4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
39 #define RPCDBG_FACILITY RPCDBG_CACHE
41 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
);
42 static void cache_revisit_request(struct cache_head
*item
);
44 static void cache_init(struct cache_head
*h
, struct cache_detail
*detail
)
46 time_t now
= seconds_since_boot();
47 INIT_HLIST_NODE(&h
->cache_list
);
50 h
->expiry_time
= now
+ CACHE_NEW_EXPIRY
;
51 if (now
<= detail
->flush_time
)
52 /* ensure it isn't already expired */
53 now
= detail
->flush_time
+ 1;
54 h
->last_refresh
= now
;
57 static void cache_fresh_unlocked(struct cache_head
*head
,
58 struct cache_detail
*detail
);
60 struct cache_head
*sunrpc_cache_lookup(struct cache_detail
*detail
,
61 struct cache_head
*key
, int hash
)
63 struct cache_head
*new = NULL
, *freeme
= NULL
, *tmp
= NULL
;
64 struct hlist_head
*head
;
66 head
= &detail
->hash_table
[hash
];
68 read_lock(&detail
->hash_lock
);
70 hlist_for_each_entry(tmp
, head
, cache_list
) {
71 if (detail
->match(tmp
, key
)) {
72 if (cache_is_expired(detail
, tmp
))
73 /* This entry is expired, we will discard it. */
76 read_unlock(&detail
->hash_lock
);
80 read_unlock(&detail
->hash_lock
);
81 /* Didn't find anything, insert an empty entry */
83 new = detail
->alloc();
86 /* must fully initialise 'new', else
87 * we might get lose if we need to
90 cache_init(new, detail
);
91 detail
->init(new, key
);
93 write_lock(&detail
->hash_lock
);
95 /* check if entry appeared while we slept */
96 hlist_for_each_entry(tmp
, head
, cache_list
) {
97 if (detail
->match(tmp
, key
)) {
98 if (cache_is_expired(detail
, tmp
)) {
99 hlist_del_init(&tmp
->cache_list
);
105 write_unlock(&detail
->hash_lock
);
106 cache_put(new, detail
);
111 hlist_add_head(&new->cache_list
, head
);
114 write_unlock(&detail
->hash_lock
);
117 cache_fresh_unlocked(freeme
, detail
);
118 cache_put(freeme
, detail
);
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup
);
125 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
);
127 static void cache_fresh_locked(struct cache_head
*head
, time_t expiry
,
128 struct cache_detail
*detail
)
130 time_t now
= seconds_since_boot();
131 if (now
<= detail
->flush_time
)
132 /* ensure it isn't immediately treated as expired */
133 now
= detail
->flush_time
+ 1;
134 head
->expiry_time
= expiry
;
135 head
->last_refresh
= now
;
136 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
137 set_bit(CACHE_VALID
, &head
->flags
);
140 static void cache_fresh_unlocked(struct cache_head
*head
,
141 struct cache_detail
*detail
)
143 if (test_and_clear_bit(CACHE_PENDING
, &head
->flags
)) {
144 cache_revisit_request(head
);
145 cache_dequeue(detail
, head
);
149 struct cache_head
*sunrpc_cache_update(struct cache_detail
*detail
,
150 struct cache_head
*new, struct cache_head
*old
, int hash
)
152 /* The 'old' entry is to be replaced by 'new'.
153 * If 'old' is not VALID, we update it directly,
154 * otherwise we need to replace it
156 struct cache_head
*tmp
;
158 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
159 write_lock(&detail
->hash_lock
);
160 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
161 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
162 set_bit(CACHE_NEGATIVE
, &old
->flags
);
164 detail
->update(old
, new);
165 cache_fresh_locked(old
, new->expiry_time
, detail
);
166 write_unlock(&detail
->hash_lock
);
167 cache_fresh_unlocked(old
, detail
);
170 write_unlock(&detail
->hash_lock
);
172 /* We need to insert a new entry */
173 tmp
= detail
->alloc();
175 cache_put(old
, detail
);
178 cache_init(tmp
, detail
);
179 detail
->init(tmp
, old
);
181 write_lock(&detail
->hash_lock
);
182 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
183 set_bit(CACHE_NEGATIVE
, &tmp
->flags
);
185 detail
->update(tmp
, new);
186 hlist_add_head(&tmp
->cache_list
, &detail
->hash_table
[hash
]);
189 cache_fresh_locked(tmp
, new->expiry_time
, detail
);
190 cache_fresh_locked(old
, 0, detail
);
191 write_unlock(&detail
->hash_lock
);
192 cache_fresh_unlocked(tmp
, detail
);
193 cache_fresh_unlocked(old
, detail
);
194 cache_put(old
, detail
);
197 EXPORT_SYMBOL_GPL(sunrpc_cache_update
);
199 static int cache_make_upcall(struct cache_detail
*cd
, struct cache_head
*h
)
201 if (cd
->cache_upcall
)
202 return cd
->cache_upcall(cd
, h
);
203 return sunrpc_cache_pipe_upcall(cd
, h
);
206 static inline int cache_is_valid(struct cache_head
*h
)
208 if (!test_bit(CACHE_VALID
, &h
->flags
))
212 if (test_bit(CACHE_NEGATIVE
, &h
->flags
))
216 * In combination with write barrier in
217 * sunrpc_cache_update, ensures that anyone
218 * using the cache entry after this sees the
227 static int try_to_negate_entry(struct cache_detail
*detail
, struct cache_head
*h
)
231 write_lock(&detail
->hash_lock
);
232 rv
= cache_is_valid(h
);
234 set_bit(CACHE_NEGATIVE
, &h
->flags
);
235 cache_fresh_locked(h
, seconds_since_boot()+CACHE_NEW_EXPIRY
,
239 write_unlock(&detail
->hash_lock
);
240 cache_fresh_unlocked(h
, detail
);
245 * This is the generic cache management routine for all
246 * the authentication caches.
247 * It checks the currency of a cache item and will (later)
248 * initiate an upcall to fill it if needed.
