Linux 4.19.168
[linux/fpc-iii.git] / net / sched / sch_cake.c
blob32712e7dcbdc27d104b677dccc98c60f6302d528
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
70 #include <net/tcp.h>
71 #include <net/flow_dissector.h>
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
75 #endif
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
83 /* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
98 /* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
107 struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
117 enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
125 struct cake_flow {
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost; /* index into cake_host table */
134 u16 dsthost;
135 u8 set;
136 }; /* please try to keep this structure <= 64 bytes */
138 struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
141 u16 srchost_refcnt;
142 u16 dsthost_refcnt;
145 struct cake_heap_entry {
146 u16 t:3, b:10;
149 struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES]; /* for set association */
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 u16 flow_quantum;
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
164 u32 max_skblen;
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
176 u16 tin_quantum_prio;
177 u16 tin_quantum_band;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
183 u32 packets;
184 u64 bytes;
186 u32 ack_drops;
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
200 struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
214 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
215 u16 rate_shft;
216 ktime_t time_next_packet;
217 ktime_t failsafe_next_packet;
218 u64 rate_ns;
219 u64 rate_bps;
220 u16 rate_flags;
221 s16 rate_overhead;
222 u16 rate_mpu;
223 u64 interval;
224 u64 target;
226 /* resource tracking */
227 u32 buffer_used;
228 u32 buffer_max_used;
229 u32 buffer_limit;
230 u32 buffer_config_limit;
232 /* indices for dequeue */
233 u16 cur_tin;
234 u16 cur_flow;
236 struct qdisc_watchdog watchdog;
237 const u8 *tin_index;
238 const u8 *tin_order;
240 /* bandwidth capacity estimate */
241 ktime_t last_packet_time;
242 ktime_t avg_window_begin;
243 u64 avg_packet_interval;
244 u64 avg_window_bytes;
245 u64 avg_peak_bandwidth;
246 ktime_t last_reconfig_time;
248 /* packet length stats */
249 u32 avg_netoff;
250 u16 max_netlen;
251 u16 max_adjlen;
252 u16 min_netlen;
253 u16 min_adjlen;
256 enum {
257 CAKE_FLAG_OVERHEAD = BIT(0),
258 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
259 CAKE_FLAG_INGRESS = BIT(2),
260 CAKE_FLAG_WASH = BIT(3),
261 CAKE_FLAG_SPLIT_GSO = BIT(4)
264 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
265 * obtain the best features of each. Codel is excellent on flows which
266 * respond to congestion signals in a TCP-like way. BLUE is more effective on
267 * unresponsive flows.
270 struct cobalt_skb_cb {
271 ktime_t enqueue_time;
272 u32 adjusted_len;
275 static u64 us_to_ns(u64 us)
277 return us * NSEC_PER_USEC;
280 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
282 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
283 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
286 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
288 return get_cobalt_cb(skb)->enqueue_time;
291 static void cobalt_set_enqueue_time(struct sk_buff *skb,
292 ktime_t now)
294 get_cobalt_cb(skb)->enqueue_time = now;
297 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
299 /* Diffserv lookup tables */
301 static const u8 precedence[] = {
302 0, 0, 0, 0, 0, 0, 0, 0,
303 1, 1, 1, 1, 1, 1, 1, 1,
304 2, 2, 2, 2, 2, 2, 2, 2,
305 3, 3, 3, 3, 3, 3, 3, 3,
306 4, 4, 4, 4, 4, 4, 4, 4,
307 5, 5, 5, 5, 5, 5, 5, 5,
308 6, 6, 6, 6, 6, 6, 6, 6,
309 7, 7, 7, 7, 7, 7, 7, 7,
312 static const u8 diffserv8[] = {
313 2, 5, 1, 2, 4, 2, 2, 2,
314 0, 2, 1, 2, 1, 2, 1, 2,
315 5, 2, 4, 2, 4, 2, 4, 2,
316 3, 2, 3, 2, 3, 2, 3, 2,
317 6, 2, 3, 2, 3, 2, 3, 2,
318 6, 2, 2, 2, 6, 2, 6, 2,
319 7, 2, 2, 2, 2, 2, 2, 2,
320 7, 2, 2, 2, 2, 2, 2, 2,
323 static const u8 diffserv4[] = {
324 0, 2, 0, 0, 2, 0, 0, 0,
325 1, 0, 0, 0, 0, 0, 0, 0,
326 2, 0, 2, 0, 2, 0, 2, 0,
327 2, 0, 2, 0, 2, 0, 2, 0,
328 3, 0, 2, 0, 2, 0, 2, 0,
329 3, 0, 0, 0, 3, 0, 3, 0,
330 3, 0, 0, 0, 0, 0, 0, 0,
331 3, 0, 0, 0, 0, 0, 0, 0,
334 static const u8 diffserv3[] = {
335 0, 0, 0, 0, 2, 0, 0, 0,
336 1, 0, 0, 0, 0, 0, 0, 0,
337 0, 0, 0, 0, 0, 0, 0, 0,
338 0, 0, 0, 0, 0, 0, 0, 0,
339 0, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 2, 0, 2, 0,
341 2, 0, 0, 0, 0, 0, 0, 0,
342 2, 0, 0, 0, 0, 0, 0, 0,
345 static const u8 besteffort[] = {
346 0, 0, 0, 0, 0, 0, 0, 0,
347 0, 0, 0, 0, 0, 0, 0, 0,
348 0, 0, 0, 0, 0, 0, 0, 0,
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
356 /* tin priority order for stats dumping */
358 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
359 static const u8 bulk_order[] = {1, 0, 2, 3};
361 #define REC_INV_SQRT_CACHE (16)
362 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
364 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
365 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
367 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
370 static void cobalt_newton_step(struct cobalt_vars *vars)
372 u32 invsqrt, invsqrt2;
373 u64 val;
375 invsqrt = vars->rec_inv_sqrt;
376 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
377 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
379 val >>= 2; /* avoid overflow in following multiply */
380 val = (val * invsqrt) >> (32 - 2 + 1);
382 vars->rec_inv_sqrt = val;
385 static void cobalt_invsqrt(struct cobalt_vars *vars)
387 if (vars->count < REC_INV_SQRT_CACHE)
388 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
389 else
390 cobalt_newton_step(vars);
393 /* There is a big difference in timing between the accurate values placed in
394 * the cache and the approximations given by a single Newton step for small
395 * count values, particularly when stepping from count 1 to 2 or vice versa.
396 * Above 16, a single Newton step gives sufficient accuracy in either
397 * direction, given the precision stored.
399 * The magnitude of the error when stepping up to count 2 is such as to give
400 * the value that *should* have been produced at count 4.
403 static void cobalt_cache_init(void)
405 struct cobalt_vars v;
407 memset(&v, 0, sizeof(v));
408 v.rec_inv_sqrt = ~0U;
409 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
411 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
412 cobalt_newton_step(&v);
413 cobalt_newton_step(&v);
414 cobalt_newton_step(&v);
415 cobalt_newton_step(&v);
417 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
421 static void cobalt_vars_init(struct cobalt_vars *vars)
423 memset(vars, 0, sizeof(*vars));
425 if (!cobalt_rec_inv_sqrt_cache[0]) {
426 cobalt_cache_init();
427 cobalt_rec_inv_sqrt_cache[0] = ~0;
431 /* CoDel control_law is t + interval/sqrt(count)
432 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
433 * both sqrt() and divide operation.
435 static ktime_t cobalt_control(ktime_t t,
436 u64 interval,
437 u32 rec_inv_sqrt)
439 return ktime_add_ns(t, reciprocal_scale(interval,
440 rec_inv_sqrt));
443 /* Call this when a packet had to be dropped due to queue overflow. Returns
444 * true if the BLUE state was quiescent before but active after this call.
446 static bool cobalt_queue_full(struct cobalt_vars *vars,
447 struct cobalt_params *p,
448 ktime_t now)
450 bool up = false;
452 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
453 up = !vars->p_drop;
454 vars->p_drop += p->p_inc;
455 if (vars->p_drop < p->p_inc)
456 vars->p_drop = ~0;
457 vars->blue_timer = now;
459 vars->dropping = true;
460 vars->drop_next = now;
461 if (!vars->count)
462 vars->count = 1;
464 return up;
467 /* Call this when the queue was serviced but turned out to be empty. Returns
468 * true if the BLUE state was active before but quiescent after this call.
470 static bool cobalt_queue_empty(struct cobalt_vars *vars,
471 struct cobalt_params *p,
472 ktime_t now)
474 bool down = false;
476 if (vars->p_drop &&
477 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
478 if (vars->p_drop < p->p_dec)
479 vars->p_drop = 0;
480 else
481 vars->p_drop -= p->p_dec;
482 vars->blue_timer = now;
483 down = !vars->p_drop;
485 vars->dropping = false;
487 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
488 vars->count--;
489 cobalt_invsqrt(vars);
490 vars->drop_next = cobalt_control(vars->drop_next,
491 p->interval,
492 vars->rec_inv_sqrt);
495 return down;
498 /* Call this with a freshly dequeued packet for possible congestion marking.
499 * Returns true as an instruction to drop the packet, false for delivery.
501 static bool cobalt_should_drop(struct cobalt_vars *vars,
502 struct cobalt_params *p,
503 ktime_t now,
504 struct sk_buff *skb,
505 u32 bulk_flows)
507 bool next_due, over_target, drop = false;
508 ktime_t schedule;
509 u64 sojourn;
511 /* The 'schedule' variable records, in its sign, whether 'now' is before or
512 * after 'drop_next'. This allows 'drop_next' to be updated before the next
513 * scheduling decision is actually branched, without destroying that
514 * information. Similarly, the first 'schedule' value calculated is preserved
515 * in the boolean 'next_due'.
517 * As for 'drop_next', we take advantage of the fact that 'interval' is both
518 * the delay between first exceeding 'target' and the first signalling event,
519 * *and* the scaling factor for the signalling frequency. It's therefore very
520 * natural to use a single mechanism for both purposes, and eliminates a
521 * significant amount of reference Codel's spaghetti code. To help with this,
522 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
523 * as possible to 1.0 in fixed-point.
