2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/wait.h>
57 #include <linux/pagemap.h>
60 #define ZSPAGE_MAGIC 0x58
63 * This must be power of 2 and greater than of equal to sizeof(link_free).
64 * These two conditions ensure that any 'struct link_free' itself doesn't
65 * span more than 1 page which avoids complex case of mapping 2 pages simply
66 * to restore link_free pointer values.
71 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
72 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 #define ZS_MAX_ZSPAGE_ORDER 2
75 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
80 * Object location (<PFN>, <obj_idx>) is encoded as
81 * as single (unsigned long) handle value.
83 * Note that object index <obj_idx> starts from 0.
85 * This is made more complicated by various memory models and PAE.
88 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
89 #ifdef MAX_PHYSMEM_BITS
90 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
93 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
96 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
100 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
103 * Memory for allocating for handle keeps object position by
104 * encoding <page, obj_idx> and the encoded value has a room
105 * in least bit(ie, look at obj_to_location).
106 * We use the bit to synchronize between object access by
107 * user and migration.
109 #define HANDLE_PIN_BIT 0
112 * Head in allocated object should have OBJ_ALLOCATED_TAG
113 * to identify the object was allocated or not.
114 * It's okay to add the status bit in the least bit because
115 * header keeps handle which is 4byte-aligned address so we
116 * have room for two bit at least.
118 #define OBJ_ALLOCATED_TAG 1
119 #define OBJ_TAG_BITS 1
120 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
121 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123 #define FULLNESS_BITS 2
125 #define ISOLATED_BITS 3
126 #define MAGIC_VAL_BITS 8
128 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
129 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
130 #define ZS_MIN_ALLOC_SIZE \
131 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
132 /* each chunk includes extra space to keep handle */
133 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136 * On systems with 4K page size, this gives 255 size classes! There is a
138 * - Large number of size classes is potentially wasteful as free page are
139 * spread across these classes
140 * - Small number of size classes causes large internal fragmentation
141 * - Probably its better to use specific size classes (empirically
142 * determined). NOTE: all those class sizes must be set as multiple of
143 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
149 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
150 ZS_SIZE_CLASS_DELTA) + 1)
152 enum fullness_group
{
170 struct zs_size_stat
{
171 unsigned long objs
[NR_ZS_STAT_TYPE
];
174 #ifdef CONFIG_ZSMALLOC_STAT
175 static struct dentry
*zs_stat_root
;
178 #ifdef CONFIG_COMPACTION
179 static struct vfsmount
*zsmalloc_mnt
;
183 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n = number of allocated objects
186 * N = total number of objects zspage can store
187 * f = fullness_threshold_frac
189 * Similarly, we assign zspage to:
190 * ZS_ALMOST_FULL when n > N / f
191 * ZS_EMPTY when n == 0
192 * ZS_FULL when n == N
194 * (see: fix_fullness_group())
196 static const int fullness_threshold_frac
= 4;
197 static size_t huge_class_size
;
201 struct list_head fullness_list
[NR_ZS_FULLNESS
];
203 * Size of objects stored in this class. Must be multiple
208 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
209 int pages_per_zspage
;
212 struct zs_size_stat stats
;
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 static void SetPageHugeObject(struct page
*page
)
218 SetPageOwnerPriv1(page
);
221 static void ClearPageHugeObject(struct page
*page
)
223 ClearPageOwnerPriv1(page
);
226 static int PageHugeObject(struct page
*page
)
228 return PageOwnerPriv1(page
);
232 * Placed within free objects to form a singly linked list.
233 * For every zspage, zspage->freeobj gives head of this list.
235 * This must be power of 2 and less than or equal to ZS_ALIGN
241 * It's valid for non-allocated object
245 * Handle of allocated object.
247 unsigned long handle
;
254 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
255 struct kmem_cache
*handle_cachep
;
256 struct kmem_cache
*zspage_cachep
;
258 atomic_long_t pages_allocated
;
260 struct zs_pool_stats stats
;
262 /* Compact classes */
263 struct shrinker shrinker
;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry
*stat_dentry
;
268 #ifdef CONFIG_COMPACTION
270 struct work_struct free_work
;
271 /* A wait queue for when migration races with async_free_zspage() */
272 struct wait_queue_head migration_wait
;
273 atomic_long_t isolated_pages
;
280 unsigned int fullness
:FULLNESS_BITS
;
281 unsigned int class:CLASS_BITS
+ 1;
282 unsigned int isolated
:ISOLATED_BITS
;
283 unsigned int magic
:MAGIC_VAL_BITS
;
286 unsigned int freeobj
;
287 struct page
*first_page
;
288 struct list_head list
; /* fullness list */
289 #ifdef CONFIG_COMPACTION
294 struct mapping_area
{
295 #ifdef CONFIG_PGTABLE_MAPPING
296 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
298 char *vm_buf
; /* copy buffer for objects that span pages */
300 char *vm_addr
; /* address of kmap_atomic()'ed pages */
301 enum zs_mapmode vm_mm
; /* mapping mode */
304 #ifdef CONFIG_COMPACTION
305 static int zs_register_migration(struct zs_pool
*pool
);
306 static void zs_unregister_migration(struct zs_pool
*pool
);
307 static void migrate_lock_init(struct zspage
*zspage
);
308 static void migrate_read_lock(struct zspage
*zspage
);
309 static void migrate_read_unlock(struct zspage
*zspage
);
310 static void kick_deferred_free(struct zs_pool
*pool
);
311 static void init_deferred_free(struct zs_pool
*pool
);
312 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
314 static int zsmalloc_mount(void) { return 0; }
315 static void zsmalloc_unmount(void) {}
316 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
317 static void zs_unregister_migration(struct zs_pool
*pool
) {}
318 static void migrate_lock_init(struct zspage
*zspage
) {}
319 static void migrate_read_lock(struct zspage
*zspage
) {}
320 static void migrate_read_unlock(struct zspage
*zspage
) {}
321 static void kick_deferred_free(struct zs_pool
*pool
) {}
322 static void init_deferred_free(struct zs_pool
*pool
) {}
323 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
326 static int create_cache(struct zs_pool
*pool
)
328 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
330 if (!pool
->handle_cachep
)
333 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
335 if (!pool
->zspage_cachep
) {
336 kmem_cache_destroy(pool
->handle_cachep
);
337 pool
->handle_cachep
= NULL
;
344 static void destroy_cache(struct zs_pool
*pool
)
346 kmem_cache_destroy(pool
->handle_cachep
);
347 kmem_cache_destroy(pool
->zspage_cachep
);
350 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
352 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
353 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
356 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
358 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
361 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
363 return kmem_cache_alloc(pool
->zspage_cachep
,
364 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
367 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
369 kmem_cache_free(pool
->zspage_cachep
, zspage
);
372 static void record_obj(unsigned long handle
, unsigned long obj
)
375 * lsb of @obj represents handle lock while other bits
376 * represent object value the handle is pointing so
377 * updating shouldn't do store tearing.