251 * Returns 0 if the cache_head can be used, or cache_puts it and returns
252 * -EAGAIN if upcall is pending and request has been queued
253 * -ETIMEDOUT if upcall failed or request could not be queue or
254 * upcall completed but item is still invalid (implying that
255 * the cache item has been replaced with a newer one).
256 * -ENOENT if cache entry was negative
258 int cache_check(struct cache_detail
*detail
,
259 struct cache_head
*h
, struct cache_req
*rqstp
)
262 long refresh_age
, age
;
264 /* First decide return status as best we can */
265 rv
= cache_is_valid(h
);
267 /* now see if we want to start an upcall */
268 refresh_age
= (h
->expiry_time
- h
->last_refresh
);
269 age
= seconds_since_boot() - h
->last_refresh
;
274 } else if (rv
== -EAGAIN
||
275 (h
->expiry_time
!= 0 && age
> refresh_age
/2)) {
276 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
278 if (!test_and_set_bit(CACHE_PENDING
, &h
->flags
)) {
279 switch (cache_make_upcall(detail
, h
)) {
281 rv
= try_to_negate_entry(detail
, h
);
284 cache_fresh_unlocked(h
, detail
);
291 if (!cache_defer_req(rqstp
, h
)) {
293 * Request was not deferred; handle it as best
296 rv
= cache_is_valid(h
);
302 cache_put(h
, detail
);
305 EXPORT_SYMBOL_GPL(cache_check
);
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
313 * Each time cache_clean is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
339 static LIST_HEAD(cache_list
);
340 static DEFINE_SPINLOCK(cache_list_lock
);
341 static struct cache_detail
*current_detail
;
342 static int current_index
;
344 static void do_cache_clean(struct work_struct
*work
);
345 static struct delayed_work cache_cleaner
;
347 void sunrpc_init_cache_detail(struct cache_detail
*cd
)
349 rwlock_init(&cd
->hash_lock
);
350 INIT_LIST_HEAD(&cd
->queue
);
351 spin_lock(&cache_list_lock
);
354 atomic_set(&cd
->readers
, 0);
357 list_add(&cd
->others
, &cache_list
);
358 spin_unlock(&cache_list_lock
);
360 /* start the cleaning process */
361 queue_delayed_work(system_power_efficient_wq
, &cache_cleaner
, 0);
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail
);
365 void sunrpc_destroy_cache_detail(struct cache_detail
*cd
)
368 spin_lock(&cache_list_lock
);
369 write_lock(&cd
->hash_lock
);
370 if (current_detail
== cd
)
371 current_detail
= NULL
;
372 list_del_init(&cd
->others
);
373 write_unlock(&cd
->hash_lock
);
374 spin_unlock(&cache_list_lock
);
375 if (list_empty(&cache_list
)) {
376 /* module must be being unloaded so its safe to kill the worker */
377 cancel_delayed_work_sync(&cache_cleaner
);
380 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail
);
382 /* clean cache tries to find something to clean
384 * It returns 1 if it cleaned something,
385 * 0 if it didn't find anything this time
386 * -1 if it fell off the end of the list.
388 static int cache_clean(void)
391 struct list_head
*next
;
393 spin_lock(&cache_list_lock
);
395 /* find a suitable table if we don't already have one */
396 while (current_detail
== NULL
||
397 current_index
>= current_detail
->hash_size
) {
399 next
= current_detail
->others
.next
;
401 next
= cache_list
.next
;
402 if (next
== &cache_list
) {
403 current_detail
= NULL
;
404 spin_unlock(&cache_list_lock
);
407 current_detail
= list_entry(next
, struct cache_detail
, others
);
408 if (current_detail
->nextcheck
> seconds_since_boot())
409 current_index
= current_detail
->hash_size
;
412 current_detail
->nextcheck
= seconds_since_boot()+30*60;
416 /* find a non-empty bucket in the table */
417 while (current_detail
&&
418 current_index
< current_detail
->hash_size
&&
419 hlist_empty(¤t_detail
->hash_table
[current_index
]))
422 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
424 if (current_detail
&& current_index
< current_detail
->hash_size
) {
425 struct cache_head
*ch
= NULL
;
426 struct cache_detail
*d
;
427 struct hlist_head
*head
;
428 struct hlist_node
*tmp
;
430 write_lock(¤t_detail
->hash_lock
);
432 /* Ok, now to clean this strand */
434 head
= ¤t_detail
->hash_table
[current_index
];
435 hlist_for_each_entry_safe(ch
, tmp
, head
, cache_list
) {
436 if (current_detail
->nextcheck
> ch
->expiry_time
)
437 current_detail
->nextcheck
= ch
->expiry_time
+1;
438 if (!cache_is_expired(current_detail
, ch
))
441 hlist_del_init(&ch
->cache_list
);
442 current_detail
->entries
--;
447 write_unlock(¤t_detail
->hash_lock
);
451 spin_unlock(&cache_list_lock
);
453 set_bit(CACHE_CLEANED
, &ch
->flags
);
454 cache_fresh_unlocked(ch
, d
);
458 spin_unlock(&cache_list_lock
);
464 * We want to regularly clean the cache, so we need to schedule some work ...
466 static void do_cache_clean(struct work_struct
*work
)
469 if (cache_clean() == -1)
470 delay
= round_jiffies_relative(30*HZ
);
472 if (list_empty(&cache_list
))
476 queue_delayed_work(system_power_efficient_wq
,
477 &cache_cleaner
, delay
);
482 * Clean all caches promptly. This just calls cache_clean
483 * repeatedly until we are sure that every cache has had a chance to
486 void cache_flush(void)
488 while (cache_clean() != -1)
490 while (cache_clean() != -1)
493 EXPORT_SYMBOL_GPL(cache_flush
);
495 void cache_purge(struct cache_detail
*detail
)
497 struct cache_head
*ch
= NULL
;
498 struct hlist_head
*head
= NULL
;
499 struct hlist_node
*tmp
= NULL
;
502 write_lock(&detail
->hash_lock
);
503 if (!detail
->entries
) {
504 write_unlock(&detail
->hash_lock
);
508 dprintk("RPC: %d entries in %s cache\n", detail
->entries
, detail
->name
);
509 for (i
= 0; i
< detail
->hash_size
; i
++) {
510 head
= &detail
->hash_table
[i
];
511 hlist_for_each_entry_safe(ch
, tmp
, head
, cache_list
) {
512 hlist_del_init(&ch
->cache_list
);
515 set_bit(CACHE_CLEANED
, &ch
->flags
);
516 write_unlock(&detail
->hash_lock
);
517 cache_fresh_unlocked(ch
, detail
);
518 cache_put(ch
, detail
);
519 write_lock(&detail
->hash_lock
);
522 write_unlock(&detail
->hash_lock
);
524 EXPORT_SYMBOL_GPL(cache_purge
);
528 * Deferral and Revisiting of Requests.
