lib/string.c: update match_string() doc-strings with correct behavior
[linux/fpc-iii.git] / arch / powerpc / sysdev / xive / common.c
blob9651ca061828a06be50d5636508d90505fdcfcc2
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2016,2017 IBM Corporation.
4 */
6 #define pr_fmt(fmt) "xive: " fmt
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
23 #include <asm/prom.h>
24 #include <asm/io.h>
25 #include <asm/smp.h>
26 #include <asm/machdep.h>
27 #include <asm/irq.h>
28 #include <asm/errno.h>
29 #include <asm/xive.h>
30 #include <asm/xive-regs.h>
31 #include <asm/xmon.h>
33 #include "xive-internal.h"
35 #undef DEBUG_FLUSH
36 #undef DEBUG_ALL
38 #ifdef DEBUG_ALL
39 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
40 smp_processor_id(), ## __VA_ARGS__)
41 #else
42 #define DBG_VERBOSE(fmt...) do { } while(0)
43 #endif
45 bool __xive_enabled;
46 EXPORT_SYMBOL_GPL(__xive_enabled);
47 bool xive_cmdline_disabled;
49 /* We use only one priority for now */
50 static u8 xive_irq_priority;
52 /* TIMA exported to KVM */
53 void __iomem *xive_tima;
54 EXPORT_SYMBOL_GPL(xive_tima);
55 u32 xive_tima_offset;
57 /* Backend ops */
58 static const struct xive_ops *xive_ops;
60 /* Our global interrupt domain */
61 static struct irq_domain *xive_irq_domain;
63 #ifdef CONFIG_SMP
64 /* The IPIs all use the same logical irq number */
65 static u32 xive_ipi_irq;
66 #endif
68 /* Xive state for each CPU */
69 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
72 * A "disabled" interrupt should never fire, to catch problems
73 * we set its logical number to this
75 #define XIVE_BAD_IRQ 0x7fffffff
76 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
78 /* An invalid CPU target */
79 #define XIVE_INVALID_TARGET (-1)
82 * Read the next entry in a queue, return its content if it's valid
83 * or 0 if there is no new entry.
85 * The queue pointer is moved forward unless "just_peek" is set
87 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
89 u32 cur;
91 if (!q->qpage)
92 return 0;
93 cur = be32_to_cpup(q->qpage + q->idx);
95 /* Check valid bit (31) vs current toggle polarity */
96 if ((cur >> 31) == q->toggle)
97 return 0;
99 /* If consuming from the queue ... */
100 if (!just_peek) {
101 /* Next entry */
102 q->idx = (q->idx + 1) & q->msk;
104 /* Wrap around: flip valid toggle */
105 if (q->idx == 0)
106 q->toggle ^= 1;
108 /* Mask out the valid bit (31) */
109 return cur & 0x7fffffff;
113 * Scans all the queue that may have interrupts in them
114 * (based on "pending_prio") in priority order until an
115 * interrupt is found or all the queues are empty.
117 * Then updates the CPPR (Current Processor Priority
118 * Register) based on the most favored interrupt found
119 * (0xff if none) and return what was found (0 if none).
121 * If just_peek is set, return the most favored pending
122 * interrupt if any but don't update the queue pointers.
124 * Note: This function can operate generically on any number
125 * of queues (up to 8). The current implementation of the XIVE
126 * driver only uses a single queue however.
128 * Note2: This will also "flush" "the pending_count" of a queue
129 * into the "count" when that queue is observed to be empty.
130 * This is used to keep track of the amount of interrupts
131 * targetting a queue. When an interrupt is moved away from
132 * a queue, we only decrement that queue count once the queue
133 * has been observed empty to avoid races.
135 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
137 u32 irq = 0;
138 u8 prio = 0;
140 /* Find highest pending priority */
141 while (xc->pending_prio != 0) {
142 struct xive_q *q;
144 prio = ffs(xc->pending_prio) - 1;
145 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
147 /* Try to fetch */
148 irq = xive_read_eq(&xc->queue[prio], just_peek);
150 /* Found something ? That's it */
151 if (irq) {
152 if (just_peek || irq_to_desc(irq))
153 break;
155 * We should never get here; if we do then we must
156 * have failed to synchronize the interrupt properly
157 * when shutting it down.
