2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
27 #include <asm/pgtable.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
36 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
37 unsigned long hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 __initdata
LIST_HEAD(huge_boot_pages
);
45 /* for command line parsing */
46 static struct hstate
* __initdata parsed_hstate
;
47 static unsigned long __initdata default_hstate_max_huge_pages
;
48 static unsigned long __initdata default_hstate_size
;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock
);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
58 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
60 spin_unlock(&spool
->lock
);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
70 struct hugepage_subpool
*spool
;
72 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
76 spin_lock_init(&spool
->lock
);
78 spool
->max_hpages
= nr_blocks
;
79 spool
->used_hpages
= 0;
84 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
86 spin_lock(&spool
->lock
);
87 BUG_ON(!spool
->count
);
89 unlock_or_release_subpool(spool
);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
100 spin_lock(&spool
->lock
);
101 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
102 spool
->used_hpages
+= delta
;
106 spin_unlock(&spool
->lock
);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
117 spin_lock(&spool
->lock
);
118 spool
->used_hpages
-= delta
;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool
);
124 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
126 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
129 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
131 return subpool_inode(file_inode(vma
->vm_file
));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link
;
154 static long region_add(struct list_head
*head
, long f
, long t
)
156 struct file_region
*rg
, *nrg
, *trg
;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg
, head
, link
)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
170 if (&rg
->link
== head
)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head
*head
, long f
, long t
)
192 struct file_region
*rg
, *nrg
;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg
, head
, link
)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg
->link
== head
|| t
< rg
->from
) {
204 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
209 INIT_LIST_HEAD(&nrg
->link
);
210 list_add(&nrg
->link
, rg
->link
.prev
);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
222 if (&rg
->link
== head
)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg
-= rg
->to
- rg
->from
;
239 static long region_truncate(struct list_head
*head
, long end
)
241 struct file_region
*rg
, *trg
;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg
, head
, link
)
248 if (&rg
->link
== head
)
251 /* If we are in the middle of a region then adjust it. */
252 if (end
> rg
->from
) {
255 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
260 if (&rg
->link
== head
)
262 chg
+= rg
->to
- rg
->from
;
269 static long region_count(struct list_head
*head
, long f
, long t
)
271 struct file_region
*rg
;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg
, head
, link
) {
284 seg_from
= max(rg
->from
, f
);
285 seg_to
= min(rg
->to
, t
);
287 chg
+= seg_to
- seg_from
;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
298 struct vm_area_struct
*vma
, unsigned long address
)
300 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
301 (vma
->vm_pgoff
>> huge_page_order(h
));
304 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
305 unsigned long address
)
307 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
316 struct hstate
*hstate
;
318 if (!is_vm_hugetlb_page(vma
))
321 hstate
= hstate_vma(vma
);
323 return 1UL << huge_page_shift(hstate
);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
336 return vma_kernel_pagesize(vma
);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
370 return (unsigned long)vma
->vm_private_data
;
373 static void set_vma_private_data(struct vm_area_struct
*vma
,
376 vma
->vm_private_data
= (void *)value
;
381 struct list_head regions
;
384 static struct resv_map
*resv_map_alloc(void)
386 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
390 kref_init(&resv_map
->refs
);
391 INIT_LIST_HEAD(&resv_map
->regions
);
396 static void resv_map_release(struct kref
*ref
)
398 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map
->regions
, 0);
405 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
408 if (!(vma
->vm_flags
& VM_MAYSHARE
))
409 return (struct resv_map
*)(get_vma_private_data(vma
) &
414 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
417 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
419 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
420 HPAGE_RESV_MASK
) | (unsigned long)map
);
423 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
426 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
428 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
431 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
435 return (get_vma_private_data(vma
) & flag
) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
442 if (!(vma
->vm_flags
& VM_MAYSHARE
))
443 vma
->vm_private_data
= (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
449 if (vma
->vm_flags
& VM_NORESERVE
) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
465 /* Shared mappings always use reserves */
466 if (vma
->vm_flags
& VM_MAYSHARE
)
470 * Only the process that called mmap() has reserves for
473 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
479 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
481 int nid
= page_to_nid(page
);
482 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
483 h
->free_huge_pages
++;
484 h
->free_huge_pages_node
[nid
]++;
487 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
491 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
492 if (!is_migrate_isolate_page(page
))
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
498 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
500 list_move(&page
->lru
, &h
->hugepage_activelist
);
501 set_page_refcounted(page
);
502 h
->free_huge_pages
--;
503 h
->free_huge_pages_node
[nid
]--;
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
510 if (hugepages_treat_as_movable
|| hugepage_migration_support(h
))
511 return GFP_HIGHUSER_MOVABLE
;
516 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
517 struct vm_area_struct
*vma
,
518 unsigned long address
, int avoid_reserve
,
521 struct page
*page
= NULL
;
522 struct mempolicy
*mpol
;
523 nodemask_t
*nodemask
;
524 struct zonelist
*zonelist
;
527 unsigned int cpuset_mems_cookie
;
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
534 if (!vma_has_reserves(vma
, chg
) &&
535 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
538 /* If reserves cannot be used, ensure enough pages are in the pool */
539 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
543 cpuset_mems_cookie
= get_mems_allowed();
544 zonelist
= huge_zonelist(vma
, address
,
545 htlb_alloc_mask(h
), &mpol
, &nodemask
);
547 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
548 MAX_NR_ZONES
- 1, nodemask
) {
549 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask(h
))) {
550 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
554 if (!vma_has_reserves(vma
, chg
))
557 SetPagePrivate(page
);
558 h
->resv_huge_pages
--;
565 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
573 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
577 VM_BUG_ON(h
->order
>= MAX_ORDER
);
580 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
581 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
582 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
583 1 << PG_referenced
| 1 << PG_dirty
|
584 1 << PG_active
| 1 << PG_reserved
|
585 1 << PG_private
| 1 << PG_writeback
);
587 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
588 set_compound_page_dtor(page
, NULL
);
589 set_page_refcounted(page
);
590 arch_release_hugepage(page
);
591 __free_pages(page
, huge_page_order(h
));
594 struct hstate
*size_to_hstate(unsigned long size
)
599 if (huge_page_size(h
) == size
)
605 static void free_huge_page(struct page
*page
)
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
611 struct hstate
*h
= page_hstate(page
);
612 int nid
= page_to_nid(page
);
613 struct hugepage_subpool
*spool
=
614 (struct hugepage_subpool
*)page_private(page
);
615 bool restore_reserve
;
617 set_page_private(page
, 0);
618 page
->mapping
= NULL
;
619 BUG_ON(page_count(page
));
620 BUG_ON(page_mapcount(page
));
621 restore_reserve
= PagePrivate(page
);
622 ClearPagePrivate(page
);
624 spin_lock(&hugetlb_lock
);
625 hugetlb_cgroup_uncharge_page(hstate_index(h
),
626 pages_per_huge_page(h
), page
);
628 h
->resv_huge_pages
++;
630 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
631 /* remove the page from active list */
632 list_del(&page
->lru
);
633 update_and_free_page(h
, page
);
634 h
->surplus_huge_pages
--;
635 h
->surplus_huge_pages_node
[nid
]--;
637 arch_clear_hugepage_flags(page
);
638 enqueue_huge_page(h
, page
);
640 spin_unlock(&hugetlb_lock
);
641 hugepage_subpool_put_pages(spool
, 1);
644 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
646 INIT_LIST_HEAD(&page
->lru
);
647 set_compound_page_dtor(page
, free_huge_page
);
648 spin_lock(&hugetlb_lock
);
649 set_hugetlb_cgroup(page
, NULL
);
651 h
->nr_huge_pages_node
[nid
]++;
652 spin_unlock(&hugetlb_lock
);
653 put_page(page
); /* free it into the hugepage allocator */
656 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
659 int nr_pages
= 1 << order
;
660 struct page
*p
= page
+ 1;
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page
, order
);
665 __ClearPageReserved(page
);
666 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
680 __ClearPageReserved(p
);
681 set_page_count(p
, 0);
682 p
->first_page
= page
;
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
691 int PageHuge(struct page
*page
)
693 if (!PageCompound(page
))
696 page
= compound_head(page
);
697 return get_compound_page_dtor(page
) == free_huge_page
;
699 EXPORT_SYMBOL_GPL(PageHuge
);
702 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703 * normal or transparent huge pages.