530 * If a cache lookup finds a pending entry, we
531 * need to defer the request and revisit it later.
532 * All deferred requests are stored in a hash table,
533 * indexed by "struct cache_head *".
534 * As it may be wasteful to store a whole request
535 * structure, we allow the request to provide a
536 * deferred form, which must contain a
537 * 'struct cache_deferred_req'
538 * This cache_deferred_req contains a method to allow
539 * it to be revisited when cache info is available
542 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
543 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
545 #define DFR_MAX 300 /* ??? */
547 static DEFINE_SPINLOCK(cache_defer_lock
);
548 static LIST_HEAD(cache_defer_list
);
549 static struct hlist_head cache_defer_hash
[DFR_HASHSIZE
];
550 static int cache_defer_cnt
;
552 static void __unhash_deferred_req(struct cache_deferred_req
*dreq
)
554 hlist_del_init(&dreq
->hash
);
555 if (!list_empty(&dreq
->recent
)) {
556 list_del_init(&dreq
->recent
);
561 static void __hash_deferred_req(struct cache_deferred_req
*dreq
, struct cache_head
*item
)
563 int hash
= DFR_HASH(item
);
565 INIT_LIST_HEAD(&dreq
->recent
);
566 hlist_add_head(&dreq
->hash
, &cache_defer_hash
[hash
]);
569 static void setup_deferral(struct cache_deferred_req
*dreq
,
570 struct cache_head
*item
,
576 spin_lock(&cache_defer_lock
);
578 __hash_deferred_req(dreq
, item
);
582 list_add(&dreq
->recent
, &cache_defer_list
);
585 spin_unlock(&cache_defer_lock
);
589 struct thread_deferred_req
{
590 struct cache_deferred_req handle
;
591 struct completion completion
;
594 static void cache_restart_thread(struct cache_deferred_req
*dreq
, int too_many
)
596 struct thread_deferred_req
*dr
=
597 container_of(dreq
, struct thread_deferred_req
, handle
);
598 complete(&dr
->completion
);
601 static void cache_wait_req(struct cache_req
*req
, struct cache_head
*item
)
603 struct thread_deferred_req sleeper
;
604 struct cache_deferred_req
*dreq
= &sleeper
.handle
;
606 sleeper
.completion
= COMPLETION_INITIALIZER_ONSTACK(sleeper
.completion
);
607 dreq
->revisit
= cache_restart_thread
;
609 setup_deferral(dreq
, item
, 0);
611 if (!test_bit(CACHE_PENDING
, &item
->flags
) ||
612 wait_for_completion_interruptible_timeout(
613 &sleeper
.completion
, req
->thread_wait
) <= 0) {
614 /* The completion wasn't completed, so we need
617 spin_lock(&cache_defer_lock
);
618 if (!hlist_unhashed(&sleeper
.handle
.hash
)) {
619 __unhash_deferred_req(&sleeper
.handle
);
620 spin_unlock(&cache_defer_lock
);
622 /* cache_revisit_request already removed
623 * this from the hash table, but hasn't
624 * called ->revisit yet. It will very soon
625 * and we need to wait for it.
627 spin_unlock(&cache_defer_lock
);
628 wait_for_completion(&sleeper
.completion
);
633 static void cache_limit_defers(void)
635 /* Make sure we haven't exceed the limit of allowed deferred
638 struct cache_deferred_req
*discard
= NULL
;
640 if (cache_defer_cnt
<= DFR_MAX
)
643 spin_lock(&cache_defer_lock
);
645 /* Consider removing either the first or the last */
646 if (cache_defer_cnt
> DFR_MAX
) {
647 if (prandom_u32() & 1)
648 discard
= list_entry(cache_defer_list
.next
,
649 struct cache_deferred_req
, recent
);
651 discard
= list_entry(cache_defer_list
.prev
,
652 struct cache_deferred_req
, recent
);
653 __unhash_deferred_req(discard
);
655 spin_unlock(&cache_defer_lock
);
657 discard
->revisit(discard
, 1);
660 /* Return true if and only if a deferred request is queued. */
661 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
)
663 struct cache_deferred_req
*dreq
;
665 if (req
->thread_wait
) {
666 cache_wait_req(req
, item
);
667 if (!test_bit(CACHE_PENDING
, &item
->flags
))
670 dreq
= req
->defer(req
);
673 setup_deferral(dreq
, item
, 1);
674 if (!test_bit(CACHE_PENDING
, &item
->flags
))
675 /* Bit could have been cleared before we managed to
676 * set up the deferral, so need to revisit just in case
678 cache_revisit_request(item
);
680 cache_limit_defers();
684 static void cache_revisit_request(struct cache_head
*item
)
686 struct cache_deferred_req
*dreq
;
687 struct list_head pending
;
688 struct hlist_node
*tmp
;
689 int hash
= DFR_HASH(item
);
691 INIT_LIST_HEAD(&pending
);
692 spin_lock(&cache_defer_lock
);
694 hlist_for_each_entry_safe(dreq
, tmp
, &cache_defer_hash
[hash
], hash
)
695 if (dreq
->item
== item
) {
696 __unhash_deferred_req(dreq
);
697 list_add(&dreq
->recent
, &pending
);
700 spin_unlock(&cache_defer_lock
);
702 while (!list_empty(&pending
)) {
703 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
704 list_del_init(&dreq
->recent
);
705 dreq
->revisit(dreq
, 0);
709 void cache_clean_deferred(void *owner
)
711 struct cache_deferred_req
*dreq
, *tmp
;
712 struct list_head pending
;
715 INIT_LIST_HEAD(&pending
);
716 spin_lock(&cache_defer_lock
);
718 list_for_each_entry_safe(dreq
, tmp
, &cache_defer_list
, recent
) {
719 if (dreq
->owner
== owner
) {
720 __unhash_deferred_req(dreq
);
721 list_add(&dreq
->recent
, &pending
);
724 spin_unlock(&cache_defer_lock
);
726 while (!list_empty(&pending
)) {
727 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
728 list_del_init(&dreq
->recent
);
729 dreq
->revisit(dreq
, 1);
734 * communicate with user-space
736 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
737 * On read, you get a full request, or block.
