2 * Partial Parity Log for closing the RAID5 write hole
3 * Copyright (c) 2017, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
26 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27 * partial parity data. The header contains an array of entries
28 * (struct ppl_header_entry) which describe the logged write requests.
29 * Partial parity for the entries comes after the header, written in the same
30 * sequence as the entries:
41 * An entry describes one or more consecutive stripe_heads, up to a full
42 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43 * number of stripe_heads in the entry and n is the number of modified data
44 * disks. Every stripe_head in the entry must write to the same data disks.
45 * An example of a valid case described by a single entry (writes to the first
46 * stripe of a 4 disk array, 16k chunk size):
48 * sh->sector dd0 dd1 dd2 ppl
50 * 0 | --- | --- | --- | +----+
51 * 8 | -W- | -W- | --- | | pp | data_sector = 8
52 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k
53 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k
54 * +-----+-----+-----+ +----+
56 * data_sector is the first raid sector of the modified data, data_size is the
57 * total size of modified data and pp_size is the size of partial parity for
58 * this entry. Entries for full stripe writes contain no partial parity
59 * (pp_size = 0), they only mark the stripes for which parity should be
60 * recalculated after an unclean shutdown. Every entry holds a checksum of its
61 * partial parity, the header also has a checksum of the header itself.
63 * A write request is always logged to the PPL instance stored on the parity
64 * disk of the corresponding stripe. For each member disk there is one ppl_log
65 * used to handle logging for this disk, independently from others. They are
66 * grouped in child_logs array in struct ppl_conf, which is assigned to
67 * r5conf->log_private.
69 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71 * can be appended to the last entry if it meets the conditions for a valid
72 * entry described above, otherwise a new entry is added. Checksums of entries
73 * are calculated incrementally as stripes containing partial parity are being
74 * added. ppl_submit_iounit() calculates the checksum of the header and submits
75 * a bio containing the header page and partial parity pages (sh->ppl_page) for
76 * all stripes of the io_unit. When the PPL write completes, the stripes
77 * associated with the io_unit are released and raid5d starts writing their data
78 * and parity. When all stripes are written, the io_unit is freed and the next
81 * An io_unit is used to gather stripes until it is submitted or becomes full
82 * (if the maximum number of entries or size of PPL is reached). Another io_unit
83 * can't be submitted until the previous has completed (PPL and stripe
84 * data+parity is written). The log->io_list tracks all io_units of a log
85 * (for a single member disk). New io_units are added to the end of the list
86 * and the first io_unit is submitted, if it is not submitted already.
87 * The current io_unit accepting new stripes is always at the end of the list.
90 #define PPL_SPACE_SIZE (128 * 1024)
95 /* array of child logs, one for each raid disk */
96 struct ppl_log
*child_logs
;
99 int block_size
; /* the logical block size used for data_sector
100 * in ppl_header_entry */
101 u32 signature
; /* raid array identifier */
102 atomic64_t seq
; /* current log write sequence number */
104 struct kmem_cache
*io_kc
;
108 /* used only for recovery */
109 int recovered_entries
;
112 /* stripes to retry if failed to allocate io_unit */
113 struct list_head no_mem_stripes
;
114 spinlock_t no_mem_stripes_lock
;
118 struct ppl_conf
*ppl_conf
; /* shared between all log instances */
120 struct md_rdev
*rdev
; /* array member disk associated with
121 * this log instance */
122 struct mutex io_mutex
;
123 struct ppl_io_unit
*current_io
; /* current io_unit accepting new data
124 * always at the end of io_list */
125 spinlock_t io_list_lock
;
126 struct list_head io_list
; /* all io_units of this log */
128 sector_t next_io_sector
;
129 unsigned int entry_space
;
133 #define PPL_IO_INLINE_BVECS 32
138 struct page
*header_page
; /* for ppl_header */
140 unsigned int entries_count
; /* number of entries in ppl_header */
141 unsigned int pp_size
; /* total size current of partial parity */
143 u64 seq
; /* sequence number of this log write */
144 struct list_head log_sibling
; /* log->io_list */
146 struct list_head stripe_list
; /* stripes added to the io_unit */
147 atomic_t pending_stripes
; /* how many stripes not written to raid */
149 bool submitted
; /* true if write to log started */
151 /* inline bio and its biovec for submitting the iounit */
153 struct bio_vec biovec
[PPL_IO_INLINE_BVECS
];
156 struct dma_async_tx_descriptor
*
157 ops_run_partial_parity(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
158 struct dma_async_tx_descriptor
*tx
)
160 int disks
= sh
->disks
;
161 struct page
**srcs
= flex_array_get(percpu
->scribble
, 0);
162 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
163 struct async_submit_ctl submit
;
165 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
168 * Partial parity is the XOR of stripe data chunks that are not changed
169 * during the write request. Depending on available data
170 * (read-modify-write vs. reconstruct-write case) we calculate it
173 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
175 * rmw: xor old data and parity from updated disks
176 * This is calculated earlier by ops_run_prexor5() so just copy
177 * the parity dev page.
