> <MB>
618 * set_bit() do_shrink_slab()
620 smp_mb__after_atomic();
621 ret = do_shrink_slab(&sc, shrinker, priority);
622 if (ret == SHRINK_EMPTY)
623 ret = 0;
624 else
625 memcg_set_shrinker_bit(memcg, nid, i);
627 freed += ret;
629 if (rwsem_is_contended(&shrinker_rwsem)) {
630 freed = freed ? : 1;
631 break;
634 unlock:
635 up_read(&shrinker_rwsem);
636 return freed;
638 #else /* CONFIG_MEMCG_KMEM */
639 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
640 struct mem_cgroup *memcg, int priority)
642 return 0;
644 #endif /* CONFIG_MEMCG_KMEM */
647 * shrink_slab - shrink slab caches
648 * @gfp_mask: allocation context
649 * @nid: node whose slab caches to target
650 * @memcg: memory cgroup whose slab caches to target
651 * @priority: the reclaim priority
653 * Call the shrink functions to age shrinkable caches.
655 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
656 * unaware shrinkers will receive a node id of 0 instead.
658 * @memcg specifies the memory cgroup to target. Unaware shrinkers
659 * are called only if it is the root cgroup.
661 * @priority is sc->priority, we take the number of objects and >> by priority
662 * in order to get the scan target.
664 * Returns the number of reclaimed slab objects.
666 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
667 struct mem_cgroup *memcg,
668 int priority)
670 unsigned long ret, freed = 0;
671 struct shrinker *shrinker;
674 * The root memcg might be allocated even though memcg is disabled
675 * via "cgroup_disable=memory" boot parameter. This could make
676 * mem_cgroup_is_root() return false, then just run memcg slab
677 * shrink, but skip global shrink. This may result in premature
678 * oom.
680 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
681 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
683 if (!down_read_trylock(&shrinker_rwsem))
684 goto out;
686 list_for_each_entry(shrinker, &shrinker_list, list) {
687 struct shrink_control sc = {
688 .gfp_mask = gfp_mask,
689 .nid = nid,
690 .memcg = memcg,
693 ret = do_shrink_slab(&sc, shrinker, priority);
694 if (ret == SHRINK_EMPTY)
695 ret = 0;
696 freed += ret;
698 * Bail out if someone want to register a new shrinker to
699 * prevent the regsitration from being stalled for long periods
700 * by parallel ongoing shrinking.
702 if (rwsem_is_contended(&shrinker_rwsem)) {
703 freed = freed ? : 1;
704 break;
708 up_read(&shrinker_rwsem);
709 out:
710 cond_resched();
711 return freed;
714 void drop_slab_node(int nid)
716 unsigned long freed;
718 do {
719 struct mem_cgroup *memcg = NULL;
721 freed = 0;
722 memcg = mem_cgroup_iter(NULL, NULL, NULL);
723 do {
724 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
725 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
726 } while (freed > 10);
729 void drop_slab(void)
731 int nid;
733 for_each_online_node(nid)
734 drop_slab_node(nid);
737 static inline int is_page_cache_freeable(struct page *page)
740 * A freeable page cache page is referenced only by the caller
741 * that isolated the page, the page cache radix tree and
742 * optional buffer heads at page->private.
744 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
745 HPAGE_PMD_NR : 1;
746 return page_count(page) - page_has_private(page) == 1 + radix_pins;
749 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
751 if (current->flags & PF_SWAPWRITE)
752 return 1;
753 if (!inode_write_congested(inode))
754 return 1;
755 if (inode_to_bdi(inode) == current->backing_dev_info)
756 return 1;
757 return 0;
761 * We detected a synchronous write error writing a page out. Probably
762 * -ENOSPC. We need to propagate that into the address_space for a subsequent
763 * fsync(), msync() or close().
765 * The tricky part is that after writepage we cannot touch the mapping: nothing
766 * prevents it from being freed up. But we have a ref on the page and once
767 * that page is locked, the mapping is pinned.
769 * We're allowed to run sleeping lock_page() here because we know the caller has
770 * __GFP_FS.
772 static void handle_write_error(struct address_space *mapping,
773 struct page *page, int error)
775 lock_page(page);
776 if (page_mapping(page) == mapping)
777 mapping_set_error(mapping, error);
778 unlock_page(page);
781 /* possible outcome of pageout() */
782 typedef enum {
783 /* failed to write page out, page is locked */
784 PAGE_KEEP,
785 /* move page to the active list, page is locked */
786 PAGE_ACTIVATE,
787 /* page has been sent to the disk successfully, page is unlocked */
788 PAGE_SUCCESS,
789 /* page is clean and locked */
790 PAGE_CLEAN,
791 } pageout_t;
794 * pageout is called by shrink_page_list() for each dirty page.
795 * Calls ->writepage().
797 static pageout_t pageout(struct page *page, struct address_space *mapping,
798 struct scan_control *sc)
801 * If the page is dirty, only perform writeback if that write
802 * will be non-blocking. To prevent this allocation from being
803 * stalled by pagecache activity. But note that there may be
804 * stalls if we need to run get_block(). We could test
805 * PagePrivate for that.
807 * If this process is currently in __generic_file_write_iter() against
808 * this page's queue, we can perform writeback even if that
809 * will block.
811 * If the page is swapcache, write it back even if that would
812 * block, for some throttling. This happens by accident, because
813 * swap_backing_dev_info is bust: it doesn't reflect the
814 * congestion state of the swapdevs. Easy to fix, if needed.
816 if (!is_page_cache_freeable(page))
817 return PAGE_KEEP;
818 if (!mapping) {
820 * Some data journaling orphaned pages can have
821 * page->mapping == NULL while being dirty with clean buffers.
823 if (page_has_private(page)) {
824 if (try_to_free_buffers(page)) {
825 ClearPageDirty(page);
826 pr_info("%s: orphaned page\n", __func__);
827 return PAGE_CLEAN;
830 return PAGE_KEEP;
832 if (mapping->a_ops->writepage == NULL)
833 return PAGE_ACTIVATE;
834 if (!may_write_to_inode(mapping->host, sc))
835 return PAGE_KEEP;
837 if (clear_page_dirty_for_io(page)) {
838 int res;
839 struct writeback_control wbc = {
840 .sync_mode = WB_SYNC_NONE,
841 .nr_to_write = SWAP_CLUSTER_MAX,
842 .range_start = 0,
843 .range_end = LLONG_MAX,
844 .for_reclaim = 1,
847 SetPageReclaim(page);
848 res = mapping->a_ops->writepage(page, &wbc);
849 if (res < 0)
850 handle_write_error(mapping, page, res);
851 if (res == AOP_WRITEPAGE_ACTIVATE) {
852 ClearPageReclaim(page);
853 return PAGE_ACTIVATE;
856 if (!PageWriteback(page)) {
857 /* synchronous write or broken a_ops? */
858 ClearPageReclaim(page);
860 trace_mm_vmscan_writepage(page);
861 inc_node_page_state(page, NR_VMSCAN_WRITE);
862 return PAGE_SUCCESS;
865 return PAGE_CLEAN;
869 * Same as remove_mapping, but if the page is removed from the mapping, it
870 * gets returned with a refcount of 0.
872 static int __remove_mapping(struct address_space *mapping, struct page *page,
873 bool reclaimed)
875 unsigned long flags;
876 int refcount;
878 BUG_ON(!PageLocked(page));
879 BUG_ON(mapping != page_mapping(page));
881 xa_lock_irqsave(&mapping->i_pages, flags);
883 * The non racy check for a busy page.
885 * Must be careful with the order of the tests. When someone has
886 * a ref to the page, it may be possible that they dirty it then
887 * drop the reference. So if PageDirty is tested before page_count
888 * here, then the following race may occur:
890 * get_user_pages(&page);
891 * [user mapping goes away]
892 * write_to(page);
893 * !PageDirty(page) [good]
894 * SetPageDirty(page);
895 * put_page(page);
896 * !page_count(page) [good, discard it]
898 * [oops, our write_to data is lost]
900 * Reversing the order of the tests ensures such a situation cannot
901 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
902 * load is not satisfied before that of page->_refcount.
904 * Note that if SetPageDirty is always performed via set_page_dirty,
905 * and thus under the i_pages lock, then this ordering is not required.
907 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
908 refcount = 1 + HPAGE_PMD_NR;
909 else
910 refcount = 2;
911 if (!page_ref_freeze(page, refcount))
912 goto cannot_free;
913 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
914 if (unlikely(PageDirty(page))) {
915 page_ref_unfreeze(page, refcount);
916 goto cannot_free;
919 if (PageSwapCache(page)) {
920 swp_entry_t swap = { .val = page_private(page) };
921 mem_cgroup_swapout(page, swap);
922 __delete_from_swap_cache(page);
923 xa_unlock_irqrestore(&mapping->i_pages, flags);
924 put_swap_page(page, swap);
925 } else {
926 void (*freepage)(struct page *);
927 void *shadow = NULL;
929 freepage = mapping->a_ops->freepage;
931 * Remember a shadow entry for reclaimed file cache in
932 * order to detect refaults, thus thrashing, later on.
934 * But don't store shadows in an address space that is
935 * already exiting. This is not just an optizimation,
936 * inode reclaim needs to empty out the radix tree or
937 * the nodes are lost. Don't plant shadows behind its
938 * back.
940 * We also don't store shadows for DAX mappings because the
941 * only page cache pages found in these are zero pages
942 * covering holes, and because we don't want to mix DAX
943 * exceptional entries and shadow exceptional entries in the
944 * same address_space.
946 if (reclaimed && page_is_file_cache(page) &&
947 !mapping_exiting(mapping) && !dax_mapping(mapping))
948 shadow = workingset_eviction(mapping, page);
949 __delete_from_page_cache(page, shadow);
950 xa_unlock_irqrestore(&mapping->i_pages, flags);
952 if (freepage != NULL)
953 freepage(page);
956 return 1;
958 cannot_free:
959 xa_unlock_irqrestore(&mapping->i_pages, flags);
960 return 0;
964 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
965 * someone else has a ref on the page, abort and return 0. If it was
966 * successfully detached, return 1. Assumes the caller has a single ref on
967 * this page.
969 int remove_mapping(struct address_space *mapping, struct page *page)
971 if (__remove_mapping(mapping, page, false)) {
973 * Unfreezing the refcount with 1 rather than 2 effectively
974 * drops the pagecache ref for us without requiring another
975 * atomic operation.
977 page_ref_unfreeze(page, 1);
978 return 1;
980 return 0;
984 * putback_lru_page - put previously isolated page onto appropriate LRU list
985 * @page: page to be put back to appropriate lru list
987 * Add previously isolated @page to appropriate LRU list.
988 * Page may still be unevictable for other reasons.
990 * lru_lock must not be held, interrupts must be enabled.
992 void putback_lru_page(struct page *page)
994 lru_cache_add(page);
995 put_page(page); /* drop ref from isolate */
998 enum page_references {
999 PAGEREF_RECLAIM,
1000 PAGEREF_RECLAIM_CLEAN,
1001 PAGEREF_KEEP,
1002 PAGEREF_ACTIVATE,
1005 static enum page_references page_check_references(struct page *page,
1006 struct scan_control *sc)
1008 int referenced_ptes, referenced_page;
1009 unsigned long vm_flags;
1011 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1012 &vm_flags);
1013 referenced_page = TestClearPageReferenced(page);
1016 * Mlock lost the isolation race with us. Let try_to_unmap()
1017 * move the page to the unevictable list.
1019 if (vm_flags & VM_LOCKED)
1020 return PAGEREF_RECLAIM;
1022 if (referenced_ptes) {
1023 if (PageSwapBacked(page))
1024 return PAGEREF_ACTIVATE;
1026 * All mapped pages start out with page table
1027 * references from the instantiating fault, so we need
1028 * to look twice if a mapped file page is used more
1029 * than once.
1031 * Mark it and spare it for another trip around the
1032 * inactive list. Another page table reference will
1033 * lead to its activation.
1035 * Note: the mark is set for activated pages as well
1036 * so that recently deactivated but used pages are
1037 * quickly recovered.
1039 SetPageReferenced(page);
1041 if (referenced_page || referenced_ptes > 1)
1042 return PAGEREF_ACTIVATE;
1045 * Activate file-backed executable pages after first usage.
