2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
23 #include <linux/sunrpc/clnt.h>
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY RPCDBG_SCHED
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
35 * RPC slabs and memory pools
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache
*rpc_task_slabp __read_mostly
;
41 static struct kmem_cache
*rpc_buffer_slabp __read_mostly
;
42 static mempool_t
*rpc_task_mempool __read_mostly
;
43 static mempool_t
*rpc_buffer_mempool __read_mostly
;
45 static void rpc_async_schedule(struct work_struct
*);
46 static void rpc_release_task(struct rpc_task
*task
);
47 static void __rpc_queue_timer_fn(struct timer_list
*t
);
50 * RPC tasks sit here while waiting for conditions to improve.
52 static struct rpc_wait_queue delay_queue
;
55 * rpciod-related stuff
57 struct workqueue_struct
*rpciod_workqueue __read_mostly
;
58 struct workqueue_struct
*xprtiod_workqueue __read_mostly
;
61 * Disable the timer for a given RPC task. Should be called with
62 * queue->lock and bh_disabled in order to avoid races within
66 __rpc_disable_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
68 if (task
->tk_timeout
== 0)
70 dprintk("RPC: %5u disabling timer\n", task
->tk_pid
);
72 list_del(&task
->u
.tk_wait
.timer_list
);
73 if (list_empty(&queue
->timer_list
.list
))
74 del_timer(&queue
->timer_list
.timer
);
78 rpc_set_queue_timer(struct rpc_wait_queue
*queue
, unsigned long expires
)
80 queue
->timer_list
.expires
= expires
;
81 mod_timer(&queue
->timer_list
.timer
, expires
);
85 * Set up a timer for the current task.
88 __rpc_add_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
90 if (!task
->tk_timeout
)
93 dprintk("RPC: %5u setting alarm for %u ms\n",
94 task
->tk_pid
, jiffies_to_msecs(task
->tk_timeout
));
96 task
->u
.tk_wait
.expires
= jiffies
+ task
->tk_timeout
;
97 if (list_empty(&queue
->timer_list
.list
) || time_before(task
->u
.tk_wait
.expires
, queue
->timer_list
.expires
))
98 rpc_set_queue_timer(queue
, task
->u
.tk_wait
.expires
);
99 list_add(&task
->u
.tk_wait
.timer_list
, &queue
->timer_list
.list
);
102 static void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
104 if (queue
->priority
!= priority
) {
105 queue
->priority
= priority
;
106 queue
->nr
= 1U << priority
;
110 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
112 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
116 * Add a request to a queue list
119 __rpc_list_enqueue_task(struct list_head
*q
, struct rpc_task
*task
)
123 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
124 if (t
->tk_owner
== task
->tk_owner
) {
125 list_add_tail(&task
->u
.tk_wait
.links
,
126 &t
->u
.tk_wait
.links
);
127 /* Cache the queue head in task->u.tk_wait.list */
128 task
->u
.tk_wait
.list
.next
= q
;
129 task
->u
.tk_wait
.list
.prev
= NULL
;
133 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
134 list_add_tail(&task
->u
.tk_wait
.list
, q
);
138 * Remove request from a queue list
141 __rpc_list_dequeue_task(struct rpc_task
*task
)
146 if (task
->u
.tk_wait
.list
.prev
== NULL
) {
147 list_del(&task
->u
.tk_wait
.links
);
150 if (!list_empty(&task
->u
.tk_wait
.links
)) {
151 t
= list_first_entry(&task
->u
.tk_wait
.links
,
154 /* Assume __rpc_list_enqueue_task() cached the queue head */
155 q
= t
->u
.tk_wait
.list
.next
;
156 list_add_tail(&t
->u
.tk_wait
.list
, q
);
157 list_del(&task
->u
.tk_wait
.links
);
159 list_del(&task
->u
.tk_wait
.list
);
163 * Add new request to a priority queue.
165 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
,
166 struct rpc_task
*task
,
167 unsigned char queue_priority
)
169 if (unlikely(queue_priority
> queue
->maxpriority
))
170 queue_priority
= queue
->maxpriority
;
171 __rpc_list_enqueue_task(&queue
->tasks
[queue_priority
], task
);
175 * Add new request to wait queue.
