1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim
;
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
78 struct mem_cgroup
*target_mem_cgroup
;
80 /* Writepage batching in laptop mode; RECLAIM_WRITE */
81 unsigned int may_writepage
:1;
83 /* Can mapped pages be reclaimed? */
84 unsigned int may_unmap
:1;
86 /* Can pages be swapped as part of reclaim? */
87 unsigned int may_swap
:1;
90 * Cgroups are not reclaimed below their configured memory.low,
91 * unless we threaten to OOM. If any cgroups are skipped due to
92 * memory.low and nothing was reclaimed, go back for memory.low.
94 unsigned int memcg_low_reclaim
:1;
95 unsigned int memcg_low_skipped
:1;
97 unsigned int hibernation_mode
:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready
:1;
102 /* Allocation order */
105 /* Scan (total_size >> priority) pages at once */
108 /* The highest zone to isolate pages for reclaim from */
111 /* This context's GFP mask */
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned
;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed
;
122 unsigned int unqueued_dirty
;
123 unsigned int congested
;
124 unsigned int writeback
;
125 unsigned int immediate
;
126 unsigned int file_taken
;
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field) \
134 if ((_page)->lru.prev != _base) { \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field) \
148 if ((_page)->lru.prev != _base) { \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
160 * From 0 .. 100. Higher means more swappy.
162 int vm_swappiness
= 60;
164 * The total number of pages which are beyond the high watermark within all
167 unsigned long vm_total_pages
;
169 static LIST_HEAD(shrinker_list
);
170 static DECLARE_RWSEM(shrinker_rwsem
);
172 #ifdef CONFIG_MEMCG_KMEM
175 * We allow subsystems to populate their shrinker-related
176 * LRU lists before register_shrinker_prepared() is called
177 * for the shrinker, since we don't want to impose
178 * restrictions on their internal registration order.
179 * In this case shrink_slab_memcg() may find corresponding
180 * bit is set in the shrinkers map.
182 * This value is used by the function to detect registering
183 * shrinkers and to skip do_shrink_slab() calls for them.
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
187 static DEFINE_IDR(shrinker_idr
);
188 static int shrinker_nr_max
;
190 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
192 int id
, ret
= -ENOMEM
;
194 down_write(&shrinker_rwsem
);
195 /* This may call shrinker, so it must use down_read_trylock() */
196 id
= idr_alloc(&shrinker_idr
, SHRINKER_REGISTERING
, 0, 0, GFP_KERNEL
);
200 if (id
>= shrinker_nr_max
) {
201 if (memcg_expand_shrinker_maps(id
)) {
202 idr_remove(&shrinker_idr
, id
);
206 shrinker_nr_max
= id
+ 1;
211 up_write(&shrinker_rwsem
);
215 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
217 int id
= shrinker
->id
;
221 down_write(&shrinker_rwsem
);
222 idr_remove(&shrinker_idr
, id
);
223 up_write(&shrinker_rwsem
);
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
231 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
234 #endif /* CONFIG_MEMCG_KMEM */
237 static bool global_reclaim(struct scan_control
*sc
)
239 return !sc
->target_mem_cgroup
;
243 * sane_reclaim - is the usual dirty throttling mechanism operational?
244 * @sc: scan_control in question
246 * The normal page dirty throttling mechanism in balance_dirty_pages() is
247 * completely broken with the legacy memcg and direct stalling in
248 * shrink_page_list() is used for throttling instead, which lacks all the
249 * niceties such as fairness, adaptive pausing, bandwidth proportional
250 * allocation and configurability.
252 * This function tests whether the vmscan currently in progress can assume
253 * that the normal dirty throttling mechanism is operational.
255 static bool sane_reclaim(struct scan_control
*sc
)
257 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
268 static void set_memcg_congestion(pg_data_t
*pgdat
,
269 struct mem_cgroup
*memcg
,
272 struct mem_cgroup_per_node
*mn
;
277 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
278 WRITE_ONCE(mn
->congested
, congested
);
281 static bool memcg_congested(pg_data_t
*pgdat
,
282 struct mem_cgroup
*memcg
)
284 struct mem_cgroup_per_node
*mn
;
286 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
287 return READ_ONCE(mn
->congested
);
291 static bool global_reclaim(struct scan_control
*sc
)
296 static bool sane_reclaim(struct scan_control
*sc
)
301 static inline void set_memcg_congestion(struct pglist_data
*pgdat
,
302 struct mem_cgroup
*memcg
, bool congested
)
306 static inline bool memcg_congested(struct pglist_data
*pgdat
,
307 struct mem_cgroup
*memcg
)
315 * This misses isolated pages which are not accounted for to save counters.
316 * As the data only determines if reclaim or compaction continues, it is
317 * not expected that isolated pages will be a dominating factor.
319 unsigned long zone_reclaimable_pages(struct zone
*zone
)
323 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
324 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
325 if (get_nr_swap_pages() > 0)
326 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
327 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
333 * lruvec_lru_size - Returns the number of pages on the given LRU list.
334 * @lruvec: lru vector
336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
338 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
340 unsigned long lru_size
;
343 if (!mem_cgroup_disabled())
344 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
346 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
348 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
349 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
352 if (!managed_zone(zone
))
355 if (!mem_cgroup_disabled())
356 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
358 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
359 NR_ZONE_LRU_BASE
+ lru
);
360 lru_size
-= min(size
, lru_size
);
368 * Add a shrinker callback to be called from the vm.
370 int prealloc_shrinker(struct shrinker
*shrinker
)
372 size_t size
= sizeof(*shrinker
->nr_deferred
);
374 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
377 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
378 if (!shrinker
->nr_deferred
)
381 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
) {
382 if (prealloc_memcg_shrinker(shrinker
))
389 kfree(shrinker
->nr_deferred
);
390 shrinker
->nr_deferred
= NULL
;
394 void free_prealloced_shrinker(struct shrinker
*shrinker
)
396 if (!shrinker
->nr_deferred
)
399 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
400 unregister_memcg_shrinker(shrinker
);
402 kfree(shrinker
->nr_deferred
);
403 shrinker
->nr_deferred
= NULL
;
406 void register_shrinker_prepared(struct shrinker
*shrinker
)
408 down_write(&shrinker_rwsem
);
409 list_add_tail(&shrinker
->list
, &shrinker_list
);
410 #ifdef CONFIG_MEMCG_KMEM
411 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
412 idr_replace(&shrinker_idr
, shrinker
, shrinker
->id
);
414 up_write(&shrinker_rwsem
);
417 int register_shrinker(struct shrinker
*shrinker
)
419 int err
= prealloc_shrinker(shrinker
);
423 register_shrinker_prepared(shrinker
);
426 EXPORT_SYMBOL(register_shrinker
);
431 void unregister_shrinker(struct shrinker
*shrinker
)
433 if (!shrinker
->nr_deferred
)
435 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
436 unregister_memcg_shrinker(shrinker
);
437 down_write(&shrinker_rwsem
);
438 list_del(&shrinker
->list
);
439 up_write(&shrinker_rwsem
);
440 kfree(shrinker
->nr_deferred
);
441 shrinker
->nr_deferred
= NULL
;
443 EXPORT_SYMBOL(unregister_shrinker
);
445 #define SHRINK_BATCH 128
447 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
448 struct shrinker
*shrinker
, int priority
)
450 unsigned long freed
= 0;
451 unsigned long long delta
;
456 int nid
= shrinkctl
->nid
;
457 long batch_size
= shrinker
->batch
? shrinker
->batch
459 long scanned
= 0, next_deferred
;
461 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
464 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
465 if (freeable
== 0 || freeable
== SHRINK_EMPTY
)
469 * copy the current shrinker scan count into a local variable
470 * and zero it so that other concurrent shrinker invocations
471 * don't also do this scanning work.
473 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
476 delta
= freeable
>> priority
;
478 do_div(delta
, shrinker
->seeks
);
481 if (total_scan
< 0) {
482 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
483 shrinker
->scan_objects
, total_scan
);
484 total_scan
= freeable
;
487 next_deferred
= total_scan
;
490 * We need to avoid excessive windup on filesystem shrinkers
491 * due to large numbers of GFP_NOFS allocations causing the
492 * shrinkers to return -1 all the time. This results in a large
493 * nr being built up so when a shrink that can do some work
494 * comes along it empties the entire cache due to nr >>>
495 * freeable. This is bad for sustaining a working set in
498 * Hence only allow the shrinker to scan the entire cache when
499 * a large delta change is calculated directly.
501 if (delta
< freeable
/ 4)
502 total_scan
= min(total_scan
, freeable
/ 2);
505 * Avoid risking looping forever due to too large nr value:
506 * never try to free more than twice the estimate number of
509 if (total_scan
> freeable
* 2)
510 total_scan
= freeable
* 2;
512 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
513 freeable
, delta
, total_scan
, priority
);
516 * Normally, we should not scan less than batch_size objects in one
517 * pass to avoid too frequent shrinker calls, but if the slab has less
518 * than batch_size objects in total and we are really tight on memory,
519 * we will try to reclaim all available objects, otherwise we can end
520 * up failing allocations although there are plenty of reclaimable
521 * objects spread over several slabs with usage less than the
524 * We detect the "tight on memory" situations by looking at the total
525 * number of objects we want to scan (total_scan). If it is greater
526 * than the total number of objects on slab (freeable), we must be
527 * scanning at high prio and therefore should try to reclaim as much as
530 while (total_scan
>= batch_size
||
531 total_scan
>= freeable
) {
533 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
535 shrinkctl
->nr_to_scan
= nr_to_scan
;
536 shrinkctl
->nr_scanned
= nr_to_scan
;
537 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
538 if (ret
== SHRINK_STOP
)
542 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
543 total_scan
-= shrinkctl
->nr_scanned
;
544 scanned
+= shrinkctl
->nr_scanned
;
549 if (next_deferred
>= scanned
)
550 next_deferred
-= scanned
;
554 * move the unused scan count back into the shrinker in a
555 * manner that handles concurrent updates. If we exhausted the
556 * scan, there is no need to do an update.
558 if (next_deferred
> 0)
559 new_nr
= atomic_long_add_return(next_deferred
,
560 &shrinker
->nr_deferred
[nid
]);
562 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
564 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
568 #ifdef CONFIG_MEMCG_KMEM
569 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
570 struct mem_cgroup
*memcg
, int priority
)
572 struct memcg_shrinker_map
*map
;
573 unsigned long ret
, freed
= 0;
576 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
))
579 if (!down_read_trylock(&shrinker_rwsem
))
582 map
= rcu_dereference_protected(memcg
->nodeinfo
[nid
]->shrinker_map
,
587 for_each_set_bit(i
, map
->map
, shrinker_nr_max
) {
588 struct shrink_control sc
= {
589 .gfp_mask
= gfp_mask
,
593 struct shrinker
*shrinker
;
595 shrinker
= idr_find(&shrinker_idr
, i
);
596 if (unlikely(!shrinker
|| shrinker
== SHRINKER_REGISTERING
)) {
598 clear_bit(i
, map
->map
);
602 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
603 if (ret
== SHRINK_EMPTY
) {
604 clear_bit(i
, map
->map
);
606 * After the shrinker reported that it had no objects to
607 * free, but before we cleared the corresponding bit in
608 * the memcg shrinker map, a new object might have been
609 * added. To make sure, we have the bit set in this
610 * case, we invoke the shrinker one more time and reset
611 * the bit if it reports that it is not empty anymore.
612 * The memory barrier here pairs with the barrier in
613 * memcg_set_shrinker_bit():
615 * list_lru_add() shrink_slab_memcg()
616 * list_add_tail() clear_bit()
618 * set_bit() do_shrink_slab()
620 smp_mb__after_atomic();
621 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
622 if (ret
== SHRINK_EMPTY
)
625 memcg_set_shrinker_bit(memcg
, nid
, i
);
629 if (rwsem_is_contended(&shrinker_rwsem
)) {
635 up_read(&shrinker_rwsem
);
638 #else /* CONFIG_MEMCG_KMEM */
639 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
640 struct mem_cgroup
*memcg
, int priority
)
644 #endif /* CONFIG_MEMCG_KMEM */
647 * shrink_slab - shrink slab caches
648 * @gfp_mask: allocation context
649 * @nid: node whose slab caches to target
650 * @memcg: memory cgroup whose slab caches to target
651 * @priority: the reclaim priority
653 * Call the shrink functions to age shrinkable caches.
655 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
656 * unaware shrinkers will receive a node id of 0 instead.
658 * @memcg specifies the memory cgroup to target. Unaware shrinkers
659 * are called only if it is the root cgroup.
661 * @priority is sc->priority, we take the number of objects and >> by priority
662 * in order to get the scan target.
664 * Returns the number of reclaimed slab objects.