1047 if (vm_flags & VM_EXEC)
1048 return PAGEREF_ACTIVATE;
1050 return PAGEREF_KEEP;
1053 /* Reclaim if clean, defer dirty pages to writeback */
1054 if (referenced_page && !PageSwapBacked(page))
1055 return PAGEREF_RECLAIM_CLEAN;
1057 return PAGEREF_RECLAIM;
1060 /* Check if a page is dirty or under writeback */
1061 static void page_check_dirty_writeback(struct page *page,
1062 bool *dirty, bool *writeback)
1064 struct address_space *mapping;
1067 * Anonymous pages are not handled by flushers and must be written
1068 * from reclaim context. Do not stall reclaim based on them
1070 if (!page_is_file_cache(page) ||
1071 (PageAnon(page) && !PageSwapBacked(page))) {
1072 *dirty = false;
1073 *writeback = false;
1074 return;
1077 /* By default assume that the page flags are accurate */
1078 *dirty = PageDirty(page);
1079 *writeback = PageWriteback(page);
1081 /* Verify dirty/writeback state if the filesystem supports it */
1082 if (!page_has_private(page))
1083 return;
1085 mapping = page_mapping(page);
1086 if (mapping && mapping->a_ops->is_dirty_writeback)
1087 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1091 * shrink_page_list() returns the number of reclaimed pages
1093 static unsigned long shrink_page_list(struct list_head *page_list,
1094 struct pglist_data *pgdat,
1095 struct scan_control *sc,
1096 enum ttu_flags ttu_flags,
1097 struct reclaim_stat *stat,
1098 bool force_reclaim)
1100 LIST_HEAD(ret_pages);
1101 LIST_HEAD(free_pages);
1102 int pgactivate = 0;
1103 unsigned nr_unqueued_dirty = 0;
1104 unsigned nr_dirty = 0;
1105 unsigned nr_congested = 0;
1106 unsigned nr_reclaimed = 0;
1107 unsigned nr_writeback = 0;
1108 unsigned nr_immediate = 0;
1109 unsigned nr_ref_keep = 0;
1110 unsigned nr_unmap_fail = 0;
1112 cond_resched();
1114 while (!list_empty(page_list)) {
1115 struct address_space *mapping;
1116 struct page *page;
1117 int may_enter_fs;
1118 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1119 bool dirty, writeback;
1121 cond_resched();
1123 page = lru_to_page(page_list);
1124 list_del(&page->lru);
1126 if (!trylock_page(page))
1127 goto keep;
1129 VM_BUG_ON_PAGE(PageActive(page), page);
1131 sc->nr_scanned++;
1133 if (unlikely(!page_evictable(page)))
1134 goto activate_locked;
1136 if (!sc->may_unmap && page_mapped(page))
1137 goto keep_locked;
1139 /* Double the slab pressure for mapped and swapcache pages */
1140 if ((page_mapped(page) || PageSwapCache(page)) &&
1141 !(PageAnon(page) && !PageSwapBacked(page)))
1142 sc->nr_scanned++;
1144 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1148 * The number of dirty pages determines if a node is marked
1149 * reclaim_congested which affects wait_iff_congested. kswapd
1150 * will stall and start writing pages if the tail of the LRU
1151 * is all dirty unqueued pages.
1153 page_check_dirty_writeback(page, &dirty, &writeback);
1154 if (dirty || writeback)
1155 nr_dirty++;
1157 if (dirty && !writeback)
1158 nr_unqueued_dirty++;
1161 * Treat this page as congested if the underlying BDI is or if
1162 * pages are cycling through the LRU so quickly that the
1163 * pages marked for immediate reclaim are making it to the
1164 * end of the LRU a second time.
1166 mapping = page_mapping(page);
1167 if (((dirty || writeback) && mapping &&
1168 inode_write_congested(mapping->host)) ||
1169 (writeback && PageReclaim(page)))
1170 nr_congested++;
1173 * If a page at the tail of the LRU is under writeback, there
1174 * are three cases to consider.
1176 * 1) If reclaim is encountering an excessive number of pages
1177 * under writeback and this page is both under writeback and
1178 * PageReclaim then it indicates that pages are being queued
1179 * for IO but are being recycled through the LRU before the
1180 * IO can complete. Waiting on the page itself risks an
1181 * indefinite stall if it is impossible to writeback the
1182 * page due to IO error or disconnected storage so instead
1183 * note that the LRU is being scanned too quickly and the
1184 * caller can stall after page list has been processed.
1186 * 2) Global or new memcg reclaim encounters a page that is
1187 * not marked for immediate reclaim, or the caller does not
1188 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 * not to fs). In this case mark the page for immediate
1190 * reclaim and continue scanning.
1192 * Require may_enter_fs because we would wait on fs, which
1193 * may not have submitted IO yet. And the loop driver might
1194 * enter reclaim, and deadlock if it waits on a page for
1195 * which it is needed to do the write (loop masks off
1196 * __GFP_IO|__GFP_FS for this reason); but more thought
1197 * would probably show more reasons.
1199 * 3) Legacy memcg encounters a page that is already marked
1200 * PageReclaim. memcg does not have any dirty pages
1201 * throttling so we could easily OOM just because too many
1202 * pages are in writeback and there is nothing else to
1203 * reclaim. Wait for the writeback to complete.
1205 * In cases 1) and 2) we activate the pages to get them out of
1206 * the way while we continue scanning for clean pages on the
1207 * inactive list and refilling from the active list. The
1208 * observation here is that waiting for disk writes is more
1209 * expensive than potentially causing reloads down the line.
1210 * Since they're marked for immediate reclaim, they won't put
1211 * memory pressure on the cache working set any longer than it
1212 * takes to write them to disk.
1214 if (PageWriteback(page)) {
1215 /* Case 1 above */
1216 if (current_is_kswapd() &&
1217 PageReclaim(page) &&
1218 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219 nr_immediate++;
1220 goto activate_locked;
1222 /* Case 2 above */
1223 } else if (sane_reclaim(sc) ||
1224 !PageReclaim(page) || !may_enter_fs) {
1226 * This is slightly racy - end_page_writeback()
1227 * might have just cleared PageReclaim, then
1228 * setting PageReclaim here end up interpreted
1229 * as PageReadahead - but that does not matter
1230 * enough to care. What we do want is for this
1231 * page to have PageReclaim set next time memcg
1232 * reclaim reaches the tests above, so it will
1233 * then wait_on_page_writeback() to avoid OOM;
1234 * and it's also appropriate in global reclaim.
1236 SetPageReclaim(page);
1237 nr_writeback++;
1238 goto activate_locked;
1240 /* Case 3 above */
1241 } else {
1242 unlock_page(page);
1243 wait_on_page_writeback(page);
1244 /* then go back and try same page again */
1245 list_add_tail(&page->lru, page_list);
1246 continue;
1250 if (!force_reclaim)
1251 references = page_check_references(page, sc);
1253 switch (references) {
1254 case PAGEREF_ACTIVATE:
1255 goto activate_locked;
1256 case PAGEREF_KEEP:
1257 nr_ref_keep++;
1258 goto keep_locked;
1259 case PAGEREF_RECLAIM:
1260 case PAGEREF_RECLAIM_CLEAN:
1261 ; /* try to reclaim the page below */
1265 * Anonymous process memory has backing store?
1266 * Try to allocate it some swap space here.
1267 * Lazyfree page could be freed directly
1269 if (PageAnon(page) && PageSwapBacked(page)) {
1270 if (!PageSwapCache(page)) {
1271 if (!(sc->gfp_mask & __GFP_IO))
1272 goto keep_locked;
1273 if (PageTransHuge(page)) {
1274 /* cannot split THP, skip it */
1275 if (!can_split_huge_page(page, NULL))
1276 goto activate_locked;
1278 * Split pages without a PMD map right
1279 * away. Chances are some or all of the
1280 * tail pages can be freed without IO.
1282 if (!compound_mapcount(page) &&
1283 split_huge_page_to_list(page,
1284 page_list))
1285 goto activate_locked;
1287 if (!add_to_swap(page)) {
1288 if (!PageTransHuge(page))
1289 goto activate_locked;
1290 /* Fallback to swap normal pages */
1291 if (split_huge_page_to_list(page,
1292 page_list))
1293 goto activate_locked;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 count_vm_event(THP_SWPOUT_FALLBACK);
1296 #endif
1297 if (!add_to_swap(page))
1298 goto activate_locked;
1301 may_enter_fs = 1;
1303 /* Adding to swap updated mapping */
1304 mapping = page_mapping(page);
1306 } else if (unlikely(PageTransHuge(page))) {
1307 /* Split file THP */
1308 if (split_huge_page_to_list(page, page_list))
1309 goto keep_locked;
1313 * The page is mapped into the page tables of one or more
1314 * processes. Try to unmap it here.
1316 if (page_mapped(page)) {
1317 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1319 if (unlikely(PageTransHuge(page)))
1320 flags |= TTU_SPLIT_HUGE_PMD;
1321 if (!try_to_unmap(page, flags)) {
1322 nr_unmap_fail++;
1323 goto activate_locked;
1327 if (PageDirty(page)) {
1329 * Only kswapd can writeback filesystem pages
1330 * to avoid risk of stack overflow. But avoid
1331 * injecting inefficient single-page IO into
1332 * flusher writeback as much as possible: only
1333 * write pages when we've encountered many
1334 * dirty pages, and when we've already scanned
1335 * the rest of the LRU for clean pages and see
1336 * the same dirty pages again (PageReclaim).
1338 if (page_is_file_cache(page) &&
1339 (!current_is_kswapd() || !PageReclaim(page) ||
1340 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1342 * Immediately reclaim when written back.
1343 * Similar in principal to deactivate_page()
1344 * except we already have the page isolated
1345 * and know it's dirty
1347 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1348 SetPageReclaim(page);
1350 goto activate_locked;
1353 if (references == PAGEREF_RECLAIM_CLEAN)
1354 goto keep_locked;
1355 if (!may_enter_fs)
1356 goto keep_locked;
1357 if (!sc->may_writepage)
1358 goto keep_locked;
1361 * Page is dirty. Flush the TLB if a writable entry
1362 * potentially exists to avoid CPU writes after IO
1363 * starts and then write it out here.
1365 try_to_unmap_flush_dirty();
1366 switch (pageout(page, mapping, sc)) {
1367 case PAGE_KEEP:
1368 goto keep_locked;
1369 case PAGE_ACTIVATE:
1370 goto activate_locked;
1371 case PAGE_SUCCESS:
1372 if (PageWriteback(page))
1373 goto keep;
1374 if (PageDirty(page))
1375 goto keep;
1378 * A synchronous write - probably a ramdisk. Go
1379 * ahead and try to reclaim the page.
1381 if (!trylock_page(page))
1382 goto keep;
1383 if (PageDirty(page) || PageWriteback(page))
1384 goto keep_locked;
1385 mapping = page_mapping(page);
1386 case PAGE_CLEAN:
1387 ; /* try to free the page below */
1392 * If the page has buffers, try to free the buffer mappings
1393 * associated with this page. If we succeed we try to free
1394 * the page as well.
1396 * We do this even if the page is PageDirty().
1397 * try_to_release_page() does not perform I/O, but it is
1398 * possible for a page to have PageDirty set, but it is actually
1399 * clean (all its buffers are clean). This happens if the
1400 * buffers were written out directly, with submit_bh(). ext3
1401 * will do this, as well as the blockdev mapping.
1402 * try_to_release_page() will discover that cleanness and will
1403 * drop the buffers and mark the page clean - it can be freed.
1405 * Rarely, pages can have buffers and no ->mapping. These are
1406 * the pages which were not successfully invalidated in
1407 * truncate_complete_page(). We try to drop those buffers here
1408 * and if that worked, and the page is no longer mapped into
1409 * process address space (page_count == 1) it can be freed.
1410 * Otherwise, leave the page on the LRU so it is swappable.
1412 if (page_has_private(page)) {
1413 if (!try_to_release_page(page, sc->gfp_mask))
1414 goto activate_locked;
1415 if (!mapping && page_count(page) == 1) {
1416 unlock_page(page);
1417 if (put_page_testzero(page))
1418 goto free_it;
1419 else {
1421 * rare race with speculative reference.
1422 * the speculative reference will free
1423 * this page shortly, so we may
1424 * increment nr_reclaimed here (and
1425 * leave it off the LRU).
1427 nr_reclaimed++;
1428 continue;
1433 if (PageAnon(page) && !PageSwapBacked(page)) {
1434 /* follow __remove_mapping for reference */
1435 if (!page_ref_freeze(page, 1))
1436 goto keep_locked;
1437 if (PageDirty(page)) {
1438 page_ref_unfreeze(page, 1);
1439 goto keep_locked;
1442 count_vm_event(PGLAZYFREED);
1443 count_memcg_page_event(page, PGLAZYFREED);
1444 } else if (!mapping || !__remove_mapping(mapping, page, true))
1445 goto keep_locked;
1447 * At this point, we have no other references and there is
1448 * no way to pick any more up (removed from LRU, removed
1449 * from pagecache). Can use non-atomic bitops now (and
1450 * we obviously don't have to worry about waking up a process
1451 * waiting on the page lock, because there are no references.