177 * Swapper tasks always get inserted at the head of the queue.
178 * This should avoid many nasty memory deadlocks and hopefully
179 * improve overall performance.
180 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
182 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
,
183 struct rpc_task
*task
,
184 unsigned char queue_priority
)
186 WARN_ON_ONCE(RPC_IS_QUEUED(task
));
187 if (RPC_IS_QUEUED(task
))
190 if (RPC_IS_PRIORITY(queue
))
191 __rpc_add_wait_queue_priority(queue
, task
, queue_priority
);
192 else if (RPC_IS_SWAPPER(task
))
193 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
195 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
196 task
->tk_waitqueue
= queue
;
198 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
200 rpc_set_queued(task
);
202 dprintk("RPC: %5u added to queue %p \"%s\"\n",
203 task
->tk_pid
, queue
, rpc_qname(queue
));
207 * Remove request from a priority queue.
209 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
211 __rpc_list_dequeue_task(task
);
215 * Remove request from queue.
216 * Note: must be called with spin lock held.
218 static void __rpc_remove_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
220 __rpc_disable_timer(queue
, task
);
221 if (RPC_IS_PRIORITY(queue
))
222 __rpc_remove_wait_queue_priority(task
);
224 list_del(&task
->u
.tk_wait
.list
);
226 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
227 task
->tk_pid
, queue
, rpc_qname(queue
));
230 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, unsigned char nr_queues
)
234 spin_lock_init(&queue
->lock
);
235 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
236 INIT_LIST_HEAD(&queue
->tasks
[i
]);
237 queue
->maxpriority
= nr_queues
- 1;
238 rpc_reset_waitqueue_priority(queue
);
240 timer_setup(&queue
->timer_list
.timer
, __rpc_queue_timer_fn
, 0);
241 INIT_LIST_HEAD(&queue
->timer_list
.list
);
242 rpc_assign_waitqueue_name(queue
, qname
);
245 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
247 __rpc_init_priority_wait_queue(queue
, qname
, RPC_NR_PRIORITY
);
249 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue
);
251 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
253 __rpc_init_priority_wait_queue(queue
, qname
, 1);
255 EXPORT_SYMBOL_GPL(rpc_init_wait_queue
);
257 void rpc_destroy_wait_queue(struct rpc_wait_queue
*queue
)
259 del_timer_sync(&queue
->timer_list
.timer
);
261 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue
);
263 static int rpc_wait_bit_killable(struct wait_bit_key
*key
, int mode
)
265 freezable_schedule_unsafe();
266 if (signal_pending_state(mode
, current
))
271 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
272 static void rpc_task_set_debuginfo(struct rpc_task
*task
)
274 static atomic_t rpc_pid
;
276 task
->tk_pid
= atomic_inc_return(&rpc_pid
);
279 static inline void rpc_task_set_debuginfo(struct rpc_task
*task
)
284 static void rpc_set_active(struct rpc_task
*task
)
286 rpc_task_set_debuginfo(task
);
287 set_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
288 trace_rpc_task_begin(task
, NULL
);
292 * Mark an RPC call as having completed by clearing the 'active' bit
293 * and then waking up all tasks that were sleeping.
295 static int rpc_complete_task(struct rpc_task
*task
)
297 void *m
= &task
->tk_runstate
;
298 wait_queue_head_t
*wq
= bit_waitqueue(m
, RPC_TASK_ACTIVE
);
299 struct wait_bit_key k
= __WAIT_BIT_KEY_INITIALIZER(m
, RPC_TASK_ACTIVE
);
303 trace_rpc_task_complete(task
, NULL
);
305 spin_lock_irqsave(&wq
->lock
, flags
);
306 clear_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
307 ret
= atomic_dec_and_test(&task
->tk_count
);
308 if (waitqueue_active(wq
))
309 __wake_up_locked_key(wq
, TASK_NORMAL
, &k
);
310 spin_unlock_irqrestore(&wq
->lock
, flags
);
315 * Allow callers to wait for completion of an RPC call
317 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
318 * to enforce taking of the wq->lock and hence avoid races with
319 * rpc_complete_task().