159 pr_crit("xive: got interrupt %d without descriptor, dropping\n",
160 irq);
161 WARN_ON(1);
162 continue;
165 /* Clear pending bits */
166 xc->pending_prio &= ~(1 << prio);
169 * Check if the queue count needs adjusting due to
170 * interrupts being moved away. See description of
171 * xive_dec_target_count()
173 q = &xc->queue[prio];
174 if (atomic_read(&q->pending_count)) {
175 int p = atomic_xchg(&q->pending_count, 0);
176 if (p) {
177 WARN_ON(p > atomic_read(&q->count));
178 atomic_sub(p, &q->count);
183 /* If nothing was found, set CPPR to 0xff */
184 if (irq == 0)
185 prio = 0xff;
187 /* Update HW CPPR to match if necessary */
188 if (prio != xc->cppr) {
189 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
190 xc->cppr = prio;
191 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
194 return irq;
198 * This is used to perform the magic loads from an ESB
199 * described in xive-regs.h
201 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
203 u64 val;
205 /* Handle HW errata */
206 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
207 offset |= offset << 4;
209 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
210 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
211 else
212 val = in_be64(xd->eoi_mmio + offset);
214 return (u8)val;
217 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
219 /* Handle HW errata */
220 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
221 offset |= offset << 4;
223 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
224 xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
225 else
226 out_be64(xd->eoi_mmio + offset, data);
229 #ifdef CONFIG_XMON
230 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
232 u32 i0, i1, idx;
234 if (!q->qpage)
235 return;
236 idx = q->idx;
237 i0 = be32_to_cpup(q->qpage + idx);
238 idx = (idx + 1) & q->msk;
239 i1 = be32_to_cpup(q->qpage + idx);
240 xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
241 q->idx, q->toggle, i0, i1);
244 notrace void xmon_xive_do_dump(int cpu)
246 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
248 xmon_printf("CPU %d:", cpu);
249 if (xc) {
250 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
252 #ifdef CONFIG_SMP
254 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
256 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
257 val & XIVE_ESB_VAL_P ? 'P' : '-',
258 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
260 #endif
261 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
263 xmon_printf("\n");
266 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
268 int rc;
269 u32 target;
270 u8 prio;
271 u32 lirq;
273 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
274 if (rc) {
275 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
276 return rc;
279 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
280 hw_irq, target, prio, lirq);
282 if (d) {
283 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
284 u64 val = xive_esb_read(xd, XIVE_ESB_GET);
286 xmon_printf("PQ=%c%c",
287 val & XIVE_ESB_VAL_P ? 'P' : '-',
288 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
291 xmon_printf("\n");
292 return 0;
295 #endif /* CONFIG_XMON */
297 static unsigned int xive_get_irq(void)
299 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
300 u32 irq;
303 * This can be called either as a result of a HW interrupt or
304 * as a "replay" because EOI decided there was still something
305 * in one of the queues.
307 * First we perform an ACK cycle in order to update our mask
308 * of pending priorities. This will also have the effect of
309 * updating the CPPR to the most favored pending interrupts.
311 * In the future, if we have a way to differentiate a first
312 * entry (on HW interrupt) from a replay triggered by EOI,
313 * we could skip this on replays unless we soft-mask tells us
314 * that a new HW interrupt occurred.
316 xive_ops->update_pending(xc);
318 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
320 /* Scan our queue(s) for interrupts */
321 irq = xive_scan_interrupts(xc, false);
323 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
324 irq, xc->pending_prio);
326 /* Return pending interrupt if any */
327 if (irq == XIVE_BAD_IRQ)
328 return 0;
329 return irq;
333 * After EOI'ing an interrupt, we need to re-check the queue
334 * to see if another interrupt is pending since multiple
335 * interrupts can coalesce into a single notification to the
336 * CPU.
338 * If we find that there is indeed more in there, we call
339 * force_external_irq_replay() to make Linux synthetize an
340 * external interrupt on the next call to local_irq_restore().
342 static void xive_do_queue_eoi(struct xive_cpu *xc)
344 if (xive_scan_interrupts(xc, true) != 0) {
345 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
346 force_external_irq_replay();
351 * EOI an interrupt at the source. There are several methods
352 * to do this depending on the HW version and source type
354 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
356 xd->stale_p = false;
357 /* If the XIVE supports the new "store EOI facility, use it */
358 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
359 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
360 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
362 * The FW told us to call it. This happens for some
363 * interrupt sources that need additional HW whacking
364 * beyond the ESB manipulation. For example LPC interrupts
365 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
366 * itself. The Firmware will take care of it.
368 if (WARN_ON_ONCE(!xive_ops->eoi))
369 return;
370 xive_ops->eoi(hw_irq);
371 } else {
372 u8 eoi_val;
375 * Otherwise for EOI, we use the special MMIO that does
376 * a clear of both P and Q and returns the old Q,
377 * except for LSIs where we use the "EOI cycle" special
378 * load.
380 * This allows us to then do a re-trigger if Q was set
381 * rather than synthesizing an interrupt in software
383 * For LSIs the HW EOI cycle is used rather than PQ bits,
384 * as they are automatically re-triggred in HW when still
385 * pending.