379 WRITE_ONCE(*(unsigned long *)handle
, obj
);
386 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
387 const struct zpool_ops
*zpool_ops
,
391 * Ignore global gfp flags: zs_malloc() may be invoked from
392 * different contexts and its caller must provide a valid
395 return zs_create_pool(name
);
398 static void zs_zpool_destroy(void *pool
)
400 zs_destroy_pool(pool
);
403 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
404 unsigned long *handle
)
406 *handle
= zs_malloc(pool
, size
, gfp
);
407 return *handle
? 0 : -1;
409 static void zs_zpool_free(void *pool
, unsigned long handle
)
411 zs_free(pool
, handle
);
414 static void *zs_zpool_map(void *pool
, unsigned long handle
,
415 enum zpool_mapmode mm
)
417 enum zs_mapmode zs_mm
;
426 case ZPOOL_MM_RW
: /* fallthru */
432 return zs_map_object(pool
, handle
, zs_mm
);
434 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
436 zs_unmap_object(pool
, handle
);
439 static u64
zs_zpool_total_size(void *pool
)
441 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
444 static struct zpool_driver zs_zpool_driver
= {
446 .owner
= THIS_MODULE
,
447 .create
= zs_zpool_create
,
448 .destroy
= zs_zpool_destroy
,
449 .malloc
= zs_zpool_malloc
,
450 .free
= zs_zpool_free
,
452 .unmap
= zs_zpool_unmap
,
453 .total_size
= zs_zpool_total_size
,
456 MODULE_ALIAS("zpool-zsmalloc");
457 #endif /* CONFIG_ZPOOL */
459 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
460 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
462 static bool is_zspage_isolated(struct zspage
*zspage
)
464 return zspage
->isolated
;
467 static __maybe_unused
int is_first_page(struct page
*page
)
469 return PagePrivate(page
);
472 /* Protected by class->lock */
473 static inline int get_zspage_inuse(struct zspage
*zspage
)
475 return zspage
->inuse
;
478 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
483 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
485 zspage
->inuse
+= val
;
488 static inline struct page
*get_first_page(struct zspage
*zspage
)
490 struct page
*first_page
= zspage
->first_page
;
492 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
496 static inline int get_first_obj_offset(struct page
*page
)
501 static inline void set_first_obj_offset(struct page
*page
, int offset
)
503 page
->units
= offset
;
506 static inline unsigned int get_freeobj(struct zspage
*zspage
)
508 return zspage
->freeobj
;
511 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
513 zspage
->freeobj
= obj
;
516 static void get_zspage_mapping(struct zspage
*zspage
,
517 unsigned int *class_idx
,
518 enum fullness_group
*fullness
)
520 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
522 *fullness
= zspage
->fullness
;
523 *class_idx
= zspage
->class;
526 static void set_zspage_mapping(struct zspage
*zspage
,
527 unsigned int class_idx
,
528 enum fullness_group fullness
)
530 zspage
->class = class_idx
;
531 zspage
->fullness
= fullness
;
535 * zsmalloc divides the pool into various size classes where each
536 * class maintains a list of zspages where each zspage is divided
537 * into equal sized chunks. Each allocation falls into one of these
538 * classes depending on its size. This function returns index of the
539 * size class which has chunk size big enough to hold the give size.
541 static int get_size_class_index(int size
)
545 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
546 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
547 ZS_SIZE_CLASS_DELTA
);
549 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
552 /* type can be of enum type zs_stat_type or fullness_group */
553 static inline void zs_stat_inc(struct size_class
*class,
554 int type
, unsigned long cnt
)
556 class->stats
.objs
[type
] += cnt
;
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline void zs_stat_dec(struct size_class
*class,
561 int type
, unsigned long cnt
)
563 class->stats
.objs
[type
] -= cnt
;
566 /* type can be of enum type zs_stat_type or fullness_group */
567 static inline unsigned long zs_stat_get(struct size_class
*class,
570 return class->stats
.objs
[type
];
573 #ifdef CONFIG_ZSMALLOC_STAT
575 static void __init
zs_stat_init(void)
577 if (!debugfs_initialized()) {
578 pr_warn("debugfs not available, stat dir not created\n");
582 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
584 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
587 static void __exit
zs_stat_exit(void)
589 debugfs_remove_recursive(zs_stat_root
);
592 static unsigned long zs_can_compact(struct size_class
*class);
594 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
597 struct zs_pool
*pool
= s
->private;
598 struct size_class
*class;
600 unsigned long class_almost_full
, class_almost_empty
;
601 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
602 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
603 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
604 unsigned long total_freeable
= 0;
606 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
607 "class", "size", "almost_full", "almost_empty",
608 "obj_allocated", "obj_used", "pages_used",
609 "pages_per_zspage", "freeable");
611 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
612 class = pool
->size_class
[i
];
614 if (class->index
!= i
)
617 spin_lock(&class->lock
);
618 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
619 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
620 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
621 obj_used
= zs_stat_get(class, OBJ_USED
);
622 freeable
= zs_can_compact(class);
623 spin_unlock(&class->lock
);
625 objs_per_zspage
= class->objs_per_zspage
;
626 pages_used
= obj_allocated
/ objs_per_zspage
*
627 class->pages_per_zspage
;
629 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
630 " %10lu %10lu %16d %8lu\n",
631 i
, class->size
, class_almost_full
, class_almost_empty
,
632 obj_allocated
, obj_used
, pages_used
,
633 class->pages_per_zspage
, freeable
);
635 total_class_almost_full
+= class_almost_full
;
636 total_class_almost_empty
+= class_almost_empty
;
637 total_objs
+= obj_allocated
;
638 total_used_objs
+= obj_used
;
639 total_pages
+= pages_used
;
640 total_freeable
+= freeable
;
644 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
645 "Total", "", total_class_almost_full
,
646 total_class_almost_empty
, total_objs
,
647 total_used_objs
, total_pages
, "", total_freeable
);
651 DEFINE_SHOW_ATTRIBUTE(zs_stats_size
);
653 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
655 struct dentry
*entry
;
658 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
662 entry
= debugfs_create_dir(name
, zs_stat_root
);
664 pr_warn("debugfs dir <%s> creation failed\n", name
);
667 pool
->stat_dentry
= entry
;
669 entry
= debugfs_create_file("classes", S_IFREG
| 0444,
670 pool
->stat_dentry
, pool
,
671 &zs_stats_size_fops
);
673 pr_warn("%s: debugfs file entry <%s> creation failed\n",
675 debugfs_remove_recursive(pool
->stat_dentry
);
676 pool
->stat_dentry
= NULL
;
680 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
682 debugfs_remove_recursive(pool
->stat_dentry
);
685 #else /* CONFIG_ZSMALLOC_STAT */
686 static void __init
zs_stat_init(void)
690 static void __exit
zs_stat_exit(void)
694 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
698 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
705 * For each size class, zspages are divided into different groups
706 * depending on how "full" they are. This was done so that we could
707 * easily find empty or nearly empty zspages when we try to shrink
708 * the pool (not yet implemented). This function returns fullness
709 * status of the given page.
711 static enum fullness_group
get_fullness_group(struct size_class
*class,
712 struct zspage
*zspage
)
714 int inuse
, objs_per_zspage
;
715 enum fullness_group fg
;
717 inuse
= get_zspage_inuse(zspage
);
718 objs_per_zspage
= class->objs_per_zspage
;
722 else if (inuse
== objs_per_zspage
)
724 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
725 fg
= ZS_ALMOST_EMPTY
;
733 * Each size class maintains various freelists and zspages are assigned
734 * to one of these freelists based on the number of live objects they
735 * have. This functions inserts the given zspage into the freelist
736 * identified by <class, fullness_group>.