705 int PageHeadHuge(struct page
*page_head
)
707 if (!PageHead(page_head
))
710 return get_compound_page_dtor(page_head
) == free_huge_page
;
713 pgoff_t
__basepage_index(struct page
*page
)
715 struct page
*page_head
= compound_head(page
);
716 pgoff_t index
= page_index(page_head
);
717 unsigned long compound_idx
;
719 if (!PageHuge(page_head
))
720 return page_index(page
);
722 if (compound_order(page_head
) >= MAX_ORDER
)
723 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
725 compound_idx
= page
- page_head
;
727 return (index
<< compound_order(page_head
)) + compound_idx
;
730 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
734 if (h
->order
>= MAX_ORDER
)
737 page
= alloc_pages_exact_node(nid
,
738 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
739 __GFP_REPEAT
|__GFP_NOWARN
,
742 if (arch_prepare_hugepage(page
)) {
743 __free_pages(page
, huge_page_order(h
));
746 prep_new_huge_page(h
, page
, nid
);
753 * common helper functions for hstate_next_node_to_{alloc|free}.
754 * We may have allocated or freed a huge page based on a different
755 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756 * be outside of *nodes_allowed. Ensure that we use an allowed
757 * node for alloc or free.
759 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
761 nid
= next_node(nid
, *nodes_allowed
);
762 if (nid
== MAX_NUMNODES
)
763 nid
= first_node(*nodes_allowed
);
764 VM_BUG_ON(nid
>= MAX_NUMNODES
);
769 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
771 if (!node_isset(nid
, *nodes_allowed
))
772 nid
= next_node_allowed(nid
, nodes_allowed
);
777 * returns the previously saved node ["this node"] from which to
778 * allocate a persistent huge page for the pool and advance the
779 * next node from which to allocate, handling wrap at end of node
782 static int hstate_next_node_to_alloc(struct hstate
*h
,
783 nodemask_t
*nodes_allowed
)
787 VM_BUG_ON(!nodes_allowed
);
789 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
790 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
796 * helper for free_pool_huge_page() - return the previously saved
797 * node ["this node"] from which to free a huge page. Advance the
798 * next node id whether or not we find a free huge page to free so
799 * that the next attempt to free addresses the next node.
801 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
805 VM_BUG_ON(!nodes_allowed
);
807 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
808 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
814 for (nr_nodes = nodes_weight(*mask); \
816 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
820 for (nr_nodes = nodes_weight(*mask); \
822 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
825 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
831 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
832 page
= alloc_fresh_huge_page_node(h
, node
);
840 count_vm_event(HTLB_BUDDY_PGALLOC
);
842 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
848 * Free huge page from pool from next node to free.
849 * Attempt to keep persistent huge pages more or less
850 * balanced over allowed nodes.
851 * Called with hugetlb_lock locked.
853 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
859 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
861 * If we're returning unused surplus pages, only examine
862 * nodes with surplus pages.
864 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
865 !list_empty(&h
->hugepage_freelists
[node
])) {
867 list_entry(h
->hugepage_freelists
[node
].next
,
869 list_del(&page
->lru
);
870 h
->free_huge_pages
--;
871 h
->free_huge_pages_node
[node
]--;
873 h
->surplus_huge_pages
--;
874 h
->surplus_huge_pages_node
[node
]--;
876 update_and_free_page(h
, page
);
886 * Dissolve a given free hugepage into free buddy pages. This function does
887 * nothing for in-use (including surplus) hugepages.
889 static void dissolve_free_huge_page(struct page
*page
)
891 spin_lock(&hugetlb_lock
);
892 if (PageHuge(page
) && !page_count(page
)) {
893 struct hstate
*h
= page_hstate(page
);
894 int nid
= page_to_nid(page
);
895 list_del(&page
->lru
);
896 h
->free_huge_pages
--;
897 h
->free_huge_pages_node
[nid
]--;
898 update_and_free_page(h
, page
);
900 spin_unlock(&hugetlb_lock
);
904 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905 * make specified memory blocks removable from the system.
906 * Note that start_pfn should aligned with (minimum) hugepage size.
908 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
910 unsigned int order
= 8 * sizeof(void *);
914 /* Set scan step to minimum hugepage size */
916 if (order
> huge_page_order(h
))
917 order
= huge_page_order(h
);
918 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << order
));
919 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
920 dissolve_free_huge_page(pfn_to_page(pfn
));
923 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
928 if (h
->order
>= MAX_ORDER
)
932 * Assume we will successfully allocate the surplus page to
933 * prevent racing processes from causing the surplus to exceed
936 * This however introduces a different race, where a process B
937 * tries to grow the static hugepage pool while alloc_pages() is
938 * called by process A. B will only examine the per-node
939 * counters in determining if surplus huge pages can be
940 * converted to normal huge pages in adjust_pool_surplus(). A
941 * won't be able to increment the per-node counter, until the
942 * lock is dropped by B, but B doesn't drop hugetlb_lock until
943 * no more huge pages can be converted from surplus to normal
944 * state (and doesn't try to convert again). Thus, we have a
945 * case where a surplus huge page exists, the pool is grown, and
946 * the surplus huge page still exists after, even though it
947 * should just have been converted to a normal huge page. This
948 * does not leak memory, though, as the hugepage will be freed
949 * once it is out of use. It also does not allow the counters to
950 * go out of whack in adjust_pool_surplus() as we don't modify
951 * the node values until we've gotten the hugepage and only the
952 * per-node value is checked there.
954 spin_lock(&hugetlb_lock
);
955 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
956 spin_unlock(&hugetlb_lock
);
960 h
->surplus_huge_pages
++;
962 spin_unlock(&hugetlb_lock
);
964 if (nid
== NUMA_NO_NODE
)
965 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
966 __GFP_REPEAT
|__GFP_NOWARN
,
969 page
= alloc_pages_exact_node(nid
,
970 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
971 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
973 if (page
&& arch_prepare_hugepage(page
)) {
974 __free_pages(page
, huge_page_order(h
));
978 spin_lock(&hugetlb_lock
);
980 INIT_LIST_HEAD(&page
->lru
);
981 r_nid
= page_to_nid(page
);
982 set_compound_page_dtor(page
, free_huge_page
);
983 set_hugetlb_cgroup(page
, NULL
);
985 * We incremented the global counters already
987 h
->nr_huge_pages_node
[r_nid
]++;
988 h
->surplus_huge_pages_node
[r_nid
]++;
989 __count_vm_event(HTLB_BUDDY_PGALLOC
);
992 h
->surplus_huge_pages
--;
993 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
995 spin_unlock(&hugetlb_lock
);
1001 * This allocation function is useful in the context where vma is irrelevant.
1002 * E.g. soft-offlining uses this function because it only cares physical
1003 * address of error page.
1005 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1007 struct page
*page
= NULL
;
1009 spin_lock(&hugetlb_lock
);
1010 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1011 page
= dequeue_huge_page_node(h
, nid
);
1012 spin_unlock(&hugetlb_lock
);
1015 page
= alloc_buddy_huge_page(h
, nid
);
1021 * Increase the hugetlb pool such that it can accommodate a reservation
1024 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1026 struct list_head surplus_list
;
1027 struct page
*page
, *tmp
;
1029 int needed
, allocated
;
1030 bool alloc_ok
= true;
1032 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1034 h
->resv_huge_pages
+= delta
;
1039 INIT_LIST_HEAD(&surplus_list
);
1043 spin_unlock(&hugetlb_lock
);
1044 for (i
= 0; i
< needed
; i
++) {
1045 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1050 list_add(&page
->lru
, &surplus_list
);
1055 * After retaking hugetlb_lock, we need to recalculate 'needed'
1056 * because either resv_huge_pages or free_huge_pages may have changed.
1058 spin_lock(&hugetlb_lock
);
1059 needed
= (h
->resv_huge_pages
+ delta
) -
1060 (h
->free_huge_pages
+ allocated
);
1065 * We were not able to allocate enough pages to
1066 * satisfy the entire reservation so we free what
1067 * we've allocated so far.
1072 * The surplus_list now contains _at_least_ the number of extra pages
1073 * needed to accommodate the reservation. Add the appropriate number
1074 * of pages to the hugetlb pool and free the extras back to the buddy
1075 * allocator. Commit the entire reservation here to prevent another
1076 * process from stealing the pages as they are added to the pool but
1077 * before they are reserved.
1079 needed
+= allocated
;
1080 h
->resv_huge_pages
+= delta
;
1083 /* Free the needed pages to the hugetlb pool */
1084 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1088 * This page is now managed by the hugetlb allocator and has
1089 * no users -- drop the buddy allocator's reference.
1091 put_page_testzero(page
);
1092 VM_BUG_ON_PAGE(page_count(page
), page
);
1093 enqueue_huge_page(h
, page
);
1096 spin_unlock(&hugetlb_lock
);
1098 /* Free unnecessary surplus pages to the buddy allocator */
1099 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1101 spin_lock(&hugetlb_lock
);
1107 * When releasing a hugetlb pool reservation, any surplus pages that were
1108 * allocated to satisfy the reservation must be explicitly freed if they were
1110 * Called with hugetlb_lock held.