387 if (xd->flags & XIVE_IRQ_FLAG_LSI)
388 xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
389 else {
390 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
391 DBG_VERBOSE("eoi_val=%x\n", eoi_val);
393 /* Re-trigger if needed */
394 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
395 out_be64(xd->trig_mmio, 0);
400 /* irq_chip eoi callback, called with irq descriptor lock held */
401 static void xive_irq_eoi(struct irq_data *d)
403 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
404 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
406 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
407 d->irq, irqd_to_hwirq(d), xc->pending_prio);
410 * EOI the source if it hasn't been disabled and hasn't
411 * been passed-through to a KVM guest
413 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
414 !(xd->flags & XIVE_IRQ_NO_EOI))
415 xive_do_source_eoi(irqd_to_hwirq(d), xd);
416 else
417 xd->stale_p = true;
420 * Clear saved_p to indicate that it's no longer occupying
421 * a queue slot on the target queue
423 xd->saved_p = false;
425 /* Check for more work in the queue */
426 xive_do_queue_eoi(xc);
430 * Helper used to mask and unmask an interrupt source. This
431 * is only called for normal interrupts that do not require
432 * masking/unmasking via firmware.
434 static void xive_do_source_set_mask(struct xive_irq_data *xd,
435 bool mask)
437 u64 val;
440 * If the interrupt had P set, it may be in a queue.
442 * We need to make sure we don't re-enable it until it
443 * has been fetched from that queue and EOId. We keep
444 * a copy of that P state and use it to restore the
445 * ESB accordingly on unmask.
447 if (mask) {
448 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
449 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
450 xd->saved_p = true;
451 xd->stale_p = false;
452 } else if (xd->saved_p) {
453 xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
454 xd->saved_p = false;
455 } else {
456 xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
457 xd->stale_p = false;
462 * Try to chose "cpu" as a new interrupt target. Increments
463 * the queue accounting for that target if it's not already
464 * full.
466 static bool xive_try_pick_target(int cpu)
468 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
469 struct xive_q *q = &xc->queue[xive_irq_priority];
470 int max;
473 * Calculate max number of interrupts in that queue.
475 * We leave a gap of 1 just in case...
477 max = (q->msk + 1) - 1;
478 return !!atomic_add_unless(&q->count, 1, max);
482 * Un-account an interrupt for a target CPU. We don't directly
483 * decrement q->count since the interrupt might still be present
484 * in the queue.
486 * Instead increment a separate counter "pending_count" which
487 * will be substracted from "count" later when that CPU observes
488 * the queue to be empty.
490 static void xive_dec_target_count(int cpu)
492 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
493 struct xive_q *q = &xc->queue[xive_irq_priority];
495 if (WARN_ON(cpu < 0 || !xc)) {
496 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
497 return;
501 * We increment the "pending count" which will be used
502 * to decrement the target queue count whenever it's next
503 * processed and found empty. This ensure that we don't
504 * decrement while we still have the interrupt there
505 * occupying a slot.
507 atomic_inc(&q->pending_count);
510 /* Find a tentative CPU target in a CPU mask */
511 static int xive_find_target_in_mask(const struct cpumask *mask,
512 unsigned int fuzz)
514 int cpu, first, num, i;
516 /* Pick up a starting point CPU in the mask based on fuzz */
517 num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
518 first = fuzz % num;
520 /* Locate it */
521 cpu = cpumask_first(mask);
522 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
523 cpu = cpumask_next(cpu, mask);
525 /* Sanity check */
526 if (WARN_ON(cpu >= nr_cpu_ids))
527 cpu = cpumask_first(cpu_online_mask);
529 /* Remember first one to handle wrap-around */
530 first = cpu;
533 * Now go through the entire mask until we find a valid
534 * target.
536 do {
538 * We re-check online as the fallback case passes us
539 * an untested affinity mask
541 if (cpu_online(cpu) && xive_try_pick_target(cpu))
542 return cpu;
543 cpu = cpumask_next(cpu, mask);
544 /* Wrap around */
545 if (cpu >= nr_cpu_ids)
546 cpu = cpumask_first(mask);
547 } while (cpu != first);
549 return -1;
553 * Pick a target CPU for an interrupt. This is done at
554 * startup or if the affinity is changed in a way that
555 * invalidates the current target.
557 static int xive_pick_irq_target(struct irq_data *d,
558 const struct cpumask *affinity)
560 static unsigned int fuzz;
561 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
562 cpumask_var_t mask;
563 int cpu = -1;
566 * If we have chip IDs, first we try to build a mask of
567 * CPUs matching the CPU and find a target in there
569 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
570 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
571 /* Build a mask of matching chip IDs */
572 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
573 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
574 if (xc->chip_id == xd->src_chip)
575 cpumask_set_cpu(cpu, mask);
577 /* Try to find a target */
578 if (cpumask_empty(mask))
579 cpu = -1;
580 else
581 cpu = xive_find_target_in_mask(mask, fuzz++);
582 free_cpumask_var(mask);
583 if (cpu >= 0)
584 return cpu;
585 fuzz--;
588 /* No chip IDs, fallback to using the affinity mask */
589 return xive_find_target_in_mask(affinity, fuzz++);
592 static unsigned int xive_irq_startup(struct irq_data *d)
594 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
595 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
596 int target, rc;
598 xd->saved_p = false;
599 xd->stale_p = false;
600 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
601 d->irq, hw_irq, d);
603 #ifdef CONFIG_PCI_MSI
605 * The generic MSI code returns with the interrupt disabled on the
606 * card, using the MSI mask bits. Firmware doesn't appear to unmask
607 * at that level, so we do it here by hand.