526 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
527 schedule = ktime_sub(now, vars->drop_next);
528 over_target = sojourn > p->target &&
529 sojourn > p->mtu_time * bulk_flows * 2 &&
530 sojourn > p->mtu_time * 4;
531 next_due = vars->count && ktime_to_ns(schedule) >= 0;
533 vars->ecn_marked = false;
535 if (over_target) {
536 if (!vars->dropping) {
537 vars->dropping = true;
538 vars->drop_next = cobalt_control(now,
539 p->interval,
540 vars->rec_inv_sqrt);
542 if (!vars->count)
543 vars->count = 1;
544 } else if (vars->dropping) {
545 vars->dropping = false;
548 if (next_due && vars->dropping) {
549 /* Use ECN mark if possible, otherwise drop */
550 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
552 vars->count++;
553 if (!vars->count)
554 vars->count--;
555 cobalt_invsqrt(vars);
556 vars->drop_next = cobalt_control(vars->drop_next,
557 p->interval,
558 vars->rec_inv_sqrt);
559 schedule = ktime_sub(now, vars->drop_next);
560 } else {
561 while (next_due) {
562 vars->count--;
563 cobalt_invsqrt(vars);
564 vars->drop_next = cobalt_control(vars->drop_next,
565 p->interval,
566 vars->rec_inv_sqrt);
567 schedule = ktime_sub(now, vars->drop_next);
568 next_due = vars->count && ktime_to_ns(schedule) >= 0;
572 /* Simple BLUE implementation. Lack of ECN is deliberate. */
573 if (vars->p_drop)
574 drop |= (prandom_u32() < vars->p_drop);
576 /* Overload the drop_next field as an activity timeout */
577 if (!vars->count)
578 vars->drop_next = ktime_add_ns(now, p->interval);
579 else if (ktime_to_ns(schedule) > 0 && !drop)
580 vars->drop_next = now;
582 return drop;
585 static void cake_update_flowkeys(struct flow_keys *keys,
586 const struct sk_buff *skb)
588 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
589 struct nf_conntrack_tuple tuple = {};
590 bool rev = !skb->_nfct;
592 if (skb_protocol(skb, true) != htons(ETH_P_IP))
593 return;
595 if (!nf_ct_get_tuple_skb(&tuple, skb))
596 return;
598 keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
599 keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
601 if (keys->ports.ports) {
602 keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
603 keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
605 #endif
608 /* Cake has several subtle multiple bit settings. In these cases you
609 * would be matching triple isolate mode as well.
612 static bool cake_dsrc(int flow_mode)
614 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
617 static bool cake_ddst(int flow_mode)
619 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
622 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
623 int flow_mode, u16 flow_override, u16 host_override)
625 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
626 u16 reduced_hash, srchost_idx, dsthost_idx;
627 struct flow_keys keys, host_keys;
629 if (unlikely(flow_mode == CAKE_FLOW_NONE))
630 return 0;
632 /* If both overrides are set we can skip packet dissection entirely */
633 if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
634 (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
635 goto skip_hash;
637 skb_flow_dissect_flow_keys(skb, &keys,
638 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
640 if (flow_mode & CAKE_FLOW_NAT_FLAG)
641 cake_update_flowkeys(&keys, skb);
643 /* flow_hash_from_keys() sorts the addresses by value, so we have
644 * to preserve their order in a separate data structure to treat
645 * src and dst host addresses as independently selectable.
647 host_keys = keys;
648 host_keys.ports.ports = 0;
649 host_keys.basic.ip_proto = 0;
650 host_keys.keyid.keyid = 0;
651 host_keys.tags.flow_label = 0;
653 switch (host_keys.control.addr_type) {
654 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
655 host_keys.addrs.v4addrs.src = 0;
656 dsthost_hash = flow_hash_from_keys(&host_keys);
657 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
658 host_keys.addrs.v4addrs.dst = 0;
659 srchost_hash = flow_hash_from_keys(&host_keys);
660 break;
662 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
663 memset(&host_keys.addrs.v6addrs.src, 0,
664 sizeof(host_keys.addrs.v6addrs.src));
665 dsthost_hash = flow_hash_from_keys(&host_keys);
666 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
667 memset(&host_keys.addrs.v6addrs.dst, 0,
668 sizeof(host_keys.addrs.v6addrs.dst));
669 srchost_hash = flow_hash_from_keys(&host_keys);
670 break;
672 default:
673 dsthost_hash = 0;
674 srchost_hash = 0;
677 /* This *must* be after the above switch, since as a
678 * side-effect it sorts the src and dst addresses.
680 if (flow_mode & CAKE_FLOW_FLOWS)
681 flow_hash = flow_hash_from_keys(&keys);
683 skip_hash:
684 if (flow_override)
685 flow_hash = flow_override - 1;
686 if (host_override) {
687 dsthost_hash = host_override - 1;
688 srchost_hash = host_override - 1;
691 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
692 if (flow_mode & CAKE_FLOW_SRC_IP)
693 flow_hash ^= srchost_hash;
695 if (flow_mode & CAKE_FLOW_DST_IP)
696 flow_hash ^= dsthost_hash;
699 reduced_hash = flow_hash % CAKE_QUEUES;
701 /* set-associative hashing */
702 /* fast path if no hash collision (direct lookup succeeds) */
703 if (likely(q->tags[reduced_hash] == flow_hash &&
704 q->flows[reduced_hash].set)) {
705 q->way_directs++;
706 } else {
707 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
708 u32 outer_hash = reduced_hash - inner_hash;
709 bool allocate_src = false;
710 bool allocate_dst = false;
711 u32 i, k;
713 /* check if any active queue in the set is reserved for
714 * this flow.
716 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
717 i++, k = (k + 1) % CAKE_SET_WAYS) {
718 if (q->tags[outer_hash + k] == flow_hash) {
719 if (i)
720 q->way_hits++;
722 if (!q->flows[outer_hash + k].set) {
723 /* need to increment host refcnts */
724 allocate_src = cake_dsrc(flow_mode);
725 allocate_dst = cake_ddst(flow_mode);
728 goto found;
732 /* no queue is reserved for this flow, look for an
733 * empty one.
735 for (i = 0; i < CAKE_SET_WAYS;
736 i++, k = (k + 1) % CAKE_SET_WAYS) {
737 if (!q->flows[outer_hash + k].set) {
738 q->way_misses++;
739 allocate_src = cake_dsrc(flow_mode);
740 allocate_dst = cake_ddst(flow_mode);
741 goto found;
745 /* With no empty queues, default to the original
746 * queue, accept the collision, update the host tags.
748 q->way_collisions++;
749 q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--;
750 q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--;
751 allocate_src = cake_dsrc(flow_mode);
752 allocate_dst = cake_ddst(flow_mode);
753 found:
754 /* reserve queue for future packets in same flow */
755 reduced_hash = outer_hash + k;
756 q->tags[reduced_hash] = flow_hash;
758 if (allocate_src) {
759 srchost_idx = srchost_hash % CAKE_QUEUES;
760 inner_hash = srchost_idx % CAKE_SET_WAYS;
761 outer_hash = srchost_idx - inner_hash;
762 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
763 i++, k = (k + 1) % CAKE_SET_WAYS) {
764 if (q->hosts[outer_hash + k].srchost_tag ==
765 srchost_hash)
766 goto found_src;
768 for (i = 0; i < CAKE_SET_WAYS;
769 i++, k = (k + 1) % CAKE_SET_WAYS) {
770 if (!q->hosts[outer_hash + k].srchost_refcnt)
771 break;
773 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
774 found_src:
775 srchost_idx = outer_hash + k;
776 q->hosts[srchost_idx].srchost_refcnt++;
777 q->flows[reduced_hash].srchost = srchost_idx;
780 if (allocate_dst) {
781 dsthost_idx = dsthost_hash % CAKE_QUEUES;
782 inner_hash = dsthost_idx % CAKE_SET_WAYS;
783 outer_hash = dsthost_idx - inner_hash;
784 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
785 i++, k = (k + 1) % CAKE_SET_WAYS) {
786 if (q->hosts[outer_hash + k].dsthost_tag ==
787 dsthost_hash)
788 goto found_dst;
790 for (i = 0; i < CAKE_SET_WAYS;
791 i++, k = (k + 1) % CAKE_SET_WAYS) {
792 if (!q->hosts[outer_hash + k].dsthost_refcnt)
793 break;
795 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
796 found_dst:
797 dsthost_idx = outer_hash + k;
798 q->hosts[dsthost_idx].dsthost_refcnt++;
799 q->flows[reduced_hash].dsthost = dsthost_idx;
803 return reduced_hash;
806 /* helper functions : might be changed when/if skb use a standard list_head */
807 /* remove one skb from head of slot queue */
809 static struct sk_buff *dequeue_head(struct cake_flow *flow)
811 struct sk_buff *skb = flow->head;
813 if (skb) {
814 flow->head = skb->next;
815 skb->next = NULL;
818 return skb;
821 /* add skb to flow queue (tail add) */
823 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
825 if (!flow->head)
826 flow->head = skb;
827 else
828 flow->tail->next = skb;
829 flow->tail = skb;
830 skb->next = NULL;
833 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
834 struct ipv6hdr *buf)
836 unsigned int offset = skb_network_offset(skb);
837 struct iphdr *iph;
839 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
841 if (!iph)
842 return NULL;
844 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
845 return skb_header_pointer(skb, offset + iph->ihl * 4,
846 sizeof(struct ipv6hdr), buf);
848 else if (iph->version == 4)
849 return iph;
851 else if (iph->version == 6)
852 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
853 buf);
855 return NULL;
858 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
859 void *buf, unsigned int bufsize)
861 unsigned int offset = skb_network_offset(skb);
862 const struct ipv6hdr *ipv6h;
863 const struct tcphdr *tcph;
864 const struct iphdr *iph;
865 struct ipv6hdr _ipv6h;
866 struct tcphdr _tcph;
868 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
870 if (!ipv6h)
871 return NULL;
873 if (ipv6h->version == 4) {
874 iph = (struct iphdr *)ipv6h;
875 offset += iph->ihl * 4;
877 /* special-case 6in4 tunnelling, as that is a common way to get
878 * v6 connectivity in the home
880 if (iph->protocol == IPPROTO_IPV6) {
881 ipv6h = skb_header_pointer(skb, offset,
882 sizeof(_ipv6h), &_ipv6h);
884 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
885 return NULL;
887 offset += sizeof(struct ipv6hdr);
889 } else if (iph->protocol != IPPROTO_TCP) {
890 return NULL;
893 } else if (ipv6h->version == 6) {
894 if (ipv6h->nexthdr != IPPROTO_TCP)
895 return NULL;
897 offset += sizeof(struct ipv6hdr);
898 } else {
899 return NULL;
902 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
903 if (!tcph)
904 return NULL;
906 return skb_header_pointer(skb, offset,
907 min(__tcp_hdrlen(tcph), bufsize), buf);
910 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
911 int code, int *oplen)
913 /* inspired by tcp_parse_options in tcp_input.c */
914 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
915 const u8 *ptr = (const u8 *)(tcph + 1);
917 while (length > 0) {
918 int opcode = *ptr++;
919 int opsize;
921 if (opcode == TCPOPT_EOL)
922 break;
923 if (opcode == TCPOPT_NOP) {
924 length--;
925 continue;
927 opsize = *ptr++;
928 if (opsize < 2 || opsize > length)
929 break;
931 if (opcode == code) {
932 *oplen = opsize;
933 return ptr;
936 ptr += opsize - 2;
937 length -= opsize;
940 return NULL;
943 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
944 * bytes than the other. In the case where both sequences ACKs bytes that the
945 * other doesn't, A is considered greater. DSACKs in A also makes A be
946 * considered greater.