1112 static void return_unused_surplus_pages(struct hstate
*h
,
1113 unsigned long unused_resv_pages
)
1115 unsigned long nr_pages
;
1117 /* Uncommit the reservation */
1118 h
->resv_huge_pages
-= unused_resv_pages
;
1120 /* Cannot return gigantic pages currently */
1121 if (h
->order
>= MAX_ORDER
)
1124 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1127 * We want to release as many surplus pages as possible, spread
1128 * evenly across all nodes with memory. Iterate across these nodes
1129 * until we can no longer free unreserved surplus pages. This occurs
1130 * when the nodes with surplus pages have no free pages.
1131 * free_pool_huge_page() will balance the the freed pages across the
1132 * on-line nodes with memory and will handle the hstate accounting.
1134 while (nr_pages
--) {
1135 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1141 * Determine if the huge page at addr within the vma has an associated
1142 * reservation. Where it does not we will need to logically increase
1143 * reservation and actually increase subpool usage before an allocation
1144 * can occur. Where any new reservation would be required the
1145 * reservation change is prepared, but not committed. Once the page
1146 * has been allocated from the subpool and instantiated the change should
1147 * be committed via vma_commit_reservation. No action is required on
1150 static long vma_needs_reservation(struct hstate
*h
,
1151 struct vm_area_struct
*vma
, unsigned long addr
)
1153 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1154 struct inode
*inode
= mapping
->host
;
1156 if (vma
->vm_flags
& VM_MAYSHARE
) {
1157 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1158 return region_chg(&inode
->i_mapping
->private_list
,
1161 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1166 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1167 struct resv_map
*resv
= vma_resv_map(vma
);
1169 err
= region_chg(&resv
->regions
, idx
, idx
+ 1);
1175 static void vma_commit_reservation(struct hstate
*h
,
1176 struct vm_area_struct
*vma
, unsigned long addr
)
1178 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1179 struct inode
*inode
= mapping
->host
;
1181 if (vma
->vm_flags
& VM_MAYSHARE
) {
1182 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1183 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1185 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1186 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1187 struct resv_map
*resv
= vma_resv_map(vma
);
1189 /* Mark this page used in the map. */
1190 region_add(&resv
->regions
, idx
, idx
+ 1);
1194 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1195 unsigned long addr
, int avoid_reserve
)
1197 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1198 struct hstate
*h
= hstate_vma(vma
);
1202 struct hugetlb_cgroup
*h_cg
;
1204 idx
= hstate_index(h
);
1206 * Processes that did not create the mapping will have no
1207 * reserves and will not have accounted against subpool
1208 * limit. Check that the subpool limit can be made before
1209 * satisfying the allocation MAP_NORESERVE mappings may also
1210 * need pages and subpool limit allocated allocated if no reserve
1213 chg
= vma_needs_reservation(h
, vma
, addr
);
1215 return ERR_PTR(-ENOMEM
);
1216 if (chg
|| avoid_reserve
)
1217 if (hugepage_subpool_get_pages(spool
, 1))
1218 return ERR_PTR(-ENOSPC
);
1220 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1222 if (chg
|| avoid_reserve
)
1223 hugepage_subpool_put_pages(spool
, 1);
1224 return ERR_PTR(-ENOSPC
);
1226 spin_lock(&hugetlb_lock
);
1227 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1229 spin_unlock(&hugetlb_lock
);
1230 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1232 hugetlb_cgroup_uncharge_cgroup(idx
,
1233 pages_per_huge_page(h
),
1235 if (chg
|| avoid_reserve
)
1236 hugepage_subpool_put_pages(spool
, 1);
1237 return ERR_PTR(-ENOSPC
);
1239 spin_lock(&hugetlb_lock
);
1240 list_move(&page
->lru
, &h
->hugepage_activelist
);
1243 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1244 spin_unlock(&hugetlb_lock
);
1246 set_page_private(page
, (unsigned long)spool
);
1248 vma_commit_reservation(h
, vma
, addr
);
1253 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1254 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1255 * where no ERR_VALUE is expected to be returned.
1257 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1258 unsigned long addr
, int avoid_reserve
)
1260 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1266 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1268 struct huge_bootmem_page
*m
;
1271 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1274 addr
= memblock_virt_alloc_try_nid_nopanic(
1275 huge_page_size(h
), huge_page_size(h
),
1276 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1279 * Use the beginning of the huge page to store the
1280 * huge_bootmem_page struct (until gather_bootmem
1281 * puts them into the mem_map).
1290 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1291 /* Put them into a private list first because mem_map is not up yet */
1292 list_add(&m
->list
, &huge_boot_pages
);
1297 static void prep_compound_huge_page(struct page
*page
, int order
)
1299 if (unlikely(order
> (MAX_ORDER
- 1)))
1300 prep_compound_gigantic_page(page
, order
);
1302 prep_compound_page(page
, order
);
1305 /* Put bootmem huge pages into the standard lists after mem_map is up */
1306 static void __init
gather_bootmem_prealloc(void)
1308 struct huge_bootmem_page
*m
;
1310 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1311 struct hstate
*h
= m
->hstate
;
1314 #ifdef CONFIG_HIGHMEM
1315 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1316 memblock_free_late(__pa(m
),
1317 sizeof(struct huge_bootmem_page
));
1319 page
= virt_to_page(m
);
1321 WARN_ON(page_count(page
) != 1);
1322 prep_compound_huge_page(page
, h
->order
);
1323 WARN_ON(PageReserved(page
));
1324 prep_new_huge_page(h
, page
, page_to_nid(page
));
1326 * If we had gigantic hugepages allocated at boot time, we need
1327 * to restore the 'stolen' pages to totalram_pages in order to
1328 * fix confusing memory reports from free(1) and another
1329 * side-effects, like CommitLimit going negative.
1331 if (h
->order
> (MAX_ORDER
- 1))
1332 adjust_managed_page_count(page
, 1 << h
->order
);
1336 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1340 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1341 if (h
->order
>= MAX_ORDER
) {
1342 if (!alloc_bootmem_huge_page(h
))
1344 } else if (!alloc_fresh_huge_page(h
,
1345 &node_states
[N_MEMORY
]))
1348 h
->max_huge_pages
= i
;
1351 static void __init
hugetlb_init_hstates(void)
1355 for_each_hstate(h
) {
1356 /* oversize hugepages were init'ed in early boot */
1357 if (h
->order
< MAX_ORDER
)
1358 hugetlb_hstate_alloc_pages(h
);
1362 static char * __init
memfmt(char *buf
, unsigned long n
)
1364 if (n
>= (1UL << 30))
1365 sprintf(buf
, "%lu GB", n
>> 30);
1366 else if (n
>= (1UL << 20))
1367 sprintf(buf
, "%lu MB", n
>> 20);
1369 sprintf(buf
, "%lu KB", n
>> 10);
1373 static void __init
report_hugepages(void)
1377 for_each_hstate(h
) {
1379 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1380 memfmt(buf
, huge_page_size(h
)),
1381 h
->free_huge_pages
);
1385 #ifdef CONFIG_HIGHMEM
1386 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1387 nodemask_t
*nodes_allowed
)
1391 if (h
->order
>= MAX_ORDER
)
1394 for_each_node_mask(i
, *nodes_allowed
) {
1395 struct page
*page
, *next
;
1396 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1397 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1398 if (count
>= h
->nr_huge_pages
)
1400 if (PageHighMem(page
))
1402 list_del(&page
->lru
);
1403 update_and_free_page(h
, page
);
1404 h
->free_huge_pages
--;
1405 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1410 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1411 nodemask_t
*nodes_allowed
)
1417 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1418 * balanced by operating on them in a round-robin fashion.
1419 * Returns 1 if an adjustment was made.
1421 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1426 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1429 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1430 if (h
->surplus_huge_pages_node
[node
])
1434 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1435 if (h
->surplus_huge_pages_node
[node
] <
1436 h
->nr_huge_pages_node
[node
])
1443 h
->surplus_huge_pages
+= delta
;
1444 h
->surplus_huge_pages_node
[node
] += delta
;
1448 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1449 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1450 nodemask_t
*nodes_allowed
)
1452 unsigned long min_count
, ret
;
1454 if (h
->order
>= MAX_ORDER
)
1455 return h
->max_huge_pages
;
1458 * Increase the pool size
1459 * First take pages out of surplus state. Then make up the
1460 * remaining difference by allocating fresh huge pages.
1462 * We might race with alloc_buddy_huge_page() here and be unable
1463 * to convert a surplus huge page to a normal huge page. That is
1464 * not critical, though, it just means the overall size of the
1465 * pool might be one hugepage larger than it needs to be, but
1466 * within all the constraints specified by the sysctls.
1468 spin_lock(&hugetlb_lock
);
1469 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1470 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1474 while (count
> persistent_huge_pages(h
)) {
1476 * If this allocation races such that we no longer need the
1477 * page, free_huge_page will handle it by freeing the page
1478 * and reducing the surplus.