609 if (irq_data_get_msi_desc(d))
610 pci_msi_unmask_irq(d);
611 #endif
613 /* Pick a target */
614 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
615 if (target == XIVE_INVALID_TARGET) {
616 /* Try again breaking affinity */
617 target = xive_pick_irq_target(d, cpu_online_mask);
618 if (target == XIVE_INVALID_TARGET)
619 return -ENXIO;
620 pr_warn("irq %d started with broken affinity\n", d->irq);
623 /* Sanity check */
624 if (WARN_ON(target == XIVE_INVALID_TARGET ||
625 target >= nr_cpu_ids))
626 target = smp_processor_id();
628 xd->target = target;
631 * Configure the logical number to be the Linux IRQ number
632 * and set the target queue
634 rc = xive_ops->configure_irq(hw_irq,
635 get_hard_smp_processor_id(target),
636 xive_irq_priority, d->irq);
637 if (rc)
638 return rc;
640 /* Unmask the ESB */
641 xive_do_source_set_mask(xd, false);
643 return 0;
646 /* called with irq descriptor lock held */
647 static void xive_irq_shutdown(struct irq_data *d)
649 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
650 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
652 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
653 d->irq, hw_irq, d);
655 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
656 return;
658 /* Mask the interrupt at the source */
659 xive_do_source_set_mask(xd, true);
662 * Mask the interrupt in HW in the IVT/EAS and set the number
663 * to be the "bad" IRQ number
665 xive_ops->configure_irq(hw_irq,
666 get_hard_smp_processor_id(xd->target),
667 0xff, XIVE_BAD_IRQ);
669 xive_dec_target_count(xd->target);
670 xd->target = XIVE_INVALID_TARGET;
673 static void xive_irq_unmask(struct irq_data *d)
675 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
677 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
680 * This is a workaround for PCI LSI problems on P9, for
681 * these, we call FW to set the mask. The problems might
682 * be fixed by P9 DD2.0, if that is the case, firmware
683 * will no longer set that flag.
685 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
686 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
687 xive_ops->configure_irq(hw_irq,
688 get_hard_smp_processor_id(xd->target),
689 xive_irq_priority, d->irq);
690 return;
693 xive_do_source_set_mask(xd, false);
696 static void xive_irq_mask(struct irq_data *d)
698 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
700 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
703 * This is a workaround for PCI LSI problems on P9, for
704 * these, we call OPAL to set the mask. The problems might
705 * be fixed by P9 DD2.0, if that is the case, firmware
706 * will no longer set that flag.
708 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
709 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
710 xive_ops->configure_irq(hw_irq,
711 get_hard_smp_processor_id(xd->target),
712 0xff, d->irq);
713 return;
716 xive_do_source_set_mask(xd, true);
719 static int xive_irq_set_affinity(struct irq_data *d,
720 const struct cpumask *cpumask,
721 bool force)
723 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
724 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
725 u32 target, old_target;
726 int rc = 0;
728 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
730 /* Is this valid ? */
731 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
732 return -EINVAL;
734 /* Don't do anything if the interrupt isn't started */
735 if (!irqd_is_started(d))
736 return IRQ_SET_MASK_OK;
739 * If existing target is already in the new mask, and is
740 * online then do nothing.
742 if (xd->target != XIVE_INVALID_TARGET &&
743 cpu_online(xd->target) &&
744 cpumask_test_cpu(xd->target, cpumask))
745 return IRQ_SET_MASK_OK;
747 /* Pick a new target */
748 target = xive_pick_irq_target(d, cpumask);
750 /* No target found */
751 if (target == XIVE_INVALID_TARGET)
752 return -ENXIO;
754 /* Sanity check */
755 if (WARN_ON(target >= nr_cpu_ids))
756 target = smp_processor_id();
758 old_target = xd->target;
761 * Only configure the irq if it's not currently passed-through to
762 * a KVM guest
764 if (!irqd_is_forwarded_to_vcpu(d))
765 rc = xive_ops->configure_irq(hw_irq,
766 get_hard_smp_processor_id(target),
767 xive_irq_priority, d->irq);
768 if (rc < 0) {
769 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
770 return rc;
773 pr_devel(" target: 0x%x\n", target);
774 xd->target = target;
776 /* Give up previous target */
777 if (old_target != XIVE_INVALID_TARGET)
778 xive_dec_target_count(old_target);
780 return IRQ_SET_MASK_OK;
783 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
785 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
788 * We only support these. This has really no effect other than setting
789 * the corresponding descriptor bits mind you but those will in turn
790 * affect the resend function when re-enabling an edge interrupt.
792 * Set set the default to edge as explained in map().