948 * @return -1, 0 or 1 as normal compare functions
950 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
951 const struct tcphdr *tcph_b)
953 const struct tcp_sack_block_wire *sack_a, *sack_b;
954 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
955 u32 bytes_a = 0, bytes_b = 0;
956 int oplen_a, oplen_b;
957 bool first = true;
959 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
960 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
962 /* pointers point to option contents */
963 oplen_a -= TCPOLEN_SACK_BASE;
964 oplen_b -= TCPOLEN_SACK_BASE;
966 if (sack_a && oplen_a >= sizeof(*sack_a) &&
967 (!sack_b || oplen_b < sizeof(*sack_b)))
968 return -1;
969 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
970 (!sack_a || oplen_a < sizeof(*sack_a)))
971 return 1;
972 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
973 (!sack_b || oplen_b < sizeof(*sack_b)))
974 return 0;
976 while (oplen_a >= sizeof(*sack_a)) {
977 const struct tcp_sack_block_wire *sack_tmp = sack_b;
978 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
979 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
980 int oplen_tmp = oplen_b;
981 bool found = false;
983 /* DSACK; always considered greater to prevent dropping */
984 if (before(start_a, ack_seq_a))
985 return -1;
987 bytes_a += end_a - start_a;
989 while (oplen_tmp >= sizeof(*sack_tmp)) {
990 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
991 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
993 /* first time through we count the total size */
994 if (first)
995 bytes_b += end_b - start_b;
997 if (!after(start_b, start_a) && !before(end_b, end_a)) {
998 found = true;
999 if (!first)
1000 break;
1002 oplen_tmp -= sizeof(*sack_tmp);
1003 sack_tmp++;
1006 if (!found)
1007 return -1;
1009 oplen_a -= sizeof(*sack_a);
1010 sack_a++;
1011 first = false;
1014 /* If we made it this far, all ranges SACKed by A are covered by B, so
1015 * either the SACKs are equal, or B SACKs more bytes.
1017 return bytes_b > bytes_a ? 1 : 0;
1020 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1021 u32 *tsval, u32 *tsecr)
1023 const u8 *ptr;
1024 int opsize;
1026 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1028 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1029 *tsval = get_unaligned_be32(ptr);
1030 *tsecr = get_unaligned_be32(ptr + 4);
1034 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1035 u32 tstamp_new, u32 tsecr_new)
1037 /* inspired by tcp_parse_options in tcp_input.c */
1038 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1039 const u8 *ptr = (const u8 *)(tcph + 1);
1040 u32 tstamp, tsecr;
1042 /* 3 reserved flags must be unset to avoid future breakage
1043 * ACK must be set
1044 * ECE/CWR are handled separately
1045 * All other flags URG/PSH/RST/SYN/FIN must be unset
1046 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1047 * 0x00C00000 = CWR/ECE (handled separately)
1048 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1050 if (((tcp_flag_word(tcph) &
1051 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1052 return false;
1054 while (length > 0) {
1055 int opcode = *ptr++;
1056 int opsize;
1058 if (opcode == TCPOPT_EOL)
1059 break;
1060 if (opcode == TCPOPT_NOP) {
1061 length--;
1062 continue;
1064 opsize = *ptr++;
1065 if (opsize < 2 || opsize > length)
1066 break;
1068 switch (opcode) {
1069 case TCPOPT_MD5SIG: /* doesn't influence state */
1070 break;
1072 case TCPOPT_SACK: /* stricter checking performed later */
1073 if (opsize % 8 != 2)
1074 return false;
1075 break;
1077 case TCPOPT_TIMESTAMP:
1078 /* only drop timestamps lower than new */
1079 if (opsize != TCPOLEN_TIMESTAMP)
1080 return false;
1081 tstamp = get_unaligned_be32(ptr);
1082 tsecr = get_unaligned_be32(ptr + 4);
1083 if (after(tstamp, tstamp_new) ||
1084 after(tsecr, tsecr_new))
1085 return false;
1086 break;
1088 case TCPOPT_MSS: /* these should only be set on SYN */
1089 case TCPOPT_WINDOW:
1090 case TCPOPT_SACK_PERM:
1091 case TCPOPT_FASTOPEN:
1092 case TCPOPT_EXP:
1093 default: /* don't drop if any unknown options are present */
1094 return false;
1097 ptr += opsize - 2;
1098 length -= opsize;
1101 return true;
1104 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1105 struct cake_flow *flow)
1107 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1108 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1109 struct sk_buff *skb_check, *skb_prev = NULL;
1110 const struct ipv6hdr *ipv6h, *ipv6h_check;
1111 unsigned char _tcph[64], _tcph_check[64];
1112 const struct tcphdr *tcph, *tcph_check;
1113 const struct iphdr *iph, *iph_check;
1114 struct ipv6hdr _iph, _iph_check;
1115 const struct sk_buff *skb;
1116 int seglen, num_found = 0;
1117 u32 tstamp = 0, tsecr = 0;
1118 __be32 elig_flags = 0;
1119 int sack_comp;
1121 /* no other possible ACKs to filter */
1122 if (flow->head == flow->tail)
1123 return NULL;
1125 skb = flow->tail;
1126 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1127 iph = cake_get_iphdr(skb, &_iph);
1128 if (!tcph)
1129 return NULL;
1131 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1133 /* the 'triggering' packet need only have the ACK flag set.
1134 * also check that SYN is not set, as there won't be any previous ACKs.
1136 if ((tcp_flag_word(tcph) &
1137 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1138 return NULL;
1140 /* the 'triggering' ACK is at the tail of the queue, we have already
1141 * returned if it is the only packet in the flow. loop through the rest
1142 * of the queue looking for pure ACKs with the same 5-tuple as the
1143 * triggering one.
1145 for (skb_check = flow->head;
1146 skb_check && skb_check != skb;
1147 skb_prev = skb_check, skb_check = skb_check->next) {
1148 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1149 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1150 sizeof(_tcph_check));
1152 /* only TCP packets with matching 5-tuple are eligible, and only
1153 * drop safe headers
1155 if (!tcph_check || iph->version != iph_check->version ||
1156 tcph_check->source != tcph->source ||
1157 tcph_check->dest != tcph->dest)
1158 continue;
1160 if (iph_check->version == 4) {
1161 if (iph_check->saddr != iph->saddr ||
1162 iph_check->daddr != iph->daddr)
1163 continue;
1165 seglen = ntohs(iph_check->tot_len) -
1166 (4 * iph_check->ihl);
1167 } else if (iph_check->version == 6) {
1168 ipv6h = (struct ipv6hdr *)iph;
1169 ipv6h_check = (struct ipv6hdr *)iph_check;
1171 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1172 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1173 continue;
1175 seglen = ntohs(ipv6h_check->payload_len);
1176 } else {
1177 WARN_ON(1); /* shouldn't happen */
1178 continue;
1181 /* If the ECE/CWR flags changed from the previous eligible
1182 * packet in the same flow, we should no longer be dropping that
1183 * previous packet as this would lose information.
1185 if (elig_ack && (tcp_flag_word(tcph_check) &
1186 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1187 elig_ack = NULL;
1188 elig_ack_prev = NULL;
1189 num_found--;
1192 /* Check TCP options and flags, don't drop ACKs with segment
1193 * data, and don't drop ACKs with a higher cumulative ACK
1194 * counter than the triggering packet. Check ACK seqno here to
1195 * avoid parsing SACK options of packets we are going to exclude
1196 * anyway.
1198 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1199 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1200 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1201 continue;
1203 /* Check SACK options. The triggering packet must SACK more data
1204 * than the ACK under consideration, or SACK the same range but
1205 * have a larger cumulative ACK counter. The latter is a
1206 * pathological case, but is contained in the following check
1207 * anyway, just to be safe.
1209 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1211 if (sack_comp < 0 ||
1212 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1213 sack_comp == 0))
1214 continue;
1216 /* At this point we have found an eligible pure ACK to drop; if
1217 * we are in aggressive mode, we are done. Otherwise, keep
1218 * searching unless this is the second eligible ACK we
1219 * found.
1221 * Since we want to drop ACK closest to the head of the queue,
1222 * save the first eligible ACK we find, even if we need to loop
1223 * again.
1225 if (!elig_ack) {
1226 elig_ack = skb_check;
1227 elig_ack_prev = skb_prev;
1228 elig_flags = (tcp_flag_word(tcph_check)
1229 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1232 if (num_found++ > 0)
1233 goto found;
1236 /* We made it through the queue without finding two eligible ACKs . If
1237 * we found a single eligible ACK we can drop it in aggressive mode if
1238 * we can guarantee that this does not interfere with ECN flag
1239 * information. We ensure this by dropping it only if the enqueued
1240 * packet is consecutive with the eligible ACK, and their flags match.