321 int __rpc_wait_for_completion_task(struct rpc_task
*task
, wait_bit_action_f
*action
)
324 action
= rpc_wait_bit_killable
;
325 return out_of_line_wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
326 action
, TASK_KILLABLE
);
328 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task
);
331 * Make an RPC task runnable.
333 * Note: If the task is ASYNC, and is being made runnable after sitting on an
334 * rpc_wait_queue, this must be called with the queue spinlock held to protect
335 * the wait queue operation.
336 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
337 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
338 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
339 * the RPC_TASK_RUNNING flag.
341 static void rpc_make_runnable(struct workqueue_struct
*wq
,
342 struct rpc_task
*task
)
344 bool need_wakeup
= !rpc_test_and_set_running(task
);
346 rpc_clear_queued(task
);
349 if (RPC_IS_ASYNC(task
)) {
350 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
);
351 queue_work(wq
, &task
->u
.tk_work
);
353 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
357 * Prepare for sleeping on a wait queue.
358 * By always appending tasks to the list we ensure FIFO behavior.
359 * NB: An RPC task will only receive interrupt-driven events as long
360 * as it's on a wait queue.
362 static void __rpc_sleep_on_priority(struct rpc_wait_queue
*q
,
363 struct rpc_task
*task
,
365 unsigned char queue_priority
)
367 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
368 task
->tk_pid
, rpc_qname(q
), jiffies
);
370 trace_rpc_task_sleep(task
, q
);
372 __rpc_add_wait_queue(q
, task
, queue_priority
);
374 WARN_ON_ONCE(task
->tk_callback
!= NULL
);
375 task
->tk_callback
= action
;
376 __rpc_add_timer(q
, task
);
379 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
382 /* We shouldn't ever put an inactive task to sleep */
383 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task
));
384 if (!RPC_IS_ACTIVATED(task
)) {
385 task
->tk_status
= -EIO
;
386 rpc_put_task_async(task
);
391 * Protect the queue operations.
393 spin_lock_bh(&q
->lock
);
394 __rpc_sleep_on_priority(q
, task
, action
, task
->tk_priority
);
395 spin_unlock_bh(&q
->lock
);
397 EXPORT_SYMBOL_GPL(rpc_sleep_on
);
399 void rpc_sleep_on_priority(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
400 rpc_action action
, int priority
)
402 /* We shouldn't ever put an inactive task to sleep */
403 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task
));
404 if (!RPC_IS_ACTIVATED(task
)) {
405 task
->tk_status
= -EIO
;
406 rpc_put_task_async(task
);
411 * Protect the queue operations.
413 spin_lock_bh(&q
->lock
);
414 __rpc_sleep_on_priority(q
, task
, action
, priority
- RPC_PRIORITY_LOW
);
415 spin_unlock_bh(&q
->lock
);
417 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority
);
420 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
421 * @wq: workqueue on which to run task
423 * @task: task to be woken up
425 * Caller must hold queue->lock, and have cleared the task queued flag.
427 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct
*wq
,
428 struct rpc_wait_queue
*queue
,
429 struct rpc_task
*task
)
431 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
432 task
->tk_pid
, jiffies
);
434 /* Has the task been executed yet? If not, we cannot wake it up! */
435 if (!RPC_IS_ACTIVATED(task
)) {
436 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
440 trace_rpc_task_wakeup(task
, queue
);
442 __rpc_remove_wait_queue(queue
, task
);
444 rpc_make_runnable(wq
, task
);
446 dprintk("RPC: __rpc_wake_up_task done\n");
450 * Wake up a queued task while the queue lock is being held
452 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct
*wq
,
453 struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
455 if (RPC_IS_QUEUED(task
)) {
457 if (task
->tk_waitqueue
== queue
)
458 __rpc_do_wake_up_task_on_wq(wq
, queue
, task
);
463 * Wake up a queued task while the queue lock is being held
465 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
467 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue
, queue
, task
);
471 * Wake up a task on a specific queue
473 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct
*wq
,
474 struct rpc_wait_queue
*queue
,
475 struct rpc_task
*task
)
477 spin_lock_bh(&queue
->lock
);
478 rpc_wake_up_task_on_wq_queue_locked(wq
, queue
, task
);
479 spin_unlock_bh(&queue
->lock
);
483 * Wake up a task on a specific queue
485 void rpc_wake_up_queued_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
487 spin_lock_bh(&queue
->lock
);
488 rpc_wake_up_task_queue_locked(queue
, task
);
489 spin_unlock_bh(&queue
->lock
);
491 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task
);
494 * Wake up the next task on a priority queue.
