1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright 2016,2017 IBM Corporation.
6 #define pr_fmt(fmt) "xive: " fmt
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
26 #include <asm/machdep.h>
28 #include <asm/errno.h>
30 #include <asm/xive-regs.h>
33 #include "xive-internal.h"
39 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
40 smp_processor_id(), ## __VA_ARGS__)
42 #define DBG_VERBOSE(fmt...) do { } while(0)
46 EXPORT_SYMBOL_GPL(__xive_enabled
);
47 bool xive_cmdline_disabled
;
49 /* We use only one priority for now */
50 static u8 xive_irq_priority
;
52 /* TIMA exported to KVM */
53 void __iomem
*xive_tima
;
54 EXPORT_SYMBOL_GPL(xive_tima
);
58 static const struct xive_ops
*xive_ops
;
60 /* Our global interrupt domain */
61 static struct irq_domain
*xive_irq_domain
;
64 /* The IPIs all use the same logical irq number */
65 static u32 xive_ipi_irq
;
68 /* Xive state for each CPU */
69 static DEFINE_PER_CPU(struct xive_cpu
*, xive_cpu
);
72 * A "disabled" interrupt should never fire, to catch problems
73 * we set its logical number to this
75 #define XIVE_BAD_IRQ 0x7fffffff
76 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
78 /* An invalid CPU target */
79 #define XIVE_INVALID_TARGET (-1)
82 * Read the next entry in a queue, return its content if it's valid
83 * or 0 if there is no new entry.
85 * The queue pointer is moved forward unless "just_peek" is set
87 static u32
xive_read_eq(struct xive_q
*q
, bool just_peek
)
93 cur
= be32_to_cpup(q
->qpage
+ q
->idx
);
95 /* Check valid bit (31) vs current toggle polarity */
96 if ((cur
>> 31) == q
->toggle
)
99 /* If consuming from the queue ... */
102 q
->idx
= (q
->idx
+ 1) & q
->msk
;
104 /* Wrap around: flip valid toggle */
108 /* Mask out the valid bit (31) */
109 return cur
& 0x7fffffff;
113 * Scans all the queue that may have interrupts in them
114 * (based on "pending_prio") in priority order until an
115 * interrupt is found or all the queues are empty.
117 * Then updates the CPPR (Current Processor Priority
118 * Register) based on the most favored interrupt found
119 * (0xff if none) and return what was found (0 if none).
121 * If just_peek is set, return the most favored pending
122 * interrupt if any but don't update the queue pointers.
124 * Note: This function can operate generically on any number
125 * of queues (up to 8). The current implementation of the XIVE
126 * driver only uses a single queue however.
128 * Note2: This will also "flush" "the pending_count" of a queue
129 * into the "count" when that queue is observed to be empty.
130 * This is used to keep track of the amount of interrupts
131 * targetting a queue. When an interrupt is moved away from
132 * a queue, we only decrement that queue count once the queue
133 * has been observed empty to avoid races.
135 static u32
xive_scan_interrupts(struct xive_cpu
*xc
, bool just_peek
)
140 /* Find highest pending priority */
141 while (xc
->pending_prio
!= 0) {
144 prio
= ffs(xc
->pending_prio
) - 1;
145 DBG_VERBOSE("scan_irq: trying prio %d\n", prio
);
148 irq
= xive_read_eq(&xc
->queue
[prio
], just_peek
);
150 /* Found something ? That's it */
152 if (just_peek
|| irq_to_desc(irq
))
155 * We should never get here; if we do then we must
156 * have failed to synchronize the interrupt properly
157 * when shutting it down.
159 pr_crit("xive: got interrupt %d without descriptor, dropping\n",
165 /* Clear pending bits */
166 xc
->pending_prio
&= ~(1 << prio
);
169 * Check if the queue count needs adjusting due to
170 * interrupts being moved away. See description of
171 * xive_dec_target_count()
173 q
= &xc
->queue
[prio
];
174 if (atomic_read(&q
->pending_count
)) {
175 int p
= atomic_xchg(&q
->pending_count
, 0);
177 WARN_ON(p
> atomic_read(&q
->count
));
178 atomic_sub(p
, &q
->count
);
183 /* If nothing was found, set CPPR to 0xff */
187 /* Update HW CPPR to match if necessary */
188 if (prio
!= xc
->cppr
) {
189 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio
);
191 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, prio
);
198 * This is used to perform the magic loads from an ESB
199 * described in xive-regs.h
201 static notrace u8
xive_esb_read(struct xive_irq_data
*xd
, u32 offset
)
205 /* Handle HW errata */
206 if (xd
->flags
& XIVE_IRQ_FLAG_SHIFT_BUG
)
207 offset
|= offset
<< 4;
209 if ((xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
) && xive_ops
->esb_rw
)
210 val
= xive_ops
->esb_rw(xd
->hw_irq
, offset
, 0, 0);
212 val
= in_be64(xd
->eoi_mmio
+ offset
);
217 static void xive_esb_write(struct xive_irq_data
*xd
, u32 offset
, u64 data
)
219 /* Handle HW errata */
220 if (xd
->flags
& XIVE_IRQ_FLAG_SHIFT_BUG
)
221 offset
|= offset
<< 4;
223 if ((xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
) && xive_ops
->esb_rw
)
224 xive_ops
->esb_rw(xd
->hw_irq
, offset
, data
, 1);
226 out_be64(xd
->eoi_mmio
+ offset
, data
);
230 static notrace
void xive_dump_eq(const char *name
, struct xive_q
*q
)
237 i0
= be32_to_cpup(q
->qpage
+ idx
);
238 idx
= (idx
+ 1) & q
->msk
;
239 i1
= be32_to_cpup(q
->qpage
+ idx
);
240 xmon_printf("%s idx=%d T=%d %08x %08x ...", name