1242 if (elig_ack && aggressive && elig_ack->next == skb &&
1243 (elig_flags == (tcp_flag_word(tcph) &
1244 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1245 goto found;
1247 return NULL;
1249 found:
1250 if (elig_ack_prev)
1251 elig_ack_prev->next = elig_ack->next;
1252 else
1253 flow->head = elig_ack->next;
1255 elig_ack->next = NULL;
1257 return elig_ack;
1260 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1262 avg -= avg >> shift;
1263 avg += sample >> shift;
1264 return avg;
1267 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1269 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1270 len -= off;
1272 if (q->max_netlen < len)
1273 q->max_netlen = len;
1274 if (q->min_netlen > len)
1275 q->min_netlen = len;
1277 len += q->rate_overhead;
1279 if (len < q->rate_mpu)
1280 len = q->rate_mpu;
1282 if (q->atm_mode == CAKE_ATM_ATM) {
1283 len += 47;
1284 len /= 48;
1285 len *= 53;
1286 } else if (q->atm_mode == CAKE_ATM_PTM) {
1287 /* Add one byte per 64 bytes or part thereof.
1288 * This is conservative and easier to calculate than the
1289 * precise value.
1291 len += (len + 63) / 64;
1294 if (q->max_adjlen < len)
1295 q->max_adjlen = len;
1296 if (q->min_adjlen > len)
1297 q->min_adjlen = len;
1299 return len;
1302 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1304 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1305 unsigned int hdr_len, last_len = 0;
1306 u32 off = skb_network_offset(skb);
1307 u32 len = qdisc_pkt_len(skb);
1308 u16 segs = 1;
1310 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1312 if (!shinfo->gso_size)
1313 return cake_calc_overhead(q, len, off);
1315 /* borrowed from qdisc_pkt_len_init() */
1316 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1318 /* + transport layer */
1319 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1320 SKB_GSO_TCPV6))) {
1321 const struct tcphdr *th;
1322 struct tcphdr _tcphdr;
1324 th = skb_header_pointer(skb, skb_transport_offset(skb),
1325 sizeof(_tcphdr), &_tcphdr);
1326 if (likely(th))
1327 hdr_len += __tcp_hdrlen(th);
1328 } else {
1329 struct udphdr _udphdr;
1331 if (skb_header_pointer(skb, skb_transport_offset(skb),
1332 sizeof(_udphdr), &_udphdr))
1333 hdr_len += sizeof(struct udphdr);
1336 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1337 segs = DIV_ROUND_UP(skb->len - hdr_len,
1338 shinfo->gso_size);
1339 else
1340 segs = shinfo->gso_segs;
1342 len = shinfo->gso_size + hdr_len;
1343 last_len = skb->len - shinfo->gso_size * (segs - 1);
1345 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1346 cake_calc_overhead(q, last_len, off));
1349 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1351 struct cake_heap_entry ii = q->overflow_heap[i];
1352 struct cake_heap_entry jj = q->overflow_heap[j];
1354 q->overflow_heap[i] = jj;
1355 q->overflow_heap[j] = ii;
1357 q->tins[ii.t].overflow_idx[ii.b] = j;
1358 q->tins[jj.t].overflow_idx[jj.b] = i;
1361 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1363 struct cake_heap_entry ii = q->overflow_heap[i];
1365 return q->tins[ii.t].backlogs[ii.b];
1368 static void cake_heapify(struct cake_sched_data *q, u16 i)
1370 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1371 u32 mb = cake_heap_get_backlog(q, i);
1372 u32 m = i;
1374 while (m < a) {
1375 u32 l = m + m + 1;
1376 u32 r = l + 1;
1378 if (l < a) {
1379 u32 lb = cake_heap_get_backlog(q, l);
1381 if (lb > mb) {
1382 m = l;
1383 mb = lb;
1387 if (r < a) {
1388 u32 rb = cake_heap_get_backlog(q, r);
1390 if (rb > mb) {
1391 m = r;
1392 mb = rb;
1396 if (m != i) {
1397 cake_heap_swap(q, i, m);
1398 i = m;
1399 } else {
1400 break;
1405 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1407 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1408 u16 p = (i - 1) >> 1;
1409 u32 ib = cake_heap_get_backlog(q, i);
1410 u32 pb = cake_heap_get_backlog(q, p);
1412 if (ib > pb) {
1413 cake_heap_swap(q, i, p);
1414 i = p;
1415 } else {
1416 break;
1421 static int cake_advance_shaper(struct cake_sched_data *q,
1422 struct cake_tin_data *b,
1423 struct sk_buff *skb,
1424 ktime_t now, bool drop)
1426 u32 len = get_cobalt_cb(skb)->adjusted_len;
1428 /* charge packet bandwidth to this tin
1429 * and to the global shaper.
1431 if (q->rate_ns) {
1432 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1433 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1434 u64 failsafe_dur = global_dur + (global_dur >> 1);
1436 if (ktime_before(b->time_next_packet, now))
1437 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1438 tin_dur);
1440 else if (ktime_before(b->time_next_packet,
1441 ktime_add_ns(now, tin_dur)))
1442 b->time_next_packet = ktime_add_ns(now, tin_dur);
1444 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1445 global_dur);
1446 if (!drop)
1447 q->failsafe_next_packet = \
1448 ktime_add_ns(q->failsafe_next_packet,
1449 failsafe_dur);
1451 return len;
1454 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1456 struct cake_sched_data *q = qdisc_priv(sch);
1457 ktime_t now = ktime_get();
1458 u32 idx = 0, tin = 0, len;
1459 struct cake_heap_entry qq;
1460 struct cake_tin_data *b;
1461 struct cake_flow *flow;
1462 struct sk_buff *skb;
1464 if (!q->overflow_timeout) {
1465 int i;
1466 /* Build fresh max-heap */
1467 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1468 cake_heapify(q, i);
1470 q->overflow_timeout = 65535;
1472 /* select longest queue for pruning */
1473 qq = q->overflow_heap[0];
1474 tin = qq.t;
1475 idx = qq.b;
1477 b = &q->tins[tin];
1478 flow = &b->flows[idx];
1479 skb = dequeue_head(flow);
1480 if (unlikely(!skb)) {
1481 /* heap has gone wrong, rebuild it next time */
1482 q->overflow_timeout = 0;
1483 return idx + (tin << 16);
1486 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1487 b->unresponsive_flow_count++;
1489 len = qdisc_pkt_len(skb);
1490 q->buffer_used -= skb->truesize;
1491 b->backlogs[idx] -= len;
1492 b->tin_backlog -= len;
1493 sch->qstats.backlog -= len;
1494 qdisc_tree_reduce_backlog(sch, 1, len);
1496 flow->dropped++;
1497 b->tin_dropped++;
1498 sch->qstats.drops++;
1500 if (q->rate_flags & CAKE_FLAG_INGRESS)
1501 cake_advance_shaper(q, b, skb, now, true);
1503 __qdisc_drop(skb, to_free);
1504 sch->q.qlen--;
1506 cake_heapify(q, 0);
1508 return idx + (tin << 16);
1511 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1513 const int offset = skb_network_offset(skb);
1514 u16 *buf, buf_;
1515 u8 dscp;
1517 switch (skb_protocol(skb, true)) {
1518 case htons(ETH_P_IP):
1519 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1520 if (unlikely(!buf))
1521 return 0;
1523 /* ToS is in the second byte of iphdr */
1524 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1526 if (wash && dscp) {
1527 const int wlen = offset + sizeof(struct iphdr);
1529 if (!pskb_may_pull(skb, wlen) ||
1530 skb_try_make_writable(skb, wlen))
1531 return 0;
1533 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1536 return dscp;
1538 case htons(ETH_P_IPV6):
1539 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1540 if (unlikely(!buf))
1541 return 0;
1543 /* Traffic class is in the first and second bytes of ipv6hdr */
1544 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1546 if (wash && dscp) {
1547 const int wlen = offset + sizeof(struct ipv6hdr);
1549 if (!pskb_may_pull(skb, wlen) ||
1550 skb_try_make_writable(skb, wlen))
1551 return 0;
1553 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1556 return dscp;
1558 case htons(ETH_P_ARP):
1559 return 0x38; /* CS7 - Net Control */
1561 default:
1562 /* If there is no Diffserv field, treat as best-effort */
1563 return 0;
1567 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1568 struct sk_buff *skb)
1570 struct cake_sched_data *q = qdisc_priv(sch);
1571 u32 tin;
1572 bool wash;
1573 u8 dscp;
1575 /* Tin selection: Default to diffserv-based selection, allow overriding
1576 * using firewall marks or skb->priority. Call DSCP parsing early if
1577 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1579 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1580 if (wash)
1581 dscp = cake_handle_diffserv(skb, wash);
1583 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1584 tin = 0;
1586 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1587 TC_H_MIN(skb->priority) > 0 &&
1588 TC_H_MIN(skb->priority) <= q->tin_cnt)
1589 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1591 else {
1592 if (!wash)
1593 dscp = cake_handle_diffserv(skb, wash);
1594 tin = q->tin_index[dscp];
1596 if (unlikely(tin >= q->tin_cnt))
1597 tin = 0;
1600 return &q->tins[tin];
1603 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1604 struct sk_buff *skb, int flow_mode, int *qerr)
1606 struct cake_sched_data *q = qdisc_priv(sch);
1607 struct tcf_proto *filter;
1608 struct tcf_result res;
1609 u16 flow = 0, host = 0;
1610 int result;
1612 filter = rcu_dereference_bh(q->filter_list);
1613 if (!filter)
1614 goto hash;
1616 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1617 result = tcf_classify(skb, filter, &res, false);