179 srcs
[count
++] = sh
->dev
[pd_idx
].page
;
180 } else if (sh
->reconstruct_state
== reconstruct_state_drain_run
) {
181 /* rcw: xor data from all not updated disks */
182 for (i
= disks
; i
--;) {
183 struct r5dev
*dev
= &sh
->dev
[i
];
184 if (test_bit(R5_UPTODATE
, &dev
->flags
))
185 srcs
[count
++] = dev
->page
;
191 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, tx
,
192 NULL
, sh
, flex_array_get(percpu
->scribble
, 0)
193 + sizeof(struct page
*) * (sh
->disks
+ 2));
196 tx
= async_memcpy(sh
->ppl_page
, srcs
[0], 0, 0, PAGE_SIZE
,
199 tx
= async_xor(sh
->ppl_page
, srcs
, 0, count
, PAGE_SIZE
,
205 static void *ppl_io_pool_alloc(gfp_t gfp_mask
, void *pool_data
)
207 struct kmem_cache
*kc
= pool_data
;
208 struct ppl_io_unit
*io
;
210 io
= kmem_cache_alloc(kc
, gfp_mask
);
214 io
->header_page
= alloc_page(gfp_mask
);
215 if (!io
->header_page
) {
216 kmem_cache_free(kc
, io
);
223 static void ppl_io_pool_free(void *element
, void *pool_data
)
225 struct kmem_cache
*kc
= pool_data
;
226 struct ppl_io_unit
*io
= element
;
228 __free_page(io
->header_page
);
229 kmem_cache_free(kc
, io
);
232 static struct ppl_io_unit
*ppl_new_iounit(struct ppl_log
*log
,
233 struct stripe_head
*sh
)
235 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
236 struct ppl_io_unit
*io
;
237 struct ppl_header
*pplhdr
;
238 struct page
*header_page
;
240 io
= mempool_alloc(ppl_conf
->io_pool
, GFP_NOWAIT
);
244 header_page
= io
->header_page
;
245 memset(io
, 0, sizeof(*io
));
246 io
->header_page
= header_page
;
249 INIT_LIST_HEAD(&io
->log_sibling
);
250 INIT_LIST_HEAD(&io
->stripe_list
);
251 atomic_set(&io
->pending_stripes
, 0);
252 bio_init(&io
->bio
, io
->biovec
, PPL_IO_INLINE_BVECS
);
254 pplhdr
= page_address(io
->header_page
);
256 memset(pplhdr
->reserved
, 0xff, PPL_HDR_RESERVED
);
257 pplhdr
->signature
= cpu_to_le32(ppl_conf
->signature
);
259 io
->seq
= atomic64_add_return(1, &ppl_conf
->seq
);
260 pplhdr
->generation
= cpu_to_le64(io
->seq
);
265 static int ppl_log_stripe(struct ppl_log
*log
, struct stripe_head
*sh
)
267 struct ppl_io_unit
*io
= log
->current_io
;
268 struct ppl_header_entry
*e
= NULL
;
269 struct ppl_header
*pplhdr
;
271 sector_t data_sector
= 0;
273 struct r5conf
*conf
= sh
->raid_conf
;
275 pr_debug("%s: stripe: %llu\n", __func__
, (unsigned long long)sh
->sector
);
277 /* check if current io_unit is full */
278 if (io
&& (io
->pp_size
== log
->entry_space
||
279 io
->entries_count
== PPL_HDR_MAX_ENTRIES
)) {
280 pr_debug("%s: add io_unit blocked by seq: %llu\n",
285 /* add a new unit if there is none or the current is full */
287 io
= ppl_new_iounit(log
, sh
);
290 spin_lock_irq(&log
->io_list_lock
);
291 list_add_tail(&io
->log_sibling
, &log
->io_list
);
292 spin_unlock_irq(&log
->io_list_lock
);
294 log
->current_io
= io
;
297 for (i
= 0; i
< sh
->disks
; i
++) {
298 struct r5dev
*dev
= &sh
->dev
[i
];
300 if (i
!= sh
->pd_idx
&& test_bit(R5_Wantwrite
, &dev
->flags
)) {
301 if (!data_disks
|| dev
->sector
< data_sector
)
302 data_sector
= dev
->sector
;
308 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__
,
309 io
->seq
, (unsigned long long)data_sector
, data_disks
);
311 pplhdr
= page_address(io
->header_page
);
313 if (io
->entries_count
> 0) {
314 struct ppl_header_entry
*last
=
315 &pplhdr
->entries
[io
->entries_count
- 1];
316 struct stripe_head
*sh_last
= list_last_entry(
317 &io
->stripe_list
, struct stripe_head
, log_list
);
318 u64 data_sector_last
= le64_to_cpu(last
->data_sector
);
319 u32 data_size_last
= le32_to_cpu(last
->data_size
);
322 * Check if we can append the stripe to the last entry. It must
323 * be just after the last logged stripe and write to the same
324 * disks. Use bit shift and logarithm to avoid 64-bit division.