,
241 q
->idx
, q
->toggle
, i0
, i1
);
244 notrace
void xmon_xive_do_dump(int cpu
)
246 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
248 xmon_printf("CPU %d:", cpu
);
250 xmon_printf("pp=%02x CPPR=%02x ", xc
->pending_prio
, xc
->cppr
);
254 u64 val
= xive_esb_read(&xc
->ipi_data
, XIVE_ESB_GET
);
256 xmon_printf("IPI=0x%08x PQ=%c%c ", xc
->hw_ipi
,
257 val
& XIVE_ESB_VAL_P
? 'P' : '-',
258 val
& XIVE_ESB_VAL_Q
? 'Q' : '-');
261 xive_dump_eq("EQ", &xc
->queue
[xive_irq_priority
]);
266 int xmon_xive_get_irq_config(u32 hw_irq
, struct irq_data
*d
)
273 rc
= xive_ops
->get_irq_config(hw_irq
, &target
, &prio
, &lirq
);
275 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq
, rc
);
279 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
280 hw_irq
, target
, prio
, lirq
);
283 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
284 u64 val
= xive_esb_read(xd
, XIVE_ESB_GET
);
286 xmon_printf("PQ=%c%c",
287 val
& XIVE_ESB_VAL_P
? 'P' : '-',
288 val
& XIVE_ESB_VAL_Q
? 'Q' : '-');
295 #endif /* CONFIG_XMON */
297 static unsigned int xive_get_irq(void)
299 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
303 * This can be called either as a result of a HW interrupt or
304 * as a "replay" because EOI decided there was still something
305 * in one of the queues.
307 * First we perform an ACK cycle in order to update our mask
308 * of pending priorities. This will also have the effect of
309 * updating the CPPR to the most favored pending interrupts.
311 * In the future, if we have a way to differentiate a first
312 * entry (on HW interrupt) from a replay triggered by EOI,
313 * we could skip this on replays unless we soft-mask tells us
314 * that a new HW interrupt occurred.
316 xive_ops
->update_pending(xc
);
318 DBG_VERBOSE("get_irq: pending=%02x\n", xc
->pending_prio
);
320 /* Scan our queue(s) for interrupts */
321 irq
= xive_scan_interrupts(xc
, false);
323 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
324 irq
, xc
->pending_prio
);
326 /* Return pending interrupt if any */
327 if (irq
== XIVE_BAD_IRQ
)
333 * After EOI'ing an interrupt, we need to re-check the queue
334 * to see if another interrupt is pending since multiple
335 * interrupts can coalesce into a single notification to the
338 * If we find that there is indeed more in there, we call
339 * force_external_irq_replay() to make Linux synthetize an
340 * external interrupt on the next call to local_irq_restore().
342 static void xive_do_queue_eoi(struct xive_cpu
*xc
)
344 if (xive_scan_interrupts(xc
, true) != 0) {
345 DBG_VERBOSE("eoi: pending=0x%02x\n", xc
->pending_prio
);
346 force_external_irq_replay();
351 * EOI an interrupt at the source. There are several methods
352 * to do this depending on the HW version and source type
354 static void xive_do_source_eoi(u32 hw_irq
, struct xive_irq_data
*xd
)
357 /* If the XIVE supports the new "store EOI facility, use it */
358 if (xd
->flags
& XIVE_IRQ_FLAG_STORE_EOI
)
359 xive_esb_write(xd
, XIVE_ESB_STORE_EOI
, 0);
360 else if (hw_irq
&& xd
->flags
& XIVE_IRQ_FLAG_EOI_FW
) {
362 * The FW told us to call it. This happens for some
363 * interrupt sources that need additional HW whacking
364 * beyond the ESB manipulation. For example LPC interrupts
365 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
366 * itself. The Firmware will take care of it.
368 if (WARN_ON_ONCE(!xive_ops
->eoi
))
370 xive_ops
->eoi(hw_irq
);
375 * Otherwise for EOI, we use the special MMIO that does
376 * a clear of both P and Q and returns the old Q,
377 * except for LSIs where we use the "EOI cycle" special
380 * This allows us to then do a re-trigger if Q was set
381 * rather than synthesizing an interrupt in software
383 * For LSIs the HW EOI cycle is used rather than PQ bits,
384 * as they are automatically re-triggred in HW when still
387 if (xd
->flags
& XIVE_IRQ_FLAG_LSI
)
388 xive_esb_read(xd
, XIVE_ESB_LOAD_EOI
);
390 eoi_val
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_00
);
391 DBG_VERBOSE("eoi_val=%x\n", eoi_val
);
393 /* Re-trigger if needed */
394 if ((eoi_val
& XIVE_ESB_VAL_Q
) && xd
->trig_mmio
)
395 out_be64(xd
->trig_mmio
, 0);
400 /* irq_chip eoi callback, called with irq descriptor lock held */
401 static void xive_irq_eoi(struct irq_data
*d
)
403 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
404 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
406 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
407 d
->irq
, irqd_to_hwirq(d
), xc
->pending_prio
);
410 * EOI the source if it hasn't been disabled and hasn't
411 * been passed-through to a KVM guest
413 if (!irqd_irq_disabled(d
) && !irqd_is_forwarded_to_vcpu(d
) &&
414 !(xd
->flags
& XIVE_IRQ_NO_EOI
))
415 xive_do_source_eoi(irqd_to_hwirq(d
), xd
);
420 * Clear saved_p to indicate that it's no longer occupying
421 * a queue slot on the target queue
425 /* Check for more work in the queue */
426 xive_do_queue_eoi(xc
);
430 * Helper used to mask and unmask an interrupt source. This
431 * is only called for normal interrupts that do not require
432 * masking/unmasking via firmware.