1619 if (result >= 0) {
1620 #ifdef CONFIG_NET_CLS_ACT
1621 switch (result) {
1622 case TC_ACT_STOLEN:
1623 case TC_ACT_QUEUED:
1624 case TC_ACT_TRAP:
1625 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1626 /* fall through */
1627 case TC_ACT_SHOT:
1628 return 0;
1630 #endif
1631 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1632 flow = TC_H_MIN(res.classid);
1633 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1634 host = TC_H_MAJ(res.classid) >> 16;
1636 hash:
1637 *t = cake_select_tin(sch, skb);
1638 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1641 static void cake_reconfigure(struct Qdisc *sch);
1643 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1644 struct sk_buff **to_free)
1646 struct cake_sched_data *q = qdisc_priv(sch);
1647 int len = qdisc_pkt_len(skb);
1648 int uninitialized_var(ret);
1649 struct sk_buff *ack = NULL;
1650 ktime_t now = ktime_get();
1651 struct cake_tin_data *b;
1652 struct cake_flow *flow;
1653 u32 idx;
1655 /* choose flow to insert into */
1656 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1657 if (idx == 0) {
1658 if (ret & __NET_XMIT_BYPASS)
1659 qdisc_qstats_drop(sch);
1660 __qdisc_drop(skb, to_free);
1661 return ret;
1663 idx--;
1664 flow = &b->flows[idx];
1666 /* ensure shaper state isn't stale */
1667 if (!b->tin_backlog) {
1668 if (ktime_before(b->time_next_packet, now))
1669 b->time_next_packet = now;
1671 if (!sch->q.qlen) {
1672 if (ktime_before(q->time_next_packet, now)) {
1673 q->failsafe_next_packet = now;
1674 q->time_next_packet = now;
1675 } else if (ktime_after(q->time_next_packet, now) &&
1676 ktime_after(q->failsafe_next_packet, now)) {
1677 u64 next = \
1678 min(ktime_to_ns(q->time_next_packet),
1679 ktime_to_ns(
1680 q->failsafe_next_packet));
1681 sch->qstats.overlimits++;
1682 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1687 if (unlikely(len > b->max_skblen))
1688 b->max_skblen = len;
1690 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1691 struct sk_buff *segs, *nskb;
1692 netdev_features_t features = netif_skb_features(skb);
1693 unsigned int slen = 0, numsegs = 0;
1695 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1696 if (IS_ERR_OR_NULL(segs))
1697 return qdisc_drop(skb, sch, to_free);
1699 while (segs) {
1700 nskb = segs->next;
1701 segs->next = NULL;
1702 qdisc_skb_cb(segs)->pkt_len = segs->len;
1703 cobalt_set_enqueue_time(segs, now);
1704 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1705 segs);
1706 flow_queue_add(flow, segs);
1708 sch->q.qlen++;
1709 numsegs++;
1710 slen += segs->len;
1711 q->buffer_used += segs->truesize;
1712 b->packets++;
1713 segs = nskb;
1716 /* stats */
1717 b->bytes += slen;
1718 b->backlogs[idx] += slen;
1719 b->tin_backlog += slen;
1720 sch->qstats.backlog += slen;
1721 q->avg_window_bytes += slen;
1723 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1724 consume_skb(skb);
1725 } else {
1726 /* not splitting */
1727 cobalt_set_enqueue_time(skb, now);
1728 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1729 flow_queue_add(flow, skb);
1731 if (q->ack_filter)
1732 ack = cake_ack_filter(q, flow);
1734 if (ack) {
1735 b->ack_drops++;
1736 sch->qstats.drops++;
1737 b->bytes += qdisc_pkt_len(ack);
1738 len -= qdisc_pkt_len(ack);
1739 q->buffer_used += skb->truesize - ack->truesize;
1740 if (q->rate_flags & CAKE_FLAG_INGRESS)
1741 cake_advance_shaper(q, b, ack, now, true);
1743 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1744 consume_skb(ack);
1745 } else {
1746 sch->q.qlen++;
1747 q->buffer_used += skb->truesize;
1750 /* stats */
1751 b->packets++;
1752 b->bytes += len;
1753 b->backlogs[idx] += len;
1754 b->tin_backlog += len;
1755 sch->qstats.backlog += len;
1756 q->avg_window_bytes += len;
1759 if (q->overflow_timeout)
1760 cake_heapify_up(q, b->overflow_idx[idx]);
1762 /* incoming bandwidth capacity estimate */
1763 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1764 u64 packet_interval = \
1765 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1767 if (packet_interval > NSEC_PER_SEC)
1768 packet_interval = NSEC_PER_SEC;
1770 /* filter out short-term bursts, eg. wifi aggregation */
1771 q->avg_packet_interval = \
1772 cake_ewma(q->avg_packet_interval,
1773 packet_interval,
1774 (packet_interval > q->avg_packet_interval ?
1775 2 : 8));
1777 q->last_packet_time = now;
1779 if (packet_interval > q->avg_packet_interval) {
1780 u64 window_interval = \
1781 ktime_to_ns(ktime_sub(now,
1782 q->avg_window_begin));
1783 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1785 b = div64_u64(b, window_interval);
1786 q->avg_peak_bandwidth =
1787 cake_ewma(q->avg_peak_bandwidth, b,
1788 b > q->avg_peak_bandwidth ? 2 : 8);
1789 q->avg_window_bytes = 0;
1790 q->avg_window_begin = now;
1792 if (ktime_after(now,
1793 ktime_add_ms(q->last_reconfig_time,
1794 250))) {
1795 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1796 cake_reconfigure(sch);
1799 } else {
1800 q->avg_window_bytes = 0;
1801 q->last_packet_time = now;
1804 /* flowchain */
1805 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1806 struct cake_host *srchost = &b->hosts[flow->srchost];
1807 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1808 u16 host_load = 1;
1810 if (!flow->set) {
1811 list_add_tail(&flow->flowchain, &b->new_flows);
1812 } else {
1813 b->decaying_flow_count--;
1814 list_move_tail(&flow->flowchain, &b->new_flows);
1816 flow->set = CAKE_SET_SPARSE;
1817 b->sparse_flow_count++;
1819 if (cake_dsrc(q->flow_mode))
1820 host_load = max(host_load, srchost->srchost_refcnt);
1822 if (cake_ddst(q->flow_mode))
1823 host_load = max(host_load, dsthost->dsthost_refcnt);
1825 flow->deficit = (b->flow_quantum *
1826 quantum_div[host_load]) >> 16;
1827 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1828 /* this flow was empty, accounted as a sparse flow, but actually
1829 * in the bulk rotation.
1831 flow->set = CAKE_SET_BULK;
1832 b->sparse_flow_count--;
1833 b->bulk_flow_count++;
1836 if (q->buffer_used > q->buffer_max_used)
1837 q->buffer_max_used = q->buffer_used;
1839 if (q->buffer_used > q->buffer_limit) {
1840 u32 dropped = 0;
1842 while (q->buffer_used > q->buffer_limit) {
1843 dropped++;
1844 cake_drop(sch, to_free);
1846 b->drop_overlimit += dropped;
1848 return NET_XMIT_SUCCESS;
1851 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1853 struct cake_sched_data *q = qdisc_priv(sch);
1854 struct cake_tin_data *b = &q->tins[q->cur_tin];
1855 struct cake_flow *flow = &b->flows[q->cur_flow];
1856 struct sk_buff *skb = NULL;
1857 u32 len;
1859 if (flow->head) {
1860 skb = dequeue_head(flow);
1861 len = qdisc_pkt_len(skb);
1862 b->backlogs[q->cur_flow] -= len;
1863 b->tin_backlog -= len;
1864 sch->qstats.backlog -= len;
1865 q->buffer_used -= skb->truesize;
1866 sch->q.qlen--;
1868 if (q->overflow_timeout)
1869 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1871 return skb;
1874 /* Discard leftover packets from a tin no longer in use. */
1875 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1877 struct cake_sched_data *q = qdisc_priv(sch);
1878 struct sk_buff *skb;
1880 q->cur_tin = tin;
1881 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1882 while (!!(skb = cake_dequeue_one(sch)))
1883 kfree_skb(skb);
1886 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1888 struct cake_sched_data *q = qdisc_priv(sch);
1889 struct cake_tin_data *b = &q->tins[q->cur_tin];
1890 struct cake_host *srchost, *dsthost;
1891 ktime_t now = ktime_get();
1892 struct cake_flow *flow;
1893 struct list_head *head;
1894 bool first_flow = true;
1895 struct sk_buff *skb;
1896 u16 host_load;
1897 u64 delay;
1898 u32 len;
1900 begin:
1901 if (!sch->q.qlen)
1902 return NULL;
1904 /* global hard shaper */
1905 if (ktime_after(q->time_next_packet, now) &&
1906 ktime_after(q->failsafe_next_packet, now)) {
1907 u64 next = min(ktime_to_ns(q->time_next_packet),
1908 ktime_to_ns(q->failsafe_next_packet));
1910 sch->qstats.overlimits++;
1911 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1912 return NULL;
1915 /* Choose a class to work on. */
1916 if (!q->rate_ns) {
1917 /* In unlimited mode, can't rely on shaper timings, just balance
1918 * with DRR
1920 bool wrapped = false, empty = true;
1922 while (b->tin_deficit < 0 ||
1923 !(b->sparse_flow_count + b->bulk_flow_count)) {
1924 if (b->tin_deficit <= 0)
1925 b->tin_deficit += b->tin_quantum_band;
1926 if (b->sparse_flow_count + b->bulk_flow_count)
1927 empty = false;
1929 q->cur_tin++;
1930 b++;
1931 if (q->cur_tin >= q->tin_cnt) {
1932 q->cur_tin = 0;
1933 b = q->tins;
1935 if (wrapped) {
1936 /* It's possible for q->qlen to be
1937 * nonzero when we actually have no
1938 * packets anywhere.
1940 if (empty)
1941 return NULL;
1942 } else {
1943 wrapped = true;
1947 } else {
1948 /* In shaped mode, choose:
1949 * - Highest-priority tin with queue and meeting schedule, or
1950 * - The earliest-scheduled tin with queue.