794 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
795 flow_type = IRQ_TYPE_EDGE_RISING;
797 if (flow_type != IRQ_TYPE_EDGE_RISING &&
798 flow_type != IRQ_TYPE_LEVEL_LOW)
799 return -EINVAL;
801 irqd_set_trigger_type(d, flow_type);
804 * Double check it matches what the FW thinks
806 * NOTE: We don't know yet if the PAPR interface will provide
807 * the LSI vs MSI information apart from the device-tree so
808 * this check might have to move into an optional backend call
809 * that is specific to the native backend
811 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
812 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
813 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
814 d->irq, (u32)irqd_to_hwirq(d),
815 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
816 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
819 return IRQ_SET_MASK_OK_NOCOPY;
822 static int xive_irq_retrigger(struct irq_data *d)
824 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
826 /* This should be only for MSIs */
827 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
828 return 0;
831 * To perform a retrigger, we first set the PQ bits to
832 * 11, then perform an EOI.
834 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
837 * Note: We pass "0" to the hw_irq argument in order to
838 * avoid calling into the backend EOI code which we don't
839 * want to do in the case of a re-trigger. Backends typically
840 * only do EOI for LSIs anyway.
842 xive_do_source_eoi(0, xd);
844 return 1;
848 * Caller holds the irq descriptor lock, so this won't be called
849 * concurrently with xive_get_irqchip_state on the same interrupt.
851 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
853 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
854 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
855 int rc;
856 u8 pq;
859 * We only support this on interrupts that do not require
860 * firmware calls for masking and unmasking
862 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
863 return -EIO;
866 * This is called by KVM with state non-NULL for enabling
867 * pass-through or NULL for disabling it
869 if (state) {
870 irqd_set_forwarded_to_vcpu(d);
872 /* Set it to PQ=10 state to prevent further sends */
873 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
874 if (!xd->stale_p) {
875 xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
876 xd->stale_p = !xd->saved_p;
879 /* No target ? nothing to do */
880 if (xd->target == XIVE_INVALID_TARGET) {
882 * An untargetted interrupt should have been
883 * also masked at the source
885 WARN_ON(xd->saved_p);
887 return 0;
891 * If P was set, adjust state to PQ=11 to indicate
892 * that a resend is needed for the interrupt to reach
893 * the guest. Also remember the value of P.
895 * This also tells us that it's in flight to a host queue
896 * or has already been fetched but hasn't been EOIed yet
897 * by the host. This it's potentially using up a host
898 * queue slot. This is important to know because as long
899 * as this is the case, we must not hard-unmask it when
900 * "returning" that interrupt to the host.
902 * This saved_p is cleared by the host EOI, when we know
903 * for sure the queue slot is no longer in use.
905 if (xd->saved_p) {
906 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
909 * Sync the XIVE source HW to ensure the interrupt
910 * has gone through the EAS before we change its
911 * target to the guest. That should guarantee us
912 * that we *will* eventually get an EOI for it on
913 * the host. Otherwise there would be a small window
914 * for P to be seen here but the interrupt going
915 * to the guest queue.
917 if (xive_ops->sync_source)
918 xive_ops->sync_source(hw_irq);
920 } else {
921 irqd_clr_forwarded_to_vcpu(d);
923 /* No host target ? hard mask and return */
924 if (xd->target == XIVE_INVALID_TARGET) {
925 xive_do_source_set_mask(xd, true);
926 return 0;
930 * Sync the XIVE source HW to ensure the interrupt
931 * has gone through the EAS before we change its
932 * target to the host.
934 if (xive_ops->sync_source)
935 xive_ops->sync_source(hw_irq);
938 * By convention we are called with the interrupt in
939 * a PQ=10 or PQ=11 state, ie, it won't fire and will
940 * have latched in Q whether there's a pending HW
941 * interrupt or not.
943 * First reconfigure the target.
945 rc = xive_ops->configure_irq(hw_irq,
946 get_hard_smp_processor_id(xd->target),
947 xive_irq_priority, d->irq);
948 if (rc)
949 return rc;
952 * Then if saved_p is not set, effectively re-enable the
953 * interrupt with an EOI. If it is set, we know there is
954 * still a message in a host queue somewhere that will be
955 * EOId eventually.
957 * Note: We don't check irqd_irq_disabled(). Effectively,
958 * we *will* let the irq get through even if masked if the
959 * HW is still firing it in order to deal with the whole
960 * saved_p business properly. If the interrupt triggers
961 * while masked, the generic code will re-mask it anyway.
963 if (!xd->saved_p)
964 xive_do_source_eoi(hw_irq, xd);
967 return 0;
970 /* Called with irq descriptor lock held. */
971 static int xive_get_irqchip_state(struct irq_data *data,
972 enum irqchip_irq_state which, bool *state)
974 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
975 u8 pq;
977 switch (which) {
978 case IRQCHIP_STATE_ACTIVE:
979 pq = xive_esb_read(xd, XIVE_ESB_GET);
982 * The esb value being all 1's means we couldn't get
983 * the PQ state of the interrupt through mmio. It may
984 * happen, for example when querying a PHB interrupt
985 * while the PHB is in an error state. We consider the
986 * interrupt to be inactive in that case.