738 static void insert_zspage(struct size_class
*class,
739 struct zspage
*zspage
,
740 enum fullness_group fullness
)
744 zs_stat_inc(class, fullness
, 1);
745 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
746 struct zspage
, list
);
748 * We want to see more ZS_FULL pages and less almost empty/full.
749 * Put pages with higher ->inuse first.
752 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
753 list_add(&zspage
->list
, &head
->list
);
757 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
761 * This function removes the given zspage from the freelist identified
762 * by <class, fullness_group>.
764 static void remove_zspage(struct size_class
*class,
765 struct zspage
*zspage
,
766 enum fullness_group fullness
)
768 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
769 VM_BUG_ON(is_zspage_isolated(zspage
));
771 list_del_init(&zspage
->list
);
772 zs_stat_dec(class, fullness
, 1);
776 * Each size class maintains zspages in different fullness groups depending
777 * on the number of live objects they contain. When allocating or freeing
778 * objects, the fullness status of the page can change, say, from ALMOST_FULL
779 * to ALMOST_EMPTY when freeing an object. This function checks if such
780 * a status change has occurred for the given page and accordingly moves the
781 * page from the freelist of the old fullness group to that of the new
784 static enum fullness_group
fix_fullness_group(struct size_class
*class,
785 struct zspage
*zspage
)
788 enum fullness_group currfg
, newfg
;
790 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
791 newfg
= get_fullness_group(class, zspage
);
795 if (!is_zspage_isolated(zspage
)) {
796 remove_zspage(class, zspage
, currfg
);
797 insert_zspage(class, zspage
, newfg
);
800 set_zspage_mapping(zspage
, class_idx
, newfg
);
807 * We have to decide on how many pages to link together
808 * to form a zspage for each size class. This is important
809 * to reduce wastage due to unusable space left at end of
810 * each zspage which is given as:
811 * wastage = Zp % class_size
812 * usage = Zp - wastage
813 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
815 * For example, for size class of 3/8 * PAGE_SIZE, we should
816 * link together 3 PAGE_SIZE sized pages to form a zspage
817 * since then we can perfectly fit in 8 such objects.
819 static int get_pages_per_zspage(int class_size
)
821 int i
, max_usedpc
= 0;
822 /* zspage order which gives maximum used size per KB */
823 int max_usedpc_order
= 1;
825 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
829 zspage_size
= i
* PAGE_SIZE
;
830 waste
= zspage_size
% class_size
;
831 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
833 if (usedpc
> max_usedpc
) {
835 max_usedpc_order
= i
;
839 return max_usedpc_order
;
842 static struct zspage
*get_zspage(struct page
*page
)
844 struct zspage
*zspage
= (struct zspage
*)page
->private;
846 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
850 static struct page
*get_next_page(struct page
*page
)
852 if (unlikely(PageHugeObject(page
)))
855 return page
->freelist
;
859 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
860 * @obj: the encoded object value
861 * @page: page object resides in zspage
862 * @obj_idx: object index
864 static void obj_to_location(unsigned long obj
, struct page
**page
,
865 unsigned int *obj_idx
)
867 obj
>>= OBJ_TAG_BITS
;
868 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
869 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
873 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
874 * @page: page object resides in zspage
875 * @obj_idx: object index
877 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
881 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
882 obj
|= obj_idx
& OBJ_INDEX_MASK
;
883 obj
<<= OBJ_TAG_BITS
;
888 static unsigned long handle_to_obj(unsigned long handle
)
890 return *(unsigned long *)handle
;
893 static unsigned long obj_to_head(struct page
*page
, void *obj
)
895 if (unlikely(PageHugeObject(page
))) {
896 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
899 return *(unsigned long *)obj
;
902 static inline int testpin_tag(unsigned long handle
)
904 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
907 static inline int trypin_tag(unsigned long handle
)
909 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
912 static void pin_tag(unsigned long handle
)
914 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
917 static void unpin_tag(unsigned long handle
)
919 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
922 static void reset_page(struct page
*page
)
924 __ClearPageMovable(page
);
925 ClearPagePrivate(page
);
926 set_page_private(page
, 0);
927 page_mapcount_reset(page
);
928 ClearPageHugeObject(page
);
929 page
->freelist
= NULL
;
932 static int trylock_zspage(struct zspage
*zspage
)
934 struct page
*cursor
, *fail
;
936 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
937 get_next_page(cursor
)) {
938 if (!trylock_page(cursor
)) {
946 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
947 get_next_page(cursor
))
953 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
954 struct zspage
*zspage
)
956 struct page
*page
, *next
;
957 enum fullness_group fg
;
958 unsigned int class_idx
;
960 get_zspage_mapping(zspage
, &class_idx
, &fg
);
962 assert_spin_locked(&class->lock
);
964 VM_BUG_ON(get_zspage_inuse(zspage
));
965 VM_BUG_ON(fg
!= ZS_EMPTY
);
967 next
= page
= get_first_page(zspage
);
969 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
970 next
= get_next_page(page
);
973 dec_zone_page_state(page
, NR_ZSPAGES
);
976 } while (page
!= NULL
);
978 cache_free_zspage(pool
, zspage
);
980 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
981 atomic_long_sub(class->pages_per_zspage
,
982 &pool
->pages_allocated
);
985 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
986 struct zspage
*zspage
)
988 VM_BUG_ON(get_zspage_inuse(zspage
));
989 VM_BUG_ON(list_empty(&zspage
->list
));
991 if (!trylock_zspage(zspage
)) {
992 kick_deferred_free(pool
);
996 remove_zspage(class, zspage
, ZS_EMPTY
);
997 __free_zspage(pool
, class, zspage
);
1000 /* Initialize a newly allocated zspage */
1001 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1003 unsigned int freeobj
= 1;
1004 unsigned long off
= 0;
1005 struct page
*page
= get_first_page(zspage
);
1008 struct page
*next_page
;
1009 struct link_free
*link
;
1012 set_first_obj_offset(page
, off
);
1014 vaddr
= kmap_atomic(page
);
1015 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1017 while ((off
+= class->size
) < PAGE_SIZE
) {
1018 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1019 link
+= class->size
/ sizeof(*link
);
1023 * We now come to the last (full or partial) object on this
1024 * page, which must point to the first object on the next
1027 next_page
= get_next_page(page
);
1029 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1032 * Reset OBJ_TAG_BITS bit to last link to tell
1033 * whether it's allocated object or not.
1035 link
->next
= -1UL << OBJ_TAG_BITS
;
1037 kunmap_atomic(vaddr
);
1042 set_freeobj(zspage
, 0);
1045 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1046 struct page
*pages
[])
1050 struct page
*prev_page
= NULL
;
1051 int nr_pages
= class->pages_per_zspage
;
1054 * Allocate individual pages and link them together as:
1055 * 1. all pages are linked together using page->freelist
1056 * 2. each sub-page point to zspage using page->private
1058 * we set PG_private to identify the first page (i.e. no other sub-page
1059 * has this flag set).