1453 __ClearPageLocked(page);
1454 free_it:
1455 nr_reclaimed++;
1458 * Is there need to periodically free_page_list? It would
1459 * appear not as the counts should be low
1461 if (unlikely(PageTransHuge(page))) {
1462 mem_cgroup_uncharge(page);
1463 (*get_compound_page_dtor(page))(page);
1464 } else
1465 list_add(&page->lru, &free_pages);
1466 continue;
1468 activate_locked:
1469 /* Not a candidate for swapping, so reclaim swap space. */
1470 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1471 PageMlocked(page)))
1472 try_to_free_swap(page);
1473 VM_BUG_ON_PAGE(PageActive(page), page);
1474 if (!PageMlocked(page)) {
1475 SetPageActive(page);
1476 pgactivate++;
1477 count_memcg_page_event(page, PGACTIVATE);
1479 keep_locked:
1480 unlock_page(page);
1481 keep:
1482 list_add(&page->lru, &ret_pages);
1483 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1486 mem_cgroup_uncharge_list(&free_pages);
1487 try_to_unmap_flush();
1488 free_unref_page_list(&free_pages);
1490 list_splice(&ret_pages, page_list);
1491 count_vm_events(PGACTIVATE, pgactivate);
1493 if (stat) {
1494 stat->nr_dirty = nr_dirty;
1495 stat->nr_congested = nr_congested;
1496 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1497 stat->nr_writeback = nr_writeback;
1498 stat->nr_immediate = nr_immediate;
1499 stat->nr_activate = pgactivate;
1500 stat->nr_ref_keep = nr_ref_keep;
1501 stat->nr_unmap_fail = nr_unmap_fail;
1503 return nr_reclaimed;
1506 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1507 struct list_head *page_list)
1509 struct scan_control sc = {
1510 .gfp_mask = GFP_KERNEL,
1511 .priority = DEF_PRIORITY,
1512 .may_unmap = 1,
1514 unsigned long ret;
1515 struct page *page, *next;
1516 LIST_HEAD(clean_pages);
1518 list_for_each_entry_safe(page, next, page_list, lru) {
1519 if (page_is_file_cache(page) && !PageDirty(page) &&
1520 !__PageMovable(page) && !PageUnevictable(page)) {
1521 ClearPageActive(page);
1522 list_move(&page->lru, &clean_pages);
1526 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1527 TTU_IGNORE_ACCESS, NULL, true);
1528 list_splice(&clean_pages, page_list);
1529 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1530 return ret;
1534 * Attempt to remove the specified page from its LRU. Only take this page
1535 * if it is of the appropriate PageActive status. Pages which are being
1536 * freed elsewhere are also ignored.
1538 * page: page to consider
1539 * mode: one of the LRU isolation modes defined above
1541 * returns 0 on success, -ve errno on failure.
1543 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1545 int ret = -EINVAL;
1547 /* Only take pages on the LRU. */
1548 if (!PageLRU(page))
1549 return ret;
1551 /* Compaction should not handle unevictable pages but CMA can do so */
1552 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1553 return ret;
1555 ret = -EBUSY;
1558 * To minimise LRU disruption, the caller can indicate that it only
1559 * wants to isolate pages it will be able to operate on without
1560 * blocking - clean pages for the most part.
1562 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1563 * that it is possible to migrate without blocking
1565 if (mode & ISOLATE_ASYNC_MIGRATE) {
1566 /* All the caller can do on PageWriteback is block */
1567 if (PageWriteback(page))
1568 return ret;
1570 if (PageDirty(page)) {
1571 struct address_space *mapping;
1572 bool migrate_dirty;
1575 * Only pages without mappings or that have a
1576 * ->migratepage callback are possible to migrate
1577 * without blocking. However, we can be racing with
1578 * truncation so it's necessary to lock the page
1579 * to stabilise the mapping as truncation holds
1580 * the page lock until after the page is removed
1581 * from the page cache.
1583 if (!trylock_page(page))
1584 return ret;
1586 mapping = page_mapping(page);
1587 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1588 unlock_page(page);
1589 if (!migrate_dirty)
1590 return ret;
1594 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1595 return ret;
1597 if (likely(get_page_unless_zero(page))) {
1599 * Be careful not to clear PageLRU until after we're
1600 * sure the page is not being freed elsewhere -- the
1601 * page release code relies on it.
1603 ClearPageLRU(page);
1604 ret = 0;
1607 return ret;
1612 * Update LRU sizes after isolating pages. The LRU size updates must
1613 * be complete before mem_cgroup_update_lru_size due to a santity check.
1615 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1616 enum lru_list lru, unsigned long *nr_zone_taken)
1618 int zid;
1620 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1621 if (!nr_zone_taken[zid])
1622 continue;
1624 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1625 #ifdef CONFIG_MEMCG
1626 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1627 #endif
1633 * zone_lru_lock is heavily contended. Some of the functions that
1634 * shrink the lists perform better by taking out a batch of pages
1635 * and working on them outside the LRU lock.
1637 * For pagecache intensive workloads, this function is the hottest
1638 * spot in the kernel (apart from copy_*_user functions).
1640 * Appropriate locks must be held before calling this function.
1642 * @nr_to_scan: The number of eligible pages to look through on the list.
1643 * @lruvec: The LRU vector to pull pages from.
1644 * @dst: The temp list to put pages on to.
1645 * @nr_scanned: The number of pages that were scanned.
1646 * @sc: The scan_control struct for this reclaim session
1647 * @mode: One of the LRU isolation modes
1648 * @lru: LRU list id for isolating
1650 * returns how many pages were moved onto *@dst.
1652 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1653 struct lruvec *lruvec, struct list_head *dst,
1654 unsigned long *nr_scanned, struct scan_control *sc,
1655 isolate_mode_t mode, enum lru_list lru)
1657 struct list_head *src = &lruvec->lists[lru];
1658 unsigned long nr_taken = 0;
1659 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1660 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1661 unsigned long skipped = 0;
1662 unsigned long scan, total_scan, nr_pages;
1663 LIST_HEAD(pages_skipped);
1665 scan = 0;
1666 for (total_scan = 0;
1667 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1668 total_scan++) {
1669 struct page *page;
1671 page = lru_to_page(src);
1672 prefetchw_prev_lru_page(page, src, flags);
1674 VM_BUG_ON_PAGE(!PageLRU(page), page);
1676 if (page_zonenum(page) > sc->reclaim_idx) {
1677 list_move(&page->lru, &pages_skipped);
1678 nr_skipped[page_zonenum(page)]++;
1679 continue;
1683 * Do not count skipped pages because that makes the function
1684 * return with no isolated pages if the LRU mostly contains
1685 * ineligible pages. This causes the VM to not reclaim any
1686 * pages, triggering a premature OOM.
1688 scan++;
1689 switch (__isolate_lru_page(page, mode)) {
1690 case 0:
1691 nr_pages = hpage_nr_pages(page);
1692 nr_taken += nr_pages;
1693 nr_zone_taken[page_zonenum(page)] += nr_pages;
1694 list_move(&page->lru, dst);
1695 break;
1697 case -EBUSY:
1698 /* else it is being freed elsewhere */
1699 list_move(&page->lru, src);
1700 continue;
1702 default:
1703 BUG();
1708 * Splice any skipped pages to the start of the LRU list. Note that
1709 * this disrupts the LRU order when reclaiming for lower zones but
1710 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711 * scanning would soon rescan the same pages to skip and put the
1712 * system at risk of premature OOM.
1714 if (!list_empty(&pages_skipped)) {
1715 int zid;
1717 list_splice(&pages_skipped, src);
1718 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719 if (!nr_skipped[zid])
1720 continue;
1722 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723 skipped += nr_skipped[zid];
1726 *nr_scanned = total_scan;
1727 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728 total_scan, skipped, nr_taken, mode, lru);
1729 update_lru_sizes(lruvec, lru, nr_zone_taken);
1730 return nr_taken;
1734 * isolate_lru_page - tries to isolate a page from its LRU list
1735 * @page: page to isolate from its LRU list
1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738 * vmstat statistic corresponding to whatever LRU list the page was on.
1740 * Returns 0 if the page was removed from an LRU list.
1741 * Returns -EBUSY if the page was not on an LRU list.
1743 * The returned page will have PageLRU() cleared. If it was found on
1744 * the active list, it will have PageActive set. If it was found on
1745 * the unevictable list, it will have the PageUnevictable bit set. That flag
1746 * may need to be cleared by the caller before letting the page go.
1748 * The vmstat statistic corresponding to the list on which the page was
1749 * found will be decremented.
1751 * Restrictions:
1753 * (1) Must be called with an elevated refcount on the page. This is a
1754 * fundamentnal difference from isolate_lru_pages (which is called
1755 * without a stable reference).
1756 * (2) the lru_lock must not be held.
1757 * (3) interrupts must be enabled.
1759 int isolate_lru_page(struct page *page)
1761 int ret = -EBUSY;
1763 VM_BUG_ON_PAGE(!page_count(page), page);
1764 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1766 if (PageLRU(page)) {
1767 struct zone *zone = page_zone(page);
1768 struct lruvec *lruvec;
1770 spin_lock_irq(zone_lru_lock(zone));
1771 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1772 if (PageLRU(page)) {
1773 int lru = page_lru(page);
1774 get_page(page);
1775 ClearPageLRU(page);
1776 del_page_from_lru_list(page, lruvec, lru);
1777 ret = 0;
1779 spin_unlock_irq(zone_lru_lock(zone));
1781 return ret;
1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786 * then get resheduled. When there are massive number of tasks doing page
1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788 * the LRU list will go small and be scanned faster than necessary, leading to
1789 * unnecessary swapping, thrashing and OOM.
1791 static int too_many_isolated(struct pglist_data *pgdat, int file,
1792 struct scan_control *sc)
1794 unsigned long inactive, isolated;
1796 if (current_is_kswapd())
1797 return 0;
1799 if (!sane_reclaim(sc))
1800 return 0;
1802 if (file) {
1803 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805 } else {
1806 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1811 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 * won't get blocked by normal direct-reclaimers, forming a circular
1813 * deadlock.
1815 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816 inactive >>= 3;
1818 return isolated > inactive;
1821 static noinline_for_stack void
1822 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1824 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1825 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1826 LIST_HEAD(pages_to_free);
1829 * Put back any unfreeable pages.
1831 while (!list_empty(page_list)) {
1832 struct page *page = lru_to_page(page_list);
1833 int lru;
1835 VM_BUG_ON_PAGE(PageLRU(page), page);
1836 list_del(&page->lru);
1837 if (unlikely(!page_evictable(page))) {
1838 spin_unlock_irq(&pgdat->lru_lock);
1839 putback_lru_page(page);
1840 spin_lock_irq(&pgdat->lru_lock);
1841 continue;
1844 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1846 SetPageLRU(page);
1847 lru = page_lru(page);
1848 add_page_to_lru_list(page, lruvec, lru);
1850 if (is_active_lru(lru)) {
1851 int file = is_file_lru(lru);
1852 int numpages = hpage_nr_pages(page);
1853 reclaim_stat->recent_rotated[file] += numpages;
1855 if (put_page_testzero(page)) {
1856 __ClearPageLRU(page);
1857 __ClearPageActive(page);
1858 del_page_from_lru_list(page, lruvec, lru);
1860 if (unlikely(PageCompound(page))) {
1861 spin_unlock_irq(&pgdat->lru_lock);
1862 mem_cgroup_uncharge(page);
1863 (*get_compound_page_dtor(page))(page);
1864 spin_lock_irq(&pgdat->lru_lock);
1865 } else
1866 list_add(&page->lru, &pages_to_free);
1871 * To save our caller's stack, now use input list for pages to free.
1873 list_splice(&pages_to_free, page_list);
1877 * If a kernel thread (such as nfsd for loop-back mounts) services
1878 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1879 * In that case we should only throttle if the backing device it is
1880 * writing to is congested. In other cases it is safe to throttle.