666 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
667 struct mem_cgroup
*memcg
,
670 unsigned long ret
, freed
= 0;
671 struct shrinker
*shrinker
;
674 * The root memcg might be allocated even though memcg is disabled
675 * via "cgroup_disable=memory" boot parameter. This could make
676 * mem_cgroup_is_root() return false, then just run memcg slab
677 * shrink, but skip global shrink. This may result in premature
680 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
))
681 return shrink_slab_memcg(gfp_mask
, nid
, memcg
, priority
);
683 if (!down_read_trylock(&shrinker_rwsem
))
686 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
687 struct shrink_control sc
= {
688 .gfp_mask
= gfp_mask
,
693 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
694 if (ret
== SHRINK_EMPTY
)
698 * Bail out if someone want to register a new shrinker to
699 * prevent the regsitration from being stalled for long periods
700 * by parallel ongoing shrinking.
702 if (rwsem_is_contended(&shrinker_rwsem
)) {
708 up_read(&shrinker_rwsem
);
714 void drop_slab_node(int nid
)
719 struct mem_cgroup
*memcg
= NULL
;
722 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
724 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
725 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
726 } while (freed
> 10);
733 for_each_online_node(nid
)
737 static inline int is_page_cache_freeable(struct page
*page
)
740 * A freeable page cache page is referenced only by the caller
741 * that isolated the page, the page cache radix tree and
742 * optional buffer heads at page->private.
744 int radix_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
746 return page_count(page
) - page_has_private(page
) == 1 + radix_pins
;
749 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
751 if (current
->flags
& PF_SWAPWRITE
)
753 if (!inode_write_congested(inode
))
755 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
761 * We detected a synchronous write error writing a page out. Probably
762 * -ENOSPC. We need to propagate that into the address_space for a subsequent
763 * fsync(), msync() or close().
765 * The tricky part is that after writepage we cannot touch the mapping: nothing
766 * prevents it from being freed up. But we have a ref on the page and once
767 * that page is locked, the mapping is pinned.
769 * We're allowed to run sleeping lock_page() here because we know the caller has
772 static void handle_write_error(struct address_space
*mapping
,
773 struct page
*page
, int error
)
776 if (page_mapping(page
) == mapping
)
777 mapping_set_error(mapping
, error
);
781 /* possible outcome of pageout() */
783 /* failed to write page out, page is locked */
785 /* move page to the active list, page is locked */
787 /* page has been sent to the disk successfully, page is unlocked */
789 /* page is clean and locked */
794 * pageout is called by shrink_page_list() for each dirty page.
795 * Calls ->writepage().
797 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
798 struct scan_control
*sc
)
801 * If the page is dirty, only perform writeback if that write
802 * will be non-blocking. To prevent this allocation from being
803 * stalled by pagecache activity. But note that there may be
804 * stalls if we need to run get_block(). We could test
805 * PagePrivate for that.
807 * If this process is currently in __generic_file_write_iter() against
808 * this page's queue, we can perform writeback even if that
811 * If the page is swapcache, write it back even if that would
812 * block, for some throttling. This happens by accident, because
813 * swap_backing_dev_info is bust: it doesn't reflect the
814 * congestion state of the swapdevs. Easy to fix, if needed.
816 if (!is_page_cache_freeable(page
))
820 * Some data journaling orphaned pages can have
821 * page->mapping == NULL while being dirty with clean buffers.
823 if (page_has_private(page
)) {
824 if (try_to_free_buffers(page
)) {
825 ClearPageDirty(page
);
826 pr_info("%s: orphaned page\n", __func__
);
832 if (mapping
->a_ops
->writepage
== NULL
)
833 return PAGE_ACTIVATE
;
834 if (!may_write_to_inode(mapping
->host
, sc
))
837 if (clear_page_dirty_for_io(page
)) {
839 struct writeback_control wbc
= {
840 .sync_mode
= WB_SYNC_NONE
,
841 .nr_to_write
= SWAP_CLUSTER_MAX
,
843 .range_end
= LLONG_MAX
,
847 SetPageReclaim(page
);
848 res
= mapping
->a_ops
->writepage(page
, &wbc
);
850 handle_write_error(mapping
, page
, res
);
851 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
852 ClearPageReclaim(page
);
853 return PAGE_ACTIVATE
;
856 if (!PageWriteback(page
)) {
857 /* synchronous write or broken a_ops? */
858 ClearPageReclaim(page
);
860 trace_mm_vmscan_writepage(page
);
861 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
869 * Same as remove_mapping, but if the page is removed from the mapping, it
870 * gets returned with a refcount of 0.
872 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
878 BUG_ON(!PageLocked(page
));
879 BUG_ON(mapping
!= page_mapping(page
));
881 xa_lock_irqsave(&mapping
->i_pages
, flags
);
883 * The non racy check for a busy page.
885 * Must be careful with the order of the tests. When someone has
886 * a ref to the page, it may be possible that they dirty it then
887 * drop the reference. So if PageDirty is tested before page_count
888 * here, then the following race may occur:
890 * get_user_pages(&page);
891 * [user mapping goes away]
893 * !PageDirty(page) [good]
894 * SetPageDirty(page);
896 * !page_count(page) [good, discard it]
898 * [oops, our write_to data is lost]
900 * Reversing the order of the tests ensures such a situation cannot
901 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
902 * load is not satisfied before that of page->_refcount.
904 * Note that if SetPageDirty is always performed via set_page_dirty,
905 * and thus under the i_pages lock, then this ordering is not required.
907 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
908 refcount
= 1 + HPAGE_PMD_NR
;
911 if (!page_ref_freeze(page
, refcount
))
913 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
914 if (unlikely(PageDirty(page
))) {
915 page_ref_unfreeze(page
, refcount
);
919 if (PageSwapCache(page
)) {
920 swp_entry_t swap
= { .val
= page_private(page
) };
921 mem_cgroup_swapout(page
, swap
);
922 __delete_from_swap_cache(page
);
923 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
924 put_swap_page(page
, swap
);
926 void (*freepage
)(struct page
*);
929 freepage
= mapping
->a_ops
->freepage
;
931 * Remember a shadow entry for reclaimed file cache in
932 * order to detect refaults, thus thrashing, later on.
934 * But don't store shadows in an address space that is
935 * already exiting. This is not just an optizimation,
936 * inode reclaim needs to empty out the radix tree or
937 * the nodes are lost. Don't plant shadows behind its
940 * We also don't store shadows for DAX mappings because the
941 * only page cache pages found in these are zero pages
942 * covering holes, and because we don't want to mix DAX
943 * exceptional entries and shadow exceptional entries in the
944 * same address_space.
946 if (reclaimed
&& page_is_file_cache(page
) &&
947 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
948 shadow
= workingset_eviction(mapping
, page
);
949 __delete_from_page_cache(page
, shadow
);
950 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
952 if (freepage
!= NULL
)
959 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
964 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
965 * someone else has a ref on the page, abort and return 0. If it was
966 * successfully detached, return 1. Assumes the caller has a single ref on
969 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
971 if (__remove_mapping(mapping
, page
, false)) {
973 * Unfreezing the refcount with 1 rather than 2 effectively
974 * drops the pagecache ref for us without requiring another
977 page_ref_unfreeze(page
, 1);
984 * putback_lru_page - put previously isolated page onto appropriate LRU list
985 * @page: page to be put back to appropriate lru list
987 * Add previously isolated @page to appropriate LRU list.
988 * Page may still be unevictable for other reasons.
990 * lru_lock must not be held, interrupts must be enabled.
992 void putback_lru_page(struct page
*page
)
995 put_page(page
); /* drop ref from isolate */
998 enum page_references
{
1000 PAGEREF_RECLAIM_CLEAN
,
1005 static enum page_references
page_check_references(struct page
*page
,
1006 struct scan_control
*sc
)
1008 int referenced_ptes
, referenced_page
;
1009 unsigned long vm_flags
;
1011 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
1013 referenced_page
= TestClearPageReferenced(page
);
1016 * Mlock lost the isolation race with us. Let try_to_unmap()
1017 * move the page to the unevictable list.
1019 if (vm_flags
& VM_LOCKED
)
1020 return PAGEREF_RECLAIM
;
1022 if (referenced_ptes
) {
1023 if (PageSwapBacked(page
))
1024 return PAGEREF_ACTIVATE
;
1026 * All mapped pages start out with page table
1027 * references from the instantiating fault, so we need
1028 * to look twice if a mapped file page is used more
1031 * Mark it and spare it for another trip around the
1032 * inactive list. Another page table reference will
1033 * lead to its activation.
1035 * Note: the mark is set for activated pages as well
1036 * so that recently deactivated but used pages are
1037 * quickly recovered.
1039 SetPageReferenced(page
);
1041 if (referenced_page
|| referenced_ptes
> 1)
1042 return PAGEREF_ACTIVATE
;
1045 * Activate file-backed executable pages after first usage.
1047 if (vm_flags
& VM_EXEC
)
1048 return PAGEREF_ACTIVATE
;
1050 return PAGEREF_KEEP
;
1053 /* Reclaim if clean, defer dirty pages to writeback */
1054 if (referenced_page
&& !PageSwapBacked(page
))
1055 return PAGEREF_RECLAIM_CLEAN
;
1057 return PAGEREF_RECLAIM
;
1060 /* Check if a page is dirty or under writeback */
1061 static void page_check_dirty_writeback(struct page
*page
,
1062 bool *dirty
, bool *writeback
)
1064 struct address_space
*mapping
;
1067 * Anonymous pages are not handled by flushers and must be written
1068 * from reclaim context. Do not stall reclaim based on them
1070 if (!page_is_file_cache(page
) ||
1071 (PageAnon(page
) && !PageSwapBacked(page
))) {
1077 /* By default assume that the page flags are accurate */
1078 *dirty
= PageDirty(page
);
1079 *writeback
= PageWriteback(page
);
1081 /* Verify dirty/writeback state if the filesystem supports it */
1082 if (!page_has_private(page
))
1085 mapping
= page_mapping(page
);
1086 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
1087 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
1091 * shrink_page_list() returns the number of reclaimed pages
1093 static unsigned long shrink_page_list(struct list_head
*page_list
,
1094 struct pglist_data
*pgdat
,
1095 struct scan_control
*sc
,
1096 enum ttu_flags ttu_flags
,
1097 struct reclaim_stat
*stat
,
1100 LIST_HEAD(ret_pages
);
1101 LIST_HEAD(free_pages
);
1103 unsigned nr_unqueued_dirty
= 0;
1104 unsigned nr_dirty
= 0;
1105 unsigned nr_congested
= 0;
1106 unsigned nr_reclaimed
= 0;
1107 unsigned nr_writeback
= 0;
1108 unsigned nr_immediate
= 0;
1109 unsigned nr_ref_keep
= 0;
1110 unsigned nr_unmap_fail
= 0;
1114 while (!list_empty(page_list
)) {
1115 struct address_space
*mapping
;
1118 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
1119 bool dirty
, writeback
;
1123 page
= lru_to_page(page_list
);
1124 list_del(&page
->lru
);
1126 if (!trylock_page(page
))
1129 VM_BUG_ON_PAGE(PageActive(page
), page
);
1133 if (unlikely(!page_evictable(page
)))
1134 goto activate_locked
;
1136 if (!sc
->may_unmap
&& page_mapped(page
))
1139 /* Double the slab pressure for mapped and swapcache pages */
1140 if ((page_mapped(page
) || PageSwapCache(page
)) &&
1141 !(PageAnon(page
) && !PageSwapBacked(page
)))
1144 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1145 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1148 * The number of dirty pages determines if a node is marked
1149 * reclaim_congested which affects wait_iff_congested. kswapd
1150 * will stall and start writing pages if the tail of the LRU
1151 * is all dirty unqueued pages.
1153 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1154 if (dirty
|| writeback
)
1157 if (dirty
&& !writeback
)
1158 nr_unqueued_dirty
++;
1161 * Treat this page as congested if the underlying BDI is or if
1162 * pages are cycling through the LRU so quickly that the
1163 * pages marked for immediate reclaim are making it to the
1164 * end of the LRU a second time.
1166 mapping
= page_mapping(page
);
1167 if (((dirty
|| writeback
) && mapping
&&
1168 inode_write_congested(mapping
->host
)) ||
1169 (writeback
&& PageReclaim(page
)))
1173 * If a page at the tail of the LRU is under writeback, there
1174 * are three cases to consider.
1176 * 1) If reclaim is encountering an excessive number of pages
1177 * under writeback and this page is both under writeback and
1178 * PageReclaim then it indicates that pages are being queued
1179 * for IO but are being recycled through the LRU before the
1180 * IO can complete. Waiting on the page itself risks an
1181 * indefinite stall if it is impossible to writeback the
1182 * page due to IO error or disconnected storage so instead
1183 * note that the LRU is being scanned too quickly and the
1184 * caller can stall after page list has been processed.