326 if ((sh
->sector
== sh_last
->sector
+ STRIPE_SECTORS
) &&
327 (data_sector
>> ilog2(conf
->chunk_sectors
) ==
328 data_sector_last
>> ilog2(conf
->chunk_sectors
)) &&
329 ((data_sector
- data_sector_last
) * data_disks
==
330 data_size_last
>> 9))
335 e
= &pplhdr
->entries
[io
->entries_count
++];
336 e
->data_sector
= cpu_to_le64(data_sector
);
337 e
->parity_disk
= cpu_to_le32(sh
->pd_idx
);
338 e
->checksum
= cpu_to_le32(~0);
341 le32_add_cpu(&e
->data_size
, data_disks
<< PAGE_SHIFT
);
343 /* don't write any PP if full stripe write */
344 if (!test_bit(STRIPE_FULL_WRITE
, &sh
->state
)) {
345 le32_add_cpu(&e
->pp_size
, PAGE_SIZE
);
346 io
->pp_size
+= PAGE_SIZE
;
347 e
->checksum
= cpu_to_le32(crc32c_le(le32_to_cpu(e
->checksum
),
348 page_address(sh
->ppl_page
),
352 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
353 atomic_inc(&io
->pending_stripes
);
359 int ppl_write_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
361 struct ppl_conf
*ppl_conf
= conf
->log_private
;
362 struct ppl_io_unit
*io
= sh
->ppl_io
;
365 if (io
|| test_bit(STRIPE_SYNCING
, &sh
->state
) || !sh
->ppl_page
||
366 !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
367 !test_bit(R5_Insync
, &sh
->dev
[sh
->pd_idx
].flags
)) {
368 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
372 log
= &ppl_conf
->child_logs
[sh
->pd_idx
];
374 mutex_lock(&log
->io_mutex
);
376 if (!log
->rdev
|| test_bit(Faulty
, &log
->rdev
->flags
)) {
377 mutex_unlock(&log
->io_mutex
);
381 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
382 clear_bit(STRIPE_DELAYED
, &sh
->state
);
383 atomic_inc(&sh
->count
);
385 if (ppl_log_stripe(log
, sh
)) {
386 spin_lock_irq(&ppl_conf
->no_mem_stripes_lock
);
387 list_add_tail(&sh
->log_list
, &ppl_conf
->no_mem_stripes
);
388 spin_unlock_irq(&ppl_conf
->no_mem_stripes_lock
);
391 mutex_unlock(&log
->io_mutex
);
396 static void ppl_log_endio(struct bio
*bio
)
398 struct ppl_io_unit
*io
= bio
->bi_private
;
399 struct ppl_log
*log
= io
->log
;
400 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
401 struct stripe_head
*sh
, *next
;
403 pr_debug("%s: seq: %llu\n", __func__
, io
->seq
);
406 md_error(ppl_conf
->mddev
, log
->rdev
);
408 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
409 list_del_init(&sh
->log_list
);
411 set_bit(STRIPE_HANDLE
, &sh
->state
);
412 raid5_release_stripe(sh
);
416 static void ppl_submit_iounit_bio(struct ppl_io_unit
*io
, struct bio
*bio
)
418 char b
[BDEVNAME_SIZE
];
420 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
421 __func__
, io
->seq
, bio
->bi_iter
.bi_size
,
422 (unsigned long long)bio
->bi_iter
.bi_sector
,
423 bio_devname(bio
, b
));
428 static void ppl_submit_iounit(struct ppl_io_unit
*io
)
430 struct ppl_log
*log
= io
->log
;
431 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
432 struct ppl_header
*pplhdr
= page_address(io
->header_page
);
433 struct bio
*bio
= &io
->bio
;
434 struct stripe_head
*sh
;
437 bio
->bi_private
= io
;
439 if (!log
->rdev
|| test_bit(Faulty
, &log
->rdev
->flags
)) {
444 for (i
= 0; i
< io
->entries_count
; i
++) {
445 struct ppl_header_entry
*e
= &pplhdr
->entries
[i
];
447 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
448 __func__
, io
->seq
, i
, le64_to_cpu(e
->data_sector
),
449 le32_to_cpu(e
->pp_size
), le32_to_cpu(e
->data_size
));
451 e
->data_sector
= cpu_to_le64(le64_to_cpu(e
->data_sector
) >>
452 ilog2(ppl_conf
->block_size
>> 9));