496 static struct rpc_task
*__rpc_find_next_queued_priority(struct rpc_wait_queue
*queue
)
499 struct rpc_task
*task
;
502 * Service a batch of tasks from a single owner.
504 q
= &queue
->tasks
[queue
->priority
];
505 if (!list_empty(q
) && --queue
->nr
) {
506 task
= list_first_entry(q
, struct rpc_task
, u
.tk_wait
.list
);
511 * Service the next queue.
514 if (q
== &queue
->tasks
[0])
515 q
= &queue
->tasks
[queue
->maxpriority
];
518 if (!list_empty(q
)) {
519 task
= list_first_entry(q
, struct rpc_task
, u
.tk_wait
.list
);
522 } while (q
!= &queue
->tasks
[queue
->priority
]);
524 rpc_reset_waitqueue_priority(queue
);
528 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
533 static struct rpc_task
*__rpc_find_next_queued(struct rpc_wait_queue
*queue
)
535 if (RPC_IS_PRIORITY(queue
))
536 return __rpc_find_next_queued_priority(queue
);
537 if (!list_empty(&queue
->tasks
[0]))
538 return list_first_entry(&queue
->tasks
[0], struct rpc_task
, u
.tk_wait
.list
);
543 * Wake up the first task on the wait queue.
545 struct rpc_task
*rpc_wake_up_first_on_wq(struct workqueue_struct
*wq
,
546 struct rpc_wait_queue
*queue
,
547 bool (*func
)(struct rpc_task
*, void *), void *data
)
549 struct rpc_task
*task
= NULL
;
551 dprintk("RPC: wake_up_first(%p \"%s\")\n",
552 queue
, rpc_qname(queue
));
553 spin_lock_bh(&queue
->lock
);
554 task
= __rpc_find_next_queued(queue
);
556 if (func(task
, data
))
557 rpc_wake_up_task_on_wq_queue_locked(wq
, queue
, task
);
561 spin_unlock_bh(&queue
->lock
);
567 * Wake up the first task on the wait queue.
569 struct rpc_task
*rpc_wake_up_first(struct rpc_wait_queue
*queue
,
570 bool (*func
)(struct rpc_task
*, void *), void *data
)
572 return rpc_wake_up_first_on_wq(rpciod_workqueue
, queue
, func
, data
);
574 EXPORT_SYMBOL_GPL(rpc_wake_up_first
);
576 static bool rpc_wake_up_next_func(struct rpc_task
*task
, void *data
)
582 * Wake up the next task on the wait queue.
584 struct rpc_task
*rpc_wake_up_next(struct rpc_wait_queue
*queue
)
586 return rpc_wake_up_first(queue
, rpc_wake_up_next_func
, NULL
);
588 EXPORT_SYMBOL_GPL(rpc_wake_up_next
);
591 * rpc_wake_up - wake up all rpc_tasks
592 * @queue: rpc_wait_queue on which the tasks are sleeping
596 void rpc_wake_up(struct rpc_wait_queue
*queue
)
598 struct list_head
*head
;
600 spin_lock_bh(&queue
->lock
);
601 head
= &queue
->tasks
[queue
->maxpriority
];
603 while (!list_empty(head
)) {
604 struct rpc_task
*task
;
605 task
= list_first_entry(head
,
608 rpc_wake_up_task_queue_locked(queue
, task
);
610 if (head
== &queue
->tasks
[0])
614 spin_unlock_bh(&queue
->lock
);
616 EXPORT_SYMBOL_GPL(rpc_wake_up
);
619 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
620 * @queue: rpc_wait_queue on which the tasks are sleeping
621 * @status: status value to set
625 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
627 struct list_head
*head
;
629 spin_lock_bh(&queue
->lock
);
630 head
= &queue
->tasks
[queue
->maxpriority
];
632 while (!list_empty(head
)) {
633 struct rpc_task
*task
;
634 task
= list_first_entry(head
,
637 task
->tk_status
= status
;
638 rpc_wake_up_task_queue_locked(queue
, task
);
640 if (head
== &queue
->tasks
[0])
644 spin_unlock_bh(&queue