1186 * 2) Global or new memcg reclaim encounters a page that is
1187 * not marked for immediate reclaim, or the caller does not
1188 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 * not to fs). In this case mark the page for immediate
1190 * reclaim and continue scanning.
1192 * Require may_enter_fs because we would wait on fs, which
1193 * may not have submitted IO yet. And the loop driver might
1194 * enter reclaim, and deadlock if it waits on a page for
1195 * which it is needed to do the write (loop masks off
1196 * __GFP_IO|__GFP_FS for this reason); but more thought
1197 * would probably show more reasons.
1199 * 3) Legacy memcg encounters a page that is already marked
1200 * PageReclaim. memcg does not have any dirty pages
1201 * throttling so we could easily OOM just because too many
1202 * pages are in writeback and there is nothing else to
1203 * reclaim. Wait for the writeback to complete.
1205 * In cases 1) and 2) we activate the pages to get them out of
1206 * the way while we continue scanning for clean pages on the
1207 * inactive list and refilling from the active list. The
1208 * observation here is that waiting for disk writes is more
1209 * expensive than potentially causing reloads down the line.
1210 * Since they're marked for immediate reclaim, they won't put
1211 * memory pressure on the cache working set any longer than it
1212 * takes to write them to disk.
1214 if (PageWriteback(page
)) {
1216 if (current_is_kswapd() &&
1217 PageReclaim(page
) &&
1218 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1220 goto activate_locked
;
1223 } else if (sane_reclaim(sc
) ||
1224 !PageReclaim(page
) || !may_enter_fs
) {
1226 * This is slightly racy - end_page_writeback()
1227 * might have just cleared PageReclaim, then
1228 * setting PageReclaim here end up interpreted
1229 * as PageReadahead - but that does not matter
1230 * enough to care. What we do want is for this
1231 * page to have PageReclaim set next time memcg
1232 * reclaim reaches the tests above, so it will
1233 * then wait_on_page_writeback() to avoid OOM;
1234 * and it's also appropriate in global reclaim.
1236 SetPageReclaim(page
);
1238 goto activate_locked
;
1243 wait_on_page_writeback(page
);
1244 /* then go back and try same page again */
1245 list_add_tail(&page
->lru
, page_list
);
1251 references
= page_check_references(page
, sc
);
1253 switch (references
) {
1254 case PAGEREF_ACTIVATE
:
1255 goto activate_locked
;
1259 case PAGEREF_RECLAIM
:
1260 case PAGEREF_RECLAIM_CLEAN
:
1261 ; /* try to reclaim the page below */
1265 * Anonymous process memory has backing store?
1266 * Try to allocate it some swap space here.
1267 * Lazyfree page could be freed directly
1269 if (PageAnon(page
) && PageSwapBacked(page
)) {
1270 if (!PageSwapCache(page
)) {
1271 if (!(sc
->gfp_mask
& __GFP_IO
))
1273 if (PageTransHuge(page
)) {
1274 /* cannot split THP, skip it */
1275 if (!can_split_huge_page(page
, NULL
))
1276 goto activate_locked
;
1278 * Split pages without a PMD map right
1279 * away. Chances are some or all of the
1280 * tail pages can be freed without IO.
1282 if (!compound_mapcount(page
) &&
1283 split_huge_page_to_list(page
,
1285 goto activate_locked
;
1287 if (!add_to_swap(page
)) {
1288 if (!PageTransHuge(page
))
1289 goto activate_locked
;
1290 /* Fallback to swap normal pages */
1291 if (split_huge_page_to_list(page
,
1293 goto activate_locked
;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 count_vm_event(THP_SWPOUT_FALLBACK
);
1297 if (!add_to_swap(page
))
1298 goto activate_locked
;
1303 /* Adding to swap updated mapping */
1304 mapping
= page_mapping(page
);
1306 } else if (unlikely(PageTransHuge(page
))) {
1307 /* Split file THP */
1308 if (split_huge_page_to_list(page
, page_list
))
1313 * The page is mapped into the page tables of one or more
1314 * processes. Try to unmap it here.
1316 if (page_mapped(page
)) {
1317 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1319 if (unlikely(PageTransHuge(page
)))
1320 flags
|= TTU_SPLIT_HUGE_PMD
;
1321 if (!try_to_unmap(page
, flags
)) {
1323 goto activate_locked
;
1327 if (PageDirty(page
)) {
1329 * Only kswapd can writeback filesystem pages
1330 * to avoid risk of stack overflow. But avoid
1331 * injecting inefficient single-page IO into
1332 * flusher writeback as much as possible: only
1333 * write pages when we've encountered many
1334 * dirty pages, and when we've already scanned
1335 * the rest of the LRU for clean pages and see
1336 * the same dirty pages again (PageReclaim).
1338 if (page_is_file_cache(page
) &&
1339 (!current_is_kswapd() || !PageReclaim(page
) ||
1340 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1342 * Immediately reclaim when written back.
1343 * Similar in principal to deactivate_page()
1344 * except we already have the page isolated
1345 * and know it's dirty
1347 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1348 SetPageReclaim(page
);
1350 goto activate_locked
;
1353 if (references
== PAGEREF_RECLAIM_CLEAN
)
1357 if (!sc
->may_writepage
)
1361 * Page is dirty. Flush the TLB if a writable entry
1362 * potentially exists to avoid CPU writes after IO
1363 * starts and then write it out here.
1365 try_to_unmap_flush_dirty();
1366 switch (pageout(page
, mapping
, sc
)) {
1370 goto activate_locked
;
1372 if (PageWriteback(page
))
1374 if (PageDirty(page
))
1378 * A synchronous write - probably a ramdisk. Go
1379 * ahead and try to reclaim the page.
1381 if (!trylock_page(page
))
1383 if (PageDirty(page
) || PageWriteback(page
))
1385 mapping
= page_mapping(page
);
1387 ; /* try to free the page below */
1392 * If the page has buffers, try to free the buffer mappings
1393 * associated with this page. If we succeed we try to free
1396 * We do this even if the page is PageDirty().
1397 * try_to_release_page() does not perform I/O, but it is
1398 * possible for a page to have PageDirty set, but it is actually
1399 * clean (all its buffers are clean). This happens if the
1400 * buffers were written out directly, with submit_bh(). ext3
1401 * will do this, as well as the blockdev mapping.
1402 * try_to_release_page() will discover that cleanness and will
1403 * drop the buffers and mark the page clean - it can be freed.
1405 * Rarely, pages can have buffers and no ->mapping. These are
1406 * the pages which were not successfully invalidated in
1407 * truncate_complete_page(). We try to drop those buffers here
1408 * and if that worked, and the page is no longer mapped into
1409 * process address space (page_count == 1) it can be freed.
1410 * Otherwise, leave the page on the LRU so it is swappable.
1412 if (page_has_private(page
)) {
1413 if (!try_to_release_page(page
, sc
->gfp_mask
))
1414 goto activate_locked
;
1415 if (!mapping
&& page_count(page
) == 1) {
1417 if (put_page_testzero(page
))
1421 * rare race with speculative reference.
1422 * the speculative reference will free
1423 * this page shortly, so we may
1424 * increment nr_reclaimed here (and
1425 * leave it off the LRU).
1433 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1434 /* follow __remove_mapping for reference */
1435 if (!page_ref_freeze(page
, 1))
1437 if (PageDirty(page
)) {
1438 page_ref_unfreeze(page
, 1);
1442 count_vm_event(PGLAZYFREED
);
1443 count_memcg_page_event(page
, PGLAZYFREED
);
1444 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1447 * At this point, we have no other references and there is
1448 * no way to pick any more up (removed from LRU, removed
1449 * from pagecache). Can use non-atomic bitops now (and
1450 * we obviously don't have to worry about waking up a process
1451 * waiting on the page lock, because there are no references.
1453 __ClearPageLocked(page
);
1458 * Is there need to periodically free_page_list? It would
1459 * appear not as the counts should be low
1461 if (unlikely(PageTransHuge(page
))) {
1462 mem_cgroup_uncharge(page
);
1463 (*get_compound_page_dtor(page
))(page
);
1465 list_add(&page
->lru
, &free_pages
);
1469 /* Not a candidate for swapping, so reclaim swap space. */
1470 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1472 try_to_free_swap(page
);
1473 VM_BUG_ON_PAGE(PageActive(page
), page
);
1474 if (!PageMlocked(page
)) {
1475 SetPageActive(page
);
1477 count_memcg_page_event(page
, PGACTIVATE
);
1482 list_add(&page
->lru
, &ret_pages
);
1483 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1486 mem_cgroup_uncharge_list(&free_pages
);
1487 try_to_unmap_flush();
1488 free_unref_page_list(&free_pages
);
1490 list_splice(&ret_pages
, page_list
);
1491 count_vm_events(PGACTIVATE
, pgactivate
);
1494 stat
->nr_dirty
= nr_dirty
;
1495 stat
->nr_congested
= nr_congested
;
1496 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1497 stat
->nr_writeback
= nr_writeback
;
1498 stat
->nr_immediate
= nr_immediate
;
1499 stat
->nr_activate
= pgactivate
;
1500 stat
->nr_ref_keep
= nr_ref_keep
;
1501 stat
->nr_unmap_fail
= nr_unmap_fail
;
1503 return nr_reclaimed
;
1506 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1507 struct list_head
*page_list
)
1509 struct scan_control sc
= {
1510 .gfp_mask
= GFP_KERNEL
,
1511 .priority
= DEF_PRIORITY
,
1515 struct page
*page
, *next
;
1516 LIST_HEAD(clean_pages
);
1518 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1519 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1520 !__PageMovable(page
) && !PageUnevictable(page
)) {
1521 ClearPageActive(page
);
1522 list_move(&page
->lru
, &clean_pages
);
1526 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1527 TTU_IGNORE_ACCESS
, NULL
, true);
1528 list_splice(&clean_pages
, page_list
);
1529 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1534 * Attempt to remove the specified page from its LRU. Only take this page
1535 * if it is of the appropriate PageActive status. Pages which are being
1536 * freed elsewhere are also ignored.
1538 * page: page to consider
1539 * mode: one of the LRU isolation modes defined above
1541 * returns 0 on success, -ve errno on failure.
1543 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1547 /* Only take pages on the LRU. */
1551 /* Compaction should not handle unevictable pages but CMA can do so */
1552 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1558 * To minimise LRU disruption, the caller can indicate that it only
1559 * wants to isolate pages it will be able to operate on without
1560 * blocking - clean pages for the most part.
1562 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1563 * that it is possible to migrate without blocking
1565 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1566 /* All the caller can do on PageWriteback is block */
1567 if (PageWriteback(page
))
1570 if (PageDirty(page
)) {
1571 struct address_space
*mapping
;
1575 * Only pages without mappings or that have a
1576 * ->migratepage callback are possible to migrate
1577 * without blocking. However, we can be racing with
1578 * truncation so it's necessary to lock the page
1579 * to stabilise the mapping as truncation holds
1580 * the page lock until after the page is removed
1581 * from the page cache.
1583 if (!trylock_page(page
))
1586 mapping
= page_mapping(page
);
1587 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1594 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1597 if (likely(get_page_unless_zero(page
))) {
1599 * Be careful not to clear PageLRU until after we're
1600 * sure the page is not being freed elsewhere -- the
1601 * page release code relies on it.
1612 * Update LRU sizes after isolating pages. The LRU size updates must
1613 * be complete before mem_cgroup_update_lru_size due to a santity check.
1615 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1616 enum lru_list lru
, unsigned long *nr_zone_taken
)
1620 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1621 if (!nr_zone_taken
[zid
])
1624 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1626 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1633 * zone_lru_lock is heavily contended. Some of the functions that
1634 * shrink the lists perform better by taking out a batch of pages
1635 * and working on them outside the LRU lock.
1637 * For pagecache intensive workloads, this function is the hottest
1638 * spot in the kernel (apart from copy_*_user functions).
1640 * Appropriate locks must be held before calling this function.
1642 * @nr_to_scan: The number of eligible pages to look through on the list.
1643 * @lruvec: The LRU vector to pull pages from.
1644 * @dst: The temp list to put pages on to.
1645 * @nr_scanned: The number of pages that were scanned.
1646 * @sc: The scan_control struct for this reclaim session
1647 * @mode: One of the LRU isolation modes
1648 * @lru: LRU list id for isolating
1650 * returns how many pages were moved onto *@dst.