1882 static int current_may_throttle(void)
1884 return !(current->flags & PF_LESS_THROTTLE) ||
1885 current->backing_dev_info == NULL ||
1886 bdi_write_congested(current->backing_dev_info);
1890 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1891 * of reclaimed pages
1893 static noinline_for_stack unsigned long
1894 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1895 struct scan_control *sc, enum lru_list lru)
1897 LIST_HEAD(page_list);
1898 unsigned long nr_scanned;
1899 unsigned long nr_reclaimed = 0;
1900 unsigned long nr_taken;
1901 struct reclaim_stat stat = {};
1902 isolate_mode_t isolate_mode = 0;
1903 int file = is_file_lru(lru);
1904 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1905 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1906 bool stalled = false;
1908 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1909 if (stalled)
1910 return 0;
1912 /* wait a bit for the reclaimer. */
1913 msleep(100);
1914 stalled = true;
1916 /* We are about to die and free our memory. Return now. */
1917 if (fatal_signal_pending(current))
1918 return SWAP_CLUSTER_MAX;
1921 lru_add_drain();
1923 if (!sc->may_unmap)
1924 isolate_mode |= ISOLATE_UNMAPPED;
1926 spin_lock_irq(&pgdat->lru_lock);
1928 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1929 &nr_scanned, sc, isolate_mode, lru);
1931 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1932 reclaim_stat->recent_scanned[file] += nr_taken;
1934 if (current_is_kswapd()) {
1935 if (global_reclaim(sc))
1936 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1937 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1938 nr_scanned);
1939 } else {
1940 if (global_reclaim(sc))
1941 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1942 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1943 nr_scanned);
1945 spin_unlock_irq(&pgdat->lru_lock);
1947 if (nr_taken == 0)
1948 return 0;
1950 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1951 &stat, false);
1953 spin_lock_irq(&pgdat->lru_lock);
1955 if (current_is_kswapd()) {
1956 if (global_reclaim(sc))
1957 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1958 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1959 nr_reclaimed);
1960 } else {
1961 if (global_reclaim(sc))
1962 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1963 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1964 nr_reclaimed);
1967 putback_inactive_pages(lruvec, &page_list);
1969 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1971 spin_unlock_irq(&pgdat->lru_lock);
1973 mem_cgroup_uncharge_list(&page_list);
1974 free_unref_page_list(&page_list);
1977 * If dirty pages are scanned that are not queued for IO, it
1978 * implies that flushers are not doing their job. This can
1979 * happen when memory pressure pushes dirty pages to the end of
1980 * the LRU before the dirty limits are breached and the dirty
1981 * data has expired. It can also happen when the proportion of
1982 * dirty pages grows not through writes but through memory
1983 * pressure reclaiming all the clean cache. And in some cases,
1984 * the flushers simply cannot keep up with the allocation
1985 * rate. Nudge the flusher threads in case they are asleep.
1987 if (stat.nr_unqueued_dirty == nr_taken)
1988 wakeup_flusher_threads(WB_REASON_VMSCAN);
1990 sc->nr.dirty += stat.nr_dirty;
1991 sc->nr.congested += stat.nr_congested;
1992 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1993 sc->nr.writeback += stat.nr_writeback;
1994 sc->nr.immediate += stat.nr_immediate;
1995 sc->nr.taken += nr_taken;
1996 if (file)
1997 sc->nr.file_taken += nr_taken;
1999 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2000 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2001 return nr_reclaimed;
2005 * This moves pages from the active list to the inactive list.
2007 * We move them the other way if the page is referenced by one or more
2008 * processes, from rmap.
2010 * If the pages are mostly unmapped, the processing is fast and it is
2011 * appropriate to hold zone_lru_lock across the whole operation. But if
2012 * the pages are mapped, the processing is slow (page_referenced()) so we
2013 * should drop zone_lru_lock around each page. It's impossible to balance
2014 * this, so instead we remove the pages from the LRU while processing them.
2015 * It is safe to rely on PG_active against the non-LRU pages in here because
2016 * nobody will play with that bit on a non-LRU page.
2018 * The downside is that we have to touch page->_refcount against each page.
2019 * But we had to alter page->flags anyway.
2021 * Returns the number of pages moved to the given lru.
2024 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2025 struct list_head *list,
2026 struct list_head *pages_to_free,
2027 enum lru_list lru)
2029 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2030 struct page *page;
2031 int nr_pages;
2032 int nr_moved = 0;
2034 while (!list_empty(list)) {
2035 page = lru_to_page(list);
2036 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2038 VM_BUG_ON_PAGE(PageLRU(page), page);
2039 SetPageLRU(page);
2041 nr_pages = hpage_nr_pages(page);
2042 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2043 list_move(&page->lru, &lruvec->lists[lru]);
2045 if (put_page_testzero(page)) {
2046 __ClearPageLRU(page);
2047 __ClearPageActive(page);
2048 del_page_from_lru_list(page, lruvec, lru);
2050 if (unlikely(PageCompound(page))) {
2051 spin_unlock_irq(&pgdat->lru_lock);
2052 mem_cgroup_uncharge(page);
2053 (*get_compound_page_dtor(page))(page);
2054 spin_lock_irq(&pgdat->lru_lock);
2055 } else
2056 list_add(&page->lru, pages_to_free);
2057 } else {
2058 nr_moved += nr_pages;
2062 if (!is_active_lru(lru)) {
2063 __count_vm_events(PGDEACTIVATE, nr_moved);
2064 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2065 nr_moved);
2068 return nr_moved;
2071 static void shrink_active_list(unsigned long nr_to_scan,
2072 struct lruvec *lruvec,
2073 struct scan_control *sc,
2074 enum lru_list lru)
2076 unsigned long nr_taken;
2077 unsigned long nr_scanned;
2078 unsigned long vm_flags;
2079 LIST_HEAD(l_hold); /* The pages which were snipped off */
2080 LIST_HEAD(l_active);
2081 LIST_HEAD(l_inactive);
2082 struct page *page;
2083 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2084 unsigned nr_deactivate, nr_activate;
2085 unsigned nr_rotated = 0;
2086 isolate_mode_t isolate_mode = 0;
2087 int file = is_file_lru(lru);
2088 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2090 lru_add_drain();
2092 if (!sc->may_unmap)
2093 isolate_mode |= ISOLATE_UNMAPPED;
2095 spin_lock_irq(&pgdat->lru_lock);
2097 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2098 &nr_scanned, sc, isolate_mode, lru);
2100 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2101 reclaim_stat->recent_scanned[file] += nr_taken;
2103 __count_vm_events(PGREFILL, nr_scanned);
2104 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2106 spin_unlock_irq(&pgdat->lru_lock);
2108 while (!list_empty(&l_hold)) {
2109 cond_resched();
2110 page = lru_to_page(&l_hold);
2111 list_del(&page->lru);
2113 if (unlikely(!page_evictable(page))) {
2114 putback_lru_page(page);
2115 continue;
2118 if (unlikely(buffer_heads_over_limit)) {
2119 if (page_has_private(page) && trylock_page(page)) {
2120 if (page_has_private(page))
2121 try_to_release_page(page, 0);
2122 unlock_page(page);
2126 if (page_referenced(page, 0, sc->target_mem_cgroup,
2127 &vm_flags)) {
2128 nr_rotated += hpage_nr_pages(page);
2130 * Identify referenced, file-backed active pages and
2131 * give them one more trip around the active list. So
2132 * that executable code get better chances to stay in
2133 * memory under moderate memory pressure. Anon pages
2134 * are not likely to be evicted by use-once streaming
2135 * IO, plus JVM can create lots of anon VM_EXEC pages,
2136 * so we ignore them here.
2138 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2139 list_add(&page->lru, &l_active);
2140 continue;
2144 ClearPageActive(page); /* we are de-activating */
2145 list_add(&page->lru, &l_inactive);
2149 * Move pages back to the lru list.
2151 spin_lock_irq(&pgdat->lru_lock);
2153 * Count referenced pages from currently used mappings as rotated,
2154 * even though only some of them are actually re-activated. This
2155 * helps balance scan pressure between file and anonymous pages in
2156 * get_scan_count.
2158 reclaim_stat->recent_rotated[file] += nr_rotated;
2160 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2161 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2162 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2163 spin_unlock_irq(&pgdat->lru_lock);
2165 mem_cgroup_uncharge_list(&l_hold);
2166 free_unref_page_list(&l_hold);
2167 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2168 nr_deactivate, nr_rotated, sc->priority, file);
2172 * The inactive anon list should be small enough that the VM never has
2173 * to do too much work.
2175 * The inactive file list should be small enough to leave most memory
2176 * to the established workingset on the scan-resistant active list,
2177 * but large enough to avoid thrashing the aggregate readahead window.
2179 * Both inactive lists should also be large enough that each inactive
2180 * page has a chance to be referenced again before it is reclaimed.
2182 * If that fails and refaulting is observed, the inactive list grows.
2184 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185 * on this LRU, maintained by the pageout code. An inactive_ratio
2186 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2188 * total target max
2189 * memory ratio inactive
2190 * -------------------------------------
2191 * 10MB 1 5MB
2192 * 100MB 1 50MB
2193 * 1GB 3 250MB
2194 * 10GB 10 0.9GB
2195 * 100GB 31 3GB
2196 * 1TB 101 10GB
2197 * 10TB 320 32GB
2199 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2200 struct scan_control *sc, bool trace)
2202 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2203 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2204 enum lru_list inactive_lru = file * LRU_FILE;
2205 unsigned long inactive, active;
2206 unsigned long inactive_ratio;
2207 unsigned long refaults;
2208 unsigned long gb;
2211 * If we don't have swap space, anonymous page deactivation
2212 * is pointless.
2214 if (!file && !total_swap_pages)
2215 return false;
2217 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2218 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2221 * When refaults are being observed, it means a new workingset
2222 * is being established. Disable active list protection to get
2223 * rid of the stale workingset quickly.
2225 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2226 if (file && lruvec->refaults != refaults) {
2227 inactive_ratio = 0;
2228 } else {
2229 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2230 if (gb)
2231 inactive_ratio = int_sqrt(10 * gb);
2232 else
2233 inactive_ratio = 1;
2236 if (trace)
2237 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2238 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2239 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2240 inactive_ratio, file);
2242 return inactive * inactive_ratio < active;
2245 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2246 struct lruvec *lruvec, struct scan_control *sc)
2248 if (is_active_lru(lru)) {
2249 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2250 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2251 return 0;
2254 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2257 enum scan_balance {
2258 SCAN_EQUAL,
2259 SCAN_FRACT,
2260 SCAN_ANON,
2261 SCAN_FILE,
2265 * Determine how aggressively the anon and file LRU lists should be
2266 * scanned. The relative value of each set of LRU lists is determined
2267 * by looking at the fraction of the pages scanned we did rotate back
2268 * onto the active list instead of evict.
2270 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2271 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2273 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2274 struct scan_control *sc, unsigned long *nr,
2275 unsigned long *lru_pages)
2277 int swappiness = mem_cgroup_swappiness(memcg);
2278 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2279 u64 fraction[2];
2280 u64 denominator = 0; /* gcc */
2281 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2282 unsigned long anon_prio, file_prio;
2283 enum scan_balance scan_balance;
2284 unsigned long anon, file;
2285 unsigned long ap, fp;
2286 enum lru_list lru;
2288 /* If we have no swap space, do not bother scanning anon pages. */
2289 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2290 scan_balance = SCAN_FILE;
2291 goto out;
2295 * Global reclaim will swap to prevent OOM even with no
2296 * swappiness, but memcg users want to use this knob to
2297 * disable swapping for individual groups completely when
2298 * using the memory controller's swap limit feature would be
2299 * too expensive.
2301 if (!global_reclaim(sc) && !swappiness) {
2302 scan_balance = SCAN_FILE;
2303 goto out;
2307 * Do not apply any pressure balancing cleverness when the
2308 * system is close to OOM, scan both anon and file equally
2309 * (unless the swappiness setting disagrees with swapping).
2311 if (!sc->priority && swappiness) {
2312 scan_balance = SCAN_EQUAL;
2313 goto out;
2317 * Prevent the reclaimer from falling into the cache trap: as
2318 * cache pages start out inactive, every cache fault will tip
2319 * the scan balance towards the file LRU. And as the file LRU
2320 * shrinks, so does the window for rotation from references.
2321 * This means we have a runaway feedback loop where a tiny
2322 * thrashing file LRU becomes infinitely more attractive than
2323 * anon pages. Try to detect this based on file LRU size.
2325 if (global_reclaim(sc)) {
2326 unsigned long pgdatfile;
2327 unsigned long pgdatfree;
2328 int z;
2329 unsigned long total_high_wmark = 0;
2331 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2332 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2333 node_page_state(pgdat, NR_INACTIVE_FILE);
2335 for (z = 0; z < MAX_NR_ZONES; z++) {
2336 struct zone *zone = &pgdat->node_zones[z];
2337 if (!managed_zone(zone))
2338 continue;
2340 total_high_wmark += high_wmark_pages(zone);
2343 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2345 * Force SCAN_ANON if there are enough inactive
2346 * anonymous pages on the LRU in eligible zones.
2347 * Otherwise, the small LRU gets thrashed.
2349 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2350 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2351 >> sc->priority) {
2352 scan_balance = SCAN_ANON;
2353 goto out;
2359 * If there is enough inactive page cache, i.e. if the size of the
2360 * inactive list is greater than that of the active list *and* the
2361 * inactive list actually has some pages to scan on this priority, we
2362 * do not reclaim anything from the anonymous working set right now.