1952 ktime_t best_time = KTIME_MAX;
1953 int tin, best_tin = 0;
1955 for (tin = 0; tin < q->tin_cnt; tin++) {
1956 b = q->tins + tin;
1957 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
1958 ktime_t time_to_pkt = \
1959 ktime_sub(b->time_next_packet, now);
1961 if (ktime_to_ns(time_to_pkt) <= 0 ||
1962 ktime_compare(time_to_pkt,
1963 best_time) <= 0) {
1964 best_time = time_to_pkt;
1965 best_tin = tin;
1970 q->cur_tin = best_tin;
1971 b = q->tins + best_tin;
1973 /* No point in going further if no packets to deliver. */
1974 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
1975 return NULL;
1978 retry:
1979 /* service this class */
1980 head = &b->decaying_flows;
1981 if (!first_flow || list_empty(head)) {
1982 head = &b->new_flows;
1983 if (list_empty(head)) {
1984 head = &b->old_flows;
1985 if (unlikely(list_empty(head))) {
1986 head = &b->decaying_flows;
1987 if (unlikely(list_empty(head)))
1988 goto begin;
1992 flow = list_first_entry(head, struct cake_flow, flowchain);
1993 q->cur_flow = flow - b->flows;
1994 first_flow = false;
1996 /* triple isolation (modified DRR++) */
1997 srchost = &b->hosts[flow->srchost];
1998 dsthost = &b->hosts[flow->dsthost];
1999 host_load = 1;
2001 if (cake_dsrc(q->flow_mode))
2002 host_load = max(host_load, srchost->srchost_refcnt);
2004 if (cake_ddst(q->flow_mode))
2005 host_load = max(host_load, dsthost->dsthost_refcnt);
2007 WARN_ON(host_load > CAKE_QUEUES);
2009 /* flow isolation (DRR++) */
2010 if (flow->deficit <= 0) {
2011 /* The shifted prandom_u32() is a way to apply dithering to
2012 * avoid accumulating roundoff errors
2014 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2015 (prandom_u32() >> 16)) >> 16;
2016 list_move_tail(&flow->flowchain, &b->old_flows);
2018 /* Keep all flows with deficits out of the sparse and decaying
2019 * rotations. No non-empty flow can go into the decaying
2020 * rotation, so they can't get deficits
2022 if (flow->set == CAKE_SET_SPARSE) {
2023 if (flow->head) {
2024 b->sparse_flow_count--;
2025 b->bulk_flow_count++;
2026 flow->set = CAKE_SET_BULK;
2027 } else {
2028 /* we've moved it to the bulk rotation for
2029 * correct deficit accounting but we still want
2030 * to count it as a sparse flow, not a bulk one.
2032 flow->set = CAKE_SET_SPARSE_WAIT;
2035 goto retry;
2038 /* Retrieve a packet via the AQM */
2039 while (1) {
2040 skb = cake_dequeue_one(sch);
2041 if (!skb) {
2042 /* this queue was actually empty */
2043 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2044 b->unresponsive_flow_count--;
2046 if (flow->cvars.p_drop || flow->cvars.count ||
2047 ktime_before(now, flow->cvars.drop_next)) {
2048 /* keep in the flowchain until the state has
2049 * decayed to rest
2051 list_move_tail(&flow->flowchain,
2052 &b->decaying_flows);
2053 if (flow->set == CAKE_SET_BULK) {
2054 b->bulk_flow_count--;
2055 b->decaying_flow_count++;
2056 } else if (flow->set == CAKE_SET_SPARSE ||
2057 flow->set == CAKE_SET_SPARSE_WAIT) {
2058 b->sparse_flow_count--;
2059 b->decaying_flow_count++;
2061 flow->set = CAKE_SET_DECAYING;
2062 } else {
2063 /* remove empty queue from the flowchain */
2064 list_del_init(&flow->flowchain);
2065 if (flow->set == CAKE_SET_SPARSE ||
2066 flow->set == CAKE_SET_SPARSE_WAIT)
2067 b->sparse_flow_count--;
2068 else if (flow->set == CAKE_SET_BULK)
2069 b->bulk_flow_count--;
2070 else
2071 b->decaying_flow_count--;
2073 flow->set = CAKE_SET_NONE;
2074 srchost->srchost_refcnt--;
2075 dsthost->dsthost_refcnt--;
2077 goto begin;
2080 /* Last packet in queue may be marked, shouldn't be dropped */
2081 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2082 (b->bulk_flow_count *
2083 !!(q->rate_flags &
2084 CAKE_FLAG_INGRESS))) ||
2085 !flow->head)
2086 break;
2088 /* drop this packet, get another one */
2089 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2090 len = cake_advance_shaper(q, b, skb,
2091 now, true);
2092 flow->deficit -= len;
2093 b->tin_deficit -= len;
2095 flow->dropped++;
2096 b->tin_dropped++;
2097 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2098 qdisc_qstats_drop(sch);
2099 kfree_skb(skb);
2100 if (q->rate_flags & CAKE_FLAG_INGRESS)
2101 goto retry;
2104 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2105 qdisc_bstats_update(sch, skb);
2107 /* collect delay stats */
2108 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2109 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2110 b->peak_delay = cake_ewma(b->peak_delay, delay,
2111 delay > b->peak_delay ? 2 : 8);
2112 b->base_delay = cake_ewma(b->base_delay, delay,
2113 delay < b->base_delay ? 2 : 8);
2115 len = cake_advance_shaper(q, b, skb, now, false);
2116 flow->deficit -= len;
2117 b->tin_deficit -= len;
2119 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2120 u64 next = min(ktime_to_ns(q->time_next_packet),
2121 ktime_to_ns(q->failsafe_next_packet));
2123 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2124 } else if (!sch->q.qlen) {
2125 int i;
2127 for (i = 0; i < q->tin_cnt; i++) {
2128 if (q->tins[i].decaying_flow_count) {
2129 ktime_t next = \
2130 ktime_add_ns(now,
2131 q->tins[i].cparams.target);
2133 qdisc_watchdog_schedule_ns(&q->watchdog,
2134 ktime_to_ns(next));
2135 break;
2140 if (q->overflow_timeout)
2141 q->overflow_timeout--;
2143 return skb;
2146 static void cake_reset(struct Qdisc *sch)
2148 u32 c;
2150 for (c = 0; c < CAKE_MAX_TINS; c++)
2151 cake_clear_tin(sch, c);
2154 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2155 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2156 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2157 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2158 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2159 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2160 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2161 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2162 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2163 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2164 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2165 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2166 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2167 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2168 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2169 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2172 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2173 u64 target_ns, u64 rtt_est_ns)
2175 /* convert byte-rate into time-per-byte
2176 * so it will always unwedge in reasonable time.
2178 static const u64 MIN_RATE = 64;
2179 u32 byte_target = mtu;
2180 u64 byte_target_ns;
2181 u8 rate_shft = 0;
2182 u64 rate_ns = 0;
2184 b->flow_quantum = 1514;
2185 if (rate) {
2186 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2187 rate_shft = 34;
2188 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2189 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2190 while (!!(rate_ns >> 34)) {
2191 rate_ns >>= 1;
2192 rate_shft--;
2194 } /* else unlimited, ie. zero delay */
2196 b->tin_rate_bps = rate;
2197 b->tin_rate_ns = rate_ns;
2198 b->tin_rate_shft = rate_shft;
2200 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2202 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2203 b->cparams.interval = max(rtt_est_ns +
2204 b->cparams.target - target_ns,
2205 b->cparams.target * 2);
2206 b->cparams.mtu_time = byte_target_ns;
2207 b->cparams.p_inc = 1 << 24; /* 1/256 */
2208 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2211 static int cake_config_besteffort(struct Qdisc *sch)
2213 struct cake_sched_data *q = qdisc_priv(sch);
2214 struct cake_tin_data *b = &q->tins[0];
2215 u32 mtu = psched_mtu(qdisc_dev(sch));
2216 u64 rate = q->rate_bps;
2218 q->tin_cnt = 1;
2220 q->tin_index = besteffort;
2221 q->tin_order = normal_order;
2223 cake_set_rate(b, rate, mtu,
2224 us_to_ns(q->target), us_to_ns(q->interval));
2225 b->tin_quantum_band = 65535;
2226 b->tin_quantum_prio = 65535;
2228 return 0;
2231 static int cake_config_precedence(struct Qdisc *sch)
2233 /* convert high-level (user visible) parameters into internal format */
2234 struct cake_sched_data *q = qdisc_priv(sch);
2235 u32 mtu = psched_mtu(qdisc_dev(sch));
2236 u64 rate = q->rate_bps;
2237 u32 quantum1 = 256;
2238 u32 quantum2 = 256;
2239 u32 i;
2241 q->tin_cnt = 8;
2242 q->tin_index = precedence;
2243 q->tin_order = normal_order;
2245 for (i = 0; i < q->tin_cnt; i++) {
2246 struct cake_tin_data *b = &q->tins[i];
2248 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2249 us_to_ns(q->interval));
2251 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2252 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2254 /* calculate next class's parameters */
2255 rate *= 7;
2256 rate >>= 3;
2258 quantum1 *= 3;
2259 quantum1 >>= 1;
2261 quantum2 *= 7;
2262 quantum2 >>= 3;
2265 return 0;
2268 /* List of known Diffserv codepoints:
2270 * Least Effort (CS1)
2271 * Best Effort (CS0)
2272 * Max Reliability & LLT "Lo" (TOS1)
2273 * Max Throughput (TOS2)
2274 * Min Delay (TOS4)
2275 * LLT "La" (TOS5)
2276 * Assured Forwarding 1 (AF1x) - x3
2277 * Assured Forwarding 2 (AF2x) - x3
2278 * Assured Forwarding 3 (AF3x) - x3
2279 * Assured Forwarding 4 (AF4x) - x3
2280 * Precedence Class 2 (CS2)
2281 * Precedence Class 3 (CS3)
2282 * Precedence Class 4 (CS4)
2283 * Precedence Class 5 (CS5)
2284 * Precedence Class 6 (CS6)
2285 * Precedence Class 7 (CS7)
2286 * Voice Admit (VA)
2287 * Expedited Forwarding (EF)
2289 * Total 25 codepoints.