->lock
);
646 EXPORT_SYMBOL_GPL(rpc_wake_up_status
);
648 static void __rpc_queue_timer_fn(struct timer_list
*t
)
650 struct rpc_wait_queue
*queue
= from_timer(queue
, t
, timer_list
.timer
);
651 struct rpc_task
*task
, *n
;
652 unsigned long expires
, now
, timeo
;
654 spin_lock(&queue
->lock
);
655 expires
= now
= jiffies
;
656 list_for_each_entry_safe(task
, n
, &queue
->timer_list
.list
, u
.tk_wait
.timer_list
) {
657 timeo
= task
->u
.tk_wait
.expires
;
658 if (time_after_eq(now
, timeo
)) {
659 dprintk("RPC: %5u timeout\n", task
->tk_pid
);
660 task
->tk_status
= -ETIMEDOUT
;
661 rpc_wake_up_task_queue_locked(queue
, task
);
664 if (expires
== now
|| time_after(expires
, timeo
))
667 if (!list_empty(&queue
->timer_list
.list
))
668 rpc_set_queue_timer(queue
, expires
);
669 spin_unlock(&queue
->lock
);
672 static void __rpc_atrun(struct rpc_task
*task
)
674 if (task
->tk_status
== -ETIMEDOUT
)
679 * Run a task at a later time
681 void rpc_delay(struct rpc_task
*task
, unsigned long delay
)
683 task
->tk_timeout
= delay
;
684 rpc_sleep_on(&delay_queue
, task
, __rpc_atrun
);
686 EXPORT_SYMBOL_GPL(rpc_delay
);
689 * Helper to call task->tk_ops->rpc_call_prepare
691 void rpc_prepare_task(struct rpc_task
*task
)
693 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
697 rpc_init_task_statistics(struct rpc_task
*task
)
699 /* Initialize retry counters */
700 task
->tk_garb_retry
= 2;
701 task
->tk_cred_retry
= 2;
702 task
->tk_rebind_retry
= 2;
704 /* starting timestamp */
705 task
->tk_start
= ktime_get();
709 rpc_reset_task_statistics(struct rpc_task
*task
)
711 task
->tk_timeouts
= 0;
712 task
->tk_flags
&= ~(RPC_CALL_MAJORSEEN
|RPC_TASK_KILLED
|RPC_TASK_SENT
);
714 rpc_init_task_statistics(task
);
718 * Helper that calls task->tk_ops->rpc_call_done if it exists
720 void rpc_exit_task(struct rpc_task
*task
)
722 task
->tk_action
= NULL
;
723 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
724 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
725 if (task
->tk_action
!= NULL
) {
726 WARN_ON(RPC_ASSASSINATED(task
));
727 /* Always release the RPC slot and buffer memory */
729 rpc_reset_task_statistics(task
);
734 void rpc_exit(struct rpc_task
*task
, int status
)
736 task
->tk_status
= status
;
737 task
->tk_action
= rpc_exit_task
;
738 if (RPC_IS_QUEUED(task
))
739 rpc_wake_up_queued_task(task
->tk_waitqueue
, task
);
741 EXPORT_SYMBOL_GPL(rpc_exit
);
743 void rpc_release_calldata(const struct rpc_call_ops
*ops
, void *calldata
)
745 if (ops
->rpc_release
!= NULL
)
746 ops
->rpc_release(calldata
);
750 * This is the RPC `scheduler' (or rather, the finite state machine).
752 static void __rpc_execute(struct rpc_task
*task
)
754 struct rpc_wait_queue
*queue
;
755 int task_is_async
= RPC_IS_ASYNC(task
);
758 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
759 task
->tk_pid
, task
->tk_flags
);
761 WARN_ON_ONCE(RPC_IS_QUEUED(task
));
762 if (RPC_IS_QUEUED(task
))
766 void (*do_action
)(struct rpc_task
*);
769 * Perform the next FSM step or a pending callback.
771 * tk_action may be NULL if the task has been killed.
772 * In particular, note that rpc_killall_tasks may
773 * do this at any time, so beware when dereferencing.