434 static void xive_do_source_set_mask(struct xive_irq_data
*xd
,
440 * If the interrupt had P set, it may be in a queue.
442 * We need to make sure we don't re-enable it until it
443 * has been fetched from that queue and EOId. We keep
444 * a copy of that P state and use it to restore the
445 * ESB accordingly on unmask.
448 val
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_01
);
449 if (!xd
->stale_p
&& !!(val
& XIVE_ESB_VAL_P
))
452 } else if (xd
->saved_p
) {
453 xive_esb_read(xd
, XIVE_ESB_SET_PQ_10
);
456 xive_esb_read(xd
, XIVE_ESB_SET_PQ_00
);
462 * Try to chose "cpu" as a new interrupt target. Increments
463 * the queue accounting for that target if it's not already
466 static bool xive_try_pick_target(int cpu
)
468 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
469 struct xive_q
*q
= &xc
->queue
[xive_irq_priority
];
473 * Calculate max number of interrupts in that queue.
475 * We leave a gap of 1 just in case...
477 max
= (q
->msk
+ 1) - 1;
478 return !!atomic_add_unless(&q
->count
, 1, max
);
482 * Un-account an interrupt for a target CPU. We don't directly
483 * decrement q->count since the interrupt might still be present
486 * Instead increment a separate counter "pending_count" which
487 * will be substracted from "count" later when that CPU observes
488 * the queue to be empty.
490 static void xive_dec_target_count(int cpu
)
492 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
493 struct xive_q
*q
= &xc
->queue
[xive_irq_priority
];
495 if (WARN_ON(cpu
< 0 || !xc
)) {
496 pr_err("%s: cpu=%d xc=%p\n", __func__
, cpu
, xc
);
501 * We increment the "pending count" which will be used
502 * to decrement the target queue count whenever it's next
503 * processed and found empty. This ensure that we don't
504 * decrement while we still have the interrupt there
507 atomic_inc(&q
->pending_count
);
510 /* Find a tentative CPU target in a CPU mask */
511 static int xive_find_target_in_mask(const struct cpumask
*mask
,
514 int cpu
, first
, num
, i
;
516 /* Pick up a starting point CPU in the mask based on fuzz */
517 num
= min_t(int, cpumask_weight(mask
), nr_cpu_ids
);
521 cpu
= cpumask_first(mask
);
522 for (i
= 0; i
< first
&& cpu
< nr_cpu_ids
; i
++)
523 cpu
= cpumask_next(cpu
, mask
);
526 if (WARN_ON(cpu
>= nr_cpu_ids
))
527 cpu
= cpumask_first(cpu_online_mask
);
529 /* Remember first one to handle wrap-around */
533 * Now go through the entire mask until we find a valid
538 * We re-check online as the fallback case passes us
539 * an untested affinity mask
541 if (cpu_online(cpu
) && xive_try_pick_target(cpu
))
543 cpu
= cpumask_next(cpu
, mask
);
545 if (cpu
>= nr_cpu_ids
)
546 cpu
= cpumask_first(mask
);
547 } while (cpu
!= first
);
553 * Pick a target CPU for an interrupt. This is done at
554 * startup or if the affinity is changed in a way that
555 * invalidates the current target.
557 static int xive_pick_irq_target(struct irq_data
*d
,
558 const struct cpumask
*affinity
)
560 static unsigned int fuzz
;
561 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
566 * If we have chip IDs, first we try to build a mask of
567 * CPUs matching the CPU and find a target in there
569 if (xd
->src_chip
!= XIVE_INVALID_CHIP_ID
&&
570 zalloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
571 /* Build a mask of matching chip IDs */
572 for_each_cpu_and(cpu
, affinity
, cpu_online_mask
) {
573 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
574 if (xc
->chip_id
== xd
->src_chip
)
575 cpumask_set_cpu(cpu
, mask
);
577 /* Try to find a target */
578 if (cpumask_empty(mask
))
581 cpu
= xive_find_target_in_mask(mask
, fuzz
++);
582 free_cpumask_var(mask
);
588 /* No chip IDs, fallback to using the affinity mask */
589 return xive_find_target_in_mask(affinity
, fuzz
++);
592 static unsigned int xive_irq_startup(struct irq_data
*d
)
594 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
595 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
600 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
603 #ifdef CONFIG_PCI_MSI
605 * The generic MSI code returns with the interrupt disabled on the
606 * card, using the MSI mask bits. Firmware doesn't appear to unmask
607 * at that level, so we do it here by hand.