988 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
989 (xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
990 return 0;
991 default:
992 return -EINVAL;
996 static struct irq_chip xive_irq_chip = {
997 .name = "XIVE-IRQ",
998 .irq_startup = xive_irq_startup,
999 .irq_shutdown = xive_irq_shutdown,
1000 .irq_eoi = xive_irq_eoi,
1001 .irq_mask = xive_irq_mask,
1002 .irq_unmask = xive_irq_unmask,
1003 .irq_set_affinity = xive_irq_set_affinity,
1004 .irq_set_type = xive_irq_set_type,
1005 .irq_retrigger = xive_irq_retrigger,
1006 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
1007 .irq_get_irqchip_state = xive_get_irqchip_state,
1010 bool is_xive_irq(struct irq_chip *chip)
1012 return chip == &xive_irq_chip;
1014 EXPORT_SYMBOL_GPL(is_xive_irq);
1016 void xive_cleanup_irq_data(struct xive_irq_data *xd)
1018 if (xd->eoi_mmio) {
1019 iounmap(xd->eoi_mmio);
1020 if (xd->eoi_mmio == xd->trig_mmio)
1021 xd->trig_mmio = NULL;
1022 xd->eoi_mmio = NULL;
1024 if (xd->trig_mmio) {
1025 iounmap(xd->trig_mmio);
1026 xd->trig_mmio = NULL;
1029 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1031 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1033 struct xive_irq_data *xd;
1034 int rc;
1036 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1037 if (!xd)
1038 return -ENOMEM;
1039 rc = xive_ops->populate_irq_data(hw, xd);
1040 if (rc) {
1041 kfree(xd);
1042 return rc;
1044 xd->target = XIVE_INVALID_TARGET;
1045 irq_set_handler_data(virq, xd);
1048 * Turn OFF by default the interrupt being mapped. A side
1049 * effect of this check is the mapping the ESB page of the
1050 * interrupt in the Linux address space. This prevents page
1051 * fault issues in the crash handler which masks all
1052 * interrupts.
1054 xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1056 return 0;
1059 static void xive_irq_free_data(unsigned int virq)
1061 struct xive_irq_data *xd = irq_get_handler_data(virq);
1063 if (!xd)
1064 return;
1065 irq_set_handler_data(virq, NULL);
1066 xive_cleanup_irq_data(xd);
1067 kfree(xd);
1070 #ifdef CONFIG_SMP
1072 static void xive_cause_ipi(int cpu)
1074 struct xive_cpu *xc;
1075 struct xive_irq_data *xd;
1077 xc = per_cpu(xive_cpu, cpu);
1079 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1080 smp_processor_id(), cpu, xc->hw_ipi);
1082 xd = &xc->ipi_data;
1083 if (WARN_ON(!xd->trig_mmio))
1084 return;
1085 out_be64(xd->trig_mmio, 0);
1088 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1090 return smp_ipi_demux();
1093 static void xive_ipi_eoi(struct irq_data *d)
1095 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1097 /* Handle possible race with unplug and drop stale IPIs */
1098 if (!xc)
1099 return;
1101 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1102 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1104 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1105 xive_do_queue_eoi(xc);
1108 static void xive_ipi_do_nothing(struct irq_data *d)
1111 * Nothing to do, we never mask/unmask IPIs, but the callback
1112 * has to exist for the struct irq_chip.
1116 static struct irq_chip xive_ipi_chip = {
1117 .name = "XIVE-IPI",
1118 .irq_eoi = xive_ipi_eoi,
1119 .irq_mask = xive_ipi_do_nothing,
1120 .irq_unmask = xive_ipi_do_nothing,
1123 static void __init xive_request_ipi(void)
1125 unsigned int virq;
1128 * Initialization failed, move on, we might manage to
1129 * reach the point where we display our errors before
1130 * the system falls appart
1132 if (!xive_irq_domain)
1133 return;
1135 /* Initialize it */
1136 virq = irq_create_mapping(xive_irq_domain, 0);
1137 xive_ipi_irq = virq;
1139 WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1140 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1143 static int xive_setup_cpu_ipi(unsigned int cpu)
1145 struct xive_cpu *xc;
1146 int rc;
1148 pr_debug("Setting up IPI for CPU %d\n", cpu);
1150 xc = per_cpu(xive_cpu, cpu);
1152 /* Check if we are already setup */
1153 if (xc->hw_ipi != 0)
1154 return 0;
1156 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1157 if (xive_ops->get_ipi(cpu, xc))
1158 return -EIO;
1161 * Populate the IRQ data in the xive_cpu structure and
1162 * configure the HW / enable the IPIs.