775 do_action
= task
->tk_action
;
776 if (task
->tk_callback
) {
777 do_action
= task
->tk_callback
;
778 task
->tk_callback
= NULL
;
782 trace_rpc_task_run_action(task
, do_action
);
786 * Lockless check for whether task is sleeping or not.
788 if (!RPC_IS_QUEUED(task
))
791 * The queue->lock protects against races with
792 * rpc_make_runnable().
794 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
795 * rpc_task, rpc_make_runnable() can assign it to a
796 * different workqueue. We therefore cannot assume that the
797 * rpc_task pointer may still be dereferenced.
799 queue
= task
->tk_waitqueue
;
800 spin_lock_bh(&queue
->lock
);
801 if (!RPC_IS_QUEUED(task
)) {
802 spin_unlock_bh(&queue
->lock
);
805 rpc_clear_running(task
);
806 spin_unlock_bh(&queue
->lock
);
810 /* sync task: sleep here */
811 dprintk("RPC: %5u sync task going to sleep\n", task
->tk_pid
);
812 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
813 RPC_TASK_QUEUED
, rpc_wait_bit_killable
,
815 if (status
== -ERESTARTSYS
) {
817 * When a sync task receives a signal, it exits with
818 * -ERESTARTSYS. In order to catch any callbacks that
819 * clean up after sleeping on some queue, we don't
820 * break the loop here, but go around once more.
822 dprintk("RPC: %5u got signal\n", task
->tk_pid
);
823 task
->tk_flags
|= RPC_TASK_KILLED
;
824 rpc_exit(task
, -ERESTARTSYS
);
826 dprintk("RPC: %5u sync task resuming\n", task
->tk_pid
);
829 dprintk("RPC: %5u return %d, status %d\n", task
->tk_pid
, status
,
831 /* Release all resources associated with the task */
832 rpc_release_task(task
);
836 * User-visible entry point to the scheduler.
838 * This may be called recursively if e.g. an async NFS task updates
839 * the attributes and finds that dirty pages must be flushed.
840 * NOTE: Upon exit of this function the task is guaranteed to be
841 * released. In particular note that tk_release() will have
842 * been called, so your task memory may have been freed.
844 void rpc_execute(struct rpc_task
*task
)
846 bool is_async
= RPC_IS_ASYNC(task
);
848 rpc_set_active(task
);
849 rpc_make_runnable(rpciod_workqueue
, task
);
854 static void rpc_async_schedule(struct work_struct
*work
)
856 __rpc_execute(container_of(work
, struct rpc_task
, u
.tk_work
));
860 * rpc_malloc - allocate RPC buffer resources
863 * A single memory region is allocated, which is split between the
864 * RPC call and RPC reply that this task is being used for. When
865 * this RPC is retired, the memory is released by calling rpc_free.
867 * To prevent rpciod from hanging, this allocator never sleeps,
868 * returning -ENOMEM and suppressing warning if the request cannot
869 * be serviced immediately. The caller can arrange to sleep in a
870 * way that is safe for rpciod.
872 * Most requests are 'small' (under 2KiB) and can be serviced from a
873 * mempool, ensuring that NFS reads and writes can always proceed,
874 * and that there is good locality of reference for these buffers.
876 * In order to avoid memory starvation triggering more writebacks of
877 * NFS requests, we avoid using GFP_KERNEL.