609 if (irq_data_get_msi_desc(d
))
610 pci_msi_unmask_irq(d
);
614 target
= xive_pick_irq_target(d
, irq_data_get_affinity_mask(d
));
615 if (target
== XIVE_INVALID_TARGET
) {
616 /* Try again breaking affinity */
617 target
= xive_pick_irq_target(d
, cpu_online_mask
);
618 if (target
== XIVE_INVALID_TARGET
)
620 pr_warn("irq %d started with broken affinity\n", d
->irq
);
624 if (WARN_ON(target
== XIVE_INVALID_TARGET
||
625 target
>= nr_cpu_ids
))
626 target
= smp_processor_id();
631 * Configure the logical number to be the Linux IRQ number
632 * and set the target queue
634 rc
= xive_ops
->configure_irq(hw_irq
,
635 get_hard_smp_processor_id(target
),
636 xive_irq_priority
, d
->irq
);
641 xive_do_source_set_mask(xd
, false);
646 /* called with irq descriptor lock held */
647 static void xive_irq_shutdown(struct irq_data
*d
)
649 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
650 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
652 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
655 if (WARN_ON(xd
->target
== XIVE_INVALID_TARGET
))
658 /* Mask the interrupt at the source */
659 xive_do_source_set_mask(xd
, true);
662 * Mask the interrupt in HW in the IVT/EAS and set the number
663 * to be the "bad" IRQ number
665 xive_ops
->configure_irq(hw_irq
,
666 get_hard_smp_processor_id(xd
->target
),
669 xive_dec_target_count(xd
->target
);
670 xd
->target
= XIVE_INVALID_TARGET
;
673 static void xive_irq_unmask(struct irq_data
*d
)
675 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
677 pr_devel("xive_irq_unmask: irq %d data @%p\n", d
->irq
, xd
);
680 * This is a workaround for PCI LSI problems on P9, for
681 * these, we call FW to set the mask. The problems might
682 * be fixed by P9 DD2.0, if that is the case, firmware
683 * will no longer set that flag.
685 if (xd
->flags
& XIVE_IRQ_FLAG_MASK_FW
) {
686 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
687 xive_ops
->configure_irq(hw_irq
,
688 get_hard_smp_processor_id(xd
->target
),
689 xive_irq_priority
, d
->irq
);
693 xive_do_source_set_mask(xd
, false);
696 static void xive_irq_mask(struct irq_data
*d
)
698 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
700 pr_devel("xive_irq_mask: irq %d data @%p\n", d
->irq
, xd
);
703 * This is a workaround for PCI LSI problems on P9, for
704 * these, we call OPAL to set the mask. The problems might
705 * be fixed by P9 DD2.0, if that is the case, firmware
706 * will no longer set that flag.
708 if (xd
->flags
& XIVE_IRQ_FLAG_MASK_FW
) {
709 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
710 xive_ops
->configure_irq(hw_irq
,
711 get_hard_smp_processor_id(xd
->target
),
716 xive_do_source_set_mask(xd
, true);
719 static int xive_irq_set_affinity(struct irq_data
*d
,
720 const struct cpumask
*cpumask
,
723 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
724 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
725 u32 target
, old_target
;
728 pr_devel("xive_irq_set_affinity: irq %d\n", d
->irq
);
730 /* Is this valid ? */
731 if (cpumask_any_and(cpumask
, cpu_online_mask
) >= nr_cpu_ids
)
734 /* Don't do anything if the interrupt isn't started */
735 if (!irqd_is_started(d
))
736 return IRQ_SET_MASK_OK
;
739 * If existing target is already in the new mask, and is
740 * online then do nothing.
742 if (xd
->target
!= XIVE_INVALID_TARGET
&&
743 cpu_online(xd
->target
) &&
744 cpumask_test_cpu(xd
->target
, cpumask
))
745 return IRQ_SET_MASK_OK
;
747 /* Pick a new target */
748 target
= xive_pick_irq_target(d
, cpumask
);
750 /* No target found */
751 if (target
== XIVE_INVALID_TARGET
)
755 if (WARN_ON(target
>= nr_cpu_ids
))
756 target
= smp_processor_id();
758 old_target
= xd
->target
;
761 * Only configure the irq if it's not currently passed-through to
764 if (!irqd_is_forwarded_to_vcpu(d
))
765 rc
= xive_ops
->configure_irq(hw_irq
,
766 get_hard_smp_processor_id(target
),
767 xive_irq_priority
, d
->irq
);
769 pr_err("Error %d reconfiguring irq %d\n", rc
, d
->irq
);
773 pr_devel(" target: 0x%x\n", target
);
776 /* Give up previous target */
777 if (old_target
!= XIVE_INVALID_TARGET
)
778 xive_dec_target_count(old_target
);
780 return IRQ_SET_MASK_OK
;
783 static int xive_irq_set_type(struct irq_data
*d
, unsigned int flow_type
)
785 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
788 * We only support these. This has really no effect other than setting
789 * the corresponding descriptor bits mind you but those will in turn
790 * affect the resend function when re-enabling an edge interrupt.
792 * Set set the default to edge as explained in map().