1164 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1165 if (rc) {
1166 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1167 return -EIO;
1169 rc = xive_ops->configure_irq(xc->hw_ipi,
1170 get_hard_smp_processor_id(cpu),
1171 xive_irq_priority, xive_ipi_irq);
1172 if (rc) {
1173 pr_err("Failed to map IPI CPU %d\n", cpu);
1174 return -EIO;
1176 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1177 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1179 /* Unmask it */
1180 xive_do_source_set_mask(&xc->ipi_data, false);
1182 return 0;
1185 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1187 /* Disable the IPI and free the IRQ data */
1189 /* Already cleaned up ? */
1190 if (xc->hw_ipi == 0)
1191 return;
1193 /* Mask the IPI */
1194 xive_do_source_set_mask(&xc->ipi_data, true);
1197 * Note: We don't call xive_cleanup_irq_data() to free
1198 * the mappings as this is called from an IPI on kexec
1199 * which is not a safe environment to call iounmap()
1202 /* Deconfigure/mask in the backend */
1203 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1204 0xff, xive_ipi_irq);
1206 /* Free the IPIs in the backend */
1207 xive_ops->put_ipi(cpu, xc);
1210 void __init xive_smp_probe(void)
1212 smp_ops->cause_ipi = xive_cause_ipi;
1214 /* Register the IPI */
1215 xive_request_ipi();
1217 /* Allocate and setup IPI for the boot CPU */
1218 xive_setup_cpu_ipi(smp_processor_id());
1221 #endif /* CONFIG_SMP */
1223 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1224 irq_hw_number_t hw)
1226 int rc;
1229 * Mark interrupts as edge sensitive by default so that resend
1230 * actually works. Will fix that up below if needed.
1232 irq_clear_status_flags(virq, IRQ_LEVEL);
1234 #ifdef CONFIG_SMP
1235 /* IPIs are special and come up with HW number 0 */
1236 if (hw == 0) {
1238 * IPIs are marked per-cpu. We use separate HW interrupts under
1239 * the hood but associated with the same "linux" interrupt
1241 irq_set_chip_and_handler(virq, &xive_ipi_chip,
1242 handle_percpu_irq);
1243 return 0;
1245 #endif
1247 rc = xive_irq_alloc_data(virq, hw);
1248 if (rc)
1249 return rc;
1251 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1253 return 0;
1256 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1258 struct irq_data *data = irq_get_irq_data(virq);
1259 unsigned int hw_irq;
1261 /* XXX Assign BAD number */
1262 if (!data)
1263 return;
1264 hw_irq = (unsigned int)irqd_to_hwirq(data);
1265 if (hw_irq)
1266 xive_irq_free_data(virq);
1269 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1270 const u32 *intspec, unsigned int intsize,
1271 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1274 *out_hwirq = intspec[0];
1277 * If intsize is at least 2, we look for the type in the second cell,
1278 * we assume the LSB indicates a level interrupt.
1280 if (intsize > 1) {
1281 if (intspec[1] & 1)
1282 *out_flags = IRQ_TYPE_LEVEL_LOW;
1283 else
1284 *out_flags = IRQ_TYPE_EDGE_RISING;
1285 } else
1286 *out_flags = IRQ_TYPE_LEVEL_LOW;
1288 return 0;
1291 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1292 enum irq_domain_bus_token bus_token)
1294 return xive_ops->match(node);
1297 static const struct irq_domain_ops xive_irq_domain_ops = {
1298 .match = xive_irq_domain_match,
1299 .map = xive_irq_domain_map,
1300 .unmap = xive_irq_domain_unmap,
1301 .xlate = xive_irq_domain_xlate,
1304 static void __init xive_init_host(void)
1306 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1307 &xive_irq_domain_ops, NULL);
1308 if (WARN_ON(xive_irq_domain == NULL))
1309 return;
1310 irq_set_default_host(xive_irq_domain);
1313 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1315 if (xc->queue[xive_irq_priority].qpage)
1316 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1319 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1321 int rc = 0;
1323 /* We setup 1 queues for now with a 64k page */
1324 if (!xc->queue[xive_irq_priority].qpage)
1325 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1327 return rc;
1330 static int xive_prepare_cpu(unsigned int cpu)
1332 struct xive_cpu *xc;
1334 xc = per_cpu(xive_cpu, cpu);
1335 if (!xc) {
1336 struct device_node *np;
1338 xc = kzalloc_node(sizeof(struct xive_cpu),
1339 GFP_KERNEL, cpu_to_node(cpu));
1340 if (!xc)
1341 return -ENOMEM;
1342 np = of_get_cpu_node(cpu, NULL);
1343 if (np)
1344 xc->chip_id = of_get_ibm_chip_id(np);
1345 of_node_put(np);
1347 per_cpu(xive_cpu, cpu) = xc;
1350 /* Setup EQs if not already */
1351 return xive_setup_cpu_queues(cpu, xc);
1354 static void xive_setup_cpu(void)
1356 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1358 /* The backend might have additional things to do */
1359 if (xive_ops->setup_cpu)
1360 xive_ops->setup_cpu(smp_processor_id(), xc);
1362 /* Set CPPR to 0xff to enable flow of interrupts */
1363 xc->cppr = 0xff;
1364 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1367 #ifdef CONFIG_SMP
1368 void xive_smp_setup_cpu(void)
1370 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1372 /* This will have already been done on the boot CPU */
1373 if (smp_processor_id() != boot_cpuid)
1374 xive_setup_cpu();
1378 int xive_smp_prepare_cpu(unsigned int cpu)
1380 int rc;
1382 /* Allocate per-CPU data and queues */
1383 rc = xive_prepare_cpu(cpu);
1384 if (rc)
1385 return rc;
1387 /* Allocate and setup IPI for the new CPU */
1388 return xive_setup_cpu_ipi(cpu);
1391 #ifdef CONFIG_HOTPLUG_CPU
1392 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1394 u32 irq;
1396 /* We assume local irqs are disabled */
1397 WARN_ON(!irqs_disabled());
1399 /* Check what's already in the CPU queue */
1400 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1402 * We need to re-route that interrupt to its new destination.