738 * On write, an update request is processed.
739 * Poll works if anything to read, and always allows write.
741 * Implemented by linked list of requests. Each open file has
742 * a ->private that also exists in this list. New requests are added
743 * to the end and may wakeup and preceding readers.
744 * New readers are added to the head. If, on read, an item is found with
745 * CACHE_UPCALLING clear, we free it from the list.
749 static DEFINE_SPINLOCK(queue_lock
);
750 static DEFINE_MUTEX(queue_io_mutex
);
753 struct list_head list
;
754 int reader
; /* if 0, then request */
756 struct cache_request
{
757 struct cache_queue q
;
758 struct cache_head
*item
;
763 struct cache_reader
{
764 struct cache_queue q
;
765 int offset
; /* if non-0, we have a refcnt on next request */
768 static int cache_request(struct cache_detail
*detail
,
769 struct cache_request
*crq
)
774 detail
->cache_request(detail
, crq
->item
, &bp
, &len
);
777 return PAGE_SIZE
- len
;
780 static ssize_t
cache_read(struct file
*filp
, char __user
*buf
, size_t count
,
781 loff_t
*ppos
, struct cache_detail
*cd
)
783 struct cache_reader
*rp
= filp
->private_data
;
784 struct cache_request
*rq
;
785 struct inode
*inode
= file_inode(filp
);
791 inode_lock(inode
); /* protect against multiple concurrent
792 * readers on this file */
794 spin_lock(&queue_lock
);
795 /* need to find next request */
796 while (rp
->q
.list
.next
!= &cd
->queue
&&
797 list_entry(rp
->q
.list
.next
, struct cache_queue
, list
)
799 struct list_head
*next
= rp
->q
.list
.next
;
800 list_move(&rp
->q
.list
, next
);
802 if (rp
->q
.list
.next
== &cd
->queue
) {
803 spin_unlock(&queue_lock
);
805 WARN_ON_ONCE(rp
->offset
);
808 rq
= container_of(rp
->q
.list
.next
, struct cache_request
, q
.list
);
809 WARN_ON_ONCE(rq
->q
.reader
);
812 spin_unlock(&queue_lock
);
815 err
= cache_request(cd
, rq
);
821 if (rp
->offset
== 0 && !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
823 spin_lock(&queue_lock
);
824 list_move(&rp
->q
.list
, &rq
->q
.list
);
825 spin_unlock(&queue_lock
);
827 if (rp
->offset
+ count
> rq
->len
)
828 count
= rq
->len
- rp
->offset
;
830 if (copy_to_user(buf
, rq
->buf
+ rp
->offset
, count
))
833 if (rp
->offset
>= rq
->len
) {
835 spin_lock(&queue_lock
);
836 list_move(&rp
->q
.list
, &rq
->q
.list
);
837 spin_unlock(&queue_lock
);
842 if (rp
->offset
== 0) {
843 /* need to release rq */
844 spin_lock(&queue_lock
);
846 if (rq
->readers
== 0 &&
847 !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
848 list_del(&rq
->q
.list
);
849 spin_unlock(&queue_lock
);
850 cache_put(rq
->item
, cd
);
854 spin_unlock(&queue_lock
);
859 return err
? err
: count
;
862 static ssize_t
cache_do_downcall(char *kaddr
, const char __user
*buf
,
863 size_t count
, struct cache_detail
*cd
)
869 if (copy_from_user(kaddr
, buf
, count
))
872 ret
= cd
->cache_parse(cd
, kaddr
, count
);
878 static ssize_t
cache_slow_downcall(const char __user
*buf
,
879 size_t count
, struct cache_detail
*cd
)
881 static char write_buf
[8192]; /* protected by queue_io_mutex */
882 ssize_t ret
= -EINVAL
;
884 if (count
>= sizeof(write_buf
))
886 mutex_lock(&queue_io_mutex
);
887 ret
= cache_do_downcall(write_buf
, buf
, count
, cd
);
888 mutex_unlock(&queue_io_mutex
);
893 static ssize_t
cache_downcall(struct address_space
*mapping
,
894 const char __user
*buf
,
895 size_t count
, struct cache_detail
*cd
)
899 ssize_t ret
= -ENOMEM
;
901 if (count
>= PAGE_SIZE
)
904 page
= find_or_create_page(mapping
, 0, GFP_KERNEL
);
909 ret
= cache_do_downcall(kaddr
, buf
, count
, cd
);
915 return cache_slow_downcall(buf
, count
, cd
);
918 static ssize_t
cache_write(struct file
*filp
, const char __user
*buf
,
919 size_t count
, loff_t
*ppos
,
920 struct cache_detail
*cd
)
922 struct address_space
*mapping
= filp
->f_mapping
;
923 struct inode
*inode
= file_inode(filp
);
924 ssize_t ret
= -EINVAL
;
926 if (!cd
->cache_parse
)
930 ret
= cache_downcall(mapping
, buf
, count
, cd
);
936 static DECLARE_WAIT_QUEUE_HEAD(queue_wait
);
938 static __poll_t
cache_poll(struct file
*filp
, poll_table
*wait
,
939 struct cache_detail
*cd
)
942 struct cache_reader
*rp
= filp
->private_data
;
943 struct cache_queue
*cq
;
945 poll_wait(filp
, &queue_wait
, wait
);
947 /* alway allow write */
948 mask
= EPOLLOUT
| EPOLLWRNORM
;
953 spin_lock(&queue_lock
);
955 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
956 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
958 mask
|= EPOLLIN
| EPOLLRDNORM
;
961 spin_unlock(&queue_lock
);
965 static int cache_ioctl(struct inode
*ino
, struct file
*filp
,
966 unsigned int cmd
, unsigned long arg
,
967 struct cache_detail
*cd
)
970 struct cache_reader
*rp
= filp
->private_data
;
971 struct cache_queue
*cq
;
973 if (cmd
!= FIONREAD
|| !rp
)