1652 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1653 struct lruvec
*lruvec
, struct list_head
*dst
,
1654 unsigned long *nr_scanned
, struct scan_control
*sc
,
1655 isolate_mode_t mode
, enum lru_list lru
)
1657 struct list_head
*src
= &lruvec
->lists
[lru
];
1658 unsigned long nr_taken
= 0;
1659 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1660 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1661 unsigned long skipped
= 0;
1662 unsigned long scan
, total_scan
, nr_pages
;
1663 LIST_HEAD(pages_skipped
);
1666 for (total_scan
= 0;
1667 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1671 page
= lru_to_page(src
);
1672 prefetchw_prev_lru_page(page
, src
, flags
);
1674 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1676 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1677 list_move(&page
->lru
, &pages_skipped
);
1678 nr_skipped
[page_zonenum(page
)]++;
1683 * Do not count skipped pages because that makes the function
1684 * return with no isolated pages if the LRU mostly contains
1685 * ineligible pages. This causes the VM to not reclaim any
1686 * pages, triggering a premature OOM.
1689 switch (__isolate_lru_page(page
, mode
)) {
1691 nr_pages
= hpage_nr_pages(page
);
1692 nr_taken
+= nr_pages
;
1693 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1694 list_move(&page
->lru
, dst
);
1698 /* else it is being freed elsewhere */
1699 list_move(&page
->lru
, src
);
1708 * Splice any skipped pages to the start of the LRU list. Note that
1709 * this disrupts the LRU order when reclaiming for lower zones but
1710 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711 * scanning would soon rescan the same pages to skip and put the
1712 * system at risk of premature OOM.
1714 if (!list_empty(&pages_skipped
)) {
1717 list_splice(&pages_skipped
, src
);
1718 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1719 if (!nr_skipped
[zid
])
1722 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1723 skipped
+= nr_skipped
[zid
];
1726 *nr_scanned
= total_scan
;
1727 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1728 total_scan
, skipped
, nr_taken
, mode
, lru
);
1729 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1734 * isolate_lru_page - tries to isolate a page from its LRU list
1735 * @page: page to isolate from its LRU list
1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738 * vmstat statistic corresponding to whatever LRU list the page was on.
1740 * Returns 0 if the page was removed from an LRU list.
1741 * Returns -EBUSY if the page was not on an LRU list.
1743 * The returned page will have PageLRU() cleared. If it was found on
1744 * the active list, it will have PageActive set. If it was found on
1745 * the unevictable list, it will have the PageUnevictable bit set. That flag
1746 * may need to be cleared by the caller before letting the page go.
1748 * The vmstat statistic corresponding to the list on which the page was
1749 * found will be decremented.
1753 * (1) Must be called with an elevated refcount on the page. This is a
1754 * fundamentnal difference from isolate_lru_pages (which is called
1755 * without a stable reference).
1756 * (2) the lru_lock must not be held.
1757 * (3) interrupts must be enabled.
1759 int isolate_lru_page(struct page
*page
)
1763 VM_BUG_ON_PAGE(!page_count(page
), page
);
1764 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1766 if (PageLRU(page
)) {
1767 struct zone
*zone
= page_zone(page
);
1768 struct lruvec
*lruvec
;
1770 spin_lock_irq(zone_lru_lock(zone
));
1771 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1772 if (PageLRU(page
)) {
1773 int lru
= page_lru(page
);
1776 del_page_from_lru_list(page
, lruvec
, lru
);
1779 spin_unlock_irq(zone_lru_lock(zone
));
1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786 * then get resheduled. When there are massive number of tasks doing page
1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788 * the LRU list will go small and be scanned faster than necessary, leading to
1789 * unnecessary swapping, thrashing and OOM.
1791 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1792 struct scan_control
*sc
)
1794 unsigned long inactive
, isolated
;
1796 if (current_is_kswapd())
1799 if (!sane_reclaim(sc
))
1803 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1804 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1806 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1807 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1811 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 * won't get blocked by normal direct-reclaimers, forming a circular
1815 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1818 return isolated
> inactive
;
1821 static noinline_for_stack
void
1822 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1824 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1825 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1826 LIST_HEAD(pages_to_free
);
1829 * Put back any unfreeable pages.
1831 while (!list_empty(page_list
)) {
1832 struct page
*page
= lru_to_page(page_list
);
1835 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1836 list_del(&page
->lru
);
1837 if (unlikely(!page_evictable(page
))) {
1838 spin_unlock_irq(&pgdat
->lru_lock
);
1839 putback_lru_page(page
);
1840 spin_lock_irq(&pgdat
->lru_lock
);
1844 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1847 lru
= page_lru(page
);
1848 add_page_to_lru_list(page
, lruvec
, lru
);
1850 if (is_active_lru(lru
)) {
1851 int file
= is_file_lru(lru
);
1852 int numpages
= hpage_nr_pages(page
);
1853 reclaim_stat
->recent_rotated
[file
] += numpages
;
1855 if (put_page_testzero(page
)) {
1856 __ClearPageLRU(page
);
1857 __ClearPageActive(page
);
1858 del_page_from_lru_list(page
, lruvec
, lru
);
1860 if (unlikely(PageCompound(page
))) {
1861 spin_unlock_irq(&pgdat
->lru_lock
);
1862 mem_cgroup_uncharge(page
);
1863 (*get_compound_page_dtor(page
))(page
);
1864 spin_lock_irq(&pgdat
->lru_lock
);
1866 list_add(&page
->lru
, &pages_to_free
);
1871 * To save our caller's stack, now use input list for pages to free.
1873 list_splice(&pages_to_free
, page_list
);
1877 * If a kernel thread (such as nfsd for loop-back mounts) services
1878 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1879 * In that case we should only throttle if the backing device it is
1880 * writing to is congested. In other cases it is safe to throttle.
1882 static int current_may_throttle(void)
1884 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1885 current
->backing_dev_info
== NULL
||
1886 bdi_write_congested(current
->backing_dev_info
);
1890 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1891 * of reclaimed pages
1893 static noinline_for_stack
unsigned long
1894 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1895 struct scan_control
*sc
, enum lru_list lru
)
1897 LIST_HEAD(page_list
);
1898 unsigned long nr_scanned
;
1899 unsigned long nr_reclaimed
= 0;
1900 unsigned long nr_taken
;
1901 struct reclaim_stat stat
= {};
1902 isolate_mode_t isolate_mode
= 0;
1903 int file
= is_file_lru(lru
);
1904 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1905 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1906 bool stalled
= false;
1908 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1912 /* wait a bit for the reclaimer. */
1916 /* We are about to die and free our memory. Return now. */
1917 if (fatal_signal_pending(current
))
1918 return SWAP_CLUSTER_MAX
;
1924 isolate_mode
|= ISOLATE_UNMAPPED
;
1926 spin_lock_irq(&pgdat
->lru_lock
);
1928 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1929 &nr_scanned
, sc
, isolate_mode
, lru
);
1931 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1932 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1934 if (current_is_kswapd()) {
1935 if (global_reclaim(sc
))
1936 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1937 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1940 if (global_reclaim(sc
))
1941 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1942 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1945 spin_unlock_irq(&pgdat
->lru_lock
);
1950 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1953 spin_lock_irq(&pgdat
->lru_lock
);
1955 if (current_is_kswapd()) {
1956 if (global_reclaim(sc
))
1957 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1958 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1961 if (global_reclaim(sc
))
1962 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1963 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1967 putback_inactive_pages(lruvec
, &page_list
);
1969 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1971 spin_unlock_irq(&pgdat
->lru_lock
);
1973 mem_cgroup_uncharge_list(&page_list
);
1974 free_unref_page_list(&page_list
);
1977 * If dirty pages are scanned that are not queued for IO, it
1978 * implies that flushers are not doing their job. This can
1979 * happen when memory pressure pushes dirty pages to the end of
1980 * the LRU before the dirty limits are breached and the dirty
1981 * data has expired. It can also happen when the proportion of
1982 * dirty pages grows not through writes but through memory
1983 * pressure reclaiming all the clean cache. And in some cases,
1984 * the flushers simply cannot keep up with the allocation
1985 * rate. Nudge the flusher threads in case they are asleep.
1987 if (stat
.nr_unqueued_dirty
== nr_taken
)
1988 wakeup_flusher_threads(WB_REASON_VMSCAN
);
1990 sc
->nr
.dirty
+= stat
.nr_dirty
;
1991 sc
->nr
.congested
+= stat
.nr_congested
;
1992 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
1993 sc
->nr
.writeback
+= stat
.nr_writeback
;
1994 sc
->nr
.immediate
+= stat
.nr_immediate
;
1995 sc
->nr
.taken
+= nr_taken
;
1997 sc
->nr
.file_taken
+= nr_taken
;
1999 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
2000 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
2001 return nr_reclaimed
;
2005 * This moves pages from the active list to the inactive list.
2007 * We move them the other way if the page is referenced by one or more
2008 * processes, from rmap.
2010 * If the pages are mostly unmapped, the processing is fast and it is
2011 * appropriate to hold zone_lru_lock across the whole operation. But if
2012 * the pages are mapped, the processing is slow (page_referenced()) so we
2013 * should drop zone_lru_lock around each page. It's impossible to balance
2014 * this, so instead we remove the pages from the LRU while processing them.
2015 * It is safe to rely on PG_active against the non-LRU pages in here because
2016 * nobody will play with that bit on a non-LRU page.
2018 * The downside is that we have to touch page->_refcount against each page.
2019 * But we had to alter page->flags anyway.
2021 * Returns the number of pages moved to the given lru.
2024 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
2025 struct list_head
*list
,
2026 struct list_head
*pages_to_free
,
2029 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2034 while (!list_empty(list
)) {
2035 page
= lru_to_page(list
);
2036 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2038 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2041 nr_pages
= hpage_nr_pages(page
);
2042 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
2043 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
2045 if (put_page_testzero(page
)) {
2046 __ClearPageLRU(page
);
2047 __ClearPageActive(page
);
2048 del_page_from_lru_list(page
, lruvec
, lru
);
2050 if (unlikely(PageCompound(page
))) {
2051 spin_unlock_irq(&pgdat
->lru_lock
);
2052 mem_cgroup_uncharge(page
);
2053 (*get_compound_page_dtor(page
))(page
);
2054 spin_lock_irq(&pgdat
->lru_lock
);
2056 list_add(&page
->lru
, pages_to_free
);
2058 nr_moved
+= nr_pages
;
2062 if (!is_active_lru(lru
)) {
2063 __count_vm_events(PGDEACTIVATE
, nr_moved
);
2064 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
2071 static void shrink_active_list(unsigned long nr_to_scan
,
2072 struct lruvec
*lruvec
,
2073 struct scan_control
*sc
,
2076 unsigned long nr_taken
;
2077 unsigned long nr_scanned
;
2078 unsigned long vm_flags
;
2079 LIST_HEAD(l_hold
); /* The pages which were snipped off */
2080 LIST_HEAD(l_active
);
2081 LIST_HEAD(l_inactive
);
2083 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2084 unsigned nr_deactivate
, nr_activate
;
2085 unsigned nr_rotated
= 0;
2086 isolate_mode_t isolate_mode
= 0;
2087 int file
= is_file_lru(lru
);
2088 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2093 isolate_mode
|= ISOLATE_UNMAPPED
;
2095 spin_lock_irq(&pgdat
->lru_lock
);
2097 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2098 &nr_scanned
, sc
, isolate_mode
, lru
);
2100 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2101 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2103 __count_vm_events(PGREFILL
, nr_scanned
);
2104 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2106 spin_unlock_irq(&pgdat
->lru_lock
);
2108 while (!list_empty(&l_hold
)) {
2110 page
= lru_to_page(&l_hold
);
2111 list_del(&page
->lru
);
2113 if (unlikely(!page_evictable(page
))) {
2114 putback_lru_page(page
);
2118 if (unlikely(buffer_heads_over_limit
)) {
2119 if (page_has_private(page
) && trylock_page(page
)) {
2120 if (page_has_private(page
))
2121 try_to_release_page(page
, 0);
2126 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2128 nr_rotated
+= hpage_nr_pages(page
);
2130 * Identify referenced, file-backed active pages and
2131 * give them one more trip around the active list. So
2132 * that executable code get better chances to stay in
2133 * memory under moderate memory pressure. Anon pages
2134 * are not likely to be evicted by use-once streaming
2135 * IO, plus JVM can create lots of anon VM_EXEC pages,
2136 * so we ignore them here.
2138 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2139 list_add(&page
->lru
, &l_active
);
2144 ClearPageActive(page
); /* we are de-activating */
2145 list_add(&page
->lru
, &l_inactive
);
2149 * Move pages back to the lru list.
2151 spin_lock_irq(&pgdat
->lru_lock
);
2153 * Count referenced pages from currently used mappings as rotated,
2154 * even though only some of them are actually re-activated. This
2155 * helps balance scan pressure between file and anonymous pages in
2158 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2160 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2161 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2162 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2163 spin_unlock_irq(&pgdat
->lru_lock
);
2165 mem_cgroup_uncharge_list(&l_hold
);
2166 free_unref_page_list(&l_hold
);
2167 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2168 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2172 * The inactive anon list should be small enough that the VM never has
2173 * to do too much work.