2363 * Without the second condition we could end up never scanning an
2364 * lruvec even if it has plenty of old anonymous pages unless the
2365 * system is under heavy pressure.
2367 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2368 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2369 scan_balance = SCAN_FILE;
2370 goto out;
2373 scan_balance = SCAN_FRACT;
2376 * With swappiness at 100, anonymous and file have the same priority.
2377 * This scanning priority is essentially the inverse of IO cost.
2379 anon_prio = swappiness;
2380 file_prio = 200 - anon_prio;
2383 * OK, so we have swap space and a fair amount of page cache
2384 * pages. We use the recently rotated / recently scanned
2385 * ratios to determine how valuable each cache is.
2387 * Because workloads change over time (and to avoid overflow)
2388 * we keep these statistics as a floating average, which ends
2389 * up weighing recent references more than old ones.
2391 * anon in [0], file in [1]
2394 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2395 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2396 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2397 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2399 spin_lock_irq(&pgdat->lru_lock);
2400 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2401 reclaim_stat->recent_scanned[0] /= 2;
2402 reclaim_stat->recent_rotated[0] /= 2;
2405 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2406 reclaim_stat->recent_scanned[1] /= 2;
2407 reclaim_stat->recent_rotated[1] /= 2;
2411 * The amount of pressure on anon vs file pages is inversely
2412 * proportional to the fraction of recently scanned pages on
2413 * each list that were recently referenced and in active use.
2415 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2416 ap /= reclaim_stat->recent_rotated[0] + 1;
2418 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2419 fp /= reclaim_stat->recent_rotated[1] + 1;
2420 spin_unlock_irq(&pgdat->lru_lock);
2422 fraction[0] = ap;
2423 fraction[1] = fp;
2424 denominator = ap + fp + 1;
2425 out:
2426 *lru_pages = 0;
2427 for_each_evictable_lru(lru) {
2428 int file = is_file_lru(lru);
2429 unsigned long size;
2430 unsigned long scan;
2432 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2433 scan = size >> sc->priority;
2435 * If the cgroup's already been deleted, make sure to
2436 * scrape out the remaining cache.
2438 if (!scan && !mem_cgroup_online(memcg))
2439 scan = min(size, SWAP_CLUSTER_MAX);
2441 switch (scan_balance) {
2442 case SCAN_EQUAL:
2443 /* Scan lists relative to size */
2444 break;
2445 case SCAN_FRACT:
2447 * Scan types proportional to swappiness and
2448 * their relative recent reclaim efficiency.
2449 * Make sure we don't miss the last page on
2450 * the offlined memory cgroups because of a
2451 * round-off error.
2453 scan = mem_cgroup_online(memcg) ?
2454 div64_u64(scan * fraction[file], denominator) :
2455 DIV64_U64_ROUND_UP(scan * fraction[file],
2456 denominator);
2457 break;
2458 case SCAN_FILE:
2459 case SCAN_ANON:
2460 /* Scan one type exclusively */
2461 if ((scan_balance == SCAN_FILE) != file) {
2462 size = 0;
2463 scan = 0;
2465 break;
2466 default:
2467 /* Look ma, no brain */
2468 BUG();
2471 *lru_pages += size;
2472 nr[lru] = scan;
2477 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2479 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2480 struct scan_control *sc, unsigned long *lru_pages)
2482 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2483 unsigned long nr[NR_LRU_LISTS];
2484 unsigned long targets[NR_LRU_LISTS];
2485 unsigned long nr_to_scan;
2486 enum lru_list lru;
2487 unsigned long nr_reclaimed = 0;
2488 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2489 struct blk_plug plug;
2490 bool scan_adjusted;
2492 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2494 /* Record the original scan target for proportional adjustments later */
2495 memcpy(targets, nr, sizeof(nr));
2498 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2499 * event that can occur when there is little memory pressure e.g.
2500 * multiple streaming readers/writers. Hence, we do not abort scanning
2501 * when the requested number of pages are reclaimed when scanning at
2502 * DEF_PRIORITY on the assumption that the fact we are direct
2503 * reclaiming implies that kswapd is not keeping up and it is best to
2504 * do a batch of work at once. For memcg reclaim one check is made to
2505 * abort proportional reclaim if either the file or anon lru has already
2506 * dropped to zero at the first pass.
2508 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2509 sc->priority == DEF_PRIORITY);
2511 blk_start_plug(&plug);
2512 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2513 nr[LRU_INACTIVE_FILE]) {
2514 unsigned long nr_anon, nr_file, percentage;
2515 unsigned long nr_scanned;
2517 for_each_evictable_lru(lru) {
2518 if (nr[lru]) {
2519 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2520 nr[lru] -= nr_to_scan;
2522 nr_reclaimed += shrink_list(lru, nr_to_scan,
2523 lruvec, sc);
2527 cond_resched();
2529 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2530 continue;
2533 * For kswapd and memcg, reclaim at least the number of pages
2534 * requested. Ensure that the anon and file LRUs are scanned
2535 * proportionally what was requested by get_scan_count(). We
2536 * stop reclaiming one LRU and reduce the amount scanning
2537 * proportional to the original scan target.
2539 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2540 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2543 * It's just vindictive to attack the larger once the smaller
2544 * has gone to zero. And given the way we stop scanning the
2545 * smaller below, this makes sure that we only make one nudge
2546 * towards proportionality once we've got nr_to_reclaim.
2548 if (!nr_file || !nr_anon)
2549 break;
2551 if (nr_file > nr_anon) {
2552 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2553 targets[LRU_ACTIVE_ANON] + 1;
2554 lru = LRU_BASE;
2555 percentage = nr_anon * 100 / scan_target;
2556 } else {
2557 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2558 targets[LRU_ACTIVE_FILE] + 1;
2559 lru = LRU_FILE;
2560 percentage = nr_file * 100 / scan_target;
2563 /* Stop scanning the smaller of the LRU */
2564 nr[lru] = 0;
2565 nr[lru + LRU_ACTIVE] = 0;
2568 * Recalculate the other LRU scan count based on its original
2569 * scan target and the percentage scanning already complete
2571 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2572 nr_scanned = targets[lru] - nr[lru];
2573 nr[lru] = targets[lru] * (100 - percentage) / 100;
2574 nr[lru] -= min(nr[lru], nr_scanned);
2576 lru += LRU_ACTIVE;
2577 nr_scanned = targets[lru] - nr[lru];
2578 nr[lru] = targets[lru] * (100 - percentage) / 100;
2579 nr[lru] -= min(nr[lru], nr_scanned);
2581 scan_adjusted = true;
2583 blk_finish_plug(&plug);
2584 sc->nr_reclaimed += nr_reclaimed;
2587 * Even if we did not try to evict anon pages at all, we want to
2588 * rebalance the anon lru active/inactive ratio.
2590 if (inactive_list_is_low(lruvec, false, sc, true))
2591 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2592 sc, LRU_ACTIVE_ANON);
2595 /* Use reclaim/compaction for costly allocs or under memory pressure */
2596 static bool in_reclaim_compaction(struct scan_control *sc)
2598 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2599 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2600 sc->priority < DEF_PRIORITY - 2))
2601 return true;
2603 return false;
2607 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2608 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2609 * true if more pages should be reclaimed such that when the page allocator
2610 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2611 * It will give up earlier than that if there is difficulty reclaiming pages.
2613 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2614 unsigned long nr_reclaimed,
2615 unsigned long nr_scanned,
2616 struct scan_control *sc)
2618 unsigned long pages_for_compaction;
2619 unsigned long inactive_lru_pages;
2620 int z;
2622 /* If not in reclaim/compaction mode, stop */
2623 if (!in_reclaim_compaction(sc))
2624 return false;
2626 /* Consider stopping depending on scan and reclaim activity */
2627 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2629 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2630 * full LRU list has been scanned and we are still failing
2631 * to reclaim pages. This full LRU scan is potentially
2632 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2634 if (!nr_reclaimed && !nr_scanned)
2635 return false;
2636 } else {
2638 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2639 * fail without consequence, stop if we failed to reclaim
2640 * any pages from the last SWAP_CLUSTER_MAX number of
2641 * pages that were scanned. This will return to the
2642 * caller faster at the risk reclaim/compaction and
2643 * the resulting allocation attempt fails
2645 if (!nr_reclaimed)
2646 return false;
2650 * If we have not reclaimed enough pages for compaction and the
2651 * inactive lists are large enough, continue reclaiming
2653 pages_for_compaction = compact_gap(sc->order);
2654 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2655 if (get_nr_swap_pages() > 0)
2656 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2657 if (sc->nr_reclaimed < pages_for_compaction &&
2658 inactive_lru_pages > pages_for_compaction)
2659 return true;
2661 /* If compaction would go ahead or the allocation would succeed, stop */
2662 for (z = 0; z <= sc->reclaim_idx; z++) {
2663 struct zone *zone = &pgdat->node_zones[z];
2664 if (!managed_zone(zone))
2665 continue;
2667 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2668 case COMPACT_SUCCESS:
2669 case COMPACT_CONTINUE:
2670 return false;
2671 default:
2672 /* check next zone */
2676 return true;
2679 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2681 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2682 (memcg && memcg_congested(pgdat, memcg));
2685 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2687 struct reclaim_state *reclaim_state = current->reclaim_state;
2688 unsigned long nr_reclaimed, nr_scanned;
2689 bool reclaimable = false;
2691 do {
2692 struct mem_cgroup *root = sc->target_mem_cgroup;
2693 struct mem_cgroup_reclaim_cookie reclaim = {
2694 .pgdat = pgdat,
2695 .priority = sc->priority,
2697 unsigned long node_lru_pages = 0;
2698 struct mem_cgroup *memcg;
2700 memset(&sc->nr, 0, sizeof(sc->nr));
2702 nr_reclaimed = sc->nr_reclaimed;
2703 nr_scanned = sc->nr_scanned;
2705 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2706 do {
2707 unsigned long lru_pages;
2708 unsigned long reclaimed;
2709 unsigned long scanned;
2712 * This loop can become CPU-bound when target memcgs
2713 * aren't eligible for reclaim - either because they
2714 * don't have any reclaimable pages, or because their
2715 * memory is explicitly protected. Avoid soft lockups.
2717 cond_resched();
2719 switch (mem_cgroup_protected(root, memcg)) {
2720 case MEMCG_PROT_MIN:
2722 * Hard protection.
2723 * If there is no reclaimable memory, OOM.
2725 continue;
2726 case MEMCG_PROT_LOW:
2728 * Soft protection.
2729 * Respect the protection only as long as
2730 * there is an unprotected supply
2731 * of reclaimable memory from other cgroups.
2733 if (!sc->memcg_low_reclaim) {
2734 sc->memcg_low_skipped = 1;
2735 continue;
2737 memcg_memory_event(memcg, MEMCG_LOW);
2738 break;
2739 case MEMCG_PROT_NONE:
2740 break;
2743 reclaimed = sc->nr_reclaimed;
2744 scanned = sc->nr_scanned;
2745 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2746 node_lru_pages += lru_pages;
2748 shrink_slab(sc->gfp_mask, pgdat->node_id,
2749 memcg, sc->priority);
2751 /* Record the group's reclaim efficiency */
2752 vmpressure(sc->gfp_mask, memcg, false,
2753 sc->nr_scanned - scanned,
2754 sc->nr_reclaimed - reclaimed);
2757 * Direct reclaim and kswapd have to scan all memory
2758 * cgroups to fulfill the overall scan target for the
2759 * node.
2761 * Limit reclaim, on the other hand, only cares about
2762 * nr_to_reclaim pages to be reclaimed and it will
2763 * retry with decreasing priority if one round over the
2764 * whole hierarchy is not sufficient.
2766 if (!global_reclaim(sc) &&
2767 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2768 mem_cgroup_iter_break(root, memcg);
2769 break;
2771 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2773 if (reclaim_state) {
2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2775 reclaim_state->reclaimed_slab = 0;
2778 /* Record the subtree's reclaim efficiency */
2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2780 sc->nr_scanned - nr_scanned,
2781 sc->nr_reclaimed - nr_reclaimed);
2783 if (sc->nr_reclaimed - nr_reclaimed)
2784 reclaimable = true;
2786 if (current_is_kswapd()) {
2788 * If reclaim is isolating dirty pages under writeback,
2789 * it implies that the long-lived page allocation rate
2790 * is exceeding the page laundering rate. Either the
2791 * global limits are not being effective at throttling
2792 * processes due to the page distribution throughout
2793 * zones or there is heavy usage of a slow backing
2794 * device. The only option is to throttle from reclaim
2795 * context which is not ideal as there is no guarantee
2796 * the dirtying process is throttled in the same way
2797 * balance_dirty_pages() manages.