879 int rpc_malloc(struct rpc_task
*task
)
881 struct rpc_rqst
*rqst
= task
->tk_rqstp
;
882 size_t size
= rqst
->rq_callsize
+ rqst
->rq_rcvsize
;
883 struct rpc_buffer
*buf
;
884 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
;
886 if (RPC_IS_SWAPPER(task
))
887 gfp
= __GFP_MEMALLOC
| GFP_NOWAIT
| __GFP_NOWARN
;
889 size
+= sizeof(struct rpc_buffer
);
890 if (size
<= RPC_BUFFER_MAXSIZE
)
891 buf
= mempool_alloc(rpc_buffer_mempool
, gfp
);
893 buf
= kmalloc(size
, gfp
);
899 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
900 task
->tk_pid
, size
, buf
);
901 rqst
->rq_buffer
= buf
->data
;
902 rqst
->rq_rbuffer
= (char *)rqst
->rq_buffer
+ rqst
->rq_callsize
;
905 EXPORT_SYMBOL_GPL(rpc_malloc
);
908 * rpc_free - free RPC buffer resources allocated via rpc_malloc
912 void rpc_free(struct rpc_task
*task
)
914 void *buffer
= task
->tk_rqstp
->rq_buffer
;
916 struct rpc_buffer
*buf
;
918 buf
= container_of(buffer
, struct rpc_buffer
, data
);
921 dprintk("RPC: freeing buffer of size %zu at %p\n",
924 if (size
<= RPC_BUFFER_MAXSIZE
)
925 mempool_free(buf
, rpc_buffer_mempool
);
929 EXPORT_SYMBOL_GPL(rpc_free
);
932 * Creation and deletion of RPC task structures
934 static void rpc_init_task(struct rpc_task
*task
, const struct rpc_task_setup
*task_setup_data
)
936 memset(task
, 0, sizeof(*task
));
937 atomic_set(&task
->tk_count
, 1);
938 task
->tk_flags
= task_setup_data
->flags
;
939 task
->tk_ops
= task_setup_data
->callback_ops
;
940 task
->tk_calldata
= task_setup_data
->callback_data
;
941 INIT_LIST_HEAD(&task
->tk_task
);
943 task
->tk_priority
= task_setup_data
->priority
- RPC_PRIORITY_LOW
;
944 task
->tk_owner
= current
->tgid
;
946 /* Initialize workqueue for async tasks */
947 task
->tk_workqueue
= task_setup_data
->workqueue
;
949 task
->tk_xprt
= xprt_get(task_setup_data
->rpc_xprt
);
951 if (task
->tk_ops
->rpc_call_prepare
!= NULL
)
952 task
->tk_action
= rpc_prepare_task
;
954 rpc_init_task_statistics(task
);
956 dprintk("RPC: new task initialized, procpid %u\n",
957 task_pid_nr(current
));
960 static struct rpc_task
*
963 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOIO
);
967 * Create a new task for the specified client.
969 struct rpc_task
*rpc_new_task(const struct rpc_task_setup
*setup_data
)
971 struct rpc_task
*task
= setup_data
->task
;
972 unsigned short flags
= 0;
975 task
= rpc_alloc_task();
976 flags
= RPC_TASK_DYNAMIC
;
979 rpc_init_task(task
, setup_data
);
980 task
->tk_flags
|= flags
;
981 dprintk("RPC: allocated task %p\n", task
);
986 * rpc_free_task - release rpc task and perform cleanups
988 * Note that we free up the rpc_task _after_ rpc_release_calldata()
989 * in order to work around a workqueue dependency issue.
992 * "Workqueue currently considers two work items to be the same if they're
993 * on the same address and won't execute them concurrently - ie. it
994 * makes a work item which is queued again while being executed wait
995 * for the previous execution to complete.
997 * If a work function frees the work item, and then waits for an event
998 * which should be performed by another work item and *that* work item
999 * recycles the freed work item, it can create a false dependency loop.
1000 * There really is no reliable way to detect this short of verifying
1001 * every memory free."
1004 static void rpc_free_task(struct rpc_task
*task
)
1006 unsigned short tk_flags
= task
->tk_flags
;
1008 rpc_release_calldata(task
->tk_ops
, task
->tk_calldata
);
1010 if (tk_flags
& RPC_TASK_DYNAMIC
) {
1011 dprintk("RPC: %5u freeing task\n", task
->tk_pid
);
1012 mempool_free(task
, rpc_task_mempool
);
1016 static void rpc_async_release(struct work_struct
*work
)
1018 rpc_free_task(container_of(work
, struct rpc_task
, u
.tk_work
));
1021 static void rpc_release_resources_task(struct rpc_task
*task
)
1024 if (task
->tk_msg
.rpc_cred
) {
1025 put_rpccred(task
->tk_msg
.rpc_cred
);
1026 task
->tk_msg
.rpc_cred
= NULL
;
1028 rpc_task_release_client(task
);
1031 static void rpc_final_put_task(struct rpc_task
*task
,
1032 struct workqueue_struct
*q
)
1035 INIT_WORK(&task
->u
.tk_work
, rpc_async_release
);
1036 queue_work(q
, &task
->u
.tk_work
);
1038 rpc_free_task(task
);
1041 static void rpc_do_put_task(struct rpc_task
*task
, struct workqueue_struct
*q
)
1043 if (atomic_dec_and_test(&task
->tk_count
)) {
1044 rpc_release_resources_task(task
);
1045 rpc_final_put_task(task
, q
);
1049 void rpc_put_task(struct rpc_task
*task
)
1051 rpc_do_put_task(task
, NULL
);
1053 EXPORT_SYMBOL_GPL(rpc_put_task
);
1055 void rpc_put_task_async(struct rpc_task
*task
)
1057 rpc_do_put_task(task
, task
->tk_workqueue
);
1059 EXPORT_SYMBOL_GPL(rpc_put_task_async
);
1061 static void rpc_release_task(struct rpc_task
*task
)
1063 dprintk("RPC: %5u release task\n", task
->tk_pid
);
1065 WARN_ON_ONCE(RPC_IS_QUEUED(task
));
1067 rpc_release_resources_task(task
);
1070 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1071 * so it should be safe to use task->tk_count as a test for whether
1072 * or not any other processes still hold references to our rpc_task.