794 if (flow_type
== IRQ_TYPE_DEFAULT
|| flow_type
== IRQ_TYPE_NONE
)
795 flow_type
= IRQ_TYPE_EDGE_RISING
;
797 if (flow_type
!= IRQ_TYPE_EDGE_RISING
&&
798 flow_type
!= IRQ_TYPE_LEVEL_LOW
)
801 irqd_set_trigger_type(d
, flow_type
);
804 * Double check it matches what the FW thinks
806 * NOTE: We don't know yet if the PAPR interface will provide
807 * the LSI vs MSI information apart from the device-tree so
808 * this check might have to move into an optional backend call
809 * that is specific to the native backend
811 if ((flow_type
== IRQ_TYPE_LEVEL_LOW
) !=
812 !!(xd
->flags
& XIVE_IRQ_FLAG_LSI
)) {
813 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
814 d
->irq
, (u32
)irqd_to_hwirq(d
),
815 (flow_type
== IRQ_TYPE_LEVEL_LOW
) ? "Level" : "Edge",
816 (xd
->flags
& XIVE_IRQ_FLAG_LSI
) ? "Level" : "Edge");
819 return IRQ_SET_MASK_OK_NOCOPY
;
822 static int xive_irq_retrigger(struct irq_data
*d
)
824 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
826 /* This should be only for MSIs */
827 if (WARN_ON(xd
->flags
& XIVE_IRQ_FLAG_LSI
))
831 * To perform a retrigger, we first set the PQ bits to
832 * 11, then perform an EOI.
834 xive_esb_read(xd
, XIVE_ESB_SET_PQ_11
);
837 * Note: We pass "0" to the hw_irq argument in order to
838 * avoid calling into the backend EOI code which we don't
839 * want to do in the case of a re-trigger. Backends typically
840 * only do EOI for LSIs anyway.
842 xive_do_source_eoi(0, xd
);
848 * Caller holds the irq descriptor lock, so this won't be called
849 * concurrently with xive_get_irqchip_state on the same interrupt.
851 static int xive_irq_set_vcpu_affinity(struct irq_data
*d
, void *state
)
853 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
854 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
859 * We only support this on interrupts that do not require
860 * firmware calls for masking and unmasking
862 if (xd
->flags
& XIVE_IRQ_FLAG_MASK_FW
)
866 * This is called by KVM with state non-NULL for enabling
867 * pass-through or NULL for disabling it
870 irqd_set_forwarded_to_vcpu(d
);
872 /* Set it to PQ=10 state to prevent further sends */
873 pq
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_10
);
875 xd
->saved_p
= !!(pq
& XIVE_ESB_VAL_P
);
876 xd
->stale_p
= !xd
->saved_p
;
879 /* No target ? nothing to do */
880 if (xd
->target
== XIVE_INVALID_TARGET
) {
882 * An untargetted interrupt should have been
883 * also masked at the source
885 WARN_ON(xd
->saved_p
);
891 * If P was set, adjust state to PQ=11 to indicate
892 * that a resend is needed for the interrupt to reach
893 * the guest. Also remember the value of P.
895 * This also tells us that it's in flight to a host queue
896 * or has already been fetched but hasn't been EOIed yet
897 * by the host. This it's potentially using up a host
898 * queue slot. This is important to know because as long
899 * as this is the case, we must not hard-unmask it when
900 * "returning" that interrupt to the host.
902 * This saved_p is cleared by the host EOI, when we know
903 * for sure the queue slot is no longer in use.
906 xive_esb_read(xd
, XIVE_ESB_SET_PQ_11
);
909 * Sync the XIVE source HW to ensure the interrupt
910 * has gone through the EAS before we change its
911 * target to the guest. That should guarantee us
912 * that we *will* eventually get an EOI for it on
913 * the host. Otherwise there would be a small window
914 * for P to be seen here but the interrupt going
915 * to the guest queue.
917 if (xive_ops
->sync_source
)
918 xive_ops
->sync_source(hw_irq
);
921 irqd_clr_forwarded_to_vcpu(d
);
923 /* No host target ? hard mask and return */
924 if (xd
->target
== XIVE_INVALID_TARGET
) {
925 xive_do_source_set_mask(xd
, true);
930 * Sync the XIVE source HW to ensure the interrupt
931 * has gone through the EAS before we change its
932 * target to the host.
934 if (xive_ops
->sync_source
)
935 xive_ops
->sync_source(hw_irq
);
938 * By convention we are called with the interrupt in
939 * a PQ=10 or PQ=11 state, ie, it won't fire and will
940 * have latched in Q whether there's a pending HW
943 * First reconfigure the target.
945 rc
= xive_ops
->configure_irq(hw_irq
,
946 get_hard_smp_processor_id(xd
->target
),
947 xive_irq_priority
, d
->irq
);
952 * Then if saved_p is not set, effectively re-enable the
953 * interrupt with an EOI. If it is set, we know there is
954 * still a message in a host queue somewhere that will be
957 * Note: We don't check irqd_irq_disabled(). Effectively,
958 * we *will* let the irq get through even if masked if the
959 * HW is still firing it in order to deal with the whole
960 * saved_p business properly. If the interrupt triggers
961 * while masked, the generic code will re-mask it anyway.
964 xive_do_source_eoi(hw_irq
, xd
);
970 /* Called with irq descriptor lock held. */
971 static int xive_get_irqchip_state(struct irq_data
*data
,
972 enum irqchip_irq_state which
, bool *state
)
974 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(data
);
978 case IRQCHIP_STATE_ACTIVE
:
979 pq
= xive_esb_read(xd
, XIVE_ESB_GET
);
982 * The esb value being all 1's means we couldn't get
983 * the PQ state of the interrupt through mmio. It may
984 * happen, for example when querying a PHB interrupt
985 * while the PHB is in an error state. We consider the
986 * interrupt to be inactive in that case.