2175 * The inactive file list should be small enough to leave most memory
2176 * to the established workingset on the scan-resistant active list,
2177 * but large enough to avoid thrashing the aggregate readahead window.
2179 * Both inactive lists should also be large enough that each inactive
2180 * page has a chance to be referenced again before it is reclaimed.
2182 * If that fails and refaulting is observed, the inactive list grows.
2184 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185 * on this LRU, maintained by the pageout code. An inactive_ratio
2186 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2189 * memory ratio inactive
2190 * -------------------------------------
2199 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2200 struct scan_control
*sc
, bool trace
)
2202 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2203 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2204 enum lru_list inactive_lru
= file
* LRU_FILE
;
2205 unsigned long inactive
, active
;
2206 unsigned long inactive_ratio
;
2207 unsigned long refaults
;
2211 * If we don't have swap space, anonymous page deactivation
2214 if (!file
&& !total_swap_pages
)
2217 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2218 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2221 * When refaults are being observed, it means a new workingset
2222 * is being established. Disable active list protection to get
2223 * rid of the stale workingset quickly.
2225 refaults
= lruvec_page_state(lruvec
, WORKINGSET_ACTIVATE
);
2226 if (file
&& lruvec
->refaults
!= refaults
) {
2229 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2231 inactive_ratio
= int_sqrt(10 * gb
);
2237 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2238 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2239 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2240 inactive_ratio
, file
);
2242 return inactive
* inactive_ratio
< active
;
2245 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2246 struct lruvec
*lruvec
, struct scan_control
*sc
)
2248 if (is_active_lru(lru
)) {
2249 if (inactive_list_is_low(lruvec
, is_file_lru(lru
), sc
, true))
2250 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2254 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2265 * Determine how aggressively the anon and file LRU lists should be
2266 * scanned. The relative value of each set of LRU lists is determined
2267 * by looking at the fraction of the pages scanned we did rotate back
2268 * onto the active list instead of evict.
2270 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2271 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2273 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2274 struct scan_control
*sc
, unsigned long *nr
,
2275 unsigned long *lru_pages
)
2277 int swappiness
= mem_cgroup_swappiness(memcg
);
2278 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2280 u64 denominator
= 0; /* gcc */
2281 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2282 unsigned long anon_prio
, file_prio
;
2283 enum scan_balance scan_balance
;
2284 unsigned long anon
, file
;
2285 unsigned long ap
, fp
;
2288 /* If we have no swap space, do not bother scanning anon pages. */
2289 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2290 scan_balance
= SCAN_FILE
;
2295 * Global reclaim will swap to prevent OOM even with no
2296 * swappiness, but memcg users want to use this knob to
2297 * disable swapping for individual groups completely when
2298 * using the memory controller's swap limit feature would be
2301 if (!global_reclaim(sc
) && !swappiness
) {
2302 scan_balance
= SCAN_FILE
;
2307 * Do not apply any pressure balancing cleverness when the
2308 * system is close to OOM, scan both anon and file equally
2309 * (unless the swappiness setting disagrees with swapping).
2311 if (!sc
->priority
&& swappiness
) {
2312 scan_balance
= SCAN_EQUAL
;
2317 * Prevent the reclaimer from falling into the cache trap: as
2318 * cache pages start out inactive, every cache fault will tip
2319 * the scan balance towards the file LRU. And as the file LRU
2320 * shrinks, so does the window for rotation from references.
2321 * This means we have a runaway feedback loop where a tiny
2322 * thrashing file LRU becomes infinitely more attractive than
2323 * anon pages. Try to detect this based on file LRU size.
2325 if (global_reclaim(sc
)) {
2326 unsigned long pgdatfile
;
2327 unsigned long pgdatfree
;
2329 unsigned long total_high_wmark
= 0;
2331 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2332 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2333 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2335 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2336 struct zone
*zone
= &pgdat
->node_zones
[z
];
2337 if (!managed_zone(zone
))
2340 total_high_wmark
+= high_wmark_pages(zone
);
2343 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2345 * Force SCAN_ANON if there are enough inactive
2346 * anonymous pages on the LRU in eligible zones.
2347 * Otherwise, the small LRU gets thrashed.
2349 if (!inactive_list_is_low(lruvec
, false, sc
, false) &&
2350 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2352 scan_balance
= SCAN_ANON
;
2359 * If there is enough inactive page cache, i.e. if the size of the
2360 * inactive list is greater than that of the active list *and* the
2361 * inactive list actually has some pages to scan on this priority, we
2362 * do not reclaim anything from the anonymous working set right now.
2363 * Without the second condition we could end up never scanning an
2364 * lruvec even if it has plenty of old anonymous pages unless the
2365 * system is under heavy pressure.
2367 if (!inactive_list_is_low(lruvec
, true, sc
, false) &&
2368 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2369 scan_balance
= SCAN_FILE
;
2373 scan_balance
= SCAN_FRACT
;
2376 * With swappiness at 100, anonymous and file have the same priority.
2377 * This scanning priority is essentially the inverse of IO cost.
2379 anon_prio
= swappiness
;
2380 file_prio
= 200 - anon_prio
;
2383 * OK, so we have swap space and a fair amount of page cache
2384 * pages. We use the recently rotated / recently scanned
2385 * ratios to determine how valuable each cache is.
2387 * Because workloads change over time (and to avoid overflow)
2388 * we keep these statistics as a floating average, which ends
2389 * up weighing recent references more than old ones.
2391 * anon in [0], file in [1]
2394 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2395 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2396 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2397 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2399 spin_lock_irq(&pgdat
->lru_lock
);
2400 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2401 reclaim_stat
->recent_scanned
[0] /= 2;
2402 reclaim_stat
->recent_rotated
[0] /= 2;
2405 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2406 reclaim_stat
->recent_scanned
[1] /= 2;
2407 reclaim_stat
->recent_rotated
[1] /= 2;
2411 * The amount of pressure on anon vs file pages is inversely
2412 * proportional to the fraction of recently scanned pages on
2413 * each list that were recently referenced and in active use.
2415 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2416 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2418 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2419 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2420 spin_unlock_irq(&pgdat
->lru_lock
);
2424 denominator
= ap
+ fp
+ 1;
2427 for_each_evictable_lru(lru
) {
2428 int file
= is_file_lru(lru
);
2432 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2433 scan
= size
>> sc
->priority
;
2435 * If the cgroup's already been deleted, make sure to
2436 * scrape out the remaining cache.
2438 if (!scan
&& !mem_cgroup_online(memcg
))
2439 scan
= min(size
, SWAP_CLUSTER_MAX
);
2441 switch (scan_balance
) {
2443 /* Scan lists relative to size */
2447 * Scan types proportional to swappiness and
2448 * their relative recent reclaim efficiency.
2449 * Make sure we don't miss the last page on
2450 * the offlined memory cgroups because of a
2453 scan
= mem_cgroup_online(memcg
) ?
2454 div64_u64(scan
* fraction
[file
], denominator
) :
2455 DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2460 /* Scan one type exclusively */
2461 if ((scan_balance
== SCAN_FILE
) != file
) {
2467 /* Look ma, no brain */
2477 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2479 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2480 struct scan_control
*sc
, unsigned long *lru_pages
)
2482 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2483 unsigned long nr
[NR_LRU_LISTS
];
2484 unsigned long targets
[NR_LRU_LISTS
];
2485 unsigned long nr_to_scan
;
2487 unsigned long nr_reclaimed
= 0;
2488 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2489 struct blk_plug plug
;
2492 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2494 /* Record the original scan target for proportional adjustments later */
2495 memcpy(targets
, nr
, sizeof(nr
));
2498 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2499 * event that can occur when there is little memory pressure e.g.
2500 * multiple streaming readers/writers. Hence, we do not abort scanning
2501 * when the requested number of pages are reclaimed when scanning at
2502 * DEF_PRIORITY on the assumption that the fact we are direct
2503 * reclaiming implies that kswapd is not keeping up and it is best to
2504 * do a batch of work at once. For memcg reclaim one check is made to
2505 * abort proportional reclaim if either the file or anon lru has already
2506 * dropped to zero at the first pass.
2508 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2509 sc
->priority
== DEF_PRIORITY
);
2511 blk_start_plug(&plug
);
2512 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2513 nr
[LRU_INACTIVE_FILE
]) {
2514 unsigned long nr_anon
, nr_file
, percentage
;
2515 unsigned long nr_scanned
;
2517 for_each_evictable_lru(lru
) {
2519 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2520 nr
[lru
] -= nr_to_scan
;
2522 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2529 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2533 * For kswapd and memcg, reclaim at least the number of pages
2534 * requested. Ensure that the anon and file LRUs are scanned
2535 * proportionally what was requested by get_scan_count(). We
2536 * stop reclaiming one LRU and reduce the amount scanning
2537 * proportional to the original scan target.
2539 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2540 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2543 * It's just vindictive to attack the larger once the smaller
2544 * has gone to zero. And given the way we stop scanning the
2545 * smaller below, this makes sure that we only make one nudge
2546 * towards proportionality once we've got nr_to_reclaim.
2548 if (!nr_file
|| !nr_anon
)
2551 if (nr_file
> nr_anon
) {
2552 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2553 targets
[LRU_ACTIVE_ANON
] + 1;
2555 percentage
= nr_anon
* 100 / scan_target
;
2557 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2558 targets
[LRU_ACTIVE_FILE
] + 1;
2560 percentage
= nr_file
* 100 / scan_target
;
2563 /* Stop scanning the smaller of the LRU */
2565 nr
[lru
+ LRU_ACTIVE
] = 0;
2568 * Recalculate the other LRU scan count based on its original
2569 * scan target and the percentage scanning already complete
2571 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2572 nr_scanned
= targets
[lru
] - nr
[lru
];
2573 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2574 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2577 nr_scanned
= targets
[lru
] - nr
[lru
];
2578 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2579 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2581 scan_adjusted
= true;
2583 blk_finish_plug(&plug
);
2584 sc
->nr_reclaimed
+= nr_reclaimed
;
2587 * Even if we did not try to evict anon pages at all, we want to
2588 * rebalance the anon lru active/inactive ratio.
2590 if (inactive_list_is_low(lruvec
, false, sc
, true))
2591 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2592 sc
, LRU_ACTIVE_ANON
);
2595 /* Use reclaim/compaction for costly allocs or under memory pressure */
2596 static bool in_reclaim_compaction(struct scan_control
*sc
)
2598 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2599 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2600 sc
->priority
< DEF_PRIORITY
- 2))
2607 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2608 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2609 * true if more pages should be reclaimed such that when the page allocator
2610 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2611 * It will give up earlier than that if there is difficulty reclaiming pages.
2613 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2614 unsigned long nr_reclaimed
,
2615 unsigned long nr_scanned
,
2616 struct scan_control
*sc
)
2618 unsigned long pages_for_compaction
;
2619 unsigned long inactive_lru_pages
;
2622 /* If not in reclaim/compaction mode, stop */
2623 if (!in_reclaim_compaction(sc
))
2626 /* Consider stopping depending on scan and reclaim activity */
2627 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2629 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2630 * full LRU list has been scanned and we are still failing
2631 * to reclaim pages. This full LRU scan is potentially
2632 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2634 if (!nr_reclaimed
&& !nr_scanned
)
2638 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2639 * fail without consequence, stop if we failed to reclaim
2640 * any pages from the last SWAP_CLUSTER_MAX number of
2641 * pages that were scanned. This will return to the
2642 * caller faster at the risk reclaim/compaction and
2643 * the resulting allocation attempt fails
2650 * If we have not reclaimed enough pages for compaction and the
2651 * inactive lists are large enough, continue reclaiming
2653 pages_for_compaction
= compact_gap(sc
->order
);
2654 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2655 if (get_nr_swap_pages() > 0)
2656 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2657 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2658 inactive_lru_pages
> pages_for_compaction
)
2661 /* If compaction would go ahead or the allocation would succeed, stop */
2662 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2663 struct zone
*zone
= &pgdat
->node_zones
[z
];
2664 if (!managed_zone(zone
))
2667 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2668 case COMPACT_SUCCESS
:
2669 case COMPACT_CONTINUE
:
2672 /* check next zone */
2679 static bool pgdat_memcg_congested(pg_data_t
*pgdat
, struct mem_cgroup
*memcg
)
2681 return test_bit(PGDAT_CONGESTED
, &pgdat
->flags
) ||
2682 (memcg
&& memcg_congested(pgdat
, memcg
));
2685 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2687 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2688 unsigned long nr_reclaimed
, nr_scanned
;
2689 bool reclaimable
= false;
2692 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2693 struct mem_cgroup_reclaim_cookie reclaim
= {
2695 .priority
= sc
->priority
,
2697 unsigned long node_lru_pages
= 0;
2698 struct mem_cgroup
*memcg
;
2700 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
2702 nr_reclaimed
= sc
->nr_reclaimed
;
2703 nr_scanned
= sc
->nr_scanned
;
2705 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2707 unsigned long lru_pages
;
2708 unsigned long reclaimed
;
2709 unsigned long scanned
;
2712 * This loop can become CPU-bound when target memcgs
2713 * aren't eligible for reclaim - either because they
2714 * don't have any reclaimable pages, or because their
2715 * memory is explicitly protected. Avoid soft lockups.