2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 * count the number of pages under pages flagged for
2801 * immediate reclaim and stall if any are encountered
2802 * in the nr_immediate check below.
2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2808 * Tag a node as congested if all the dirty pages
2809 * scanned were backed by a congested BDI and
2810 * wait_iff_congested will stall.
2812 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2813 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2815 /* Allow kswapd to start writing pages during reclaim.*/
2816 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2817 set_bit(PGDAT_DIRTY, &pgdat->flags);
2820 * If kswapd scans pages marked marked for immediate
2821 * reclaim and under writeback (nr_immediate), it
2822 * implies that pages are cycling through the LRU
2823 * faster than they are written so also forcibly stall.
2825 if (sc->nr.immediate)
2826 congestion_wait(BLK_RW_ASYNC, HZ/10);
2830 * Legacy memcg will stall in page writeback so avoid forcibly
2831 * stalling in wait_iff_congested().
2833 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2834 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2835 set_memcg_congestion(pgdat, root, true);
2838 * Stall direct reclaim for IO completions if underlying BDIs
2839 * and node is congested. Allow kswapd to continue until it
2840 * starts encountering unqueued dirty pages or cycling through
2841 * the LRU too quickly.
2843 if (!sc->hibernation_mode && !current_is_kswapd() &&
2844 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2845 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2847 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2848 sc->nr_scanned - nr_scanned, sc));
2851 * Kswapd gives up on balancing particular nodes after too
2852 * many failures to reclaim anything from them and goes to
2853 * sleep. On reclaim progress, reset the failure counter. A
2854 * successful direct reclaim run will revive a dormant kswapd.
2856 if (reclaimable)
2857 pgdat->kswapd_failures = 0;
2859 return reclaimable;
2863 * Returns true if compaction should go ahead for a costly-order request, or
2864 * the allocation would already succeed without compaction. Return false if we
2865 * should reclaim first.
2867 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2869 unsigned long watermark;
2870 enum compact_result suitable;
2872 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2873 if (suitable == COMPACT_SUCCESS)
2874 /* Allocation should succeed already. Don't reclaim. */
2875 return true;
2876 if (suitable == COMPACT_SKIPPED)
2877 /* Compaction cannot yet proceed. Do reclaim. */
2878 return false;
2881 * Compaction is already possible, but it takes time to run and there
2882 * are potentially other callers using the pages just freed. So proceed
2883 * with reclaim to make a buffer of free pages available to give
2884 * compaction a reasonable chance of completing and allocating the page.
2885 * Note that we won't actually reclaim the whole buffer in one attempt
2886 * as the target watermark in should_continue_reclaim() is lower. But if
2887 * we are already above the high+gap watermark, don't reclaim at all.
2889 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2891 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2895 * This is the direct reclaim path, for page-allocating processes. We only
2896 * try to reclaim pages from zones which will satisfy the caller's allocation
2897 * request.
2899 * If a zone is deemed to be full of pinned pages then just give it a light
2900 * scan then give up on it.
2902 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2904 struct zoneref *z;
2905 struct zone *zone;
2906 unsigned long nr_soft_reclaimed;
2907 unsigned long nr_soft_scanned;
2908 gfp_t orig_mask;
2909 pg_data_t *last_pgdat = NULL;
2912 * If the number of buffer_heads in the machine exceeds the maximum
2913 * allowed level, force direct reclaim to scan the highmem zone as
2914 * highmem pages could be pinning lowmem pages storing buffer_heads
2916 orig_mask = sc->gfp_mask;
2917 if (buffer_heads_over_limit) {
2918 sc->gfp_mask |= __GFP_HIGHMEM;
2919 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2922 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2923 sc->reclaim_idx, sc->nodemask) {
2925 * Take care memory controller reclaiming has small influence
2926 * to global LRU.
2928 if (global_reclaim(sc)) {
2929 if (!cpuset_zone_allowed(zone,
2930 GFP_KERNEL | __GFP_HARDWALL))
2931 continue;
2934 * If we already have plenty of memory free for
2935 * compaction in this zone, don't free any more.
2936 * Even though compaction is invoked for any
2937 * non-zero order, only frequent costly order
2938 * reclamation is disruptive enough to become a
2939 * noticeable problem, like transparent huge
2940 * page allocations.
2942 if (IS_ENABLED(CONFIG_COMPACTION) &&
2943 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2944 compaction_ready(zone, sc)) {
2945 sc->compaction_ready = true;
2946 continue;
2950 * Shrink each node in the zonelist once. If the
2951 * zonelist is ordered by zone (not the default) then a
2952 * node may be shrunk multiple times but in that case
2953 * the user prefers lower zones being preserved.
2955 if (zone->zone_pgdat == last_pgdat)
2956 continue;
2959 * This steals pages from memory cgroups over softlimit
2960 * and returns the number of reclaimed pages and
2961 * scanned pages. This works for global memory pressure
2962 * and balancing, not for a memcg's limit.
2964 nr_soft_scanned = 0;
2965 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2966 sc->order, sc->gfp_mask,
2967 &nr_soft_scanned);
2968 sc->nr_reclaimed += nr_soft_reclaimed;
2969 sc->nr_scanned += nr_soft_scanned;
2970 /* need some check for avoid more shrink_zone() */
2973 /* See comment about same check for global reclaim above */
2974 if (zone->zone_pgdat == last_pgdat)
2975 continue;
2976 last_pgdat = zone->zone_pgdat;
2977 shrink_node(zone->zone_pgdat, sc);
2981 * Restore to original mask to avoid the impact on the caller if we
2982 * promoted it to __GFP_HIGHMEM.
2984 sc->gfp_mask = orig_mask;
2987 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2989 struct mem_cgroup *memcg;
2991 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2992 do {
2993 unsigned long refaults;
2994 struct lruvec *lruvec;
2996 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2997 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2998 lruvec->refaults = refaults;
2999 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3003 * This is the main entry point to direct page reclaim.
3005 * If a full scan of the inactive list fails to free enough memory then we
3006 * are "out of memory" and something needs to be killed.
3008 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3009 * high - the zone may be full of dirty or under-writeback pages, which this
3010 * caller can't do much about. We kick the writeback threads and take explicit
3011 * naps in the hope that some of these pages can be written. But if the
3012 * allocating task holds filesystem locks which prevent writeout this might not
3013 * work, and the allocation attempt will fail.
3015 * returns: 0, if no pages reclaimed
3016 * else, the number of pages reclaimed
3018 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3019 struct scan_control *sc)
3021 int initial_priority = sc->priority;
3022 pg_data_t *last_pgdat;
3023 struct zoneref *z;
3024 struct zone *zone;
3025 retry:
3026 delayacct_freepages_start();
3028 if (global_reclaim(sc))
3029 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3031 do {
3032 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3033 sc->priority);
3034 sc->nr_scanned = 0;
3035 shrink_zones(zonelist, sc);
3037 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3038 break;
3040 if (sc->compaction_ready)
3041 break;
3044 * If we're getting trouble reclaiming, start doing
3045 * writepage even in laptop mode.
3047 if (sc->priority < DEF_PRIORITY - 2)
3048 sc->may_writepage = 1;
3049 } while (--sc->priority >= 0);
3051 last_pgdat = NULL;
3052 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3053 sc->nodemask) {
3054 if (zone->zone_pgdat == last_pgdat)
3055 continue;
3056 last_pgdat = zone->zone_pgdat;
3057 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3058 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3061 delayacct_freepages_end();
3063 if (sc->nr_reclaimed)
3064 return sc->nr_reclaimed;
3066 /* Aborted reclaim to try compaction? don't OOM, then */
3067 if (sc->compaction_ready)
3068 return 1;
3070 /* Untapped cgroup reserves? Don't OOM, retry. */
3071 if (sc->memcg_low_skipped) {
3072 sc->priority = initial_priority;
3073 sc->memcg_low_reclaim = 1;
3074 sc->memcg_low_skipped = 0;
3075 goto retry;
3078 return 0;
3081 static bool allow_direct_reclaim(pg_data_t *pgdat)
3083 struct zone *zone;
3084 unsigned long pfmemalloc_reserve = 0;
3085 unsigned long free_pages = 0;
3086 int i;
3087 bool wmark_ok;
3089 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3090 return true;
3092 for (i = 0; i <= ZONE_NORMAL; i++) {
3093 zone = &pgdat->node_zones[i];
3094 if (!managed_zone(zone))
3095 continue;
3097 if (!zone_reclaimable_pages(zone))
3098 continue;
3100 pfmemalloc_reserve += min_wmark_pages(zone);
3101 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3104 /* If there are no reserves (unexpected config) then do not throttle */
3105 if (!pfmemalloc_reserve)
3106 return true;
3108 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3110 /* kswapd must be awake if processes are being throttled */
3111 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3112 if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL)
3113 WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL);
3115 wake_up_interruptible(&pgdat->kswapd_wait);
3118 return wmark_ok;
3122 * Throttle direct reclaimers if backing storage is backed by the network
3123 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3124 * depleted. kswapd will continue to make progress and wake the processes
3125 * when the low watermark is reached.
3127 * Returns true if a fatal signal was delivered during throttling. If this
3128 * happens, the page allocator should not consider triggering the OOM killer.
3130 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3131 nodemask_t *nodemask)
3133 struct zoneref *z;
3134 struct zone *zone;
3135 pg_data_t *pgdat = NULL;
3138 * Kernel threads should not be throttled as they may be indirectly
3139 * responsible for cleaning pages necessary for reclaim to make forward
3140 * progress. kjournald for example may enter direct reclaim while
3141 * committing a transaction where throttling it could forcing other
3142 * processes to block on log_wait_commit().
3144 if (current->flags & PF_KTHREAD)
3145 goto out;
3148 * If a fatal signal is pending, this process should not throttle.
3149 * It should return quickly so it can exit and free its memory
3151 if (fatal_signal_pending(current))
3152 goto out;
3155 * Check if the pfmemalloc reserves are ok by finding the first node
3156 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3157 * GFP_KERNEL will be required for allocating network buffers when
3158 * swapping over the network so ZONE_HIGHMEM is unusable.
3160 * Throttling is based on the first usable node and throttled processes
3161 * wait on a queue until kswapd makes progress and wakes them. There
3162 * is an affinity then between processes waking up and where reclaim
3163 * progress has been made assuming the process wakes on the same node.
3164 * More importantly, processes running on remote nodes will not compete
3165 * for remote pfmemalloc reserves and processes on different nodes
3166 * should make reasonable progress.
3168 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3169 gfp_zone(gfp_mask), nodemask) {
3170 if (zone_idx(zone) > ZONE_NORMAL)
3171 continue;
3173 /* Throttle based on the first usable node */
3174 pgdat = zone->zone_pgdat;
3175 if (allow_direct_reclaim(pgdat))
3176 goto out;
3177 break;
3180 /* If no zone was usable by the allocation flags then do not throttle */
3181 if (!pgdat)
3182 goto out;
3184 /* Account for the throttling */
3185 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3188 * If the caller cannot enter the filesystem, it's possible that it
3189 * is due to the caller holding an FS lock or performing a journal
3190 * transaction in the case of a filesystem like ext[3|4]. In this case,
3191 * it is not safe to block on pfmemalloc_wait as kswapd could be
3192 * blocked waiting on the same lock. Instead, throttle for up to a
3193 * second before continuing.
3195 if (!(gfp_mask & __GFP_FS)) {
3196 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3197 allow_direct_reclaim(pgdat), HZ);
3199 goto check_pending;
3202 /* Throttle until kswapd wakes the process */
3203 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3204 allow_direct_reclaim(pgdat));
3206 check_pending:
3207 if (fatal_signal_pending(current))
3208 return true;
3210 out:
3211 return false;
3214 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3215 gfp_t gfp_mask, nodemask_t *nodemask)
3217 unsigned long nr_reclaimed;
3218 struct scan_control sc = {
3219 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3220 .gfp_mask = current_gfp_context(gfp_mask),
3221 .reclaim_idx = gfp_zone(gfp_mask),
3222 .order = order,
3223 .nodemask = nodemask,
3224 .priority = DEF_PRIORITY,
3225 .may_writepage = !laptop_mode,
3226 .may_unmap = 1,
3227 .may_swap = 1,
3231 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3232 * Confirm they are large enough for max values.
3234 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3235 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3236 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3239 * Do not enter reclaim if fatal signal was delivered while throttled.
3240 * 1 is returned so that the page allocator does not OOM kill at this
3241 * point.