988 *state
= (pq
!= XIVE_ESB_INVALID
) && !xd
->stale_p
&&
989 (xd
->saved_p
|| !!(pq
& XIVE_ESB_VAL_P
));
996 static struct irq_chip xive_irq_chip
= {
998 .irq_startup
= xive_irq_startup
,
999 .irq_shutdown
= xive_irq_shutdown
,
1000 .irq_eoi
= xive_irq_eoi
,
1001 .irq_mask
= xive_irq_mask
,
1002 .irq_unmask
= xive_irq_unmask
,
1003 .irq_set_affinity
= xive_irq_set_affinity
,
1004 .irq_set_type
= xive_irq_set_type
,
1005 .irq_retrigger
= xive_irq_retrigger
,
1006 .irq_set_vcpu_affinity
= xive_irq_set_vcpu_affinity
,
1007 .irq_get_irqchip_state
= xive_get_irqchip_state
,
1010 bool is_xive_irq(struct irq_chip
*chip
)
1012 return chip
== &xive_irq_chip
;
1014 EXPORT_SYMBOL_GPL(is_xive_irq
);
1016 void xive_cleanup_irq_data(struct xive_irq_data
*xd
)
1019 iounmap(xd
->eoi_mmio
);
1020 if (xd
->eoi_mmio
== xd
->trig_mmio
)
1021 xd
->trig_mmio
= NULL
;
1022 xd
->eoi_mmio
= NULL
;
1024 if (xd
->trig_mmio
) {
1025 iounmap(xd
->trig_mmio
);
1026 xd
->trig_mmio
= NULL
;
1029 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data
);
1031 static int xive_irq_alloc_data(unsigned int virq
, irq_hw_number_t hw
)
1033 struct xive_irq_data
*xd
;
1036 xd
= kzalloc(sizeof(struct xive_irq_data
), GFP_KERNEL
);
1039 rc
= xive_ops
->populate_irq_data(hw
, xd
);
1044 xd
->target
= XIVE_INVALID_TARGET
;
1045 irq_set_handler_data(virq
, xd
);
1048 * Turn OFF by default the interrupt being mapped. A side
1049 * effect of this check is the mapping the ESB page of the
1050 * interrupt in the Linux address space. This prevents page
1051 * fault issues in the crash handler which masks all
1054 xive_esb_read(xd
, XIVE_ESB_SET_PQ_01
);
1059 static void xive_irq_free_data(unsigned int virq
)
1061 struct xive_irq_data
*xd
= irq_get_handler_data(virq
);
1065 irq_set_handler_data(virq
, NULL
);
1066 xive_cleanup_irq_data(xd
);
1072 static void xive_cause_ipi(int cpu
)
1074 struct xive_cpu
*xc
;
1075 struct xive_irq_data
*xd
;
1077 xc
= per_cpu(xive_cpu
, cpu
);
1079 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1080 smp_processor_id(), cpu
, xc
->hw_ipi
);
1083 if (WARN_ON(!xd
->trig_mmio
))
1085 out_be64(xd
->trig_mmio
, 0);
1088 static irqreturn_t
xive_muxed_ipi_action(int irq
, void *dev_id
)
1090 return smp_ipi_demux();
1093 static void xive_ipi_eoi(struct irq_data
*d
)
1095 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1097 /* Handle possible race with unplug and drop stale IPIs */
1101 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1102 d
->irq
, irqd_to_hwirq(d
), xc
->hw_ipi
, xc
->pending_prio
);
1104 xive_do_source_eoi(xc
->hw_ipi
, &xc
->ipi_data
);
1105 xive_do_queue_eoi(xc
);
1108 static void xive_ipi_do_nothing(struct irq_data
*d
)
1111 * Nothing to do, we never mask/unmask IPIs, but the callback
1112 * has to exist for the struct irq_chip.
1116 static struct irq_chip xive_ipi_chip
= {
1118 .irq_eoi
= xive_ipi_eoi
,
1119 .irq_mask
= xive_ipi_do_nothing
,
1120 .irq_unmask
= xive_ipi_do_nothing
,
1123 static void __init
xive_request_ipi(void)
1128 * Initialization failed, move on, we might manage to
1129 * reach the point where we display our errors before
1130 * the system falls appart
1132 if (!xive_irq_domain
)
1136 virq
= irq_create_mapping(xive_irq_domain
, 0);
1137 xive_ipi_irq
= virq
;
1139 WARN_ON(request_irq(virq
, xive_muxed_ipi_action
,
1140 IRQF_PERCPU
| IRQF_NO_THREAD
, "IPI", NULL
));
1143 static int xive_setup_cpu_ipi(unsigned int cpu
)
1145 struct xive_cpu
*xc
;
1148 pr_debug("Setting up IPI for CPU %d\n", cpu
);
1150 xc
= per_cpu(xive_cpu
, cpu
);
1152 /* Check if we are already setup */
1153 if (xc
->hw_ipi
!= 0)
1156 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1157 if (xive_ops
->get_ipi(cpu
, xc
))
1161 * Populate the IRQ data in the xive_cpu structure and
1162 * configure the HW / enable the IPIs.