2719 switch (mem_cgroup_protected(root
, memcg
)) {
2720 case MEMCG_PROT_MIN
:
2723 * If there is no reclaimable memory, OOM.
2726 case MEMCG_PROT_LOW
:
2729 * Respect the protection only as long as
2730 * there is an unprotected supply
2731 * of reclaimable memory from other cgroups.
2733 if (!sc
->memcg_low_reclaim
) {
2734 sc
->memcg_low_skipped
= 1;
2737 memcg_memory_event(memcg
, MEMCG_LOW
);
2739 case MEMCG_PROT_NONE
:
2743 reclaimed
= sc
->nr_reclaimed
;
2744 scanned
= sc
->nr_scanned
;
2745 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2746 node_lru_pages
+= lru_pages
;
2748 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2749 memcg
, sc
->priority
);
2751 /* Record the group's reclaim efficiency */
2752 vmpressure(sc
->gfp_mask
, memcg
, false,
2753 sc
->nr_scanned
- scanned
,
2754 sc
->nr_reclaimed
- reclaimed
);
2757 * Direct reclaim and kswapd have to scan all memory
2758 * cgroups to fulfill the overall scan target for the
2761 * Limit reclaim, on the other hand, only cares about
2762 * nr_to_reclaim pages to be reclaimed and it will
2763 * retry with decreasing priority if one round over the
2764 * whole hierarchy is not sufficient.
2766 if (!global_reclaim(sc
) &&
2767 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2768 mem_cgroup_iter_break(root
, memcg
);
2771 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2773 if (reclaim_state
) {
2774 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2775 reclaim_state
->reclaimed_slab
= 0;
2778 /* Record the subtree's reclaim efficiency */
2779 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2780 sc
->nr_scanned
- nr_scanned
,
2781 sc
->nr_reclaimed
- nr_reclaimed
);
2783 if (sc
->nr_reclaimed
- nr_reclaimed
)
2786 if (current_is_kswapd()) {
2788 * If reclaim is isolating dirty pages under writeback,
2789 * it implies that the long-lived page allocation rate
2790 * is exceeding the page laundering rate. Either the
2791 * global limits are not being effective at throttling
2792 * processes due to the page distribution throughout
2793 * zones or there is heavy usage of a slow backing
2794 * device. The only option is to throttle from reclaim
2795 * context which is not ideal as there is no guarantee
2796 * the dirtying process is throttled in the same way
2797 * balance_dirty_pages() manages.
2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 * count the number of pages under pages flagged for
2801 * immediate reclaim and stall if any are encountered
2802 * in the nr_immediate check below.
2804 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
2805 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
2808 * Tag a node as congested if all the dirty pages
2809 * scanned were backed by a congested BDI and
2810 * wait_iff_congested will stall.
2812 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2813 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
2815 /* Allow kswapd to start writing pages during reclaim.*/
2816 if (sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
2817 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
2820 * If kswapd scans pages marked marked for immediate
2821 * reclaim and under writeback (nr_immediate), it
2822 * implies that pages are cycling through the LRU
2823 * faster than they are written so also forcibly stall.
2825 if (sc
->nr
.immediate
)
2826 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2830 * Legacy memcg will stall in page writeback so avoid forcibly
2831 * stalling in wait_iff_congested().
2833 if (!global_reclaim(sc
) && sane_reclaim(sc
) &&
2834 sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2835 set_memcg_congestion(pgdat
, root
, true);
2838 * Stall direct reclaim for IO completions if underlying BDIs
2839 * and node is congested. Allow kswapd to continue until it
2840 * starts encountering unqueued dirty pages or cycling through
2841 * the LRU too quickly.
2843 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
2844 current_may_throttle() && pgdat_memcg_congested(pgdat
, root
))
2845 wait_iff_congested(BLK_RW_ASYNC
, HZ
/10);
2847 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2848 sc
->nr_scanned
- nr_scanned
, sc
));
2851 * Kswapd gives up on balancing particular nodes after too
2852 * many failures to reclaim anything from them and goes to
2853 * sleep. On reclaim progress, reset the failure counter. A
2854 * successful direct reclaim run will revive a dormant kswapd.
2857 pgdat
->kswapd_failures
= 0;
2863 * Returns true if compaction should go ahead for a costly-order request, or
2864 * the allocation would already succeed without compaction. Return false if we
2865 * should reclaim first.
2867 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2869 unsigned long watermark
;
2870 enum compact_result suitable
;
2872 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2873 if (suitable
== COMPACT_SUCCESS
)
2874 /* Allocation should succeed already. Don't reclaim. */
2876 if (suitable
== COMPACT_SKIPPED
)
2877 /* Compaction cannot yet proceed. Do reclaim. */
2881 * Compaction is already possible, but it takes time to run and there
2882 * are potentially other callers using the pages just freed. So proceed
2883 * with reclaim to make a buffer of free pages available to give
2884 * compaction a reasonable chance of completing and allocating the page.
2885 * Note that we won't actually reclaim the whole buffer in one attempt
2886 * as the target watermark in should_continue_reclaim() is lower. But if
2887 * we are already above the high+gap watermark, don't reclaim at all.
2889 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2891 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2895 * This is the direct reclaim path, for page-allocating processes. We only
2896 * try to reclaim pages from zones which will satisfy the caller's allocation
2899 * If a zone is deemed to be full of pinned pages then just give it a light
2900 * scan then give up on it.
2902 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2906 unsigned long nr_soft_reclaimed
;
2907 unsigned long nr_soft_scanned
;
2909 pg_data_t
*last_pgdat
= NULL
;
2912 * If the number of buffer_heads in the machine exceeds the maximum
2913 * allowed level, force direct reclaim to scan the highmem zone as
2914 * highmem pages could be pinning lowmem pages storing buffer_heads
2916 orig_mask
= sc
->gfp_mask
;
2917 if (buffer_heads_over_limit
) {
2918 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2919 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2922 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2923 sc
->reclaim_idx
, sc
->nodemask
) {
2925 * Take care memory controller reclaiming has small influence
2928 if (global_reclaim(sc
)) {
2929 if (!cpuset_zone_allowed(zone
,
2930 GFP_KERNEL
| __GFP_HARDWALL
))
2934 * If we already have plenty of memory free for
2935 * compaction in this zone, don't free any more.
2936 * Even though compaction is invoked for any
2937 * non-zero order, only frequent costly order
2938 * reclamation is disruptive enough to become a
2939 * noticeable problem, like transparent huge
2942 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2943 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2944 compaction_ready(zone
, sc
)) {
2945 sc
->compaction_ready
= true;
2950 * Shrink each node in the zonelist once. If the
2951 * zonelist is ordered by zone (not the default) then a
2952 * node may be shrunk multiple times but in that case
2953 * the user prefers lower zones being preserved.
2955 if (zone
->zone_pgdat
== last_pgdat
)
2959 * This steals pages from memory cgroups over softlimit
2960 * and returns the number of reclaimed pages and
2961 * scanned pages. This works for global memory pressure
2962 * and balancing, not for a memcg's limit.
2964 nr_soft_scanned
= 0;
2965 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2966 sc
->order
, sc
->gfp_mask
,
2968 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2969 sc
->nr_scanned
+= nr_soft_scanned
;
2970 /* need some check for avoid more shrink_zone() */
2973 /* See comment about same check for global reclaim above */
2974 if (zone
->zone_pgdat
== last_pgdat
)
2976 last_pgdat
= zone
->zone_pgdat
;
2977 shrink_node(zone
->zone_pgdat
, sc
);
2981 * Restore to original mask to avoid the impact on the caller if we
2982 * promoted it to __GFP_HIGHMEM.
2984 sc
->gfp_mask
= orig_mask
;
2987 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2989 struct mem_cgroup
*memcg
;
2991 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
2993 unsigned long refaults
;
2994 struct lruvec
*lruvec
;
2996 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2997 refaults
= lruvec_page_state(lruvec
, WORKINGSET_ACTIVATE
);
2998 lruvec
->refaults
= refaults
;
2999 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
3003 * This is the main entry point to direct page reclaim.
3005 * If a full scan of the inactive list fails to free enough memory then we
3006 * are "out of memory" and something needs to be killed.
3008 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3009 * high - the zone may be full of dirty or under-writeback pages, which this
3010 * caller can't do much about. We kick the writeback threads and take explicit
3011 * naps in the hope that some of these pages can be written. But if the
3012 * allocating task holds filesystem locks which prevent writeout this might not
3013 * work, and the allocation attempt will fail.
3015 * returns: 0, if no pages reclaimed
3016 * else, the number of pages reclaimed
3018 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
3019 struct scan_control
*sc
)
3021 int initial_priority
= sc
->priority
;
3022 pg_data_t
*last_pgdat
;
3026 delayacct_freepages_start();
3028 if (global_reclaim(sc
))
3029 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
3032 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
3035 shrink_zones(zonelist
, sc
);
3037 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
3040 if (sc
->compaction_ready
)
3044 * If we're getting trouble reclaiming, start doing
3045 * writepage even in laptop mode.
3047 if (sc
->priority
< DEF_PRIORITY
- 2)
3048 sc
->may_writepage
= 1;
3049 } while (--sc
->priority
>= 0);
3052 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
3054 if (zone
->zone_pgdat
== last_pgdat
)
3056 last_pgdat
= zone
->zone_pgdat
;
3057 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
3058 set_memcg_congestion(last_pgdat
, sc
->target_mem_cgroup
, false);
3061 delayacct_freepages_end();
3063 if (sc
->nr_reclaimed
)
3064 return sc
->nr_reclaimed
;
3066 /* Aborted reclaim to try compaction? don't OOM, then */
3067 if (sc
->compaction_ready
)
3070 /* Untapped cgroup reserves? Don't OOM, retry. */
3071 if (sc
->memcg_low_skipped
) {
3072 sc
->priority
= initial_priority
;
3073 sc
->memcg_low_reclaim
= 1;
3074 sc
->memcg_low_skipped
= 0;
3081 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
3084 unsigned long pfmemalloc_reserve
= 0;
3085 unsigned long free_pages
= 0;
3089 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3092 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
3093 zone
= &pgdat
->node_zones
[i
];
3094 if (!managed_zone(zone
))
3097 if (!zone_reclaimable_pages(zone
))
3100 pfmemalloc_reserve
+= min_wmark_pages(zone
);
3101 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
3104 /* If there are no reserves (unexpected config) then do not throttle */
3105 if (!pfmemalloc_reserve
)
3108 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
3110 /* kswapd must be awake if processes are being throttled */
3111 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
3112 if (READ_ONCE(pgdat
->kswapd_classzone_idx
) > ZONE_NORMAL
)
3113 WRITE_ONCE(pgdat
->kswapd_classzone_idx
, ZONE_NORMAL
);
3115 wake_up_interruptible(&pgdat
->kswapd_wait
);
3122 * Throttle direct reclaimers if backing storage is backed by the network
3123 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3124 * depleted. kswapd will continue to make progress and wake the processes
3125 * when the low watermark is reached.
3127 * Returns true if a fatal signal was delivered during throttling. If this
3128 * happens, the page allocator should not consider triggering the OOM killer.
3130 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
3131 nodemask_t
*nodemask
)
3135 pg_data_t
*pgdat
= NULL
;
3138 * Kernel threads should not be throttled as they may be indirectly
3139 * responsible for cleaning pages necessary for reclaim to make forward
3140 * progress. kjournald for example may enter direct reclaim while
3141 * committing a transaction where throttling it could forcing other
3142 * processes to block on log_wait_commit().
3144 if (current
->flags
& PF_KTHREAD
)
3148 * If a fatal signal is pending, this process should not throttle.
3149 * It should return quickly so it can exit and free its memory
3151 if (fatal_signal_pending(current
))
3155 * Check if the pfmemalloc reserves are ok by finding the first node
3156 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3157 * GFP_KERNEL will be required for allocating network buffers when
3158 * swapping over the network so ZONE_HIGHMEM is unusable.
3160 * Throttling is based on the first usable node and throttled processes
3161 * wait on a queue until kswapd makes progress and wakes them. There
3162 * is an affinity then between processes waking up and where reclaim
3163 * progress has been made assuming the process wakes on the same node.