2292 /* List of traffic classes in RFC 4594:
2293 * (roughly descending order of contended priority)
2294 * (roughly ascending order of uncontended throughput)
2296 * Network Control (CS6,CS7) - routing traffic
2297 * Telephony (EF,VA) - aka. VoIP streams
2298 * Signalling (CS5) - VoIP setup
2299 * Multimedia Conferencing (AF4x) - aka. video calls
2300 * Realtime Interactive (CS4) - eg. games
2301 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2302 * Broadcast Video (CS3)
2303 * Low Latency Data (AF2x,TOS4) - eg. database
2304 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2305 * Standard Service (CS0 & unrecognised codepoints)
2306 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2307 * Low Priority Data (CS1) - eg. BitTorrent
2309 * Total 12 traffic classes.
2312 static int cake_config_diffserv8(struct Qdisc *sch)
2314 /* Pruned list of traffic classes for typical applications:
2316 * Network Control (CS6, CS7)
2317 * Minimum Latency (EF, VA, CS5, CS4)
2318 * Interactive Shell (CS2, TOS1)
2319 * Low Latency Transactions (AF2x, TOS4)
2320 * Video Streaming (AF4x, AF3x, CS3)
2321 * Bog Standard (CS0 etc.)
2322 * High Throughput (AF1x, TOS2)
2323 * Background Traffic (CS1)
2325 * Total 8 traffic classes.
2328 struct cake_sched_data *q = qdisc_priv(sch);
2329 u32 mtu = psched_mtu(qdisc_dev(sch));
2330 u64 rate = q->rate_bps;
2331 u32 quantum1 = 256;
2332 u32 quantum2 = 256;
2333 u32 i;
2335 q->tin_cnt = 8;
2337 /* codepoint to class mapping */
2338 q->tin_index = diffserv8;
2339 q->tin_order = normal_order;
2341 /* class characteristics */
2342 for (i = 0; i < q->tin_cnt; i++) {
2343 struct cake_tin_data *b = &q->tins[i];
2345 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2346 us_to_ns(q->interval));
2348 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2349 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2351 /* calculate next class's parameters */
2352 rate *= 7;
2353 rate >>= 3;
2355 quantum1 *= 3;
2356 quantum1 >>= 1;
2358 quantum2 *= 7;
2359 quantum2 >>= 3;
2362 return 0;
2365 static int cake_config_diffserv4(struct Qdisc *sch)
2367 /* Further pruned list of traffic classes for four-class system:
2369 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2370 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2371 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2372 * Background Traffic (CS1)
2374 * Total 4 traffic classes.
2377 struct cake_sched_data *q = qdisc_priv(sch);
2378 u32 mtu = psched_mtu(qdisc_dev(sch));
2379 u64 rate = q->rate_bps;
2380 u32 quantum = 1024;
2382 q->tin_cnt = 4;
2384 /* codepoint to class mapping */
2385 q->tin_index = diffserv4;
2386 q->tin_order = bulk_order;
2388 /* class characteristics */
2389 cake_set_rate(&q->tins[0], rate, mtu,
2390 us_to_ns(q->target), us_to_ns(q->interval));
2391 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2392 us_to_ns(q->target), us_to_ns(q->interval));
2393 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2394 us_to_ns(q->target), us_to_ns(q->interval));
2395 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2396 us_to_ns(q->target), us_to_ns(q->interval));
2398 /* priority weights */
2399 q->tins[0].tin_quantum_prio = quantum;
2400 q->tins[1].tin_quantum_prio = quantum >> 4;
2401 q->tins[2].tin_quantum_prio = quantum << 2;
2402 q->tins[3].tin_quantum_prio = quantum << 4;
2404 /* bandwidth-sharing weights */
2405 q->tins[0].tin_quantum_band = quantum;
2406 q->tins[1].tin_quantum_band = quantum >> 4;
2407 q->tins[2].tin_quantum_band = quantum >> 1;
2408 q->tins[3].tin_quantum_band = quantum >> 2;
2410 return 0;
2413 static int cake_config_diffserv3(struct Qdisc *sch)
2415 /* Simplified Diffserv structure with 3 tins.
2416 * Low Priority (CS1)
2417 * Best Effort
2418 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2420 struct cake_sched_data *q = qdisc_priv(sch);
2421 u32 mtu = psched_mtu(qdisc_dev(sch));
2422 u64 rate = q->rate_bps;
2423 u32 quantum = 1024;
2425 q->tin_cnt = 3;
2427 /* codepoint to class mapping */
2428 q->tin_index = diffserv3;
2429 q->tin_order = bulk_order;
2431 /* class characteristics */
2432 cake_set_rate(&q->tins[0], rate, mtu,
2433 us_to_ns(q->target), us_to_ns(q->interval));
2434 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2435 us_to_ns(q->target), us_to_ns(q->interval));
2436 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2437 us_to_ns(q->target), us_to_ns(q->interval));
2439 /* priority weights */
2440 q->tins[0].tin_quantum_prio = quantum;
2441 q->tins[1].tin_quantum_prio = quantum >> 4;
2442 q->tins[2].tin_quantum_prio = quantum << 4;
2444 /* bandwidth-sharing weights */
2445 q->tins[0].tin_quantum_band = quantum;
2446 q->tins[1].tin_quantum_band = quantum >> 4;
2447 q->tins[2].tin_quantum_band = quantum >> 2;
2449 return 0;
2452 static void cake_reconfigure(struct Qdisc *sch)
2454 struct cake_sched_data *q = qdisc_priv(sch);
2455 int c, ft;
2457 switch (q->tin_mode) {
2458 case CAKE_DIFFSERV_BESTEFFORT:
2459 ft = cake_config_besteffort(sch);
2460 break;
2462 case CAKE_DIFFSERV_PRECEDENCE:
2463 ft = cake_config_precedence(sch);
2464 break;
2466 case CAKE_DIFFSERV_DIFFSERV8:
2467 ft = cake_config_diffserv8(sch);
2468 break;
2470 case CAKE_DIFFSERV_DIFFSERV4:
2471 ft = cake_config_diffserv4(sch);
2472 break;
2474 case CAKE_DIFFSERV_DIFFSERV3:
2475 default:
2476 ft = cake_config_diffserv3(sch);
2477 break;
2480 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2481 cake_clear_tin(sch, c);
2482 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2485 q->rate_ns = q->tins[ft].tin_rate_ns;
2486 q->rate_shft = q->tins[ft].tin_rate_shft;
2488 if (q->buffer_config_limit) {
2489 q->buffer_limit = q->buffer_config_limit;
2490 } else if (q->rate_bps) {
2491 u64 t = q->rate_bps * q->interval;
2493 do_div(t, USEC_PER_SEC / 4);
2494 q->buffer_limit = max_t(u32, t, 4U << 20);
2495 } else {
2496 q->buffer_limit = ~0;
2499 sch->flags &= ~TCQ_F_CAN_BYPASS;
2501 q->buffer_limit = min(q->buffer_limit,
2502 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2503 q->buffer_config_limit));
2506 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2507 struct netlink_ext_ack *extack)
2509 struct cake_sched_data *q = qdisc_priv(sch);
2510 struct nlattr *tb[TCA_CAKE_MAX + 1];
2511 int err;
2513 if (!opt)
2514 return -EINVAL;
2516 err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
2517 if (err < 0)
2518 return err;
2520 if (tb[TCA_CAKE_NAT]) {
2521 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2522 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2523 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2524 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2525 #else
2526 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2527 "No conntrack support in kernel");
2528 return -EOPNOTSUPP;
2529 #endif
2532 if (tb[TCA_CAKE_BASE_RATE64])
2533 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2535 if (tb[TCA_CAKE_DIFFSERV_MODE])
2536 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2538 if (tb[TCA_CAKE_WASH]) {
2539 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2540 q->rate_flags |= CAKE_FLAG_WASH;
2541 else
2542 q->rate_flags &= ~CAKE_FLAG_WASH;
2545 if (tb[TCA_CAKE_FLOW_MODE])
2546 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2547 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2548 CAKE_FLOW_MASK));
2550 if (tb[TCA_CAKE_ATM])
2551 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2553 if (tb[TCA_CAKE_OVERHEAD]) {
2554 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2555 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2557 q->max_netlen = 0;
2558 q->max_adjlen = 0;
2559 q->min_netlen = ~0;
2560 q->min_adjlen = ~0;
2563 if (tb[TCA_CAKE_RAW]) {
2564 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2566 q->max_netlen = 0;
2567 q->max_adjlen = 0;
2568 q->min_netlen = ~0;
2569 q->min_adjlen = ~0;
2572 if (tb[TCA_CAKE_MPU])
2573 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2575 if (tb[TCA_CAKE_RTT]) {
2576 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2578 if (!q->interval)
2579 q->interval = 1;
2582 if (tb[TCA_CAKE_TARGET]) {
2583 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2585 if (!q->target)
2586 q->target = 1;
2589 if (tb[TCA_CAKE_AUTORATE]) {
2590 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2591 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2592 else
2593 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2596 if (tb[TCA_CAKE_INGRESS]) {
2597 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2598 q->rate_flags |= CAKE_FLAG_INGRESS;
2599 else
2600 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2603 if (tb[TCA_CAKE_ACK_FILTER])
2604 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2606 if (tb[TCA_CAKE_MEMORY])
2607 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2609 if (tb[TCA_CAKE_SPLIT_GSO]) {
2610 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2611 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2612 else
2613 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2616 if (q->tins) {
2617 sch_tree_lock(sch);
2618 cake_reconfigure(sch);
2619 sch_tree_unlock(sch);
2622 return 0;
2625 static void cake_destroy(struct Qdisc *sch)
2627 struct cake_sched_data *q = qdisc_priv(sch);
2629 qdisc_watchdog_cancel(&q->watchdog);
2630 tcf_block_put(q->block);
2631 kvfree(q->tins);
2634 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2635 struct netlink_ext_ack *extack)
2637 struct cake_sched_data *q = qdisc_priv(sch);
2638 int i, j, err;
2640 sch->limit = 10240;
2641 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2642 q->flow_mode = CAKE_FLOW_TRIPLE;
2644 q->rate_bps = 0; /* unlimited by default */
2646 q->interval = 100000; /* 100ms default */
2647 q->target = 5000; /* 5ms: codel RFC argues
2648 * for 5 to 10% of interval
2650 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2651 q->cur_tin = 0;
2652 q->cur_flow = 0;
2654 qdisc_watchdog_init(&q->watchdog, sch);
2656 if (opt) {
2657 err = cake_change(sch, opt, extack);
2659 if (err)
2660 return err;
2663 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2664 if (err)
2665 return err;
2667 quantum_div[0] = ~0;
2668 for (i = 1; i <= CAKE_QUEUES; i++)
2669 quantum_div[i] = 65535 / i;
2671 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2672 GFP_KERNEL);