1164 rc
= xive_ops
->populate_irq_data(xc
->hw_ipi
, &xc
->ipi_data
);
1166 pr_err("Failed to populate IPI data on CPU %d\n", cpu
);
1169 rc
= xive_ops
->configure_irq(xc
->hw_ipi
,
1170 get_hard_smp_processor_id(cpu
),
1171 xive_irq_priority
, xive_ipi_irq
);
1173 pr_err("Failed to map IPI CPU %d\n", cpu
);
1176 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu
,
1177 xc
->hw_ipi
, xive_ipi_irq
, xc
->ipi_data
.trig_mmio
);
1180 xive_do_source_set_mask(&xc
->ipi_data
, false);
1185 static void xive_cleanup_cpu_ipi(unsigned int cpu
, struct xive_cpu
*xc
)
1187 /* Disable the IPI and free the IRQ data */
1189 /* Already cleaned up ? */
1190 if (xc
->hw_ipi
== 0)
1194 xive_do_source_set_mask(&xc
->ipi_data
, true);
1197 * Note: We don't call xive_cleanup_irq_data() to free
1198 * the mappings as this is called from an IPI on kexec
1199 * which is not a safe environment to call iounmap()
1202 /* Deconfigure/mask in the backend */
1203 xive_ops
->configure_irq(xc
->hw_ipi
, hard_smp_processor_id(),
1204 0xff, xive_ipi_irq
);
1206 /* Free the IPIs in the backend */
1207 xive_ops
->put_ipi(cpu
, xc
);
1210 void __init
xive_smp_probe(void)
1212 smp_ops
->cause_ipi
= xive_cause_ipi
;
1214 /* Register the IPI */
1217 /* Allocate and setup IPI for the boot CPU */
1218 xive_setup_cpu_ipi(smp_processor_id());
1221 #endif /* CONFIG_SMP */
1223 static int xive_irq_domain_map(struct irq_domain
*h
, unsigned int virq
,
1229 * Mark interrupts as edge sensitive by default so that resend
1230 * actually works. Will fix that up below if needed.
1232 irq_clear_status_flags(virq
, IRQ_LEVEL
);
1235 /* IPIs are special and come up with HW number 0 */
1238 * IPIs are marked per-cpu. We use separate HW interrupts under
1239 * the hood but associated with the same "linux" interrupt
1241 irq_set_chip_and_handler(virq
, &xive_ipi_chip
,
1247 rc
= xive_irq_alloc_data(virq
, hw
);
1251 irq_set_chip_and_handler(virq
, &xive_irq_chip
, handle_fasteoi_irq
);
1256 static void xive_irq_domain_unmap(struct irq_domain
*d
, unsigned int virq
)
1258 struct irq_data
*data
= irq_get_irq_data(virq
);
1259 unsigned int hw_irq
;
1261 /* XXX Assign BAD number */
1264 hw_irq
= (unsigned int)irqd_to_hwirq(data
);
1266 xive_irq_free_data(virq
);
1269 static int xive_irq_domain_xlate(struct irq_domain
*h
, struct device_node
*ct
,
1270 const u32
*intspec
, unsigned int intsize
,
1271 irq_hw_number_t
*out_hwirq
, unsigned int *out_flags
)
1274 *out_hwirq
= intspec
[0];
1277 * If intsize is at least 2, we look for the type in the second cell,
1278 * we assume the LSB indicates a level interrupt.
1282 *out_flags
= IRQ_TYPE_LEVEL_LOW
;
1284 *out_flags
= IRQ_TYPE_EDGE_RISING
;
1286 *out_flags
= IRQ_TYPE_LEVEL_LOW
;
1291 static int xive_irq_domain_match(struct irq_domain
*h
, struct device_node
*node
,
1292 enum irq_domain_bus_token bus_token
)
1294 return xive_ops
->match(node
);
1297 static const struct irq_domain_ops xive_irq_domain_ops
= {
1298 .match
= xive_irq_domain_match
,
1299 .map
= xive_irq_domain_map
,
1300 .unmap
= xive_irq_domain_unmap
,
1301 .xlate
= xive_irq_domain_xlate
,
1304 static void __init
xive_init_host(void)
1306 xive_irq_domain
= irq_domain_add_nomap(NULL
, XIVE_MAX_IRQ
,
1307 &xive_irq_domain_ops
, NULL
);
1308 if (WARN_ON(xive_irq_domain
== NULL
))
1310 irq_set_default_host(xive_irq_domain
);
1313 static void xive_cleanup_cpu_queues(unsigned int cpu
, struct xive_cpu
*xc
)
1315 if (xc
->queue
[xive_irq_priority
].qpage
)
1316 xive_ops
->cleanup_queue(cpu
, xc
, xive_irq_priority
);
1319 static int xive_setup_cpu_queues(unsigned int cpu
, struct xive_cpu
*xc
)
1323 /* We setup 1 queues for now with a 64k page */
1324 if (!xc
->queue
[xive_irq_priority
].qpage
)
1325 rc
= xive_ops
->setup_queue(cpu
, xc
, xive_irq_priority
);
1330 static int xive_prepare_cpu(unsigned int cpu
)
1332 struct xive_cpu
*xc
;
1334 xc
= per_cpu(xive_cpu
, cpu
);
1336 struct device_node
*np
;
1338 xc
= kzalloc_node(sizeof(struct xive_cpu
),
1339 GFP_KERNEL
, cpu_to_node(cpu
));
1342 np
= of_get_cpu_node(cpu
, NULL
);
1344 xc
->chip_id
= of_get_ibm_chip_id(np
);
1347 per_cpu(xive_cpu
, cpu
) = xc
;
1350 /* Setup EQs if not already */
1351 return xive_setup_cpu_queues(cpu
, xc
);
1354 static void xive_setup_cpu(void)
1356 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1358 /* The backend might have additional things to do */
1359 if (xive_ops
->setup_cpu
)
1360 xive_ops
->setup_cpu(smp_processor_id(), xc
);
1362 /* Set CPPR to 0xff to enable flow of interrupts */
1364 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0xff);
1368 void xive_smp_setup_cpu(void)
1370 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1372 /* This will have already been done on the boot CPU */
1373 if (smp_processor_id() != boot_cpuid
)
1378 int xive_smp_prepare_cpu(unsigned int cpu
)
1382 /* Allocate per-CPU data and queues */
1383 rc
= xive_prepare_cpu(cpu
);
1387 /* Allocate and setup IPI for the new CPU */
1388 return xive_setup_cpu_ipi(cpu
);
1391 #ifdef CONFIG_HOTPLUG_CPU
1392 static void xive_flush_cpu_queue(unsigned int cpu
, struct xive_cpu
*xc
)
1396 /* We assume local irqs are disabled */
1397 WARN_ON(!irqs_disabled());
1399 /* Check what's already in the CPU queue */
1400 while ((irq
= xive_scan_interrupts(xc
, false)) != 0) {
1402 * We need to re-route that interrupt to its new destination.