3164 * More importantly, processes running on remote nodes will not compete
3165 * for remote pfmemalloc reserves and processes on different nodes
3166 * should make reasonable progress.
3168 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
3169 gfp_zone(gfp_mask
), nodemask
) {
3170 if (zone_idx(zone
) > ZONE_NORMAL
)
3173 /* Throttle based on the first usable node */
3174 pgdat
= zone
->zone_pgdat
;
3175 if (allow_direct_reclaim(pgdat
))
3180 /* If no zone was usable by the allocation flags then do not throttle */
3184 /* Account for the throttling */
3185 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3188 * If the caller cannot enter the filesystem, it's possible that it
3189 * is due to the caller holding an FS lock or performing a journal
3190 * transaction in the case of a filesystem like ext[3|4]. In this case,
3191 * it is not safe to block on pfmemalloc_wait as kswapd could be
3192 * blocked waiting on the same lock. Instead, throttle for up to a
3193 * second before continuing.
3195 if (!(gfp_mask
& __GFP_FS
)) {
3196 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3197 allow_direct_reclaim(pgdat
), HZ
);
3202 /* Throttle until kswapd wakes the process */
3203 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3204 allow_direct_reclaim(pgdat
));
3207 if (fatal_signal_pending(current
))
3214 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3215 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3217 unsigned long nr_reclaimed
;
3218 struct scan_control sc
= {
3219 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3220 .gfp_mask
= current_gfp_context(gfp_mask
),
3221 .reclaim_idx
= gfp_zone(gfp_mask
),
3223 .nodemask
= nodemask
,
3224 .priority
= DEF_PRIORITY
,
3225 .may_writepage
= !laptop_mode
,
3231 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3232 * Confirm they are large enough for max values.
3234 BUILD_BUG_ON(MAX_ORDER
> S8_MAX
);
3235 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
3236 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
3239 * Do not enter reclaim if fatal signal was delivered while throttled.
3240 * 1 is returned so that the page allocator does not OOM kill at this
3243 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3246 trace_mm_vmscan_direct_reclaim_begin(order
,
3251 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3253 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3255 return nr_reclaimed
;
3260 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3261 gfp_t gfp_mask
, bool noswap
,
3263 unsigned long *nr_scanned
)
3265 struct scan_control sc
= {
3266 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3267 .target_mem_cgroup
= memcg
,
3268 .may_writepage
= !laptop_mode
,
3270 .reclaim_idx
= MAX_NR_ZONES
- 1,
3271 .may_swap
= !noswap
,
3273 unsigned long lru_pages
;
3275 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3276 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3278 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3284 * NOTE: Although we can get the priority field, using it
3285 * here is not a good idea, since it limits the pages we can scan.
3286 * if we don't reclaim here, the shrink_node from balance_pgdat
3287 * will pick up pages from other mem cgroup's as well. We hack
3288 * the priority and make it zero.
3290 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3292 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3294 *nr_scanned
= sc
.nr_scanned
;
3295 return sc
.nr_reclaimed
;
3298 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3299 unsigned long nr_pages
,
3303 struct zonelist
*zonelist
;
3304 unsigned long nr_reclaimed
;
3306 unsigned int noreclaim_flag
;
3307 struct scan_control sc
= {
3308 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3309 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3310 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3311 .reclaim_idx
= MAX_NR_ZONES
- 1,
3312 .target_mem_cgroup
= memcg
,
3313 .priority
= DEF_PRIORITY
,
3314 .may_writepage
= !laptop_mode
,
3316 .may_swap
= may_swap
,
3320 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3321 * take care of from where we get pages. So the node where we start the
3322 * scan does not need to be the current node.
3324 nid
= mem_cgroup_select_victim_node(memcg
);
3326 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3328 trace_mm_vmscan_memcg_reclaim_begin(0,
3333 noreclaim_flag
= memalloc_noreclaim_save();
3334 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3335 memalloc_noreclaim_restore(noreclaim_flag
);
3337 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3339 return nr_reclaimed
;
3343 static void age_active_anon(struct pglist_data
*pgdat
,
3344 struct scan_control
*sc
)
3346 struct mem_cgroup
*memcg
;
3348 if (!total_swap_pages
)
3351 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3353 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3355 if (inactive_list_is_low(lruvec
, false, sc
, true))
3356 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3357 sc
, LRU_ACTIVE_ANON
);
3359 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3364 * Returns true if there is an eligible zone balanced for the request order
3367 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3370 unsigned long mark
= -1;
3373 for (i
= 0; i
<= classzone_idx
; i
++) {
3374 zone
= pgdat
->node_zones
+ i
;
3376 if (!managed_zone(zone
))
3379 mark
= high_wmark_pages(zone
);
3380 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3385 * If a node has no populated zone within classzone_idx, it does not
3386 * need balancing by definition. This can happen if a zone-restricted
3387 * allocation tries to wake a remote kswapd.
3395 /* Clear pgdat state for congested, dirty or under writeback. */
3396 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3398 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3399 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3400 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3404 * Prepare kswapd for sleeping. This verifies that there are no processes
3405 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3407 * Returns true if kswapd is ready to sleep
3409 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3412 * The throttled processes are normally woken up in balance_pgdat() as
3413 * soon as allow_direct_reclaim() is true. But there is a potential
3414 * race between when kswapd checks the watermarks and a process gets
3415 * throttled. There is also a potential race if processes get
3416 * throttled, kswapd wakes, a large process exits thereby balancing the
3417 * zones, which causes kswapd to exit balance_pgdat() before reaching
3418 * the wake up checks. If kswapd is going to sleep, no process should
3419 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3420 * the wake up is premature, processes will wake kswapd and get
3421 * throttled again. The difference from wake ups in balance_pgdat() is
3422 * that here we are under prepare_to_wait().
3424 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3425 wake_up_all(&pgdat
->pfmemalloc_wait
);
3427 /* Hopeless node, leave it to direct reclaim */
3428 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3431 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3432 clear_pgdat_congested(pgdat
);
3440 * kswapd shrinks a node of pages that are at or below the highest usable
3441 * zone that is currently unbalanced.
3443 * Returns true if kswapd scanned at least the requested number of pages to
3444 * reclaim or if the lack of progress was due to pages under writeback.
3445 * This is used to determine if the scanning priority needs to be raised.
3447 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3448 struct scan_control
*sc
)
3453 /* Reclaim a number of pages proportional to the number of zones */
3454 sc
->nr_to_reclaim
= 0;
3455 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3456 zone
= pgdat
->node_zones
+ z
;
3457 if (!managed_zone(zone
))
3460 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3464 * Historically care was taken to put equal pressure on all zones but
3465 * now pressure is applied based on node LRU order.
3467 shrink_node(pgdat
, sc
);
3470 * Fragmentation may mean that the system cannot be rebalanced for
3471 * high-order allocations. If twice the allocation size has been
3472 * reclaimed then recheck watermarks only at order-0 to prevent
3473 * excessive reclaim. Assume that a process requested a high-order
3474 * can direct reclaim/compact.
3476 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3479 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3483 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3484 * that are eligible for use by the caller until at least one zone is
3487 * Returns the order kswapd finished reclaiming at.
3489 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3490 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3491 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3492 * or lower is eligible for reclaim until at least one usable zone is
3495 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3498 unsigned long nr_soft_reclaimed
;
3499 unsigned long nr_soft_scanned
;
3501 struct scan_control sc
= {
3502 .gfp_mask
= GFP_KERNEL
,
3504 .priority
= DEF_PRIORITY
,
3505 .may_writepage
= !laptop_mode
,
3510 __fs_reclaim_acquire();
3512 count_vm_event(PAGEOUTRUN
);
3515 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3516 bool raise_priority
= true;
3519 sc
.reclaim_idx
= classzone_idx
;
3522 * If the number of buffer_heads exceeds the maximum allowed
3523 * then consider reclaiming from all zones. This has a dual
3524 * purpose -- on 64-bit systems it is expected that
3525 * buffer_heads are stripped during active rotation. On 32-bit
3526 * systems, highmem pages can pin lowmem memory and shrinking
3527 * buffers can relieve lowmem pressure. Reclaim may still not
3528 * go ahead if all eligible zones for the original allocation
3529 * request are balanced to avoid excessive reclaim from kswapd.
3531 if (buffer_heads_over_limit
) {
3532 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3533 zone
= pgdat
->node_zones
+ i
;
3534 if (!managed_zone(zone
))
3543 * Only reclaim if there are no eligible zones. Note that
3544 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3547 if (pgdat_balanced(pgdat
, sc
.order
, classzone_idx
))
3551 * Do some background aging of the anon list, to give
3552 * pages a chance to be referenced before reclaiming. All
3553 * pages are rotated regardless of classzone as this is
3554 * about consistent aging.
3556 age_active_anon(pgdat
, &sc
);
3559 * If we're getting trouble reclaiming, start doing writepage
3560 * even in laptop mode.
3562 if (sc
.priority
< DEF_PRIORITY
- 2)
3563 sc
.may_writepage
= 1;
3565 /* Call soft limit reclaim before calling shrink_node. */
3567 nr_soft_scanned
= 0;
3568 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3569 sc
.gfp_mask
, &nr_soft_scanned
);
3570 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3573 * There should be no need to raise the scanning priority if
3574 * enough pages are already being scanned that that high
3575 * watermark would be met at 100% efficiency.
3577 if (kswapd_shrink_node(pgdat
, &sc
))
3578 raise_priority
= false;
3581 * If the low watermark is met there is no need for processes
3582 * to be throttled on pfmemalloc_wait as they should not be
3583 * able to safely make forward progress. Wake them
3585 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3586 allow_direct_reclaim(pgdat
))
3587 wake_up_all(&pgdat
->pfmemalloc_wait
);
3589 /* Check if kswapd should be suspending */
3590 __fs_reclaim_release();
3591 ret
= try_to_freeze();
3592 __fs_reclaim_acquire();
3593 if (ret
|| kthread_should_stop())
3597 * Raise priority if scanning rate is too low or there was no
3598 * progress in reclaiming pages
3600 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3601 if (raise_priority
|| !nr_reclaimed
)
3603 } while (sc
.priority
>= 1);
3605 if (!sc
.nr_reclaimed
)
3606 pgdat
->kswapd_failures
++;
3609 snapshot_refaults(NULL
, pgdat
);
3610 __fs_reclaim_release();
3612 * Return the order kswapd stopped reclaiming at as
3613 * prepare_kswapd_sleep() takes it into account. If another caller
3614 * entered the allocator slow path while kswapd was awake, order will
3615 * remain at the higher level.
3621 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3622 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3623 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3624 * after previous reclaim attempt (node is still unbalanced). In that case
3625 * return the zone index of the previous kswapd reclaim cycle.
3627 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3628 enum zone_type prev_classzone_idx
)
3630 enum zone_type curr_idx
= READ_ONCE(pgdat
->kswapd_classzone_idx
);
3632 return curr_idx
== MAX_NR_ZONES
? prev_classzone_idx
: curr_idx
;
3635 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3636 unsigned int classzone_idx
)
3641 if (freezing(current
) || kthread_should_stop())
3644 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3647 * Try to sleep for a short interval. Note that kcompactd will only be
3648 * woken if it is possible to sleep for a short interval. This is
3649 * deliberate on the assumption that if reclaim cannot keep an
3650 * eligible zone balanced that it's also unlikely that compaction will
3653 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3655 * Compaction records what page blocks it recently failed to
3656 * isolate pages from and skips them in the future scanning.
3657 * When kswapd is going to sleep, it is reasonable to assume
3658 * that pages and compaction may succeed so reset the cache.
3660 reset_isolation_suitable(pgdat
);
3663 * We have freed the memory, now we should compact it to make
3664 * allocation of the requested order possible.
3666 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3668 remaining
= schedule_timeout(HZ
/10);
3671 * If woken prematurely then reset kswapd_classzone_idx and
3672 * order. The values will either be from a wakeup request or
3673 * the previous request that slept prematurely.
3676 WRITE_ONCE(pgdat
->kswapd_classzone_idx
,
3677 kswapd_classzone_idx(pgdat
, classzone_idx
));
3679 if (READ_ONCE(pgdat
->kswapd_order
) < reclaim_order
)
3680 WRITE_ONCE(pgdat
->kswapd_order
, reclaim_order
);
3683 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3684 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3688 * After a short sleep, check if it was a premature sleep. If not, then
3689 * go fully to sleep until explicitly woken up.
3692 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3693 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3696 * vmstat counters are not perfectly accurate and the estimated
3697 * value for counters such as NR_FREE_PAGES can deviate from the
3698 * true value by nr_online_cpus * threshold. To avoid the zone
3699 * watermarks being breached while under pressure, we reduce the
3700 * per-cpu vmstat threshold while kswapd is awake and restore
3701 * them before going back to sleep.