3243 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3244 return 1;
3246 trace_mm_vmscan_direct_reclaim_begin(order,
3247 sc.may_writepage,
3248 sc.gfp_mask,
3249 sc.reclaim_idx);
3251 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3253 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3255 return nr_reclaimed;
3258 #ifdef CONFIG_MEMCG
3260 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3261 gfp_t gfp_mask, bool noswap,
3262 pg_data_t *pgdat,
3263 unsigned long *nr_scanned)
3265 struct scan_control sc = {
3266 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3267 .target_mem_cgroup = memcg,
3268 .may_writepage = !laptop_mode,
3269 .may_unmap = 1,
3270 .reclaim_idx = MAX_NR_ZONES - 1,
3271 .may_swap = !noswap,
3273 unsigned long lru_pages;
3275 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3276 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3278 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3279 sc.may_writepage,
3280 sc.gfp_mask,
3281 sc.reclaim_idx);
3284 * NOTE: Although we can get the priority field, using it
3285 * here is not a good idea, since it limits the pages we can scan.
3286 * if we don't reclaim here, the shrink_node from balance_pgdat
3287 * will pick up pages from other mem cgroup's as well. We hack
3288 * the priority and make it zero.
3290 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3292 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3294 *nr_scanned = sc.nr_scanned;
3295 return sc.nr_reclaimed;
3298 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3299 unsigned long nr_pages,
3300 gfp_t gfp_mask,
3301 bool may_swap)
3303 struct zonelist *zonelist;
3304 unsigned long nr_reclaimed;
3305 int nid;
3306 unsigned int noreclaim_flag;
3307 struct scan_control sc = {
3308 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3309 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3310 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3311 .reclaim_idx = MAX_NR_ZONES - 1,
3312 .target_mem_cgroup = memcg,
3313 .priority = DEF_PRIORITY,
3314 .may_writepage = !laptop_mode,
3315 .may_unmap = 1,
3316 .may_swap = may_swap,
3320 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3321 * take care of from where we get pages. So the node where we start the
3322 * scan does not need to be the current node.
3324 nid = mem_cgroup_select_victim_node(memcg);
3326 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3328 trace_mm_vmscan_memcg_reclaim_begin(0,
3329 sc.may_writepage,
3330 sc.gfp_mask,
3331 sc.reclaim_idx);
3333 noreclaim_flag = memalloc_noreclaim_save();
3334 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3335 memalloc_noreclaim_restore(noreclaim_flag);
3337 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3339 return nr_reclaimed;
3341 #endif
3343 static void age_active_anon(struct pglist_data *pgdat,
3344 struct scan_control *sc)
3346 struct mem_cgroup *memcg;
3348 if (!total_swap_pages)
3349 return;
3351 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3352 do {
3353 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3355 if (inactive_list_is_low(lruvec, false, sc, true))
3356 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3357 sc, LRU_ACTIVE_ANON);
3359 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3360 } while (memcg);
3364 * Returns true if there is an eligible zone balanced for the request order
3365 * and classzone_idx
3367 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3369 int i;
3370 unsigned long mark = -1;
3371 struct zone *zone;
3373 for (i = 0; i <= classzone_idx; i++) {
3374 zone = pgdat->node_zones + i;
3376 if (!managed_zone(zone))
3377 continue;
3379 mark = high_wmark_pages(zone);
3380 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3381 return true;
3385 * If a node has no populated zone within classzone_idx, it does not
3386 * need balancing by definition. This can happen if a zone-restricted
3387 * allocation tries to wake a remote kswapd.
3389 if (mark == -1)
3390 return true;
3392 return false;
3395 /* Clear pgdat state for congested, dirty or under writeback. */
3396 static void clear_pgdat_congested(pg_data_t *pgdat)
3398 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3399 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3400 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3404 * Prepare kswapd for sleeping. This verifies that there are no processes
3405 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3407 * Returns true if kswapd is ready to sleep
3409 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3412 * The throttled processes are normally woken up in balance_pgdat() as
3413 * soon as allow_direct_reclaim() is true. But there is a potential
3414 * race between when kswapd checks the watermarks and a process gets
3415 * throttled. There is also a potential race if processes get
3416 * throttled, kswapd wakes, a large process exits thereby balancing the
3417 * zones, which causes kswapd to exit balance_pgdat() before reaching
3418 * the wake up checks. If kswapd is going to sleep, no process should
3419 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3420 * the wake up is premature, processes will wake kswapd and get
3421 * throttled again. The difference from wake ups in balance_pgdat() is
3422 * that here we are under prepare_to_wait().
3424 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3425 wake_up_all(&pgdat->pfmemalloc_wait);
3427 /* Hopeless node, leave it to direct reclaim */
3428 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3429 return true;
3431 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3432 clear_pgdat_congested(pgdat);
3433 return true;
3436 return false;
3440 * kswapd shrinks a node of pages that are at or below the highest usable
3441 * zone that is currently unbalanced.
3443 * Returns true if kswapd scanned at least the requested number of pages to
3444 * reclaim or if the lack of progress was due to pages under writeback.
3445 * This is used to determine if the scanning priority needs to be raised.
3447 static bool kswapd_shrink_node(pg_data_t *pgdat,
3448 struct scan_control *sc)
3450 struct zone *zone;
3451 int z;
3453 /* Reclaim a number of pages proportional to the number of zones */
3454 sc->nr_to_reclaim = 0;
3455 for (z = 0; z <= sc->reclaim_idx; z++) {
3456 zone = pgdat->node_zones + z;
3457 if (!managed_zone(zone))
3458 continue;
3460 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3464 * Historically care was taken to put equal pressure on all zones but
3465 * now pressure is applied based on node LRU order.
3467 shrink_node(pgdat, sc);
3470 * Fragmentation may mean that the system cannot be rebalanced for
3471 * high-order allocations. If twice the allocation size has been
3472 * reclaimed then recheck watermarks only at order-0 to prevent
3473 * excessive reclaim. Assume that a process requested a high-order
3474 * can direct reclaim/compact.
3476 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3477 sc->order = 0;
3479 return sc->nr_scanned >= sc->nr_to_reclaim;
3483 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3484 * that are eligible for use by the caller until at least one zone is
3485 * balanced.
3487 * Returns the order kswapd finished reclaiming at.
3489 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3490 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3491 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3492 * or lower is eligible for reclaim until at least one usable zone is
3493 * balanced.
3495 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3497 int i;
3498 unsigned long nr_soft_reclaimed;
3499 unsigned long nr_soft_scanned;
3500 struct zone *zone;
3501 struct scan_control sc = {
3502 .gfp_mask = GFP_KERNEL,
3503 .order = order,
3504 .priority = DEF_PRIORITY,
3505 .may_writepage = !laptop_mode,
3506 .may_unmap = 1,
3507 .may_swap = 1,
3510 __fs_reclaim_acquire();
3512 count_vm_event(PAGEOUTRUN);
3514 do {
3515 unsigned long nr_reclaimed = sc.nr_reclaimed;
3516 bool raise_priority = true;
3517 bool ret;
3519 sc.reclaim_idx = classzone_idx;
3522 * If the number of buffer_heads exceeds the maximum allowed
3523 * then consider reclaiming from all zones. This has a dual
3524 * purpose -- on 64-bit systems it is expected that
3525 * buffer_heads are stripped during active rotation. On 32-bit
3526 * systems, highmem pages can pin lowmem memory and shrinking
3527 * buffers can relieve lowmem pressure. Reclaim may still not
3528 * go ahead if all eligible zones for the original allocation
3529 * request are balanced to avoid excessive reclaim from kswapd.
3531 if (buffer_heads_over_limit) {
3532 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3533 zone = pgdat->node_zones + i;
3534 if (!managed_zone(zone))
3535 continue;
3537 sc.reclaim_idx = i;
3538 break;
3543 * Only reclaim if there are no eligible zones. Note that
3544 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3545 * have adjusted it.
3547 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3548 goto out;
3551 * Do some background aging of the anon list, to give
3552 * pages a chance to be referenced before reclaiming. All
3553 * pages are rotated regardless of classzone as this is
3554 * about consistent aging.
3556 age_active_anon(pgdat, &sc);
3559 * If we're getting trouble reclaiming, start doing writepage
3560 * even in laptop mode.
3562 if (sc.priority < DEF_PRIORITY - 2)
3563 sc.may_writepage = 1;
3565 /* Call soft limit reclaim before calling shrink_node. */
3566 sc.nr_scanned = 0;
3567 nr_soft_scanned = 0;
3568 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3569 sc.gfp_mask, &nr_soft_scanned);
3570 sc.nr_reclaimed += nr_soft_reclaimed;
3573 * There should be no need to raise the scanning priority if
3574 * enough pages are already being scanned that that high
3575 * watermark would be met at 100% efficiency.
3577 if (kswapd_shrink_node(pgdat, &sc))
3578 raise_priority = false;
3581 * If the low watermark is met there is no need for processes
3582 * to be throttled on pfmemalloc_wait as they should not be
3583 * able to safely make forward progress. Wake them
3585 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3586 allow_direct_reclaim(pgdat))
3587 wake_up_all(&pgdat->pfmemalloc_wait);
3589 /* Check if kswapd should be suspending */
3590 __fs_reclaim_release();
3591 ret = try_to_freeze();
3592 __fs_reclaim_acquire();
3593 if (ret || kthread_should_stop())
3594 break;
3597 * Raise priority if scanning rate is too low or there was no
3598 * progress in reclaiming pages
3600 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3601 if (raise_priority || !nr_reclaimed)
3602 sc.priority--;
3603 } while (sc.priority >= 1);
3605 if (!sc.nr_reclaimed)
3606 pgdat->kswapd_failures++;
3608 out:
3609 snapshot_refaults(NULL, pgdat);
3610 __fs_reclaim_release();
3612 * Return the order kswapd stopped reclaiming at as
3613 * prepare_kswapd_sleep() takes it into account. If another caller
3614 * entered the allocator slow path while kswapd was awake, order will
3615 * remain at the higher level.
3617 return sc.order;
3621 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3622 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3623 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3624 * after previous reclaim attempt (node is still unbalanced). In that case
3625 * return the zone index of the previous kswapd reclaim cycle.
3627 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3628 enum zone_type prev_classzone_idx)
3630 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
3632 return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx;
3635 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3636 unsigned int classzone_idx)
3638 long remaining = 0;
3639 DEFINE_WAIT(wait);
3641 if (freezing(current) || kthread_should_stop())
3642 return;
3644 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3647 * Try to sleep for a short interval. Note that kcompactd will only be
3648 * woken if it is possible to sleep for a short interval. This is
3649 * deliberate on the assumption that if reclaim cannot keep an
3650 * eligible zone balanced that it's also unlikely that compaction will
3651 * succeed.
3653 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3655 * Compaction records what page blocks it recently failed to
3656 * isolate pages from and skips them in the future scanning.
3657 * When kswapd is going to sleep, it is reasonable to assume
3658 * that pages and compaction may succeed so reset the cache.
3660 reset_isolation_suitable(pgdat);
3663 * We have freed the memory, now we should compact it to make
3664 * allocation of the requested order possible.
3666 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3668 remaining = schedule_timeout(HZ/10);
3671 * If woken prematurely then reset kswapd_classzone_idx and
3672 * order. The values will either be from a wakeup request or
3673 * the previous request that slept prematurely.
3675 if (remaining) {
3676 WRITE_ONCE(pgdat->kswapd_classzone_idx,
3677 kswapd_classzone_idx(pgdat, classzone_idx));
3679 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3680 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3683 finish_wait(&pgdat->kswapd_wait, &wait);
3684 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3688 * After a short sleep, check if it was a premature sleep. If not, then
3689 * go fully to sleep until explicitly woken up.
3691 if (!remaining &&
3692 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3693 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3696 * vmstat counters are not perfectly accurate and the estimated
3697 * value for counters such as NR_FREE_PAGES can deviate from the
3698 * true value by nr_online_cpus * threshold. To avoid the zone
3699 * watermarks being breached while under pressure, we reduce the
3700 * per-cpu vmstat threshold while kswapd is awake and restore
3701 * them before going back to sleep.
3703 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3705 if (!kthread_should_stop())
3706 schedule();
3708 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3709 } else {
3710 if (remaining)
3711 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3712 else
3713 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3715 finish_wait(&pgdat->kswapd_wait, &wait);
3719 * The background pageout daemon, started as a kernel thread
3720 * from the init process.
3722 * This basically trickles out pages so that we have _some_
3723 * free memory available even if there is no other activity
3724 * that frees anything up. This is needed for things like routing
3725 * etc, where we otherwise might have all activity going on in
3726 * asynchronous contexts that cannot page things out.
3728 * If there are applications that are active memory-allocators
3729 * (most normal use), this basically shouldn't matter.