976 spin_lock(&queue_lock
);
978 /* only find the length remaining in current request,
979 * or the length of the next request
981 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
982 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
984 struct cache_request
*cr
=
985 container_of(cq
, struct cache_request
, q
);
986 len
= cr
->len
- rp
->offset
;
989 spin_unlock(&queue_lock
);
991 return put_user(len
, (int __user
*)arg
);
994 static int cache_open(struct inode
*inode
, struct file
*filp
,
995 struct cache_detail
*cd
)
997 struct cache_reader
*rp
= NULL
;
999 if (!cd
|| !try_module_get(cd
->owner
))
1001 nonseekable_open(inode
, filp
);
1002 if (filp
->f_mode
& FMODE_READ
) {
1003 rp
= kmalloc(sizeof(*rp
), GFP_KERNEL
);
1005 module_put(cd
->owner
);
1010 atomic_inc(&cd
->readers
);
1011 spin_lock(&queue_lock
);
1012 list_add(&rp
->q
.list
, &cd
->queue
);
1013 spin_unlock(&queue_lock
);
1015 filp
->private_data
= rp
;
1019 static int cache_release(struct inode
*inode
, struct file
*filp
,
1020 struct cache_detail
*cd
)
1022 struct cache_reader
*rp
= filp
->private_data
;
1025 spin_lock(&queue_lock
);
1027 struct cache_queue
*cq
;
1028 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
1029 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
1031 container_of(cq
, struct cache_request
, q
)
1037 list_del(&rp
->q
.list
);
1038 spin_unlock(&queue_lock
);
1040 filp
->private_data
= NULL
;
1043 cd
->last_close
= seconds_since_boot();
1044 atomic_dec(&cd
->readers
);
1046 module_put(cd
->owner
);
1052 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
)
1054 struct cache_queue
*cq
, *tmp
;
1055 struct cache_request
*cr
;
1056 struct list_head dequeued
;
1058 INIT_LIST_HEAD(&dequeued
);
1059 spin_lock(&queue_lock
);
1060 list_for_each_entry_safe(cq
, tmp
, &detail
->queue
, list
)
1062 cr
= container_of(cq
, struct cache_request
, q
);
1065 if (test_bit(CACHE_PENDING
, &ch
->flags
))
1066 /* Lost a race and it is pending again */
1068 if (cr
->readers
!= 0)
1070 list_move(&cr
->q
.list
, &dequeued
);
1072 spin_unlock(&queue_lock
);
1073 while (!list_empty(&dequeued
)) {
1074 cr
= list_entry(dequeued
.next
, struct cache_request
, q
.list
);
1075 list_del(&cr
->q
.list
);
1076 cache_put(cr
->item
, detail
);
1083 * Support routines for text-based upcalls.
1084 * Fields are separated by spaces.
1085 * Fields are either mangled to quote space tab newline slosh with slosh
1086 * or a hexified with a leading \x
1087 * Record is terminated with newline.
1091 void qword_add(char **bpp
, int *lp
, char *str
)
1097 if (len
< 0) return;
1099 ret
= string_escape_str(str
, bp
, len
, ESCAPE_OCTAL
, "\\ \n\t");
1112 EXPORT_SYMBOL_GPL(qword_add
);
1114 void qword_addhex(char **bpp
, int *lp
, char *buf
, int blen
)
1119 if (len
< 0) return;
1125 while (blen
&& len
>= 2) {
1126 bp
= hex_byte_pack(bp
, *buf
++);
1131 if (blen
|| len
<1) len
= -1;
1139 EXPORT_SYMBOL_GPL(qword_addhex
);
1141 static void warn_no_listener(struct cache_detail
*detail
)
1143 if (detail
->last_warn
!= detail
->last_close
) {
1144 detail
->last_warn
= detail
->last_close
;
1145 if (detail
->warn_no_listener
)
1146 detail
->warn_no_listener(detail
, detail
->last_close
!= 0);
1150 static bool cache_listeners_exist(struct cache_detail
*detail
)
1152 if (atomic_read(&detail
->readers
))
1154 if (detail
->last_close
== 0)
1155 /* This cache was never opened */
1157 if (detail
->last_close
< seconds_since_boot() - 30)
1159 * We allow for the possibility that someone might
1160 * restart a userspace daemon without restarting the
1161 * server; but after 30 seconds, we give up.
1168 * register an upcall request to user-space and queue it up for read() by the
1171 * Each request is at most one page long.
1173 int sunrpc_cache_pipe_upcall(struct cache_detail
*detail
, struct cache_head
*h
)
1177 struct cache_request
*crq
;
1180 if (!detail
->cache_request
)
1183 if (!cache_listeners_exist(detail
)) {
1184 warn_no_listener(detail
);
1187 if (test_bit(CACHE_CLEANED
, &h
->flags
))
1188 /* Too late to make an upcall */
1191 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1195 crq
= kmalloc(sizeof (*crq
), GFP_KERNEL
);
1205 spin_lock(&queue_lock
);
1206 if (test_bit(CACHE_PENDING
, &h
->flags
)) {
1207 crq
->item
= cache_get(h
);
1208 list_add_tail(&crq
->q
.list
, &detail
->queue
);
1210 /* Lost a race, no longer PENDING, so don't enqueue */
1212 spin_unlock(&queue_lock
);
1213 wake_up(&queue_wait
);
1214 if (ret
== -EAGAIN
) {
1220 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall
);
1223 * parse a message from user-space and pass it
1224 * to an appropriate cache
1225 * Messages are, like requests, separated into fields by
1226 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1229 * reply cachename expiry key ... content....