1403 * First get and lock the descriptor
1405 struct irq_desc *desc = irq_to_desc(irq);
1406 struct irq_data *d = irq_desc_get_irq_data(desc);
1407 struct xive_irq_data *xd;
1408 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1411 * Ignore anything that isn't a XIVE irq and ignore
1412 * IPIs, so can just be dropped.
1414 if (d->domain != xive_irq_domain || hw_irq == 0)
1415 continue;
1418 * The IRQ should have already been re-routed, it's just a
1419 * stale in the old queue, so re-trigger it in order to make
1420 * it reach is new destination.
1422 #ifdef DEBUG_FLUSH
1423 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1424 cpu, irq);
1425 #endif
1426 raw_spin_lock(&desc->lock);
1427 xd = irq_desc_get_handler_data(desc);
1430 * Clear saved_p to indicate that it's no longer pending
1432 xd->saved_p = false;
1435 * For LSIs, we EOI, this will cause a resend if it's
1436 * still asserted. Otherwise do an MSI retrigger.
1438 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1439 xive_do_source_eoi(irqd_to_hwirq(d), xd);
1440 else
1441 xive_irq_retrigger(d);
1443 raw_spin_unlock(&desc->lock);
1447 void xive_smp_disable_cpu(void)
1449 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1450 unsigned int cpu = smp_processor_id();
1452 /* Migrate interrupts away from the CPU */
1453 irq_migrate_all_off_this_cpu();
1455 /* Set CPPR to 0 to disable flow of interrupts */
1456 xc->cppr = 0;
1457 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1459 /* Flush everything still in the queue */
1460 xive_flush_cpu_queue(cpu, xc);
1462 /* Re-enable CPPR */
1463 xc->cppr = 0xff;
1464 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1467 void xive_flush_interrupt(void)
1469 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1470 unsigned int cpu = smp_processor_id();
1472 /* Called if an interrupt occurs while the CPU is hot unplugged */
1473 xive_flush_cpu_queue(cpu, xc);
1476 #endif /* CONFIG_HOTPLUG_CPU */
1478 #endif /* CONFIG_SMP */
1480 void xive_teardown_cpu(void)
1482 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1483 unsigned int cpu = smp_processor_id();
1485 /* Set CPPR to 0 to disable flow of interrupts */
1486 xc->cppr = 0;
1487 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1489 if (xive_ops->teardown_cpu)
1490 xive_ops->teardown_cpu(cpu, xc);
1492 #ifdef CONFIG_SMP
1493 /* Get rid of IPI */
1494 xive_cleanup_cpu_ipi(cpu, xc);
1495 #endif
1497 /* Disable and free the queues */
1498 xive_cleanup_cpu_queues(cpu, xc);
1501 void xive_shutdown(void)
1503 xive_ops->shutdown();
1506 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1507 u8 max_prio)
1509 xive_tima = area;
1510 xive_tima_offset = offset;
1511 xive_ops = ops;
1512 xive_irq_priority = max_prio;
1514 ppc_md.get_irq = xive_get_irq;
1515 __xive_enabled = true;
1517 pr_devel("Initializing host..\n");
1518 xive_init_host();
1520 pr_devel("Initializing boot CPU..\n");
1522 /* Allocate per-CPU data and queues */
1523 xive_prepare_cpu(smp_processor_id());
1525 /* Get ready for interrupts */
1526 xive_setup_cpu();
1528 pr_info("Interrupt handling initialized with %s backend\n",
1529 xive_ops->name);
1530 pr_info("Using priority %d for all interrupts\n", max_prio);
1532 return true;
1535 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1537 unsigned int alloc_order;
1538 struct page *pages;
1539 __be32 *qpage;
1541 alloc_order = xive_alloc_order(queue_shift);
1542 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1543 if (!pages)
1544 return ERR_PTR(-ENOMEM);
1545 qpage = (__be32 *)page_address(pages);
1546 memset(qpage, 0, 1 << queue_shift);
1548 return qpage;
1551 static int __init xive_off(char *arg)
1553 xive_cmdline_disabled = true;
1554 return 0;
1556 __setup("xive=off", xive_off);