1480 spin_unlock(&hugetlb_lock
);
1481 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1482 spin_lock(&hugetlb_lock
);
1486 /* Bail for signals. Probably ctrl-c from user */
1487 if (signal_pending(current
))
1492 * Decrease the pool size
1493 * First return free pages to the buddy allocator (being careful
1494 * to keep enough around to satisfy reservations). Then place
1495 * pages into surplus state as needed so the pool will shrink
1496 * to the desired size as pages become free.
1498 * By placing pages into the surplus state independent of the
1499 * overcommit value, we are allowing the surplus pool size to
1500 * exceed overcommit. There are few sane options here. Since
1501 * alloc_buddy_huge_page() is checking the global counter,
1502 * though, we'll note that we're not allowed to exceed surplus
1503 * and won't grow the pool anywhere else. Not until one of the
1504 * sysctls are changed, or the surplus pages go out of use.
1506 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1507 min_count
= max(count
, min_count
);
1508 try_to_free_low(h
, min_count
, nodes_allowed
);
1509 while (min_count
< persistent_huge_pages(h
)) {
1510 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1513 while (count
< persistent_huge_pages(h
)) {
1514 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1518 ret
= persistent_huge_pages(h
);
1519 spin_unlock(&hugetlb_lock
);
1523 #define HSTATE_ATTR_RO(_name) \
1524 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1526 #define HSTATE_ATTR(_name) \
1527 static struct kobj_attribute _name##_attr = \
1528 __ATTR(_name, 0644, _name##_show, _name##_store)
1530 static struct kobject
*hugepages_kobj
;
1531 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1533 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1535 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1539 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1540 if (hstate_kobjs
[i
] == kobj
) {
1542 *nidp
= NUMA_NO_NODE
;
1546 return kobj_to_node_hstate(kobj
, nidp
);
1549 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1550 struct kobj_attribute
*attr
, char *buf
)
1553 unsigned long nr_huge_pages
;
1556 h
= kobj_to_hstate(kobj
, &nid
);
1557 if (nid
== NUMA_NO_NODE
)
1558 nr_huge_pages
= h
->nr_huge_pages
;
1560 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1562 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1565 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1566 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1567 const char *buf
, size_t len
)
1571 unsigned long count
;
1573 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1575 err
= kstrtoul(buf
, 10, &count
);
1579 h
= kobj_to_hstate(kobj
, &nid
);
1580 if (h
->order
>= MAX_ORDER
) {
1585 if (nid
== NUMA_NO_NODE
) {
1587 * global hstate attribute
1589 if (!(obey_mempolicy
&&
1590 init_nodemask_of_mempolicy(nodes_allowed
))) {
1591 NODEMASK_FREE(nodes_allowed
);
1592 nodes_allowed
= &node_states
[N_MEMORY
];
1594 } else if (nodes_allowed
) {
1596 * per node hstate attribute: adjust count to global,
1597 * but restrict alloc/free to the specified node.
1599 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1600 init_nodemask_of_node(nodes_allowed
, nid
);
1602 nodes_allowed
= &node_states
[N_MEMORY
];
1604 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1606 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1607 NODEMASK_FREE(nodes_allowed
);
1611 NODEMASK_FREE(nodes_allowed
);
1615 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1616 struct kobj_attribute
*attr
, char *buf
)
1618 return nr_hugepages_show_common(kobj
, attr
, buf
);
1621 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1622 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1624 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1626 HSTATE_ATTR(nr_hugepages
);
1631 * hstate attribute for optionally mempolicy-based constraint on persistent
1632 * huge page alloc/free.
1634 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1635 struct kobj_attribute
*attr
, char *buf
)
1637 return nr_hugepages_show_common(kobj
, attr
, buf
);
1640 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1641 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1643 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1645 HSTATE_ATTR(nr_hugepages_mempolicy
);
1649 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1650 struct kobj_attribute
*attr
, char *buf
)
1652 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1653 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1656 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1657 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1660 unsigned long input
;
1661 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1663 if (h
->order
>= MAX_ORDER
)
1666 err
= kstrtoul(buf
, 10, &input
);
1670 spin_lock(&hugetlb_lock
);
1671 h
->nr_overcommit_huge_pages
= input
;
1672 spin_unlock(&hugetlb_lock
);
1676 HSTATE_ATTR(nr_overcommit_hugepages
);
1678 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1679 struct kobj_attribute
*attr
, char *buf
)
1682 unsigned long free_huge_pages
;
1685 h
= kobj_to_hstate(kobj
, &nid
);
1686 if (nid
== NUMA_NO_NODE
)
1687 free_huge_pages
= h
->free_huge_pages
;
1689 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1691 return sprintf(buf
, "%lu\n", free_huge_pages
);
1693 HSTATE_ATTR_RO(free_hugepages
);
1695 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1696 struct kobj_attribute
*attr
, char *buf
)
1698 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1699 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1701 HSTATE_ATTR_RO(resv_hugepages
);
1703 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1704 struct kobj_attribute
*attr
, char *buf
)
1707 unsigned long surplus_huge_pages
;
1710 h
= kobj_to_hstate(kobj
, &nid
);
1711 if (nid
== NUMA_NO_NODE
)
1712 surplus_huge_pages
= h
->surplus_huge_pages
;
1714 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1716 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1718 HSTATE_ATTR_RO(surplus_hugepages
);
1720 static struct attribute
*hstate_attrs
[] = {
1721 &nr_hugepages_attr
.attr
,
1722 &nr_overcommit_hugepages_attr
.attr
,
1723 &free_hugepages_attr
.attr
,
1724 &resv_hugepages_attr
.attr
,
1725 &surplus_hugepages_attr
.attr
,
1727 &nr_hugepages_mempolicy_attr
.attr
,
1732 static struct attribute_group hstate_attr_group
= {
1733 .attrs
= hstate_attrs
,
1736 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1737 struct kobject
**hstate_kobjs
,
1738 struct attribute_group
*hstate_attr_group
)
1741 int hi
= hstate_index(h
);
1743 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1744 if (!hstate_kobjs
[hi
])
1747 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1749 kobject_put(hstate_kobjs
[hi
]);
1754 static void __init
hugetlb_sysfs_init(void)
1759 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1760 if (!hugepages_kobj
)
1763 for_each_hstate(h
) {
1764 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1765 hstate_kobjs
, &hstate_attr_group
);
1767 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1774 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1775 * with node devices in node_devices[] using a parallel array. The array
1776 * index of a node device or _hstate == node id.
1777 * This is here to avoid any static dependency of the node device driver, in
1778 * the base kernel, on the hugetlb module.
1780 struct node_hstate
{
1781 struct kobject
*hugepages_kobj
;
1782 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1784 struct node_hstate node_hstates
[MAX_NUMNODES
];
1787 * A subset of global hstate attributes for node devices
1789 static struct attribute
*per_node_hstate_attrs
[] = {
1790 &nr_hugepages_attr
.attr
,
1791 &free_hugepages_attr
.attr
,
1792 &surplus_hugepages_attr
.attr
,
1796 static struct attribute_group per_node_hstate_attr_group
= {
1797 .attrs
= per_node_hstate_attrs
,
1801 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1802 * Returns node id via non-NULL nidp.
1804 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1808 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1809 struct node_hstate
*nhs
= &node_hstates
[nid
];
1811 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1812 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1824 * Unregister hstate attributes from a single node device.
1825 * No-op if no hstate attributes attached.
1827 static void hugetlb_unregister_node(struct node
*node
)
1830 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1832 if (!nhs
->hugepages_kobj
)
1833 return; /* no hstate attributes */
1835 for_each_hstate(h
) {
1836 int idx
= hstate_index(h
);
1837 if (nhs
->hstate_kobjs
[idx
]) {
1838 kobject_put(nhs
->hstate_kobjs
[idx
]);
1839 nhs
->hstate_kobjs
[idx
] = NULL
;
1843 kobject_put(nhs
->hugepages_kobj
);
1844 nhs
->hugepages_kobj
= NULL
;
1848 * hugetlb module exit: unregister hstate attributes from node devices
1851 static void hugetlb_unregister_all_nodes(void)
1856 * disable node device registrations.
1858 register_hugetlbfs_with_node(NULL
, NULL
);
1861 * remove hstate attributes from any nodes that have them.
1863 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1864 hugetlb_unregister_node(node_devices
[nid
]);
1868 * Register hstate attributes for a single node device.
1869 * No-op if attributes already registered.
1871 static void hugetlb_register_node(struct node
*node
)
1874 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1877 if (nhs
->hugepages_kobj
)
1878 return; /* already allocated */
1880 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1882 if (!nhs
->hugepages_kobj
)
1885 for_each_hstate(h
) {
1886 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1888 &per_node_hstate_attr_group
);
1890 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1891 h
->name
, node
->dev
.id
);
1892 hugetlb_unregister_node(node
);
1899 * hugetlb init time: register hstate attributes for all registered node
1900 * devices of nodes that have memory. All on-line nodes should have
1901 * registered their associated device by this time.