3703 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3705 if (!kthread_should_stop())
3708 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3711 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3713 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3715 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3719 * The background pageout daemon, started as a kernel thread
3720 * from the init process.
3722 * This basically trickles out pages so that we have _some_
3723 * free memory available even if there is no other activity
3724 * that frees anything up. This is needed for things like routing
3725 * etc, where we otherwise might have all activity going on in
3726 * asynchronous contexts that cannot page things out.
3728 * If there are applications that are active memory-allocators
3729 * (most normal use), this basically shouldn't matter.
3731 static int kswapd(void *p
)
3733 unsigned int alloc_order
, reclaim_order
;
3734 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3735 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3736 struct task_struct
*tsk
= current
;
3738 struct reclaim_state reclaim_state
= {
3739 .reclaimed_slab
= 0,
3741 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3743 if (!cpumask_empty(cpumask
))
3744 set_cpus_allowed_ptr(tsk
, cpumask
);
3745 current
->reclaim_state
= &reclaim_state
;
3748 * Tell the memory management that we're a "memory allocator",
3749 * and that if we need more memory we should get access to it
3750 * regardless (see "__alloc_pages()"). "kswapd" should
3751 * never get caught in the normal page freeing logic.
3753 * (Kswapd normally doesn't need memory anyway, but sometimes
3754 * you need a small amount of memory in order to be able to
3755 * page out something else, and this flag essentially protects
3756 * us from recursively trying to free more memory as we're
3757 * trying to free the first piece of memory in the first place).
3759 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3762 WRITE_ONCE(pgdat
->kswapd_order
, 0);
3763 WRITE_ONCE(pgdat
->kswapd_classzone_idx
, MAX_NR_ZONES
);
3767 alloc_order
= reclaim_order
= READ_ONCE(pgdat
->kswapd_order
);
3768 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3771 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3774 /* Read the new order and classzone_idx */
3775 alloc_order
= reclaim_order
= READ_ONCE(pgdat
->kswapd_order
);
3776 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3777 WRITE_ONCE(pgdat
->kswapd_order
, 0);
3778 WRITE_ONCE(pgdat
->kswapd_classzone_idx
, MAX_NR_ZONES
);
3780 ret
= try_to_freeze();
3781 if (kthread_should_stop())
3785 * We can speed up thawing tasks if we don't call balance_pgdat
3786 * after returning from the refrigerator
3792 * Reclaim begins at the requested order but if a high-order
3793 * reclaim fails then kswapd falls back to reclaiming for
3794 * order-0. If that happens, kswapd will consider sleeping
3795 * for the order it finished reclaiming at (reclaim_order)
3796 * but kcompactd is woken to compact for the original
3797 * request (alloc_order).
3799 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3801 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3802 if (reclaim_order
< alloc_order
)
3803 goto kswapd_try_sleep
;
3806 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3807 current
->reclaim_state
= NULL
;
3813 * A zone is low on free memory or too fragmented for high-order memory. If
3814 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3815 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3816 * has failed or is not needed, still wake up kcompactd if only compaction is
3819 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
3820 enum zone_type classzone_idx
)
3823 enum zone_type curr_idx
;
3825 if (!managed_zone(zone
))
3828 if (!cpuset_zone_allowed(zone
, gfp_flags
))
3831 pgdat
= zone
->zone_pgdat
;
3832 curr_idx
= READ_ONCE(pgdat
->kswapd_classzone_idx
);
3834 if (curr_idx
== MAX_NR_ZONES
|| curr_idx
< classzone_idx
)
3835 WRITE_ONCE(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3837 if (READ_ONCE(pgdat
->kswapd_order
) < order
)
3838 WRITE_ONCE(pgdat
->kswapd_order
, order
);
3840 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3843 /* Hopeless node, leave it to direct reclaim if possible */
3844 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
3845 pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3847 * There may be plenty of free memory available, but it's too
3848 * fragmented for high-order allocations. Wake up kcompactd
3849 * and rely on compaction_suitable() to determine if it's
3850 * needed. If it fails, it will defer subsequent attempts to
3851 * ratelimit its work.
3853 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
3854 wakeup_kcompactd(pgdat
, order
, classzone_idx
);
3858 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
,
3860 wake_up_interruptible(&pgdat
->kswapd_wait
);
3863 #ifdef CONFIG_HIBERNATION
3865 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3868 * Rather than trying to age LRUs the aim is to preserve the overall
3869 * LRU order by reclaiming preferentially
3870 * inactive > active > active referenced > active mapped
3872 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3874 struct reclaim_state reclaim_state
;
3875 struct scan_control sc
= {
3876 .nr_to_reclaim
= nr_to_reclaim
,
3877 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3878 .reclaim_idx
= MAX_NR_ZONES
- 1,
3879 .priority
= DEF_PRIORITY
,
3883 .hibernation_mode
= 1,
3885 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3886 struct task_struct
*p
= current
;
3887 unsigned long nr_reclaimed
;
3888 unsigned int noreclaim_flag
;
3890 fs_reclaim_acquire(sc
.gfp_mask
);
3891 noreclaim_flag
= memalloc_noreclaim_save();
3892 reclaim_state
.reclaimed_slab
= 0;
3893 p
->reclaim_state
= &reclaim_state
;
3895 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3897 p
->reclaim_state
= NULL
;
3898 memalloc_noreclaim_restore(noreclaim_flag
);
3899 fs_reclaim_release(sc
.gfp_mask
);
3901 return nr_reclaimed
;
3903 #endif /* CONFIG_HIBERNATION */
3905 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3906 not required for correctness. So if the last cpu in a node goes
3907 away, we get changed to run anywhere: as the first one comes back,
3908 restore their cpu bindings. */
3909 static int kswapd_cpu_online(unsigned int cpu
)
3913 for_each_node_state(nid
, N_MEMORY
) {
3914 pg_data_t
*pgdat
= NODE_DATA(nid
);
3915 const struct cpumask
*mask
;
3917 mask
= cpumask_of_node(pgdat
->node_id
);
3919 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3920 /* One of our CPUs online: restore mask */
3921 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3927 * This kswapd start function will be called by init and node-hot-add.
3928 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3930 int kswapd_run(int nid
)
3932 pg_data_t
*pgdat
= NODE_DATA(nid
);
3938 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3939 if (IS_ERR(pgdat
->kswapd
)) {
3940 /* failure at boot is fatal */
3941 BUG_ON(system_state
< SYSTEM_RUNNING
);
3942 pr_err("Failed to start kswapd on node %d\n", nid
);
3943 ret
= PTR_ERR(pgdat
->kswapd
);
3944 pgdat
->kswapd
= NULL
;
3950 * Called by memory hotplug when all memory in a node is offlined. Caller must
3951 * hold mem_hotplug_begin/end().
3953 void kswapd_stop(int nid
)
3955 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3958 kthread_stop(kswapd
);
3959 NODE_DATA(nid
)->kswapd
= NULL
;
3963 static int __init
kswapd_init(void)
3968 for_each_node_state(nid
, N_MEMORY
)
3970 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3971 "mm/vmscan:online", kswapd_cpu_online
,
3977 module_init(kswapd_init
)
3983 * If non-zero call node_reclaim when the number of free pages falls below
3986 int node_reclaim_mode __read_mostly
;
3988 #define RECLAIM_OFF 0
3989 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3990 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3991 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3994 * Priority for NODE_RECLAIM. This determines the fraction of pages
3995 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3998 #define NODE_RECLAIM_PRIORITY 4
4001 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4004 int sysctl_min_unmapped_ratio
= 1;
4007 * If the number of slab pages in a zone grows beyond this percentage then
4008 * slab reclaim needs to occur.
4010 int sysctl_min_slab_ratio
= 5;
4012 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
4014 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
4015 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
4016 node_page_state(pgdat
, NR_ACTIVE_FILE
);
4019 * It's possible for there to be more file mapped pages than
4020 * accounted for by the pages on the file LRU lists because
4021 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4023 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
4026 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4027 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
4029 unsigned long nr_pagecache_reclaimable
;
4030 unsigned long delta
= 0;
4033 * If RECLAIM_UNMAP is set, then all file pages are considered
4034 * potentially reclaimable. Otherwise, we have to worry about
4035 * pages like swapcache and node_unmapped_file_pages() provides
4038 if (node_reclaim_mode
& RECLAIM_UNMAP
)
4039 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
4041 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
4043 /* If we can't clean pages, remove dirty pages from consideration */
4044 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
4045 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
4047 /* Watch for any possible underflows due to delta */
4048 if (unlikely(delta
> nr_pagecache_reclaimable
))
4049 delta
= nr_pagecache_reclaimable
;
4051 return nr_pagecache_reclaimable
- delta
;
4055 * Try to free up some pages from this node through reclaim.
4057 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4059 /* Minimum pages needed in order to stay on node */
4060 const unsigned long nr_pages
= 1 << order
;
4061 struct task_struct
*p
= current
;
4062 struct reclaim_state reclaim_state
;
4063 unsigned int noreclaim_flag
;
4064 struct scan_control sc
= {
4065 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
4066 .gfp_mask
= current_gfp_context(gfp_mask
),
4068 .priority
= NODE_RECLAIM_PRIORITY
,
4069 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
4070 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
4072 .reclaim_idx
= gfp_zone(gfp_mask
),
4076 fs_reclaim_acquire(sc
.gfp_mask
);
4078 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4079 * and we also need to be able to write out pages for RECLAIM_WRITE
4080 * and RECLAIM_UNMAP.
4082 noreclaim_flag
= memalloc_noreclaim_save();
4083 p
->flags
|= PF_SWAPWRITE
;
4084 reclaim_state
.reclaimed_slab
= 0;
4085 p
->reclaim_state
= &reclaim_state
;
4087 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
4089 * Free memory by calling shrink node with increasing
4090 * priorities until we have enough memory freed.
4093 shrink_node(pgdat
, &sc
);
4094 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
4097 p
->reclaim_state
= NULL
;
4098 current
->flags
&= ~PF_SWAPWRITE
;
4099 memalloc_noreclaim_restore(noreclaim_flag
);
4100 fs_reclaim_release(sc
.gfp_mask
);
4101 return sc
.nr_reclaimed
>= nr_pages
;
4104 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4109 * Node reclaim reclaims unmapped file backed pages and
4110 * slab pages if we are over the defined limits.
4112 * A small portion of unmapped file backed pages is needed for
4113 * file I/O otherwise pages read by file I/O will be immediately
4114 * thrown out if the node is overallocated. So we do not reclaim
4115 * if less than a specified percentage of the node is used by
4116 * unmapped file backed pages.
4118 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
4119 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
4120 return NODE_RECLAIM_FULL
;
4123 * Do not scan if the allocation should not be delayed.
4125 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
4126 return NODE_RECLAIM_NOSCAN
;
4129 * Only run node reclaim on the local node or on nodes that do not
4130 * have associated processors. This will favor the local processor
4131 * over remote processors and spread off node memory allocations
4132 * as wide as possible.
4134 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
4135 return NODE_RECLAIM_NOSCAN
;
4137 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
4138 return NODE_RECLAIM_NOSCAN
;
4140 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
4141 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
4144 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
4151 * page_evictable - test whether a page is evictable
4152 * @page: the page to test
4154 * Test whether page is evictable--i.e., should be placed on active/inactive
4155 * lists vs unevictable list.
4157 * Reasons page might not be evictable:
4158 * (1) page's mapping marked unevictable
4159 * (2) page is part of an mlocked VMA
4162 int page_evictable(struct page
*page
)
4166 /* Prevent address_space of inode and swap cache from being freed */
4168 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
4175 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4176 * @pages: array of pages to check
4177 * @nr_pages: number of pages to check
4179 * Checks pages for evictability and moves them to the appropriate lru list.
4181 * This function is only used for SysV IPC SHM_UNLOCK.
4183 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
4185 struct lruvec
*lruvec
;
4186 struct pglist_data
*pgdat
= NULL
;
4191 for (i
= 0; i
< nr_pages
; i
++) {
4192 struct page
*page
= pages
[i
];
4193 struct pglist_data
*pagepgdat
= page_pgdat(page
);
4196 if (pagepgdat
!= pgdat
) {
4198 spin_unlock_irq(&pgdat
->lru_lock
);
4200 spin_lock_irq(&pgdat
->lru_lock
);
4202 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
4204 if (!PageLRU(page
) || !PageUnevictable(page
))
4207 if (page_evictable(page
)) {
4208 enum lru_list lru
= page_lru_base_type(page
);
4210 VM_BUG_ON_PAGE(PageActive(page
), page
);
4211 ClearPageUnevictable(page
);
4212 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
4213 add_page_to_lru_list(page
, lruvec
, lru
);
4219 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4220 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4221 spin_unlock_irq(&pgdat
->lru_lock
);
4224 #endif /* CONFIG_SHMEM */