1061 for (i
= 0; i
< nr_pages
; i
++) {
1063 set_page_private(page
, (unsigned long)zspage
);
1064 page
->freelist
= NULL
;
1066 zspage
->first_page
= page
;
1067 SetPagePrivate(page
);
1068 if (unlikely(class->objs_per_zspage
== 1 &&
1069 class->pages_per_zspage
== 1))
1070 SetPageHugeObject(page
);
1072 prev_page
->freelist
= page
;
1079 * Allocate a zspage for the given size class
1081 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1082 struct size_class
*class,
1086 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1087 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1092 memset(zspage
, 0, sizeof(struct zspage
));
1093 zspage
->magic
= ZSPAGE_MAGIC
;
1094 migrate_lock_init(zspage
);
1096 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1099 page
= alloc_page(gfp
);
1102 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1103 __free_page(pages
[i
]);
1105 cache_free_zspage(pool
, zspage
);
1109 inc_zone_page_state(page
, NR_ZSPAGES
);
1113 create_page_chain(class, zspage
, pages
);
1114 init_zspage(class, zspage
);
1119 static struct zspage
*find_get_zspage(struct size_class
*class)
1122 struct zspage
*zspage
;
1124 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1125 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1126 struct zspage
, list
);
1134 #ifdef CONFIG_PGTABLE_MAPPING
1135 static inline int __zs_cpu_up(struct mapping_area
*area
)
1138 * Make sure we don't leak memory if a cpu UP notification
1139 * and zs_init() race and both call zs_cpu_up() on the same cpu
1143 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1149 static inline void __zs_cpu_down(struct mapping_area
*area
)
1152 free_vm_area(area
->vm
);
1156 static inline void *__zs_map_object(struct mapping_area
*area
,
1157 struct page
*pages
[2], int off
, int size
)
1159 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1160 area
->vm_addr
= area
->vm
->addr
;
1161 return area
->vm_addr
+ off
;
1164 static inline void __zs_unmap_object(struct mapping_area
*area
,
1165 struct page
*pages
[2], int off
, int size
)
1167 unsigned long addr
= (unsigned long)area
->vm_addr
;
1169 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1172 #else /* CONFIG_PGTABLE_MAPPING */
1174 static inline int __zs_cpu_up(struct mapping_area
*area
)
1177 * Make sure we don't leak memory if a cpu UP notification
1178 * and zs_init() race and both call zs_cpu_up() on the same cpu
1182 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1188 static inline void __zs_cpu_down(struct mapping_area
*area
)
1190 kfree(area
->vm_buf
);
1191 area
->vm_buf
= NULL
;
1194 static void *__zs_map_object(struct mapping_area
*area
,
1195 struct page
*pages
[2], int off
, int size
)
1199 char *buf
= area
->vm_buf
;
1201 /* disable page faults to match kmap_atomic() return conditions */
1202 pagefault_disable();
1204 /* no read fastpath */
1205 if (area
->vm_mm
== ZS_MM_WO
)
1208 sizes
[0] = PAGE_SIZE
- off
;
1209 sizes
[1] = size
- sizes
[0];
1211 /* copy object to per-cpu buffer */
1212 addr
= kmap_atomic(pages
[0]);
1213 memcpy(buf
, addr
+ off
, sizes
[0]);
1214 kunmap_atomic(addr
);
1215 addr
= kmap_atomic(pages
[1]);
1216 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1217 kunmap_atomic(addr
);
1219 return area
->vm_buf
;
1222 static void __zs_unmap_object(struct mapping_area
*area
,
1223 struct page
*pages
[2], int off
, int size
)
1229 /* no write fastpath */
1230 if (area
->vm_mm
== ZS_MM_RO
)
1234 buf
= buf
+ ZS_HANDLE_SIZE
;
1235 size
-= ZS_HANDLE_SIZE
;
1236 off
+= ZS_HANDLE_SIZE
;
1238 sizes
[0] = PAGE_SIZE
- off
;
1239 sizes
[1] = size
- sizes
[0];
1241 /* copy per-cpu buffer to object */
1242 addr
= kmap_atomic(pages
[0]);
1243 memcpy(addr
+ off
, buf
, sizes
[0]);
1244 kunmap_atomic(addr
);
1245 addr
= kmap_atomic(pages
[1]);
1246 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1247 kunmap_atomic(addr
);
1250 /* enable page faults to match kunmap_atomic() return conditions */
1254 #endif /* CONFIG_PGTABLE_MAPPING */
1256 static int zs_cpu_prepare(unsigned int cpu
)
1258 struct mapping_area
*area
;
1260 area
= &per_cpu(zs_map_area
, cpu
);
1261 return __zs_cpu_up(area
);
1264 static int zs_cpu_dead(unsigned int cpu
)
1266 struct mapping_area
*area
;
1268 area
= &per_cpu(zs_map_area
, cpu
);
1269 __zs_cpu_down(area
);
1273 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1274 int objs_per_zspage
)
1276 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1277 prev
->objs_per_zspage
== objs_per_zspage
)
1283 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1285 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1288 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1290 return atomic_long_read(&pool
->pages_allocated
);
1292 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1295 * zs_map_object - get address of allocated object from handle.
1296 * @pool: pool from which the object was allocated
1297 * @handle: handle returned from zs_malloc
1298 * @mm: maping mode to use
1300 * Before using an object allocated from zs_malloc, it must be mapped using
1301 * this function. When done with the object, it must be unmapped using
1304 * Only one object can be mapped per cpu at a time. There is no protection
1305 * against nested mappings.
1307 * This function returns with preemption and page faults disabled.
1309 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1312 struct zspage
*zspage
;
1314 unsigned long obj
, off
;
1315 unsigned int obj_idx
;
1317 unsigned int class_idx
;
1318 enum fullness_group fg
;
1319 struct size_class
*class;
1320 struct mapping_area
*area
;
1321 struct page
*pages
[2];
1325 * Because we use per-cpu mapping areas shared among the
1326 * pools/users, we can't allow mapping in interrupt context
1327 * because it can corrupt another users mappings.
1329 BUG_ON(in_interrupt());
1331 /* From now on, migration cannot move the object */
1334 obj
= handle_to_obj(handle
);
1335 obj_to_location(obj
, &page
, &obj_idx
);
1336 zspage
= get_zspage(page
);
1338 /* migration cannot move any subpage in this zspage */
1339 migrate_read_lock(zspage
);
1341 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1342 class = pool
->size_class
[class_idx
];
1343 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1345 area
= &get_cpu_var(zs_map_area
);
1347 if (off
+ class->size
<= PAGE_SIZE
) {
1348 /* this object is contained entirely within a page */
1349 area
->vm_addr
= kmap_atomic(page
);
1350 ret
= area
->vm_addr
+ off
;
1354 /* this object spans two pages */
1356 pages
[1] = get_next_page(page
);
1359 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1361 if (likely(!PageHugeObject(page
)))
1362 ret
+= ZS_HANDLE_SIZE
;
1366 EXPORT_SYMBOL_GPL(zs_map_object
);
1368 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1370 struct zspage
*zspage
;
1372 unsigned long obj
, off
;
1373 unsigned int obj_idx
;
1375 unsigned int class_idx
;
1376 enum fullness_group fg
;
1377 struct size_class
*class;
1378 struct mapping_area
*area
;
1380 obj
= handle_to_obj(handle
);
1381 obj_to_location(obj
, &page
, &obj_idx
);
1382 zspage
= get_zspage(page
);
1383 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1384 class = pool
->size_class
[class_idx
];
1385 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1387 area
= this_cpu_ptr(&zs_map_area
);
1388 if (off
+ class->size
<= PAGE_SIZE
)
1389 kunmap_atomic(area
->vm_addr
);
1391 struct page
*pages
[2];
1394 pages
[1] = get_next_page(page
);
1397 __zs_unmap_object(area
, pages
, off
, class->size
);
1399 put_cpu_var(zs_map_area
);
1401 migrate_read_unlock(zspage
);
1404 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1407 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1408 * zsmalloc &size_class.