1074 if (atomic_read(&task
->tk_count
) != 1 + !RPC_IS_ASYNC(task
)) {
1075 /* Wake up anyone who may be waiting for task completion */
1076 if (!rpc_complete_task(task
))
1079 if (!atomic_dec_and_test(&task
->tk_count
))
1082 rpc_final_put_task(task
, task
->tk_workqueue
);
1087 return try_module_get(THIS_MODULE
) ? 0 : -EINVAL
;
1090 void rpciod_down(void)
1092 module_put(THIS_MODULE
);
1096 * Start up the rpciod workqueue.
1098 static int rpciod_start(void)
1100 struct workqueue_struct
*wq
;
1103 * Create the rpciod thread and wait for it to start.
1105 dprintk("RPC: creating workqueue rpciod\n");
1106 wq
= alloc_workqueue("rpciod", WQ_MEM_RECLAIM
| WQ_UNBOUND
, 0);
1109 rpciod_workqueue
= wq
;
1110 /* Note: highpri because network receive is latency sensitive */
1111 wq
= alloc_workqueue("xprtiod", WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_HIGHPRI
, 0);
1114 xprtiod_workqueue
= wq
;
1117 wq
= rpciod_workqueue
;
1118 rpciod_workqueue
= NULL
;
1119 destroy_workqueue(wq
);
1124 static void rpciod_stop(void)
1126 struct workqueue_struct
*wq
= NULL
;
1128 if (rpciod_workqueue
== NULL
)
1130 dprintk("RPC: destroying workqueue rpciod\n");
1132 wq
= rpciod_workqueue
;
1133 rpciod_workqueue
= NULL
;
1134 destroy_workqueue(wq
);
1135 wq
= xprtiod_workqueue
;
1136 xprtiod_workqueue
= NULL
;
1137 destroy_workqueue(wq
);
1141 rpc_destroy_mempool(void)
1144 mempool_destroy(rpc_buffer_mempool
);
1145 mempool_destroy(rpc_task_mempool
);
1146 kmem_cache_destroy(rpc_task_slabp
);
1147 kmem_cache_destroy(rpc_buffer_slabp
);
1148 rpc_destroy_wait_queue(&delay_queue
);
1152 rpc_init_mempool(void)
1155 * The following is not strictly a mempool initialisation,
1156 * but there is no harm in doing it here
1158 rpc_init_wait_queue(&delay_queue
, "delayq");
1159 if (!rpciod_start())
1162 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1163 sizeof(struct rpc_task
),
1164 0, SLAB_HWCACHE_ALIGN
,
1166 if (!rpc_task_slabp
)
1168 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1170 0, SLAB_HWCACHE_ALIGN
,
1172 if (!rpc_buffer_slabp
)
1174 rpc_task_mempool
= mempool_create_slab_pool(RPC_TASK_POOLSIZE
,
1176 if (!rpc_task_mempool
)
1178 rpc_buffer_mempool
= mempool_create_slab_pool(RPC_BUFFER_POOLSIZE
,
1180 if (!rpc_buffer_mempool
)
1184 rpc_destroy_mempool();