1231 * key and content are both parsed by cache
1234 int qword_get(char **bpp
, char *dest
, int bufsize
)
1236 /* return bytes copied, or -1 on error */
1240 while (*bp
== ' ') bp
++;
1242 if (bp
[0] == '\\' && bp
[1] == 'x') {
1245 while (len
< bufsize
- 1) {
1248 h
= hex_to_bin(bp
[0]);
1252 l
= hex_to_bin(bp
[1]);
1256 *dest
++ = (h
<< 4) | l
;
1261 /* text with \nnn octal quoting */
1262 while (*bp
!= ' ' && *bp
!= '\n' && *bp
&& len
< bufsize
-1) {
1264 isodigit(bp
[1]) && (bp
[1] <= '3') &&
1267 int byte
= (*++bp
-'0');
1269 byte
= (byte
<< 3) | (*bp
++ - '0');
1270 byte
= (byte
<< 3) | (*bp
++ - '0');
1280 if (*bp
!= ' ' && *bp
!= '\n' && *bp
!= '\0')
1282 while (*bp
== ' ') bp
++;
1287 EXPORT_SYMBOL_GPL(qword_get
);
1291 * support /proc/net/rpc/$CACHENAME/content
1293 * We call ->cache_show passing NULL for the item to
1294 * get a header, then pass each real item in the cache
1297 void *cache_seq_start(struct seq_file
*m
, loff_t
*pos
)
1298 __acquires(cd
->hash_lock
)
1301 unsigned int hash
, entry
;
1302 struct cache_head
*ch
;
1303 struct cache_detail
*cd
= m
->private;
1305 read_lock(&cd
->hash_lock
);
1307 return SEQ_START_TOKEN
;
1309 entry
= n
& ((1LL<<32) - 1);
1311 hlist_for_each_entry(ch
, &cd
->hash_table
[hash
], cache_list
)
1314 n
&= ~((1LL<<32) - 1);
1318 } while(hash
< cd
->hash_size
&&
1319 hlist_empty(&cd
->hash_table
[hash
]));
1320 if (hash
>= cd
->hash_size
)
1323 return hlist_entry_safe(cd
->hash_table
[hash
].first
,
1324 struct cache_head
, cache_list
);
1326 EXPORT_SYMBOL_GPL(cache_seq_start
);
1328 void *cache_seq_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1330 struct cache_head
*ch
= p
;
1331 int hash
= (*pos
>> 32);
1332 struct cache_detail
*cd
= m
->private;
1334 if (p
== SEQ_START_TOKEN
)
1336 else if (ch
->cache_list
.next
== NULL
) {
1341 return hlist_entry_safe(ch
->cache_list
.next
,
1342 struct cache_head
, cache_list
);
1344 *pos
&= ~((1LL<<32) - 1);
1345 while (hash
< cd
->hash_size
&&
1346 hlist_empty(&cd
->hash_table
[hash
])) {
1350 if (hash
>= cd
->hash_size
)
1353 return hlist_entry_safe(cd
->hash_table
[hash
].first
,
1354 struct cache_head
, cache_list
);
1356 EXPORT_SYMBOL_GPL(cache_seq_next
);
1358 void cache_seq_stop(struct seq_file
*m
, void *p
)
1359 __releases(cd
->hash_lock
)
1361 struct cache_detail
*cd
= m
->private;
1362 read_unlock(&cd
->hash_lock
);
1364 EXPORT_SYMBOL_GPL(cache_seq_stop
);
1366 static int c_show(struct seq_file
*m
, void *p
)
1368 struct cache_head
*cp
= p
;
1369 struct cache_detail
*cd
= m
->private;
1371 if (p
== SEQ_START_TOKEN
)
1372 return cd
->cache_show(m
, cd
, NULL
);
1375 seq_printf(m
, "# expiry=%ld refcnt=%d flags=%lx\n",
1376 convert_to_wallclock(cp
->expiry_time
),
1377 kref_read(&cp
->ref
), cp
->flags
);
1379 if (cache_check(cd
, cp
, NULL
))
1380 /* cache_check does a cache_put on failure */
1381 seq_printf(m
, "# ");
1383 if (cache_is_expired(cd
, cp
))
1384 seq_printf(m
, "# ");
1388 return cd
->cache_show(m
, cd
, cp
);
1391 static const struct seq_operations cache_content_op
= {
1392 .start
= cache_seq_start
,
1393 .next
= cache_seq_next
,
1394 .stop
= cache_seq_stop
,
1398 static int content_open(struct inode
*inode
, struct file
*file
,
1399 struct cache_detail
*cd
)
1401 struct seq_file
*seq
;
1404 if (!cd
|| !try_module_get(cd
->owner
))
1407 err
= seq_open(file
, &cache_content_op
);
1409 module_put(cd
->owner
);
1413 seq
= file
->private_data
;
1418 static int content_release(struct inode
*inode
, struct file
*file
,
1419 struct cache_detail
*cd
)
1421 int ret
= seq_release(inode
, file
);
1422 module_put(cd
->owner
);
1426 static int open_flush(struct inode
*inode
, struct file
*file
,
1427 struct cache_detail
*cd
)
1429 if (!cd
|| !try_module_get(cd
->owner
))
1431 return nonseekable_open(inode
, file
);
1434 static int release_flush(struct inode
*inode
, struct file
*file
,
1435 struct cache_detail
*cd
)
1437 module_put(cd
->owner
);
1441 static ssize_t
read_flush(struct file
*file
, char __user
*buf
,
1442 size_t count
, loff_t
*ppos
,
1443 struct cache_detail
*cd
)
1448 len
= snprintf(tbuf
, sizeof(tbuf
), "%lu\n",
1449 convert_to_wallclock(cd
->flush_time
));
1450 return simple_read_from_buffer(buf
, count
, ppos
, tbuf
, len
);
1453 static ssize_t
write_flush(struct file
*file
, const char __user
*buf
,
1454 size_t count
, loff_t
*ppos
,
1455 struct cache_detail
*cd
)
1461 if (*ppos
|| count
> sizeof(tbuf
)-1)
1463 if (copy_from_user(tbuf
, buf
, count
))
1466 simple_strtoul(tbuf
, &ep
, 0);
1467 if (*ep
&& *ep
!= '\n')
1469 /* Note that while we check that 'buf' holds a valid number,
1470 * we always ignore the value and just flush everything.