1409 * @pool: zsmalloc pool to use
1411 * The function returns the size of the first huge class - any object of equal
1412 * or bigger size will be stored in zspage consisting of a single physical
1415 * Context: Any context.
1417 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1419 size_t zs_huge_class_size(struct zs_pool
*pool
)
1421 return huge_class_size
;
1423 EXPORT_SYMBOL_GPL(zs_huge_class_size
);
1425 static unsigned long obj_malloc(struct size_class
*class,
1426 struct zspage
*zspage
, unsigned long handle
)
1428 int i
, nr_page
, offset
;
1430 struct link_free
*link
;
1432 struct page
*m_page
;
1433 unsigned long m_offset
;
1436 handle
|= OBJ_ALLOCATED_TAG
;
1437 obj
= get_freeobj(zspage
);
1439 offset
= obj
* class->size
;
1440 nr_page
= offset
>> PAGE_SHIFT
;
1441 m_offset
= offset
& ~PAGE_MASK
;
1442 m_page
= get_first_page(zspage
);
1444 for (i
= 0; i
< nr_page
; i
++)
1445 m_page
= get_next_page(m_page
);
1447 vaddr
= kmap_atomic(m_page
);
1448 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1449 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1450 if (likely(!PageHugeObject(m_page
)))
1451 /* record handle in the header of allocated chunk */
1452 link
->handle
= handle
;
1454 /* record handle to page->index */
1455 zspage
->first_page
->index
= handle
;
1457 kunmap_atomic(vaddr
);
1458 mod_zspage_inuse(zspage
, 1);
1459 zs_stat_inc(class, OBJ_USED
, 1);
1461 obj
= location_to_obj(m_page
, obj
);
1468 * zs_malloc - Allocate block of given size from pool.
1469 * @pool: pool to allocate from
1470 * @size: size of block to allocate
1471 * @gfp: gfp flags when allocating object
1473 * On success, handle to the allocated object is returned,
1475 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1477 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1479 unsigned long handle
, obj
;
1480 struct size_class
*class;
1481 enum fullness_group newfg
;
1482 struct zspage
*zspage
;
1484 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1487 handle
= cache_alloc_handle(pool
, gfp
);
1491 /* extra space in chunk to keep the handle */
1492 size
+= ZS_HANDLE_SIZE
;
1493 class = pool
->size_class
[get_size_class_index(size
)];
1495 spin_lock(&class->lock
);
1496 zspage
= find_get_zspage(class);
1497 if (likely(zspage
)) {
1498 obj
= obj_malloc(class, zspage
, handle
);
1499 /* Now move the zspage to another fullness group, if required */
1500 fix_fullness_group(class, zspage
);
1501 record_obj(handle
, obj
);
1502 spin_unlock(&class->lock
);
1507 spin_unlock(&class->lock
);
1509 zspage
= alloc_zspage(pool
, class, gfp
);
1511 cache_free_handle(pool
, handle
);
1515 spin_lock(&class->lock
);
1516 obj
= obj_malloc(class, zspage
, handle
);
1517 newfg
= get_fullness_group(class, zspage
);
1518 insert_zspage(class, zspage
, newfg
);
1519 set_zspage_mapping(zspage
, class->index
, newfg
);
1520 record_obj(handle
, obj
);
1521 atomic_long_add(class->pages_per_zspage
,
1522 &pool
->pages_allocated
);
1523 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1525 /* We completely set up zspage so mark them as movable */
1526 SetZsPageMovable(pool
, zspage
);
1527 spin_unlock(&class->lock
);
1531 EXPORT_SYMBOL_GPL(zs_malloc
);
1533 static void obj_free(struct size_class
*class, unsigned long obj
)
1535 struct link_free
*link
;
1536 struct zspage
*zspage
;
1537 struct page
*f_page
;
1538 unsigned long f_offset
;
1539 unsigned int f_objidx
;
1542 obj
&= ~OBJ_ALLOCATED_TAG
;
1543 obj_to_location(obj
, &f_page
, &f_objidx
);
1544 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1545 zspage
= get_zspage(f_page
);
1547 vaddr
= kmap_atomic(f_page
);
1549 /* Insert this object in containing zspage's freelist */
1550 link
= (struct link_free
*)(vaddr
+ f_offset
);
1551 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1552 kunmap_atomic(vaddr
);
1553 set_freeobj(zspage
, f_objidx
);
1554 mod_zspage_inuse(zspage
, -1);
1555 zs_stat_dec(class, OBJ_USED
, 1);
1558 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1560 struct zspage
*zspage
;
1561 struct page
*f_page
;
1563 unsigned int f_objidx
;
1565 struct size_class
*class;
1566 enum fullness_group fullness
;
1569 if (unlikely(!handle
))
1573 obj
= handle_to_obj(handle
);
1574 obj_to_location(obj
, &f_page
, &f_objidx
);
1575 zspage
= get_zspage(f_page
);
1577 migrate_read_lock(zspage
);
1579 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1580 class = pool
->size_class
[class_idx
];
1582 spin_lock(&class->lock
);
1583 obj_free(class, obj
);
1584 fullness
= fix_fullness_group(class, zspage
);
1585 if (fullness
!= ZS_EMPTY
) {
1586 migrate_read_unlock(zspage
);
1590 isolated
= is_zspage_isolated(zspage
);
1591 migrate_read_unlock(zspage
);
1592 /* If zspage is isolated, zs_page_putback will free the zspage */
1593 if (likely(!isolated
))
1594 free_zspage(pool
, class, zspage
);
1597 spin_unlock(&class->lock
);
1599 cache_free_handle(pool
, handle
);
1601 EXPORT_SYMBOL_GPL(zs_free
);
1603 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1606 struct page
*s_page
, *d_page
;
1607 unsigned int s_objidx
, d_objidx
;
1608 unsigned long s_off
, d_off
;
1609 void *s_addr
, *d_addr
;
1610 int s_size
, d_size
, size
;
1613 s_size
= d_size
= class->size
;
1615 obj_to_location(src
, &s_page
, &s_objidx
);
1616 obj_to_location(dst
, &d_page
, &d_objidx
);
1618 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1619 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1621 if (s_off
+ class->size
> PAGE_SIZE
)
1622 s_size
= PAGE_SIZE
- s_off
;
1624 if (d_off
+ class->size
> PAGE_SIZE
)
1625 d_size
= PAGE_SIZE
- d_off
;
1627 s_addr
= kmap_atomic(s_page
);
1628 d_addr
= kmap_atomic(d_page
);
1631 size
= min(s_size
, d_size
);
1632 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1635 if (written
== class->size
)
1643 if (s_off
>= PAGE_SIZE
) {
1644 kunmap_atomic(d_addr
);
1645 kunmap_atomic(s_addr
);
1646 s_page
= get_next_page(s_page
);
1647 s_addr
= kmap_atomic(s_page
);
1648 d_addr
= kmap_atomic(d_page
);
1649 s_size
= class->size
- written
;
1653 if (d_off
>= PAGE_SIZE
) {
1654 kunmap_atomic(d_addr
);
1655 d_page
= get_next_page(d_page
);
1656 d_addr
= kmap_atomic(d_page
);
1657 d_size
= class->size
- written
;
1662 kunmap_atomic(d_addr
);
1663 kunmap_atomic(s_addr
);
1667 * Find alloced object in zspage from index object and