453 e
->checksum
= cpu_to_le32(~le32_to_cpu(e
->checksum
));
456 pplhdr
->entries_count
= cpu_to_le32(io
->entries_count
);
457 pplhdr
->checksum
= cpu_to_le32(~crc32c_le(~0, pplhdr
, PPL_HEADER_SIZE
));
459 /* Rewind the buffer if current PPL is larger then remaining space */
460 if (log
->use_multippl
&&
461 log
->rdev
->ppl
.sector
+ log
->rdev
->ppl
.size
- log
->next_io_sector
<
462 (PPL_HEADER_SIZE
+ io
->pp_size
) >> 9)
463 log
->next_io_sector
= log
->rdev
->ppl
.sector
;
466 bio
->bi_end_io
= ppl_log_endio
;
467 bio
->bi_opf
= REQ_OP_WRITE
| REQ_FUA
;
468 bio_set_dev(bio
, log
->rdev
->bdev
);
469 bio
->bi_iter
.bi_sector
= log
->next_io_sector
;
470 bio_add_page(bio
, io
->header_page
, PAGE_SIZE
, 0);
472 pr_debug("%s: log->current_io_sector: %llu\n", __func__
,
473 (unsigned long long)log
->next_io_sector
);
475 if (log
->use_multippl
)
476 log
->next_io_sector
+= (PPL_HEADER_SIZE
+ io
->pp_size
) >> 9;
478 list_for_each_entry(sh
, &io
->stripe_list
, log_list
) {
479 /* entries for full stripe writes have no partial parity */
480 if (test_bit(STRIPE_FULL_WRITE
, &sh
->state
))
483 if (!bio_add_page(bio
, sh
->ppl_page
, PAGE_SIZE
, 0)) {
484 struct bio
*prev
= bio
;
486 bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
,
488 bio
->bi_opf
= prev
->bi_opf
;
489 bio_copy_dev(bio
, prev
);
490 bio
->bi_iter
.bi_sector
= bio_end_sector(prev
);
491 bio_add_page(bio
, sh
->ppl_page
, PAGE_SIZE
, 0);
493 bio_chain(bio
, prev
);
494 ppl_submit_iounit_bio(io
, prev
);
498 ppl_submit_iounit_bio(io
, bio
);
501 static void ppl_submit_current_io(struct ppl_log
*log
)
503 struct ppl_io_unit
*io
;
505 spin_lock_irq(&log
->io_list_lock
);
507 io
= list_first_entry_or_null(&log
->io_list
, struct ppl_io_unit
,
509 if (io
&& io
->submitted
)
512 spin_unlock_irq(&log
->io_list_lock
);
515 io
->submitted
= true;
517 if (io
== log
->current_io
)
518 log
->current_io
= NULL
;
520 ppl_submit_iounit(io
);
524 void ppl_write_stripe_run(struct r5conf
*conf
)
526 struct ppl_conf
*ppl_conf
= conf
->log_private
;
530 for (i
= 0; i
< ppl_conf
->count
; i
++) {
531 log
= &ppl_conf
->child_logs
[i
];
533 mutex_lock(&log
->io_mutex
);
534 ppl_submit_current_io(log
);
535 mutex_unlock(&log
->io_mutex
);
539 static void ppl_io_unit_finished(struct ppl_io_unit
*io
)
541 struct ppl_log
*log
= io
->log
;
542 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
545 pr_debug("%s: seq: %llu\n", __func__
, io
->seq
);
547 local_irq_save(flags
);
549 spin_lock(&log
->io_list_lock
);
550 list_del(&io
->log_sibling
);
551 spin_unlock(&log
->io_list_lock
);
553 mempool_free(io
, ppl_conf
->io_pool
);
555 spin_lock(&ppl_conf
->no_mem_stripes_lock
);
556 if (!list_empty(&ppl_conf
->no_mem_stripes
)) {
557 struct stripe_head
*sh
;
559 sh
= list_first_entry(&ppl_conf
->no_mem_stripes
,
560 struct stripe_head
, log_list
);
561 list_del_init(&sh
->log_list
);
562 set_bit(STRIPE_HANDLE
, &sh
->state
);
563 raid5_release_stripe(sh
);
565 spin_unlock(&ppl_conf
->no_mem_stripes_lock
);
567 local_irq_restore(flags
);
570 void ppl_stripe_write_finished(struct stripe_head
*sh
)
572 struct ppl_io_unit
*io
;
577 if (io
&& atomic_dec_and_test(&io
->pending_stripes
))
578 ppl_io_unit_finished(io
);
581 static void ppl_xor(int size
, struct page
*page1
, struct page
*page2
)
583 struct async_submit_ctl submit
;
584 struct dma_async_tx_descriptor
*tx
;
585 struct page
*xor_srcs
[] = { page1
, page2
};
587 init_async_submit(&submit