2673 if (!q->tins)
2674 goto nomem;
2676 for (i = 0; i < CAKE_MAX_TINS; i++) {
2677 struct cake_tin_data *b = q->tins + i;
2679 INIT_LIST_HEAD(&b->new_flows);
2680 INIT_LIST_HEAD(&b->old_flows);
2681 INIT_LIST_HEAD(&b->decaying_flows);
2682 b->sparse_flow_count = 0;
2683 b->bulk_flow_count = 0;
2684 b->decaying_flow_count = 0;
2686 for (j = 0; j < CAKE_QUEUES; j++) {
2687 struct cake_flow *flow = b->flows + j;
2688 u32 k = j * CAKE_MAX_TINS + i;
2690 INIT_LIST_HEAD(&flow->flowchain);
2691 cobalt_vars_init(&flow->cvars);
2693 q->overflow_heap[k].t = i;
2694 q->overflow_heap[k].b = j;
2695 b->overflow_idx[j] = k;
2699 cake_reconfigure(sch);
2700 q->avg_peak_bandwidth = q->rate_bps;
2701 q->min_netlen = ~0;
2702 q->min_adjlen = ~0;
2703 return 0;
2705 nomem:
2706 cake_destroy(sch);
2707 return -ENOMEM;
2710 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2712 struct cake_sched_data *q = qdisc_priv(sch);
2713 struct nlattr *opts;
2715 opts = nla_nest_start(skb, TCA_OPTIONS);
2716 if (!opts)
2717 goto nla_put_failure;
2719 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2720 TCA_CAKE_PAD))
2721 goto nla_put_failure;
2723 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2724 q->flow_mode & CAKE_FLOW_MASK))
2725 goto nla_put_failure;
2727 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2728 goto nla_put_failure;
2730 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2731 goto nla_put_failure;
2733 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2734 goto nla_put_failure;
2736 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2737 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2738 goto nla_put_failure;
2740 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2741 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2742 goto nla_put_failure;
2744 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2745 goto nla_put_failure;
2747 if (nla_put_u32(skb, TCA_CAKE_NAT,
2748 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2749 goto nla_put_failure;
2751 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2752 goto nla_put_failure;
2754 if (nla_put_u32(skb, TCA_CAKE_WASH,
2755 !!(q->rate_flags & CAKE_FLAG_WASH)))
2756 goto nla_put_failure;
2758 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2759 goto nla_put_failure;
2761 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2762 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2763 goto nla_put_failure;
2765 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2766 goto nla_put_failure;
2768 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2769 goto nla_put_failure;
2771 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2772 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2773 goto nla_put_failure;
2775 return nla_nest_end(skb, opts);
2777 nla_put_failure:
2778 return -1;
2781 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2783 struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
2784 struct cake_sched_data *q = qdisc_priv(sch);
2785 struct nlattr *tstats, *ts;
2786 int i;
2788 if (!stats)
2789 return -1;
2791 #define PUT_STAT_U32(attr, data) do { \
2792 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2793 goto nla_put_failure; \
2794 } while (0)
2795 #define PUT_STAT_U64(attr, data) do { \
2796 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2797 data, TCA_CAKE_STATS_PAD)) \
2798 goto nla_put_failure; \
2799 } while (0)
2801 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2802 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2803 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2804 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2805 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2806 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2807 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2808 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2810 #undef PUT_STAT_U32
2811 #undef PUT_STAT_U64
2813 tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
2814 if (!tstats)
2815 goto nla_put_failure;
2817 #define PUT_TSTAT_U32(attr, data) do { \
2818 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2819 goto nla_put_failure; \
2820 } while (0)
2821 #define PUT_TSTAT_U64(attr, data) do { \
2822 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2823 data, TCA_CAKE_TIN_STATS_PAD)) \
2824 goto nla_put_failure; \
2825 } while (0)
2827 for (i = 0; i < q->tin_cnt; i++) {
2828 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2830 ts = nla_nest_start(d->skb, i + 1);
2831 if (!ts)
2832 goto nla_put_failure;
2834 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2835 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2836 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2838 PUT_TSTAT_U32(TARGET_US,
2839 ktime_to_us(ns_to_ktime(b->cparams.target)));
2840 PUT_TSTAT_U32(INTERVAL_US,
2841 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2843 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2844 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2845 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2846 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2848 PUT_TSTAT_U32(PEAK_DELAY_US,
2849 ktime_to_us(ns_to_ktime(b->peak_delay)));
2850 PUT_TSTAT_U32(AVG_DELAY_US,
2851 ktime_to_us(ns_to_ktime(b->avge_delay)));
2852 PUT_TSTAT_U32(BASE_DELAY_US,
2853 ktime_to_us(ns_to_ktime(b->base_delay)));
2855 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2856 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2857 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2859 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2860 b->decaying_flow_count);
2861 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2862 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2863 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2865 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2866 nla_nest_end(d->skb, ts);
2869 #undef PUT_TSTAT_U32
2870 #undef PUT_TSTAT_U64
2872 nla_nest_end(d->skb, tstats);
2873 return nla_nest_end(d->skb, stats);
2875 nla_put_failure:
2876 nla_nest_cancel(d->skb, stats);
2877 return -1;
2880 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2882 return NULL;
2885 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2887 return 0;
2890 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2891 u32 classid)
2893 return 0;
2896 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2900 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2901 struct netlink_ext_ack *extack)
2903 struct cake_sched_data *q = qdisc_priv(sch);
2905 if (cl)
2906 return NULL;
2907 return q->block;
2910 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2911 struct sk_buff *skb, struct tcmsg *tcm)
2913 tcm->tcm_handle |= TC_H_MIN(cl);
2914 return 0;
2917 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2918 struct gnet_dump *d)
2920 struct cake_sched_data *q = qdisc_priv(sch);
2921 const struct cake_flow *flow = NULL;
2922 struct gnet_stats_queue qs = { 0 };
2923 struct nlattr *stats;
2924 u32 idx = cl - 1;
2926 if (idx < CAKE_QUEUES * q->tin_cnt) {
2927 const struct cake_tin_data *b = \
2928 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2929 const struct sk_buff *skb;
2931 flow = &b->flows[idx % CAKE_QUEUES];
2933 if (flow->head) {
2934 sch_tree_lock(sch);
2935 skb = flow->head;
2936 while (skb) {
2937 qs.qlen++;
2938 skb = skb->next;
2940 sch_tree_unlock(sch);
2942 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
2943 qs.drops = flow->dropped;
2945 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
2946 return -1;
2947 if (flow) {
2948 ktime_t now = ktime_get();
2950 stats = nla_nest_start(d->skb, TCA_STATS_APP);
2951 if (!stats)
2952 return -1;
2954 #define PUT_STAT_U32(attr, data) do { \
2955 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2956 goto nla_put_failure; \
2957 } while (0)
2958 #define PUT_STAT_S32(attr, data) do { \
2959 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2960 goto nla_put_failure; \
2961 } while (0)
2963 PUT_STAT_S32(DEFICIT, flow->deficit);
2964 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
2965 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
2966 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
2967 if (flow->cvars.p_drop) {
2968 PUT_STAT_S32(BLUE_TIMER_US,
2969 ktime_to_us(
2970 ktime_sub(now,
2971 flow->cvars.blue_timer)));
2973 if (flow->cvars.dropping) {
2974 PUT_STAT_S32(DROP_NEXT_US,
2975 ktime_to_us(
2976 ktime_sub(now,
2977 flow->cvars.drop_next)));
2980 if (nla_nest_end(d->skb, stats) < 0)
2981 return -1;
2984 return 0;
2986 nla_put_failure:
2987 nla_nest_cancel(d->skb, stats);
2988 return -1;
2991 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2993 struct cake_sched_data *q = qdisc_priv(sch);
2994 unsigned int i, j;
2996 if (arg->stop)
2997 return;
2999 for (i = 0; i < q->tin_cnt; i++) {
3000 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3002 for (j = 0; j < CAKE_QUEUES; j++) {
3003 if (list_empty(&b->flows[j].flowchain) ||
3004 arg->count < arg->skip) {
3005 arg->count++;
3006 continue;
3008 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3009 arg->stop = 1;
3010 break;
3012 arg->count++;
3017 static const struct Qdisc_class_ops cake_class_ops = {
3018 .leaf = cake_leaf,
3019 .find = cake_find,
3020 .tcf_block = cake_tcf_block,
3021 .bind_tcf = cake_bind,
3022 .unbind_tcf = cake_unbind,
3023 .dump = cake_dump_class,
3024 .dump_stats = cake_dump_class_stats,
3025 .walk = cake_walk,
3028 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3029 .cl_ops = &cake_class_ops,
3030 .id = "cake",
3031 .priv_size = sizeof(struct cake_sched_data),
3032 .enqueue = cake_enqueue,
3033 .dequeue = cake_dequeue,
3034 .peek = qdisc_peek_dequeued,
3035 .init = cake_init,
3036 .reset = cake_reset,
3037 .destroy = cake_destroy,
3038 .change = cake_change,
3039 .dump = cake_dump,
3040 .dump_stats = cake_dump_stats,
3041 .owner = THIS_MODULE,
3044 static int __init cake_module_init(void)
3046 return register_qdisc(&cake_qdisc_ops);
3049 static void __exit cake_module_exit(void)
3051 unregister_qdisc(&cake_qdisc_ops);
3054 module_init(cake_module_init)
3055 module_exit(cake_module_exit)
3056 MODULE_AUTHOR("Jonathan Morton");
3057 MODULE_LICENSE("Dual BSD/GPL");
3058 MODULE_DESCRIPTION("The CAKE shaper.");