1903 static void hugetlb_register_all_nodes(void)
1907 for_each_node_state(nid
, N_MEMORY
) {
1908 struct node
*node
= node_devices
[nid
];
1909 if (node
->dev
.id
== nid
)
1910 hugetlb_register_node(node
);
1914 * Let the node device driver know we're here so it can
1915 * [un]register hstate attributes on node hotplug.
1917 register_hugetlbfs_with_node(hugetlb_register_node
,
1918 hugetlb_unregister_node
);
1920 #else /* !CONFIG_NUMA */
1922 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1930 static void hugetlb_unregister_all_nodes(void) { }
1932 static void hugetlb_register_all_nodes(void) { }
1936 static void __exit
hugetlb_exit(void)
1940 hugetlb_unregister_all_nodes();
1942 for_each_hstate(h
) {
1943 kobject_put(hstate_kobjs
[hstate_index(h
)]);
1946 kobject_put(hugepages_kobj
);
1948 module_exit(hugetlb_exit
);
1950 static int __init
hugetlb_init(void)
1952 /* Some platform decide whether they support huge pages at boot
1953 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1954 * there is no such support
1956 if (HPAGE_SHIFT
== 0)
1959 if (!size_to_hstate(default_hstate_size
)) {
1960 default_hstate_size
= HPAGE_SIZE
;
1961 if (!size_to_hstate(default_hstate_size
))
1962 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1964 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
1965 if (default_hstate_max_huge_pages
)
1966 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1968 hugetlb_init_hstates();
1969 gather_bootmem_prealloc();
1972 hugetlb_sysfs_init();
1973 hugetlb_register_all_nodes();
1974 hugetlb_cgroup_file_init();
1978 module_init(hugetlb_init
);
1980 /* Should be called on processing a hugepagesz=... option */
1981 void __init
hugetlb_add_hstate(unsigned order
)
1986 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1987 pr_warning("hugepagesz= specified twice, ignoring\n");
1990 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
1992 h
= &hstates
[hugetlb_max_hstate
++];
1994 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1995 h
->nr_huge_pages
= 0;
1996 h
->free_huge_pages
= 0;
1997 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1998 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1999 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2000 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2001 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2002 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2003 huge_page_size(h
)/1024);
2008 static int __init
hugetlb_nrpages_setup(char *s
)
2011 static unsigned long *last_mhp
;
2014 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2015 * so this hugepages= parameter goes to the "default hstate".
2017 if (!hugetlb_max_hstate
)
2018 mhp
= &default_hstate_max_huge_pages
;
2020 mhp
= &parsed_hstate
->max_huge_pages
;
2022 if (mhp
== last_mhp
) {
2023 pr_warning("hugepages= specified twice without "
2024 "interleaving hugepagesz=, ignoring\n");
2028 if (sscanf(s
, "%lu", mhp
) <= 0)
2032 * Global state is always initialized later in hugetlb_init.
2033 * But we need to allocate >= MAX_ORDER hstates here early to still
2034 * use the bootmem allocator.
2036 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2037 hugetlb_hstate_alloc_pages(parsed_hstate
);
2043 __setup("hugepages=", hugetlb_nrpages_setup
);
2045 static int __init
hugetlb_default_setup(char *s
)
2047 default_hstate_size
= memparse(s
, &s
);
2050 __setup("default_hugepagesz=", hugetlb_default_setup
);
2052 static unsigned int cpuset_mems_nr(unsigned int *array
)
2055 unsigned int nr
= 0;
2057 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2063 #ifdef CONFIG_SYSCTL
2064 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2065 struct ctl_table
*table
, int write
,
2066 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2068 struct hstate
*h
= &default_hstate
;
2072 tmp
= h
->max_huge_pages
;
2074 if (write
&& h
->order
>= MAX_ORDER
)
2078 table
->maxlen
= sizeof(unsigned long);
2079 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2084 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
2085 GFP_KERNEL
| __GFP_NORETRY
);
2086 if (!(obey_mempolicy
&&
2087 init_nodemask_of_mempolicy(nodes_allowed
))) {
2088 NODEMASK_FREE(nodes_allowed
);
2089 nodes_allowed
= &node_states
[N_MEMORY
];
2091 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
2093 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2094 NODEMASK_FREE(nodes_allowed
);
2100 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2101 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2104 return hugetlb_sysctl_handler_common(false, table
, write
,
2105 buffer
, length
, ppos
);
2109 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2110 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2112 return hugetlb_sysctl_handler_common(true, table
, write
,
2113 buffer
, length
, ppos
);
2115 #endif /* CONFIG_NUMA */
2117 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2118 void __user
*buffer
,
2119 size_t *length
, loff_t
*ppos
)
2121 struct hstate
*h
= &default_hstate
;
2125 tmp
= h
->nr_overcommit_huge_pages
;
2127 if (write
&& h
->order
>= MAX_ORDER
)
2131 table
->maxlen
= sizeof(unsigned long);
2132 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2137 spin_lock(&hugetlb_lock
);
2138 h
->nr_overcommit_huge_pages
= tmp
;
2139 spin_unlock(&hugetlb_lock
);
2145 #endif /* CONFIG_SYSCTL */
2147 void hugetlb_report_meminfo(struct seq_file
*m
)
2149 struct hstate
*h
= &default_hstate
;
2151 "HugePages_Total: %5lu\n"
2152 "HugePages_Free: %5lu\n"
2153 "HugePages_Rsvd: %5lu\n"
2154 "HugePages_Surp: %5lu\n"
2155 "Hugepagesize: %8lu kB\n",
2159 h
->surplus_huge_pages
,
2160 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2163 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2165 struct hstate
*h
= &default_hstate
;
2167 "Node %d HugePages_Total: %5u\n"
2168 "Node %d HugePages_Free: %5u\n"
2169 "Node %d HugePages_Surp: %5u\n",
2170 nid
, h
->nr_huge_pages_node
[nid
],
2171 nid
, h
->free_huge_pages_node
[nid
],
2172 nid
, h
->surplus_huge_pages_node
[nid
]);
2175 void hugetlb_show_meminfo(void)
2180 for_each_node_state(nid
, N_MEMORY
)
2182 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2184 h
->nr_huge_pages_node
[nid
],
2185 h
->free_huge_pages_node
[nid
],
2186 h
->surplus_huge_pages_node
[nid
],
2187 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2190 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2191 unsigned long hugetlb_total_pages(void)
2194 unsigned long nr_total_pages
= 0;
2197 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2198 return nr_total_pages
;
2201 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2205 spin_lock(&hugetlb_lock
);
2207 * When cpuset is configured, it breaks the strict hugetlb page
2208 * reservation as the accounting is done on a global variable. Such
2209 * reservation is completely rubbish in the presence of cpuset because
2210 * the reservation is not checked against page availability for the
2211 * current cpuset. Application can still potentially OOM'ed by kernel
2212 * with lack of free htlb page in cpuset that the task is in.
2213 * Attempt to enforce strict accounting with cpuset is almost
2214 * impossible (or too ugly) because cpuset is too fluid that
2215 * task or memory node can be dynamically moved between cpusets.
2217 * The change of semantics for shared hugetlb mapping with cpuset is
2218 * undesirable. However, in order to preserve some of the semantics,
2219 * we fall back to check against current free page availability as
2220 * a best attempt and hopefully to minimize the impact of changing
2221 * semantics that cpuset has.
2224 if (gather_surplus_pages(h
, delta
) < 0)
2227 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2228 return_unused_surplus_pages(h
, delta
);
2235 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2238 spin_unlock(&hugetlb_lock
);
2242 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2244 struct resv_map
*resv
= vma_resv_map(vma
);
2247 * This new VMA should share its siblings reservation map if present.
2248 * The VMA will only ever have a valid reservation map pointer where
2249 * it is being copied for another still existing VMA. As that VMA
2250 * has a reference to the reservation map it cannot disappear until
2251 * after this open call completes. It is therefore safe to take a
2252 * new reference here without additional locking.