1471 * Making use of the number leads to races.
1474 now
= seconds_since_boot();
1475 /* Always flush everything, so behave like cache_purge()
1476 * Do this by advancing flush_time to the current time,
1477 * or by one second if it has already reached the current time.
1478 * Newly added cache entries will always have ->last_refresh greater
1479 * that ->flush_time, so they don't get flushed prematurely.
1482 if (cd
->flush_time
>= now
)
1483 now
= cd
->flush_time
+ 1;
1485 cd
->flush_time
= now
;
1486 cd
->nextcheck
= now
;
1493 static ssize_t
cache_read_procfs(struct file
*filp
, char __user
*buf
,
1494 size_t count
, loff_t
*ppos
)
1496 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1498 return cache_read(filp
, buf
, count
, ppos
, cd
);
1501 static ssize_t
cache_write_procfs(struct file
*filp
, const char __user
*buf
,
1502 size_t count
, loff_t
*ppos
)
1504 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1506 return cache_write(filp
, buf
, count
, ppos
, cd
);
1509 static __poll_t
cache_poll_procfs(struct file
*filp
, poll_table
*wait
)
1511 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1513 return cache_poll(filp
, wait
, cd
);
1516 static long cache_ioctl_procfs(struct file
*filp
,
1517 unsigned int cmd
, unsigned long arg
)
1519 struct inode
*inode
= file_inode(filp
);
1520 struct cache_detail
*cd
= PDE_DATA(inode
);
1522 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1525 static int cache_open_procfs(struct inode
*inode
, struct file
*filp
)
1527 struct cache_detail
*cd
= PDE_DATA(inode
);
1529 return cache_open(inode
, filp
, cd
);
1532 static int cache_release_procfs(struct inode
*inode
, struct file
*filp
)
1534 struct cache_detail
*cd
= PDE_DATA(inode
);
1536 return cache_release(inode
, filp
, cd
);
1539 static const struct file_operations cache_file_operations_procfs
= {
1540 .owner
= THIS_MODULE
,
1541 .llseek
= no_llseek
,
1542 .read
= cache_read_procfs
,
1543 .write
= cache_write_procfs
,
1544 .poll
= cache_poll_procfs
,
1545 .unlocked_ioctl
= cache_ioctl_procfs
, /* for FIONREAD */
1546 .open
= cache_open_procfs
,
1547 .release
= cache_release_procfs
,
1550 static int content_open_procfs(struct inode
*inode
, struct file
*filp
)
1552 struct cache_detail
*cd
= PDE_DATA(inode
);
1554 return content_open(inode
, filp
, cd
);
1557 static int content_release_procfs(struct inode
*inode
, struct file
*filp
)
1559 struct cache_detail
*cd
= PDE_DATA(inode
);
1561 return content_release(inode
, filp
, cd
);
1564 static const struct file_operations content_file_operations_procfs
= {
1565 .open
= content_open_procfs
,
1567 .llseek
= seq_lseek
,
1568 .release
= content_release_procfs
,
1571 static int open_flush_procfs(struct inode
*inode
, struct file
*filp
)
1573 struct cache_detail
*cd
= PDE_DATA(inode
);
1575 return open_flush(inode
, filp
, cd
);
1578 static int release_flush_procfs(struct inode
*inode
, struct file
*filp
)
1580 struct cache_detail
*cd
= PDE_DATA(inode
);
1582 return release_flush(inode
, filp
, cd
);
1585 static ssize_t
read_flush_procfs(struct file
*filp
, char __user
*buf
,
1586 size_t count
, loff_t
*ppos
)
1588 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1590 return read_flush(filp
, buf
, count
, ppos
, cd
);
1593 static ssize_t
write_flush_procfs(struct file
*filp
,
1594 const char __user
*buf
,
1595 size_t count
, loff_t
*ppos
)
1597 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1599 return write_flush(filp
, buf
, count
, ppos
, cd
);
1602 static const struct file_operations cache_flush_operations_procfs
= {
1603 .open
= open_flush_procfs
,
1604 .read
= read_flush_procfs
,
1605 .write
= write_flush_procfs
,
1606 .release
= release_flush_procfs
,
1607 .llseek
= no_llseek
,
1610 static void remove_cache_proc_entries(struct cache_detail
*cd
)
1613 proc_remove(cd
->procfs
);
1618 #ifdef CONFIG_PROC_FS
1619 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1621 struct proc_dir_entry
*p
;
1622 struct sunrpc_net
*sn
;
1624 sn
= net_generic(net
, sunrpc_net_id
);
1625 cd
->procfs
= proc_mkdir(cd
->name
, sn
->proc_net_rpc
);
1626 if (cd
->procfs
== NULL
)
1629 p
= proc_create_data("flush", S_IFREG
| 0600,
1630 cd
->procfs
, &cache_flush_operations_procfs
, cd
);
1634 if (cd
->cache_request
|| cd
->cache_parse
) {
1635 p
= proc_create_data("channel", S_IFREG
| 0600, cd
->procfs
,
1636 &cache_file_operations_procfs
, cd
);
1640 if (cd
->cache_show
) {
1641 p
= proc_create_data("content", S_IFREG
| 0400, cd
->procfs
,
1642 &content_file_operations_procfs
, cd
);
1648 remove_cache_proc_entries(cd
);
1651 #else /* CONFIG_PROC_FS */
1652 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1658 void __init
cache_initialize(void)
1660 INIT_DEFERRABLE_WORK(&cache_cleaner
, do_cache_clean
);
1663 int cache_register_net(struct cache_detail
*cd
, struct net
*net
)
1667 sunrpc_init_cache_detail(cd
);
1668 ret
= create_cache_proc_entries(cd
, net
);
1670 sunrpc_destroy_cache_detail(cd