1403 * First get and lock the descriptor
1405 struct irq_desc
*desc
= irq_to_desc(irq
);
1406 struct irq_data
*d
= irq_desc_get_irq_data(desc
);
1407 struct xive_irq_data
*xd
;
1408 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
1411 * Ignore anything that isn't a XIVE irq and ignore
1412 * IPIs, so can just be dropped.
1414 if (d
->domain
!= xive_irq_domain
|| hw_irq
== 0)
1418 * The IRQ should have already been re-routed, it's just a
1419 * stale in the old queue, so re-trigger it in order to make
1420 * it reach is new destination.
1423 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1426 raw_spin_lock(&desc
->lock
);
1427 xd
= irq_desc_get_handler_data(desc
);
1430 * Clear saved_p to indicate that it's no longer pending
1432 xd
->saved_p
= false;
1435 * For LSIs, we EOI, this will cause a resend if it's
1436 * still asserted. Otherwise do an MSI retrigger.
1438 if (xd
->flags
& XIVE_IRQ_FLAG_LSI
)
1439 xive_do_source_eoi(irqd_to_hwirq(d
), xd
);
1441 xive_irq_retrigger(d
);
1443 raw_spin_unlock(&desc
->lock
);
1447 void xive_smp_disable_cpu(void)
1449 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1450 unsigned int cpu
= smp_processor_id();
1452 /* Migrate interrupts away from the CPU */
1453 irq_migrate_all_off_this_cpu();
1455 /* Set CPPR to 0 to disable flow of interrupts */
1457 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0);
1459 /* Flush everything still in the queue */
1460 xive_flush_cpu_queue(cpu
, xc
);
1462 /* Re-enable CPPR */
1464 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0xff);
1467 void xive_flush_interrupt(void)
1469 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1470 unsigned int cpu
= smp_processor_id();
1472 /* Called if an interrupt occurs while the CPU is hot unplugged */
1473 xive_flush_cpu_queue(cpu
, xc
);
1476 #endif /* CONFIG_HOTPLUG_CPU */
1478 #endif /* CONFIG_SMP */
1480 void xive_teardown_cpu(void)
1482 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1483 unsigned int cpu
= smp_processor_id();
1485 /* Set CPPR to 0 to disable flow of interrupts */
1487 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0);
1489 if (xive_ops
->teardown_cpu
)
1490 xive_ops
->teardown_cpu(cpu
, xc
);
1493 /* Get rid of IPI */
1494 xive_cleanup_cpu_ipi(cpu
, xc
);
1497 /* Disable and free the queues */
1498 xive_cleanup_cpu_queues(cpu
, xc
);
1501 void xive_shutdown(void)
1503 xive_ops
->shutdown();
1506 bool __init
xive_core_init(const struct xive_ops
*ops
, void __iomem
*area
, u32 offset
,
1510 xive_tima_offset
= offset
;
1512 xive_irq_priority
= max_prio
;
1514 ppc_md
.get_irq
= xive_get_irq
;
1515 __xive_enabled
= true;
1517 pr_devel("Initializing host..\n");
1520 pr_devel("Initializing boot CPU..\n");
1522 /* Allocate per-CPU data and queues */
1523 xive_prepare_cpu(smp_processor_id());
1525 /* Get ready for interrupts */
1528 pr_info("Interrupt handling initialized with %s backend\n",
1530 pr_info("Using priority %d for all interrupts\n", max_prio
);
1535 __be32
*xive_queue_page_alloc(unsigned int cpu
, u32 queue_shift
)
1537 unsigned int alloc_order
;
1541 alloc_order
= xive_alloc_order(queue_shift
);
1542 pages
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, alloc_order
);
1544 return ERR_PTR(-ENOMEM
);
1545 qpage
= (__be32
*)page_address(pages
);
1546 memset(qpage
, 0, 1 << queue_shift
);
1551 static int __init
xive_off(char *arg
)
1553 xive_cmdline_disabled
= true;
1556 __setup("xive=off", xive_off
);