2255 kref_get(&resv
->refs
);
2258 static void resv_map_put(struct vm_area_struct
*vma
)
2260 struct resv_map
*resv
= vma_resv_map(vma
);
2264 kref_put(&resv
->refs
, resv_map_release
);
2267 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2269 struct hstate
*h
= hstate_vma(vma
);
2270 struct resv_map
*resv
= vma_resv_map(vma
);
2271 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2272 unsigned long reserve
;
2273 unsigned long start
;
2277 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2278 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2280 reserve
= (end
- start
) -
2281 region_count(&resv
->regions
, start
, end
);
2286 hugetlb_acct_memory(h
, -reserve
);
2287 hugepage_subpool_put_pages(spool
, reserve
);
2293 * We cannot handle pagefaults against hugetlb pages at all. They cause
2294 * handle_mm_fault() to try to instantiate regular-sized pages in the
2295 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2298 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2304 const struct vm_operations_struct hugetlb_vm_ops
= {
2305 .fault
= hugetlb_vm_op_fault
,
2306 .open
= hugetlb_vm_op_open
,
2307 .close
= hugetlb_vm_op_close
,
2310 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2316 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2317 vma
->vm_page_prot
)));
2319 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2320 vma
->vm_page_prot
));
2322 entry
= pte_mkyoung(entry
);
2323 entry
= pte_mkhuge(entry
);
2324 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2329 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2330 unsigned long address
, pte_t
*ptep
)
2334 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2335 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2336 update_mmu_cache(vma
, address
, ptep
);
2340 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2341 struct vm_area_struct
*vma
)
2343 pte_t
*src_pte
, *dst_pte
, entry
;
2344 struct page
*ptepage
;
2347 struct hstate
*h
= hstate_vma(vma
);
2348 unsigned long sz
= huge_page_size(h
);
2349 unsigned long mmun_start
; /* For mmu_notifiers */
2350 unsigned long mmun_end
; /* For mmu_notifiers */
2353 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2355 mmun_start
= vma
->vm_start
;
2356 mmun_end
= vma
->vm_end
;
2358 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
2360 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2361 spinlock_t
*src_ptl
, *dst_ptl
;
2362 src_pte
= huge_pte_offset(src
, addr
);
2365 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2371 /* If the pagetables are shared don't copy or take references */
2372 if (dst_pte
== src_pte
)
2375 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
2376 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
2377 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
2378 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2380 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2381 entry
= huge_ptep_get(src_pte
);
2382 ptepage
= pte_page(entry
);
2384 page_dup_rmap(ptepage
);
2385 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2387 spin_unlock(src_ptl
);
2388 spin_unlock(dst_ptl
);
2392 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
2397 static int is_hugetlb_entry_migration(pte_t pte
)
2401 if (huge_pte_none(pte
) || pte_present(pte
))
2403 swp
= pte_to_swp_entry(pte
);
2404 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2410 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2414 if (huge_pte_none(pte
) || pte_present(pte
))
2416 swp
= pte_to_swp_entry(pte
);
2417 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2423 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2424 unsigned long start
, unsigned long end
,
2425 struct page
*ref_page
)
2427 int force_flush
= 0;
2428 struct mm_struct
*mm
= vma
->vm_mm
;
2429 unsigned long address
;
2434 struct hstate
*h
= hstate_vma(vma
);
2435 unsigned long sz
= huge_page_size(h
);
2436 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2437 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2439 WARN_ON(!is_vm_hugetlb_page(vma
));
2440 BUG_ON(start
& ~huge_page_mask(h
));
2441 BUG_ON(end
& ~huge_page_mask(h
));
2443 tlb_start_vma(tlb
, vma
);
2444 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2446 for (address
= start
; address
< end
; address
+= sz
) {
2447 ptep
= huge_pte_offset(mm
, address
);
2451 ptl
= huge_pte_lock(h
, mm
, ptep
);
2452 if (huge_pmd_unshare(mm
, &address
, ptep
))
2455 pte
= huge_ptep_get(ptep
);
2456 if (huge_pte_none(pte
))
2460 * HWPoisoned hugepage is already unmapped and dropped reference
2462 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
2463 huge_pte_clear(mm
, address
, ptep
);
2467 page
= pte_page(pte
);
2469 * If a reference page is supplied, it is because a specific
2470 * page is being unmapped, not a range. Ensure the page we
2471 * are about to unmap is the actual page of interest.
2474 if (page
!= ref_page
)
2478 * Mark the VMA as having unmapped its page so that
2479 * future faults in this VMA will fail rather than
2480 * looking like data was lost
2482 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2485 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2486 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2487 if (huge_pte_dirty(pte
))
2488 set_page_dirty(page
);
2490 page_remove_rmap(page
);
2491 force_flush
= !__tlb_remove_page(tlb
, page
);
2496 /* Bail out after unmapping reference page if supplied */
2505 * mmu_gather ran out of room to batch pages, we break out of
2506 * the PTE lock to avoid doing the potential expensive TLB invalidate
2507 * and page-free while holding it.
2512 if (address
< end
&& !ref_page
)
2515 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2516 tlb_end_vma(tlb
, vma
);
2519 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2520 struct vm_area_struct
*vma
, unsigned long start
,
2521 unsigned long end
, struct page
*ref_page
)
2523 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2526 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2527 * test will fail on a vma being torn down, and not grab a page table
2528 * on its way out. We're lucky that the flag has such an appropriate
2529 * name, and can in fact be safely cleared here. We could clear it
2530 * before the __unmap_hugepage_range above, but all that's necessary
2531 * is to clear it before releasing the i_mmap_mutex. This works
2532 * because in the context this is called, the VMA is about to be
2533 * destroyed and the i_mmap_mutex is held.
2535 vma
->vm_flags
&= ~VM_MAYSHARE
;
2538 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2539 unsigned long end
, struct page
*ref_page
)
2541 struct mm_struct
*mm
;
2542 struct mmu_gather tlb
;
2546 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2547 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2548 tlb_finish_mmu(&tlb
, start
, end
);
2552 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2553 * mappping it owns the reserve page for. The intention is to unmap the page
2554 * from other VMAs and let the children be SIGKILLed if they are faulting the
2557 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2558 struct page
*page
, unsigned long address
)
2560 struct hstate
*h
= hstate_vma(vma
);
2561 struct vm_area_struct
*iter_vma
;
2562 struct address_space
*mapping
;
2566 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2567 * from page cache lookup which is in HPAGE_SIZE units.
2569 address
= address
& huge_page_mask(h
);
2570 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2572 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2575 * Take the mapping lock for the duration of the table walk. As
2576 * this mapping should be shared between all the VMAs,
2577 * __unmap_hugepage_range() is called as the lock is already held
2579 mutex_lock(&mapping
->i_mmap_mutex
);
2580 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2581 /* Do not unmap the current VMA */
2582 if (iter_vma
== vma
)
2586 * Unmap the page from other VMAs without their own reserves.
2587 * They get marked to be SIGKILLed if they fault in these
2588 * areas. This is because a future no-page fault on this VMA
2589 * could insert a zeroed page instead of the data existing
2590 * from the time of fork. This would look like data corruption
2592 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2593 unmap_hugepage_range(iter_vma
, address
,
2594 address
+ huge_page_size(h
), page
);
2596 mutex_unlock(&mapping
->i_mmap_mutex
);
2602 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2603 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2604 * cannot race with other handlers or page migration.
2605 * Keep the pte_same checks anyway to make transition from the mutex easier.
2607 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2608 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2609 struct page
*pagecache_page
, spinlock_t
*ptl
)
2611 struct hstate
*h
= hstate_vma(vma
);
2612 struct page
*old_page
, *new_page
;
2613 int outside_reserve
= 0;
2614 unsigned long mmun_start
; /* For mmu_notifiers */
2615 unsigned long mmun_end
; /* For mmu_notifiers */
2617 old_page
= pte_page(pte
);
2620 /* If no-one else is actually using this page, avoid the copy
2621 * and just make the page writable */
2622 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2623 page_move_anon_rmap(old_page
, vma
, address
);
2624 set_huge_ptep_writable(vma
, address
, ptep
);
2629 * If the process that created a MAP_PRIVATE mapping is about to
2630 * perform a COW due to a shared page count, attempt to satisfy
2631 * the allocation without using the existing reserves. The pagecache
2632 * page is used to determine if the reserve at this address was
2633 * consumed or not. If reserves were used, a partial faulted mapping
2634 * at the time of fork() could consume its reserves on COW instead
2635 * of the full address range.
2637 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2638 old_page
!= pagecache_page
)
2639 outside_reserve
= 1;
2641 page_cache_get(old_page
);
2643 /* Drop page table lock as buddy allocator may be called */
2645 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2647 if (IS_ERR(new_page
)) {
2648 long err
= PTR_ERR(new_page
);
2649 page_cache_release(old_page
);
2652 * If a process owning a MAP_PRIVATE mapping fails to COW,
2653 * it is due to references held by a child and an insufficient
2654 * huge page pool. To guarantee the original mappers
2655 * reliability, unmap the page from child processes. The child
2656 * may get SIGKILLed if it later faults.
2658 if (outside_reserve
) {
2659 BUG_ON(huge_pte_none(pte
));
2660 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2661 BUG_ON(huge_pte_none(pte
));
2663 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2664 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2665 goto retry_avoidcopy
;
2667 * race occurs while re-acquiring page table
2668 * lock, and our job is done.
2675 /* Caller expects lock to be held */
2678 return VM_FAULT_OOM
;
2680 return VM_FAULT_SIGBUS
;
2684 * When the original hugepage is shared one, it does not have
2685 * anon_vma prepared.