1670 static unsigned long find_alloced_obj(struct size_class
*class,
1671 struct page
*page
, int *obj_idx
)
1675 int index
= *obj_idx
;
1676 unsigned long handle
= 0;
1677 void *addr
= kmap_atomic(page
);
1679 offset
= get_first_obj_offset(page
);
1680 offset
+= class->size
* index
;
1682 while (offset
< PAGE_SIZE
) {
1683 head
= obj_to_head(page
, addr
+ offset
);
1684 if (head
& OBJ_ALLOCATED_TAG
) {
1685 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1686 if (trypin_tag(handle
))
1691 offset
+= class->size
;
1695 kunmap_atomic(addr
);
1702 struct zs_compact_control
{
1703 /* Source spage for migration which could be a subpage of zspage */
1704 struct page
*s_page
;
1705 /* Destination page for migration which should be a first page
1707 struct page
*d_page
;
1708 /* Starting object index within @s_page which used for live object
1709 * in the subpage. */
1713 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1714 struct zs_compact_control
*cc
)
1716 unsigned long used_obj
, free_obj
;
1717 unsigned long handle
;
1718 struct page
*s_page
= cc
->s_page
;
1719 struct page
*d_page
= cc
->d_page
;
1720 int obj_idx
= cc
->obj_idx
;
1724 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1726 s_page
= get_next_page(s_page
);
1733 /* Stop if there is no more space */
1734 if (zspage_full(class, get_zspage(d_page
))) {
1740 used_obj
= handle_to_obj(handle
);
1741 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1742 zs_object_copy(class, free_obj
, used_obj
);
1745 * record_obj updates handle's value to free_obj and it will
1746 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1747 * breaks synchronization using pin_tag(e,g, zs_free) so
1748 * let's keep the lock bit.
1750 free_obj
|= BIT(HANDLE_PIN_BIT
);
1751 record_obj(handle
, free_obj
);
1753 obj_free(class, used_obj
);
1756 /* Remember last position in this iteration */
1757 cc
->s_page
= s_page
;
1758 cc
->obj_idx
= obj_idx
;
1763 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1766 struct zspage
*zspage
;
1767 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1770 fg
[0] = ZS_ALMOST_FULL
;
1771 fg
[1] = ZS_ALMOST_EMPTY
;
1774 for (i
= 0; i
< 2; i
++) {
1775 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1776 struct zspage
, list
);
1778 VM_BUG_ON(is_zspage_isolated(zspage
));
1779 remove_zspage(class, zspage
, fg
[i
]);
1788 * putback_zspage - add @zspage into right class's fullness list
1789 * @class: destination class
1790 * @zspage: target page
1792 * Return @zspage's fullness_group
1794 static enum fullness_group
putback_zspage(struct size_class
*class,
1795 struct zspage
*zspage
)
1797 enum fullness_group fullness
;
1799 VM_BUG_ON(is_zspage_isolated(zspage
));
1801 fullness
= get_fullness_group(class, zspage
);
1802 insert_zspage(class, zspage
, fullness
);
1803 set_zspage_mapping(zspage
, class->index
, fullness
);
1808 #ifdef CONFIG_COMPACTION
1810 * To prevent zspage destroy during migration, zspage freeing should
1811 * hold locks of all pages in the zspage.
1813 static void lock_zspage(struct zspage
*zspage
)
1815 struct page
*page
= get_first_page(zspage
);
1819 } while ((page
= get_next_page(page
)) != NULL
);
1822 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1823 int flags
, const char *dev_name
, void *data
)
1825 static const struct dentry_operations ops
= {
1826 .d_dname
= simple_dname
,
1829 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1832 static struct file_system_type zsmalloc_fs
= {
1835 .kill_sb
= kill_anon_super
,
1838 static int zsmalloc_mount(void)
1842 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1843 if (IS_ERR(zsmalloc_mnt
))
1844 ret
= PTR_ERR(zsmalloc_mnt
);
1849 static void zsmalloc_unmount(void)
1851 kern_unmount(zsmalloc_mnt
);
1854 static void migrate_lock_init(struct zspage
*zspage
)
1856 rwlock_init(&zspage
->lock
);
1859 static void migrate_read_lock(struct zspage
*zspage
)
1861 read_lock(&zspage
->lock
);
1864 static void migrate_read_unlock(struct zspage
*zspage
)
1866 read_unlock(&zspage
->lock
);
1869 static void migrate_write_lock(struct zspage
*zspage
)
1871 write_lock(&zspage
->lock
);
1874 static void migrate_write_unlock(struct zspage
*zspage
)
1876 write_unlock(&zspage
->lock
);
1879 /* Number of isolated subpage for *page migration* in this zspage */
1880 static void inc_zspage_isolation(struct zspage
*zspage
)
1885 static void dec_zspage_isolation(struct zspage
*zspage
)
1890 static void putback_zspage_deferred(struct zs_pool
*pool
,
1891 struct size_class
*class,
1892 struct zspage
*zspage
)
1894 enum fullness_group fg
;
1896 fg
= putback_zspage(class, zspage
);
1898 schedule_work(&pool
->free_work
);
1902 static inline void zs_pool_dec_isolated(struct zs_pool
*pool
)
1904 VM_BUG_ON(atomic_long_read(&pool
->isolated_pages
) <= 0);
1905 atomic_long_dec(&pool
->isolated_pages
);
1907 * There's no possibility of racing, since wait_for_isolated_drain()
1908 * checks the isolated count under &class->lock after enqueuing
1909 * on migration_wait.
1911 if (atomic_long_read(&pool
->isolated_pages
) == 0 && pool
->destroying
)
1912 wake_up_all(&pool
->migration_wait
);
1915 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1916 struct page
*newpage
, struct page
*oldpage
)
1919 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1922 page
= get_first_page(zspage
);
1924 if (page
== oldpage
)
1925 pages
[idx
] = newpage
;
1929 } while ((page
= get_next_page(page
)) != NULL
);
1931 create_page_chain(class, zspage
, pages
);
1932 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1933 if (unlikely(PageHugeObject(oldpage
)))
1934 newpage
->index
= oldpage
->index
;
1935 __SetPageMovable(newpage
, page_mapping(oldpage
));
1938 static bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1940 struct zs_pool
*pool
;
1941 struct size_class
*class;
1943 enum fullness_group fullness
;
1944 struct zspage
*zspage
;
1945 struct address_space
*mapping
;
1948 * Page is locked so zspage couldn't be destroyed. For detail, look at
1949 * lock_zspage in free_zspage.
1951 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1952 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1954 zspage
= get_zspage(page
);
1957 * Without class lock, fullness could be stale while class_idx is okay
1958 * because class_idx is constant unless page is freed so we should get
1959 * fullness again under class lock.