);
1673 EXPORT_SYMBOL_GPL(cache_register_net
);
1675 void cache_unregister_net(struct cache_detail
*cd
, struct net
*net
)
1677 remove_cache_proc_entries(cd
);
1678 sunrpc_destroy_cache_detail(cd
);
1680 EXPORT_SYMBOL_GPL(cache_unregister_net
);
1682 struct cache_detail
*cache_create_net(const struct cache_detail
*tmpl
, struct net
*net
)
1684 struct cache_detail
*cd
;
1687 cd
= kmemdup(tmpl
, sizeof(struct cache_detail
), GFP_KERNEL
);
1689 return ERR_PTR(-ENOMEM
);
1691 cd
->hash_table
= kcalloc(cd
->hash_size
, sizeof(struct hlist_head
),
1693 if (cd
->hash_table
== NULL
) {
1695 return ERR_PTR(-ENOMEM
);
1698 for (i
= 0; i
< cd
->hash_size
; i
++)
1699 INIT_HLIST_HEAD(&cd
->hash_table
[i
]);
1703 EXPORT_SYMBOL_GPL(cache_create_net
);
1705 void cache_destroy_net(struct cache_detail
*cd
, struct net
*net
)
1707 kfree(cd
->hash_table
);
1710 EXPORT_SYMBOL_GPL(cache_destroy_net
);
1712 static ssize_t
cache_read_pipefs(struct file
*filp
, char __user
*buf
,
1713 size_t count
, loff_t
*ppos
)
1715 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1717 return cache_read(filp
, buf
, count
, ppos
, cd
);
1720 static ssize_t
cache_write_pipefs(struct file
*filp
, const char __user
*buf
,
1721 size_t count
, loff_t
*ppos
)
1723 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1725 return cache_write(filp
, buf
, count
, ppos
, cd
);
1728 static __poll_t
cache_poll_pipefs(struct file
*filp
, poll_table
*wait
)
1730 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1732 return cache_poll(filp
, wait
, cd
);
1735 static long cache_ioctl_pipefs(struct file
*filp
,
1736 unsigned int cmd
, unsigned long arg
)
1738 struct inode
*inode
= file_inode(filp
);
1739 struct cache_detail
*cd
= RPC_I(inode
)->private;
1741 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1744 static int cache_open_pipefs(struct inode
*inode
, struct file
*filp
)
1746 struct cache_detail
*cd
= RPC_I(inode
)->private;
1748 return cache_open(inode
, filp
, cd
);
1751 static int cache_release_pipefs(struct inode
*inode
, struct file
*filp
)
1753 struct cache_detail
*cd
= RPC_I(inode
)->private;
1755 return cache_release(inode
, filp
, cd
);
1758 const struct file_operations cache_file_operations_pipefs
= {
1759 .owner
= THIS_MODULE
,
1760 .llseek
= no_llseek
,
1761 .read
= cache_read_pipefs
,
1762 .write
= cache_write_pipefs
,
1763 .poll
= cache_poll_pipefs
,
1764 .unlocked_ioctl
= cache_ioctl_pipefs
, /* for FIONREAD */
1765 .open
= cache_open_pipefs
,
1766 .release
= cache_release_pipefs
,
1769 static int content_open_pipefs(struct inode
*inode
, struct file
*filp
)
1771 struct cache_detail
*cd
= RPC_I(inode
)->private;
1773 return content_open(inode
, filp
, cd
);
1776 static int content_release_pipefs(struct inode
*inode
, struct file
*filp
)
1778 struct cache_detail
*cd
= RPC_I(inode
)->private;
1780 return content_release(inode
, filp
, cd
);
1783 const struct file_operations content_file_operations_pipefs
= {
1784 .open
= content_open_pipefs
,
1786 .llseek
= seq_lseek
,
1787 .release
= content_release_pipefs
,
1790 static int open_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1792 struct cache_detail
*cd
= RPC_I(inode
)->private;
1794 return open_flush(inode
, filp
, cd
);
1797 static int release_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1799 struct cache_detail
*cd
= RPC_I(inode
)->private;
1801 return release_flush(inode
, filp
, cd
);
1804 static ssize_t
read_flush_pipefs(struct file
*filp
, char __user
*buf
,
1805 size_t count
, loff_t
*ppos
)
1807 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1809 return read_flush(filp
, buf
, count
, ppos
, cd
);
1812 static ssize_t
write_flush_pipefs(struct file
*filp
,
1813 const char __user
*buf
,
1814 size_t count
, loff_t
*ppos
)
1816 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1818 return write_flush(filp
, buf
, count
, ppos
, cd
);
1821 const struct file_operations cache_flush_operations_pipefs
= {
1822 .open
= open_flush_pipefs
,
1823 .read
= read_flush_pipefs
,
1824 .write
= write_flush_pipefs
,
1825 .release
= release_flush_pipefs
,
1826 .llseek
= no_llseek
,
1829 int sunrpc_cache_register_pipefs(struct dentry
*parent
,
1830 const char *name
, umode_t umode
,
1831 struct cache_detail
*cd
)
1833 struct dentry
*dir
= rpc_create_cache_dir(parent
, name
, umode
, cd
);
1835 return PTR_ERR(dir
);
1839 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs
);
1841 void sunrpc_cache_unregister_pipefs(struct cache_detail
*cd
)
1844 rpc_remove_cache_dir(cd
->pipefs
);
1848 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs
);
1850 void sunrpc_cache_unhash(struct cache_detail
*cd
, struct cache_head
*h
)
1852 write_lock(&cd
->hash_lock
);
1853 if (!hlist_unhashed(&h
->cache_list
)){
1854 hlist_del_init(&h
->cache_list
);
1856 write_unlock(&cd
->hash_lock
);
1859 write_unlock(&cd
->hash_lock
);
1861 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash
);