2687 if (unlikely(anon_vma_prepare(vma
))) {
2688 page_cache_release(new_page
);
2689 page_cache_release(old_page
);
2690 /* Caller expects lock to be held */
2692 return VM_FAULT_OOM
;
2695 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2696 pages_per_huge_page(h
));
2697 __SetPageUptodate(new_page
);
2699 mmun_start
= address
& huge_page_mask(h
);
2700 mmun_end
= mmun_start
+ huge_page_size(h
);
2701 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2703 * Retake the page table lock to check for racing updates
2704 * before the page tables are altered
2707 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2708 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2709 ClearPagePrivate(new_page
);
2712 huge_ptep_clear_flush(vma
, address
, ptep
);
2713 set_huge_pte_at(mm
, address
, ptep
,
2714 make_huge_pte(vma
, new_page
, 1));
2715 page_remove_rmap(old_page
);
2716 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2717 /* Make the old page be freed below */
2718 new_page
= old_page
;
2721 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2722 page_cache_release(new_page
);
2723 page_cache_release(old_page
);
2725 /* Caller expects lock to be held */
2730 /* Return the pagecache page at a given address within a VMA */
2731 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2732 struct vm_area_struct
*vma
, unsigned long address
)
2734 struct address_space
*mapping
;
2737 mapping
= vma
->vm_file
->f_mapping
;
2738 idx
= vma_hugecache_offset(h
, vma
, address
);
2740 return find_lock_page(mapping
, idx
);
2744 * Return whether there is a pagecache page to back given address within VMA.
2745 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2747 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2748 struct vm_area_struct
*vma
, unsigned long address
)
2750 struct address_space
*mapping
;
2754 mapping
= vma
->vm_file
->f_mapping
;
2755 idx
= vma_hugecache_offset(h
, vma
, address
);
2757 page
= find_get_page(mapping
, idx
);
2760 return page
!= NULL
;
2763 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2764 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2766 struct hstate
*h
= hstate_vma(vma
);
2767 int ret
= VM_FAULT_SIGBUS
;
2772 struct address_space
*mapping
;
2777 * Currently, we are forced to kill the process in the event the
2778 * original mapper has unmapped pages from the child due to a failed
2779 * COW. Warn that such a situation has occurred as it may not be obvious
2781 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2782 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2787 mapping
= vma
->vm_file
->f_mapping
;
2788 idx
= vma_hugecache_offset(h
, vma
, address
);
2791 * Use page lock to guard against racing truncation
2792 * before we get page_table_lock.
2795 page
= find_lock_page(mapping
, idx
);
2797 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2800 page
= alloc_huge_page(vma
, address
, 0);
2802 ret
= PTR_ERR(page
);
2806 ret
= VM_FAULT_SIGBUS
;
2809 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2810 __SetPageUptodate(page
);
2812 if (vma
->vm_flags
& VM_MAYSHARE
) {
2814 struct inode
*inode
= mapping
->host
;
2816 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2823 ClearPagePrivate(page
);
2825 spin_lock(&inode
->i_lock
);
2826 inode
->i_blocks
+= blocks_per_huge_page(h
);
2827 spin_unlock(&inode
->i_lock
);
2830 if (unlikely(anon_vma_prepare(vma
))) {
2832 goto backout_unlocked
;
2838 * If memory error occurs between mmap() and fault, some process
2839 * don't have hwpoisoned swap entry for errored virtual address.
2840 * So we need to block hugepage fault by PG_hwpoison bit check.
2842 if (unlikely(PageHWPoison(page
))) {
2843 ret
= VM_FAULT_HWPOISON
|
2844 VM_FAULT_SET_HINDEX(hstate_index(h
));
2845 goto backout_unlocked
;
2850 * If we are going to COW a private mapping later, we examine the
2851 * pending reservations for this page now. This will ensure that
2852 * any allocations necessary to record that reservation occur outside
2855 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2856 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2858 goto backout_unlocked
;
2861 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
2863 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2868 if (!huge_pte_none(huge_ptep_get(ptep
)))
2872 ClearPagePrivate(page
);
2873 hugepage_add_new_anon_rmap(page
, vma
, address
);
2876 page_dup_rmap(page
);
2877 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2878 && (vma
->vm_flags
& VM_SHARED
)));
2879 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2881 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2882 /* Optimization, do the COW without a second fault */
2883 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
2899 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2900 unsigned long address
, unsigned int flags
)
2906 struct page
*page
= NULL
;
2907 struct page
*pagecache_page
= NULL
;
2908 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2909 struct hstate
*h
= hstate_vma(vma
);
2911 address
&= huge_page_mask(h
);
2913 ptep
= huge_pte_offset(mm
, address
);
2915 entry
= huge_ptep_get(ptep
);
2916 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2917 migration_entry_wait_huge(vma
, mm
, ptep
);
2919 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2920 return VM_FAULT_HWPOISON_LARGE
|
2921 VM_FAULT_SET_HINDEX(hstate_index(h
));
2924 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2926 return VM_FAULT_OOM
;
2929 * Serialize hugepage allocation and instantiation, so that we don't
2930 * get spurious allocation failures if two CPUs race to instantiate
2931 * the same page in the page cache.
2933 mutex_lock(&hugetlb_instantiation_mutex
);
2934 entry
= huge_ptep_get(ptep
);
2935 if (huge_pte_none(entry
)) {
2936 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2943 * If we are going to COW the mapping later, we examine the pending
2944 * reservations for this page now. This will ensure that any
2945 * allocations necessary to record that reservation occur outside the
2946 * spinlock. For private mappings, we also lookup the pagecache
2947 * page now as it is used to determine if a reservation has been
2950 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
2951 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2956 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2957 pagecache_page
= hugetlbfs_pagecache_page(h
,
2962 * hugetlb_cow() requires page locks of pte_page(entry) and
2963 * pagecache_page, so here we need take the former one
2964 * when page != pagecache_page or !pagecache_page.
2965 * Note that locking order is always pagecache_page -> page,
2966 * so no worry about deadlock.
2968 page
= pte_page(entry
);
2970 if (page
!= pagecache_page
)
2973 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
2975 /* Check for a racing update before calling hugetlb_cow */
2976 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2980 if (flags
& FAULT_FLAG_WRITE
) {
2981 if (!huge_pte_write(entry
)) {
2982 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2983 pagecache_page
, ptl
);
2986 entry
= huge_pte_mkdirty(entry
);
2988 entry
= pte_mkyoung(entry
);
2989 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2990 flags
& FAULT_FLAG_WRITE
))
2991 update_mmu_cache(vma
, address
, ptep
);
2996 if (pagecache_page
) {
2997 unlock_page(pagecache_page
);
2998 put_page(pagecache_page
);
3000 if (page
!= pagecache_page
)
3005 mutex_unlock(&hugetlb_instantiation_mutex
);
3010 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3011 struct page
**pages
, struct vm_area_struct
**vmas
,
3012 unsigned long *position
, unsigned long *nr_pages
,
3013 long i
, unsigned int flags
)
3015 unsigned long pfn_offset
;
3016 unsigned long vaddr
= *position
;
3017 unsigned long remainder
= *nr_pages
;
3018 struct hstate
*h
= hstate_vma(vma
);
3020 while (vaddr
< vma
->vm_end
&& remainder
) {
3022 spinlock_t
*ptl
= NULL
;
3027 * Some archs (sparc64, sh*) have multiple pte_ts to
3028 * each hugepage. We have to make sure we get the
3029 * first, for the page indexing below to work.
3031 * Note that page table lock is not held when pte is null.
3033 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3035 ptl
= huge_pte_lock(h
, mm
, pte
);
3036 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3039 * When coredumping, it suits get_dump_page if we just return
3040 * an error where there's an empty slot with no huge pagecache
3041 * to back it. This way, we avoid allocating a hugepage, and
3042 * the sparse dumpfile avoids allocating disk blocks, but its
3043 * huge holes still show up with zeroes where they need to be.
3045 if (absent
&& (flags
& FOLL_DUMP
) &&
3046 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3054 * We need call hugetlb_fault for both hugepages under migration
3055 * (in which case hugetlb_fault waits for the migration,) and
3056 * hwpoisoned hugepages (in which case we need to prevent the
3057 * caller from accessing to them.) In order to do this, we use
3058 * here is_swap_pte instead of is_hugetlb_entry_migration and
3059 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3060 * both cases, and because we can't follow correct pages
3061 * directly from any kind of swap entries.
3063 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3064 ((flags
& FOLL_WRITE
) &&
3065 !huge_pte_write(huge_ptep_get(pte
)))) {
3070 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3071 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3072 if (!(ret
& VM_FAULT_ERROR
))
3079 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3080 page
= pte_page(huge_ptep_get(pte
));
3083 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3084 get_page_foll(pages
[i
]);
3094 if (vaddr
< vma
->vm_end
&& remainder
&&
3095 pfn_offset
< pages_per_huge_page(h
)) {
3097 * We use pfn_offset to avoid touching the pageframes
3098 * of this compound page.