1961 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1962 mapping
= page_mapping(page
);
1963 pool
= mapping
->private_data
;
1964 class = pool
->size_class
[class_idx
];
1966 spin_lock(&class->lock
);
1967 if (get_zspage_inuse(zspage
) == 0) {
1968 spin_unlock(&class->lock
);
1972 /* zspage is isolated for object migration */
1973 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1974 spin_unlock(&class->lock
);
1979 * If this is first time isolation for the zspage, isolate zspage from
1980 * size_class to prevent further object allocation from the zspage.
1982 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1983 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1984 atomic_long_inc(&pool
->isolated_pages
);
1985 remove_zspage(class, zspage
, fullness
);
1988 inc_zspage_isolation(zspage
);
1989 spin_unlock(&class->lock
);
1994 static int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1995 struct page
*page
, enum migrate_mode mode
)
1997 struct zs_pool
*pool
;
1998 struct size_class
*class;
2000 enum fullness_group fullness
;
2001 struct zspage
*zspage
;
2003 void *s_addr
, *d_addr
, *addr
;
2005 unsigned long handle
, head
;
2006 unsigned long old_obj
, new_obj
;
2007 unsigned int obj_idx
;
2011 * We cannot support the _NO_COPY case here, because copy needs to
2012 * happen under the zs lock, which does not work with
2013 * MIGRATE_SYNC_NO_COPY workflow.
2015 if (mode
== MIGRATE_SYNC_NO_COPY
)
2018 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2019 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2021 zspage
= get_zspage(page
);
2023 /* Concurrent compactor cannot migrate any subpage in zspage */
2024 migrate_write_lock(zspage
);
2025 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2026 pool
= mapping
->private_data
;
2027 class = pool
->size_class
[class_idx
];
2028 offset
= get_first_obj_offset(page
);
2030 spin_lock(&class->lock
);
2031 if (!get_zspage_inuse(zspage
)) {
2033 * Set "offset" to end of the page so that every loops
2034 * skips unnecessary object scanning.
2040 s_addr
= kmap_atomic(page
);
2041 while (pos
< PAGE_SIZE
) {
2042 head
= obj_to_head(page
, s_addr
+ pos
);
2043 if (head
& OBJ_ALLOCATED_TAG
) {
2044 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2045 if (!trypin_tag(handle
))
2052 * Here, any user cannot access all objects in the zspage so let's move.
2054 d_addr
= kmap_atomic(newpage
);
2055 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2056 kunmap_atomic(d_addr
);
2058 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2059 addr
+= class->size
) {
2060 head
= obj_to_head(page
, addr
);
2061 if (head
& OBJ_ALLOCATED_TAG
) {
2062 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2063 if (!testpin_tag(handle
))
2066 old_obj
= handle_to_obj(handle
);
2067 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2068 new_obj
= (unsigned long)location_to_obj(newpage
,
2070 new_obj
|= BIT(HANDLE_PIN_BIT
);
2071 record_obj(handle
, new_obj
);
2075 replace_sub_page(class, zspage
, newpage
, page
);
2078 dec_zspage_isolation(zspage
);
2081 * Page migration is done so let's putback isolated zspage to
2082 * the list if @page is final isolated subpage in the zspage.
2084 if (!is_zspage_isolated(zspage
)) {
2086 * We cannot race with zs_destroy_pool() here because we wait
2087 * for isolation to hit zero before we start destroying.
2088 * Also, we ensure that everyone can see pool->destroying before
2091 putback_zspage_deferred(pool
, class, zspage
);
2092 zs_pool_dec_isolated(pool
);
2095 if (page_zone(newpage
) != page_zone(page
)) {
2096 dec_zone_page_state(page
, NR_ZSPAGES
);
2097 inc_zone_page_state(newpage
, NR_ZSPAGES
);
2104 ret
= MIGRATEPAGE_SUCCESS
;
2106 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2107 addr
+= class->size
) {
2108 head
= obj_to_head(page
, addr
);
2109 if (head
& OBJ_ALLOCATED_TAG
) {
2110 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2111 if (!testpin_tag(handle
))
2116 kunmap_atomic(s_addr
);
2117 spin_unlock(&class->lock
);
2118 migrate_write_unlock(zspage
);
2123 static void zs_page_putback(struct page
*page
)
2125 struct zs_pool
*pool
;
2126 struct size_class
*class;
2128 enum fullness_group fg
;
2129 struct address_space
*mapping
;
2130 struct zspage
*zspage
;
2132 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2133 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2135 zspage
= get_zspage(page
);
2136 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2137 mapping
= page_mapping(page
);
2138 pool
= mapping
->private_data
;
2139 class = pool
->size_class
[class_idx
];
2141 spin_lock(&class->lock
);
2142 dec_zspage_isolation(zspage
);
2143 if (!is_zspage_isolated(zspage
)) {
2145 * Due to page_lock, we cannot free zspage immediately
2148 putback_zspage_deferred(pool
, class, zspage
);
2149 zs_pool_dec_isolated(pool
);
2151 spin_unlock(&class->lock
);
2154 static const struct address_space_operations zsmalloc_aops
= {
2155 .isolate_page
= zs_page_isolate
,
2156 .migratepage
= zs_page_migrate
,
2157 .putback_page
= zs_page_putback
,
2160 static int zs_register_migration(struct zs_pool
*pool
)
2162 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2163 if (IS_ERR(pool
->inode
)) {
2168 pool
->inode
->i_mapping
->private_data
= pool
;
2169 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2173 static bool pool_isolated_are_drained(struct zs_pool
*pool
)
2175 return atomic_long_read(&pool
->isolated_pages
) == 0;
2178 /* Function for resolving migration */
2179 static void wait_for_isolated_drain(struct zs_pool
*pool
)
2183 * We're in the process of destroying the pool, so there are no
2184 * active allocations. zs_page_isolate() fails for completely free
2185 * zspages, so we need only wait for the zs_pool's isolated
2186 * count to hit zero.
2188 wait_event(pool
->migration_wait
,
2189 pool_isolated_are_drained(pool
));
2192 static void zs_unregister_migration(struct zs_pool
*pool
)
2194 pool
->destroying
= true;
2196 * We need a memory barrier here to ensure global visibility of
2197 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2198 * case we don't care, or it will be > 0 and pool->destroying will
2199 * ensure that we wake up once isolation hits 0.
2202 wait_for_isolated_drain(pool
); /* This can block */
2203 flush_work(&pool
->free_work
);
2208 * Caller should hold page_lock of all pages in the zspage
2209 * In here, we cannot use zspage meta data.
2211 static void async_free_zspage(struct work_struct
*work
)
2214 struct size_class
*class;
2215 unsigned int class_idx
;
2216 enum fullness_group fullness
;
2217 struct zspage
*zspage
, *tmp
;
2218 LIST_HEAD(free_pages
);
2219 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2222 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2223 class = pool
->size_class
[i
];
2224 if (class->index
!= i
)
2227 spin_lock(&class->lock
);
2228 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2229 spin_unlock(&class->lock
);
2233 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2234 list_del(&zspage
->list
);
2235 lock_zspage(zspage
);
2237 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2238 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2239 class = pool
->size_class
[class_idx
];
2240 spin_lock(&class->lock
);
2241 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2242 spin_unlock(&class->lock
);
2246 static void kick_deferred_free(struct zs_pool
*pool
)
2248 schedule_work(&pool
->free_work
);
2251 static void init_deferred_free(struct zs_pool
*pool
)
2253 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2256 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2258 struct page
*page
= get_first_page(zspage
);
2261 WARN_ON(!trylock_page(page
));
2262 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2264 } while ((page
= get_next_page(page
)) != NULL
);
2270 * Based on the number of unused allocated objects calculate
2271 * and return the number of pages that we can free.