3731 static int kswapd(void *p)
3733 unsigned int alloc_order, reclaim_order;
3734 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3735 pg_data_t *pgdat = (pg_data_t*)p;
3736 struct task_struct *tsk = current;
3738 struct reclaim_state reclaim_state = {
3739 .reclaimed_slab = 0,
3741 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3743 if (!cpumask_empty(cpumask))
3744 set_cpus_allowed_ptr(tsk, cpumask);
3745 current->reclaim_state = &reclaim_state;
3748 * Tell the memory management that we're a "memory allocator",
3749 * and that if we need more memory we should get access to it
3750 * regardless (see "__alloc_pages()"). "kswapd" should
3751 * never get caught in the normal page freeing logic.
3753 * (Kswapd normally doesn't need memory anyway, but sometimes
3754 * you need a small amount of memory in order to be able to
3755 * page out something else, and this flag essentially protects
3756 * us from recursively trying to free more memory as we're
3757 * trying to free the first piece of memory in the first place).
3759 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3760 set_freezable();
3762 WRITE_ONCE(pgdat->kswapd_order, 0);
3763 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3764 for ( ; ; ) {
3765 bool ret;
3767 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3768 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3770 kswapd_try_sleep:
3771 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3772 classzone_idx);
3774 /* Read the new order and classzone_idx */
3775 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3776 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3777 WRITE_ONCE(pgdat->kswapd_order, 0);
3778 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3780 ret = try_to_freeze();
3781 if (kthread_should_stop())
3782 break;
3785 * We can speed up thawing tasks if we don't call balance_pgdat
3786 * after returning from the refrigerator
3788 if (ret)
3789 continue;
3792 * Reclaim begins at the requested order but if a high-order
3793 * reclaim fails then kswapd falls back to reclaiming for
3794 * order-0. If that happens, kswapd will consider sleeping
3795 * for the order it finished reclaiming at (reclaim_order)
3796 * but kcompactd is woken to compact for the original
3797 * request (alloc_order).
3799 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3800 alloc_order);
3801 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3802 if (reclaim_order < alloc_order)
3803 goto kswapd_try_sleep;
3806 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3807 current->reclaim_state = NULL;
3809 return 0;
3813 * A zone is low on free memory or too fragmented for high-order memory. If
3814 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3815 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3816 * has failed or is not needed, still wake up kcompactd if only compaction is
3817 * needed.
3819 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3820 enum zone_type classzone_idx)
3822 pg_data_t *pgdat;
3823 enum zone_type curr_idx;
3825 if (!managed_zone(zone))
3826 return;
3828 if (!cpuset_zone_allowed(zone, gfp_flags))
3829 return;
3831 pgdat = zone->zone_pgdat;
3832 curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
3834 if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx)
3835 WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx);
3837 if (READ_ONCE(pgdat->kswapd_order) < order)
3838 WRITE_ONCE(pgdat->kswapd_order, order);
3840 if (!waitqueue_active(&pgdat->kswapd_wait))
3841 return;
3843 /* Hopeless node, leave it to direct reclaim if possible */
3844 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3845 pgdat_balanced(pgdat, order, classzone_idx)) {
3847 * There may be plenty of free memory available, but it's too
3848 * fragmented for high-order allocations. Wake up kcompactd
3849 * and rely on compaction_suitable() to determine if it's
3850 * needed. If it fails, it will defer subsequent attempts to
3851 * ratelimit its work.
3853 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3854 wakeup_kcompactd(pgdat, order, classzone_idx);
3855 return;
3858 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3859 gfp_flags);
3860 wake_up_interruptible(&pgdat->kswapd_wait);
3863 #ifdef CONFIG_HIBERNATION
3865 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3866 * freed pages.
3868 * Rather than trying to age LRUs the aim is to preserve the overall
3869 * LRU order by reclaiming preferentially
3870 * inactive > active > active referenced > active mapped
3872 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3874 struct reclaim_state reclaim_state;
3875 struct scan_control sc = {
3876 .nr_to_reclaim = nr_to_reclaim,
3877 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3878 .reclaim_idx = MAX_NR_ZONES - 1,
3879 .priority = DEF_PRIORITY,
3880 .may_writepage = 1,
3881 .may_unmap = 1,
3882 .may_swap = 1,
3883 .hibernation_mode = 1,
3885 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3886 struct task_struct *p = current;
3887 unsigned long nr_reclaimed;
3888 unsigned int noreclaim_flag;
3890 fs_reclaim_acquire(sc.gfp_mask);
3891 noreclaim_flag = memalloc_noreclaim_save();
3892 reclaim_state.reclaimed_slab = 0;
3893 p->reclaim_state = &reclaim_state;
3895 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3897 p->reclaim_state = NULL;
3898 memalloc_noreclaim_restore(noreclaim_flag);
3899 fs_reclaim_release(sc.gfp_mask);
3901 return nr_reclaimed;
3903 #endif /* CONFIG_HIBERNATION */
3905 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3906 not required for correctness. So if the last cpu in a node goes
3907 away, we get changed to run anywhere: as the first one comes back,
3908 restore their cpu bindings. */
3909 static int kswapd_cpu_online(unsigned int cpu)
3911 int nid;
3913 for_each_node_state(nid, N_MEMORY) {
3914 pg_data_t *pgdat = NODE_DATA(nid);
3915 const struct cpumask *mask;
3917 mask = cpumask_of_node(pgdat->node_id);
3919 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3920 /* One of our CPUs online: restore mask */
3921 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3923 return 0;
3927 * This kswapd start function will be called by init and node-hot-add.
3928 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3930 int kswapd_run(int nid)
3932 pg_data_t *pgdat = NODE_DATA(nid);
3933 int ret = 0;
3935 if (pgdat->kswapd)
3936 return 0;
3938 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3939 if (IS_ERR(pgdat->kswapd)) {
3940 /* failure at boot is fatal */
3941 BUG_ON(system_state < SYSTEM_RUNNING);
3942 pr_err("Failed to start kswapd on node %d\n", nid);
3943 ret = PTR_ERR(pgdat->kswapd);
3944 pgdat->kswapd = NULL;
3946 return ret;
3950 * Called by memory hotplug when all memory in a node is offlined. Caller must
3951 * hold mem_hotplug_begin/end().
3953 void kswapd_stop(int nid)
3955 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3957 if (kswapd) {
3958 kthread_stop(kswapd);
3959 NODE_DATA(nid)->kswapd = NULL;
3963 static int __init kswapd_init(void)
3965 int nid, ret;
3967 swap_setup();
3968 for_each_node_state(nid, N_MEMORY)
3969 kswapd_run(nid);
3970 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3971 "mm/vmscan:online", kswapd_cpu_online,
3972 NULL);
3973 WARN_ON(ret < 0);
3974 return 0;
3977 module_init(kswapd_init)
3979 #ifdef CONFIG_NUMA
3981 * Node reclaim mode
3983 * If non-zero call node_reclaim when the number of free pages falls below
3984 * the watermarks.
3986 int node_reclaim_mode __read_mostly;
3988 #define RECLAIM_OFF 0
3989 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3990 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3991 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3994 * Priority for NODE_RECLAIM. This determines the fraction of pages
3995 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3996 * a zone.
3998 #define NODE_RECLAIM_PRIORITY 4
4001 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4002 * occur.
4004 int sysctl_min_unmapped_ratio = 1;
4007 * If the number of slab pages in a zone grows beyond this percentage then
4008 * slab reclaim needs to occur.
4010 int sysctl_min_slab_ratio = 5;
4012 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4014 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4015 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4016 node_page_state(pgdat, NR_ACTIVE_FILE);
4019 * It's possible for there to be more file mapped pages than
4020 * accounted for by the pages on the file LRU lists because
4021 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4023 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4026 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4027 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4029 unsigned long nr_pagecache_reclaimable;
4030 unsigned long delta = 0;
4033 * If RECLAIM_UNMAP is set, then all file pages are considered
4034 * potentially reclaimable. Otherwise, we have to worry about
4035 * pages like swapcache and node_unmapped_file_pages() provides
4036 * a better estimate
4038 if (node_reclaim_mode & RECLAIM_UNMAP)
4039 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4040 else
4041 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4043 /* If we can't clean pages, remove dirty pages from consideration */
4044 if (!(node_reclaim_mode & RECLAIM_WRITE))
4045 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4047 /* Watch for any possible underflows due to delta */
4048 if (unlikely(delta > nr_pagecache_reclaimable))
4049 delta = nr_pagecache_reclaimable;
4051 return nr_pagecache_reclaimable - delta;
4055 * Try to free up some pages from this node through reclaim.
4057 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4059 /* Minimum pages needed in order to stay on node */
4060 const unsigned long nr_pages = 1 << order;
4061 struct task_struct *p = current;
4062 struct reclaim_state reclaim_state;
4063 unsigned int noreclaim_flag;
4064 struct scan_control sc = {
4065 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4066 .gfp_mask = current_gfp_context(gfp_mask),
4067 .order = order,
4068 .priority = NODE_RECLAIM_PRIORITY,
4069 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4070 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4071 .may_swap = 1,
4072 .reclaim_idx = gfp_zone(gfp_mask),
4075 cond_resched();
4076 fs_reclaim_acquire(sc.gfp_mask);
4078 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4079 * and we also need to be able to write out pages for RECLAIM_WRITE
4080 * and RECLAIM_UNMAP.
4082 noreclaim_flag = memalloc_noreclaim_save();
4083 p->flags |= PF_SWAPWRITE;
4084 reclaim_state.reclaimed_slab = 0;
4085 p->reclaim_state = &reclaim_state;
4087 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4089 * Free memory by calling shrink node with increasing
4090 * priorities until we have enough memory freed.
4092 do {
4093 shrink_node(pgdat, &sc);
4094 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4097 p->reclaim_state = NULL;
4098 current->flags &= ~PF_SWAPWRITE;
4099 memalloc_noreclaim_restore(noreclaim_flag);
4100 fs_reclaim_release(sc.gfp_mask);
4101 return sc.nr_reclaimed >= nr_pages;
4104 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4106 int ret;
4109 * Node reclaim reclaims unmapped file backed pages and
4110 * slab pages if we are over the defined limits.
4112 * A small portion of unmapped file backed pages is needed for
4113 * file I/O otherwise pages read by file I/O will be immediately
4114 * thrown out if the node is overallocated. So we do not reclaim
4115 * if less than a specified percentage of the node is used by
4116 * unmapped file backed pages.
4118 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4119 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4120 return NODE_RECLAIM_FULL;
4123 * Do not scan if the allocation should not be delayed.
4125 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4126 return NODE_RECLAIM_NOSCAN;
4129 * Only run node reclaim on the local node or on nodes that do not
4130 * have associated processors. This will favor the local processor
4131 * over remote processors and spread off node memory allocations
4132 * as wide as possible.
4134 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4135 return NODE_RECLAIM_NOSCAN;
4137 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4138 return NODE_RECLAIM_NOSCAN;
4140 ret = __node_reclaim(pgdat, gfp_mask, order);
4141 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4143 if (!ret)
4144 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4146 return ret;
4148 #endif
4151 * page_evictable - test whether a page is evictable
4152 * @page: the page to test
4154 * Test whether page is evictable--i.e., should be placed on active/inactive
4155 * lists vs unevictable list.
4157 * Reasons page might not be evictable:
4158 * (1) page's mapping marked unevictable
4159 * (2) page is part of an mlocked VMA
4162 int page_evictable(struct page *page)
4164 int ret;
4166 /* Prevent address_space of inode and swap cache from being freed */
4167 rcu_read_lock();
4168 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4169 rcu_read_unlock();
4170 return ret;
4173 #ifdef CONFIG_SHMEM
4175 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4176 * @pages: array of pages to check
4177 * @nr_pages: number of pages to check
4179 * Checks pages for evictability and moves them to the appropriate lru list.
4181 * This function is only used for SysV IPC SHM_UNLOCK.
4183 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4185 struct lruvec *lruvec;
4186 struct pglist_data *pgdat = NULL;
4187 int pgscanned = 0;
4188 int pgrescued = 0;
4189 int i;
4191 for (i = 0; i < nr_pages; i++) {
4192 struct page *page = pages[i];
4193 struct pglist_data *pagepgdat = page_pgdat(page);
4195 pgscanned++;
4196 if (pagepgdat != pgdat) {
4197 if (pgdat)
4198 spin_unlock_irq(&pgdat->lru_lock);
4199 pgdat = pagepgdat;
4200 spin_lock_irq(&pgdat->lru_lock);
4202 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4204 if (!PageLRU(page) || !PageUnevictable(page))
4205 continue;
4207 if (page_evictable(page)) {
4208 enum lru_list lru = page_lru_base_type(page);
4210 VM_BUG_ON_PAGE(PageActive(page), page);
4211 ClearPageUnevictable(page);
4212 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4213 add_page_to_lru_list(page, lruvec, lru);
4214 pgrescued++;
4218 if (pgdat) {
4219 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4220 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4221 spin_unlock_irq(&pgdat->lru_lock);
4224 #endif /* CONFIG_SHMEM */