3104 *nr_pages
= remainder
;
3107 return i
? i
: -EFAULT
;
3110 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3111 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3113 struct mm_struct
*mm
= vma
->vm_mm
;
3114 unsigned long start
= address
;
3117 struct hstate
*h
= hstate_vma(vma
);
3118 unsigned long pages
= 0;
3120 BUG_ON(address
>= end
);
3121 flush_cache_range(vma
, address
, end
);
3123 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3124 for (; address
< end
; address
+= huge_page_size(h
)) {
3126 ptep
= huge_pte_offset(mm
, address
);
3129 ptl
= huge_pte_lock(h
, mm
, ptep
);
3130 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3135 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3136 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3137 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3138 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3139 set_huge_pte_at(mm
, address
, ptep
, pte
);
3145 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3146 * may have cleared our pud entry and done put_page on the page table:
3147 * once we release i_mmap_mutex, another task can do the final put_page
3148 * and that page table be reused and filled with junk.
3150 flush_tlb_range(vma
, start
, end
);
3151 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3153 return pages
<< h
->order
;
3156 int hugetlb_reserve_pages(struct inode
*inode
,
3158 struct vm_area_struct
*vma
,
3159 vm_flags_t vm_flags
)
3162 struct hstate
*h
= hstate_inode(inode
);
3163 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3166 * Only apply hugepage reservation if asked. At fault time, an
3167 * attempt will be made for VM_NORESERVE to allocate a page
3168 * without using reserves
3170 if (vm_flags
& VM_NORESERVE
)
3174 * Shared mappings base their reservation on the number of pages that
3175 * are already allocated on behalf of the file. Private mappings need
3176 * to reserve the full area even if read-only as mprotect() may be
3177 * called to make the mapping read-write. Assume !vma is a shm mapping
3179 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3180 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
3182 struct resv_map
*resv_map
= resv_map_alloc();
3188 set_vma_resv_map(vma
, resv_map
);
3189 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3197 /* There must be enough pages in the subpool for the mapping */
3198 if (hugepage_subpool_get_pages(spool
, chg
)) {
3204 * Check enough hugepages are available for the reservation.
3205 * Hand the pages back to the subpool if there are not
3207 ret
= hugetlb_acct_memory(h
, chg
);
3209 hugepage_subpool_put_pages(spool
, chg
);
3214 * Account for the reservations made. Shared mappings record regions
3215 * that have reservations as they are shared by multiple VMAs.
3216 * When the last VMA disappears, the region map says how much
3217 * the reservation was and the page cache tells how much of
3218 * the reservation was consumed. Private mappings are per-VMA and
3219 * only the consumed reservations are tracked. When the VMA
3220 * disappears, the original reservation is the VMA size and the
3221 * consumed reservations are stored in the map. Hence, nothing
3222 * else has to be done for private mappings here
3224 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3225 region_add(&inode
->i_mapping
->private_list
, from
, to
);
3233 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3235 struct hstate
*h
= hstate_inode(inode
);
3236 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
3237 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3239 spin_lock(&inode
->i_lock
);
3240 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3241 spin_unlock(&inode
->i_lock
);
3243 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3244 hugetlb_acct_memory(h
, -(chg
- freed
));
3247 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3248 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3249 struct vm_area_struct
*vma
,
3250 unsigned long addr
, pgoff_t idx
)
3252 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3254 unsigned long sbase
= saddr
& PUD_MASK
;
3255 unsigned long s_end
= sbase
+ PUD_SIZE
;
3257 /* Allow segments to share if only one is marked locked */
3258 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3259 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3262 * match the virtual addresses, permission and the alignment of the
3265 if (pmd_index(addr
) != pmd_index(saddr
) ||
3266 vm_flags
!= svm_flags
||
3267 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3273 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3275 unsigned long base
= addr
& PUD_MASK
;
3276 unsigned long end
= base
+ PUD_SIZE
;
3279 * check on proper vm_flags and page table alignment
3281 if (vma
->vm_flags
& VM_MAYSHARE
&&
3282 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3288 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3289 * and returns the corresponding pte. While this is not necessary for the
3290 * !shared pmd case because we can allocate the pmd later as well, it makes the
3291 * code much cleaner. pmd allocation is essential for the shared case because
3292 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3293 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3294 * bad pmd for sharing.
3296 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3298 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3299 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3300 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3302 struct vm_area_struct
*svma
;
3303 unsigned long saddr
;
3308 if (!vma_shareable(vma
, addr
))
3309 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3311 mutex_lock(&mapping
->i_mmap_mutex
);
3312 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3316 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3318 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3320 get_page(virt_to_page(spte
));
3329 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
3332 pud_populate(mm
, pud
,
3333 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3335 put_page(virt_to_page(spte
));
3338 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3339 mutex_unlock(&mapping
->i_mmap_mutex
);
3344 * unmap huge page backed by shared pte.
3346 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3347 * indicated by page_count > 1, unmap is achieved by clearing pud and
3348 * decrementing the ref count. If count == 1, the pte page is not shared.
3350 * called with page table lock held.
3352 * returns: 1 successfully unmapped a shared pte page
3353 * 0 the underlying pte page is not shared, or it is the last user
3355 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3357 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3358 pud_t
*pud
= pud_offset(pgd
, *addr
);
3360 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3361 if (page_count(virt_to_page(ptep
)) == 1)
3365 put_page(virt_to_page(ptep
));
3366 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3369 #define want_pmd_share() (1)
3370 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3371 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3375 #define want_pmd_share() (0)
3376 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3378 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3379 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3380 unsigned long addr
, unsigned long sz
)
3386 pgd
= pgd_offset(mm
, addr
);
3387 pud
= pud_alloc(mm
, pgd
, addr
);
3389 if (sz
== PUD_SIZE
) {
3392 BUG_ON(sz
!= PMD_SIZE
);
3393 if (want_pmd_share() && pud_none(*pud
))
3394 pte
= huge_pmd_share(mm
, addr
, pud
);
3396 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3399 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3404 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3410 pgd
= pgd_offset(mm
, addr
);
3411 if (pgd_present(*pgd
)) {
3412 pud
= pud_offset(pgd
, addr
);
3413 if (pud_present(*pud
)) {
3415 return (pte_t
*)pud
;
3416 pmd
= pmd_offset(pud
, addr
);
3419 return (pte_t
*) pmd
;
3423 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3424 pmd_t
*pmd
, int write
)
3428 page
= pte_page(*(pte_t
*)pmd
);
3430 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3435 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3436 pud_t
*pud
, int write
)
3440 page
= pte_page(*(pte_t
*)pud
);
3442 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3446 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3448 /* Can be overriden by architectures */
3449 __attribute__((weak
)) struct page
*
3450 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3451 pud_t
*pud
, int write
)
3457 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3459 #ifdef CONFIG_MEMORY_FAILURE
3461 /* Should be called in hugetlb_lock */
3462 static int is_hugepage_on_freelist(struct page
*hpage
)
3466 struct hstate
*h
= page_hstate(hpage
);
3467 int nid
= page_to_nid(hpage
);
3469 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3476 * This function is called from memory failure code.
3477 * Assume the caller holds page lock of the head page.
3479 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3481 struct hstate
*h
= page_hstate(hpage
);
3482 int nid
= page_to_nid(hpage
);
3485 spin_lock(&hugetlb_lock
);
3486 if (is_hugepage_on_freelist(hpage
)) {
3488 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3489 * but dangling hpage->lru can trigger list-debug warnings
3490 * (this happens when we call unpoison_memory() on it),
3491 * so let it point to itself with list_del_init().
3493 list_del_init(&hpage
->lru
);
3494 set_page_refcounted(hpage
);
3495 h
->free_huge_pages
--;
3496 h
->free_huge_pages_node
[nid
]--;
3499 spin_unlock(&hugetlb_lock
);
3504 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3506 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3507 if (!get_page_unless_zero(page
))
3509 spin_lock(&hugetlb_lock
);
3510 list_move_tail(&page
->lru
, list
);
3511 spin_unlock(&hugetlb_lock
);
3515 void putback_active_hugepage(struct page
*page
)
3517 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3518 spin_lock(&hugetlb_lock
);
3519 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3520 spin_unlock(&hugetlb_lock
);
3524 bool is_hugepage_active(struct page
*page
)
3526 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
3528 * This function can be called for a tail page because the caller,
3529 * scan_movable_pages, scans through a given pfn-range which typically
3530 * covers one memory block. In systems using gigantic hugepage (1GB
3531 * for x86_64,) a hugepage is larger than a memory block, and we don't
3532 * support migrating such large hugepages for now, so return false
3533 * when called for tail pages.
3538 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3539 * so we should return false for them.
3541 if (unlikely(PageHWPoison(page
)))
3543 return page_count(page
) > 0;