2273 static unsigned long zs_can_compact(struct size_class
*class)
2275 unsigned long obj_wasted
;
2276 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2277 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2279 if (obj_allocated
<= obj_used
)
2282 obj_wasted
= obj_allocated
- obj_used
;
2283 obj_wasted
/= class->objs_per_zspage
;
2285 return obj_wasted
* class->pages_per_zspage
;
2288 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2290 struct zs_compact_control cc
;
2291 struct zspage
*src_zspage
;
2292 struct zspage
*dst_zspage
= NULL
;
2294 spin_lock(&class->lock
);
2295 while ((src_zspage
= isolate_zspage(class, true))) {
2297 if (!zs_can_compact(class))
2301 cc
.s_page
= get_first_page(src_zspage
);
2303 while ((dst_zspage
= isolate_zspage(class, false))) {
2304 cc
.d_page
= get_first_page(dst_zspage
);
2306 * If there is no more space in dst_page, resched
2307 * and see if anyone had allocated another zspage.
2309 if (!migrate_zspage(pool
, class, &cc
))
2312 putback_zspage(class, dst_zspage
);
2315 /* Stop if we couldn't find slot */
2316 if (dst_zspage
== NULL
)
2319 putback_zspage(class, dst_zspage
);
2320 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2321 free_zspage(pool
, class, src_zspage
);
2322 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2324 spin_unlock(&class->lock
);
2326 spin_lock(&class->lock
);
2330 putback_zspage(class, src_zspage
);
2332 spin_unlock(&class->lock
);
2335 unsigned long zs_compact(struct zs_pool
*pool
)
2338 struct size_class
*class;
2340 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2341 class = pool
->size_class
[i
];
2344 if (class->index
!= i
)
2346 __zs_compact(pool
, class);
2349 return pool
->stats
.pages_compacted
;
2351 EXPORT_SYMBOL_GPL(zs_compact
);
2353 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2355 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2357 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2359 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2360 struct shrink_control
*sc
)
2362 unsigned long pages_freed
;
2363 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2366 pages_freed
= pool
->stats
.pages_compacted
;
2368 * Compact classes and calculate compaction delta.
2369 * Can run concurrently with a manually triggered
2370 * (by user) compaction.
2372 pages_freed
= zs_compact(pool
) - pages_freed
;
2374 return pages_freed
? pages_freed
: SHRINK_STOP
;
2377 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2378 struct shrink_control
*sc
)
2381 struct size_class
*class;
2382 unsigned long pages_to_free
= 0;
2383 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2386 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2387 class = pool
->size_class
[i
];
2390 if (class->index
!= i
)
2393 pages_to_free
+= zs_can_compact(class);
2396 return pages_to_free
;
2399 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2401 unregister_shrinker(&pool
->shrinker
);
2404 static int zs_register_shrinker(struct zs_pool
*pool
)
2406 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2407 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2408 pool
->shrinker
.batch
= 0;
2409 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2411 return register_shrinker(&pool
->shrinker
);
2415 * zs_create_pool - Creates an allocation pool to work from.
2416 * @name: pool name to be created
2418 * This function must be called before anything when using
2419 * the zsmalloc allocator.
2421 * On success, a pointer to the newly created pool is returned,
2424 struct zs_pool
*zs_create_pool(const char *name
)
2427 struct zs_pool
*pool
;
2428 struct size_class
*prev_class
= NULL
;
2430 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2434 init_deferred_free(pool
);
2436 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2440 #ifdef CONFIG_COMPACTION
2441 init_waitqueue_head(&pool
->migration_wait
);
2444 if (create_cache(pool
))
2448 * Iterate reversely, because, size of size_class that we want to use
2449 * for merging should be larger or equal to current size.
2451 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2453 int pages_per_zspage
;
2454 int objs_per_zspage
;
2455 struct size_class
*class;
2458 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2459 if (size
> ZS_MAX_ALLOC_SIZE
)
2460 size
= ZS_MAX_ALLOC_SIZE
;
2461 pages_per_zspage
= get_pages_per_zspage(size
);
2462 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2465 * We iterate from biggest down to smallest classes,
2466 * so huge_class_size holds the size of the first huge
2467 * class. Any object bigger than or equal to that will
2468 * endup in the huge class.
2470 if (pages_per_zspage
!= 1 && objs_per_zspage
!= 1 &&
2472 huge_class_size
= size
;
2474 * The object uses ZS_HANDLE_SIZE bytes to store the
2475 * handle. We need to subtract it, because zs_malloc()
2476 * unconditionally adds handle size before it performs
2477 * size class search - so object may be smaller than
2478 * huge class size, yet it still can end up in the huge
2479 * class because it grows by ZS_HANDLE_SIZE extra bytes
2480 * right before class lookup.
2482 huge_class_size
-= (ZS_HANDLE_SIZE
- 1);
2486 * size_class is used for normal zsmalloc operation such
2487 * as alloc/free for that size. Although it is natural that we
2488 * have one size_class for each size, there is a chance that we
2489 * can get more memory utilization if we use one size_class for
2490 * many different sizes whose size_class have same
2491 * characteristics. So, we makes size_class point to
2492 * previous size_class if possible.
2495 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2496 pool
->size_class
[i
] = prev_class
;
2501 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2507 class->pages_per_zspage
= pages_per_zspage
;
2508 class->objs_per_zspage
= objs_per_zspage
;
2509 spin_lock_init(&class->lock
);
2510 pool
->size_class
[i
] = class;
2511 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2513 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2518 /* debug only, don't abort if it fails */
2519 zs_pool_stat_create(pool
, name
);
2521 if (zs_register_migration(pool
))
2525 * Not critical since shrinker is only used to trigger internal
2526 * defragmentation of the pool which is pretty optional thing. If
2527 * registration fails we still can use the pool normally and user can
2528 * trigger compaction manually. Thus, ignore return code.
2530 zs_register_shrinker(pool
);
2535 zs_destroy_pool(pool
);
2538 EXPORT_SYMBOL_GPL(zs_create_pool
);
2540 void zs_destroy_pool(struct zs_pool
*pool
)
2544 zs_unregister_shrinker(pool
);
2545 zs_unregister_migration(pool
);
2546 zs_pool_stat_destroy(pool
);
2548 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2550 struct size_class
*class = pool
->size_class
[i
];
2555 if (class->index
!= i
)
2558 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2559 if (!list_empty(&class->fullness_list
[fg
])) {
2560 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2567 destroy_cache(pool
);
2571 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2573 static int __init
zs_init(void)
2577 ret
= zsmalloc_mount();
2581 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2582 zs_cpu_prepare
, zs_cpu_dead
);
2587 zpool_register_driver(&zs_zpool_driver
);
2600 static void __exit
zs_exit(void)
2603 zpool_unregister_driver(&zs_zpool_driver
);
2606 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2611 module_init(zs_init
);
2612 module_exit(zs_exit
);
2614 MODULE_LICENSE("Dual BSD/GPL");
2615 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");