, ASYNC_TX_ACK
|ASYNC_TX_XOR_DROP_DST
,
588 NULL
, NULL
, NULL
, NULL
);
589 tx
= async_xor(page1
, xor_srcs
, 0, 2, size
, &submit
);
591 async_tx_quiesce(&tx
);
595 * PPL recovery strategy: xor partial parity and data from all modified data
596 * disks within a stripe and write the result as the new stripe parity. If all
597 * stripe data disks are modified (full stripe write), no partial parity is
598 * available, so just xor the data disks.
600 * Recovery of a PPL entry shall occur only if all modified data disks are
601 * available and read from all of them succeeds.
603 * A PPL entry applies to a stripe, partial parity size for an entry is at most
604 * the size of the chunk. Examples of possible cases for a single entry:
606 * case 0: single data disk write:
607 * data0 data1 data2 ppl parity
608 * +--------+--------+--------+ +--------------------+
609 * | ------ | ------ | ------ | +----+ | (no change) |
610 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
611 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
612 * | ------ | ------ | ------ | +----+ | (no change) |
613 * +--------+--------+--------+ +--------------------+
614 * pp_size = data_size
616 * case 1: more than one data disk write:
617 * data0 data1 data2 ppl parity
618 * +--------+--------+--------+ +--------------------+
619 * | ------ | ------ | ------ | +----+ | (no change) |
620 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
621 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
622 * | ------ | ------ | ------ | +----+ | (no change) |
623 * +--------+--------+--------+ +--------------------+
624 * pp_size = data_size / modified_data_disks
626 * case 2: write to all data disks (also full stripe write):
627 * data0 data1 data2 parity
628 * +--------+--------+--------+ +--------------------+
629 * | ------ | ------ | ------ | | (no change) |
630 * | -data- | -data- | -data- | --------> | xor all data |
631 * | ------ | ------ | ------ | --------> | (no change) |
632 * | ------ | ------ | ------ | | (no change) |
633 * +--------+--------+--------+ +--------------------+
636 * The following cases are possible only in other implementations. The recovery
637 * code can handle them, but they are not generated at runtime because they can
638 * be reduced to cases 0, 1 and 2:
641 * data0 data1 data2 ppl parity
642 * +--------+--------+--------+ +----+ +--------------------+
643 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp |
644 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
645 * | -data- | -data- | -data- | | -- | -> | xor all data |
646 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp |
647 * +--------+--------+--------+ +----+ +--------------------+
648 * pp_size = chunk_size
651 * data0 data1 data2 ppl parity
652 * +--------+--------+--------+ +----+ +--------------------+
653 * | ------ | -data- | ------ | | pp | | data1 ^ pp |
654 * | ------ | ------ | ------ | | -- | -> | (no change) |
655 * | ------ | ------ | ------ | | -- | -> | (no change) |
656 * | -data- | ------ | ------ | | pp | | data0 ^ pp |
657 * +--------+--------+--------+ +----+ +--------------------+
658 * pp_size = chunk_size
660 static int ppl_recover_entry(struct ppl_log
*log
, struct ppl_header_entry
*e
,
663 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
664 struct mddev
*mddev
= ppl_conf
->mddev
;
665 struct r5conf
*conf
= mddev
->private;
666 int block_size
= ppl_conf
->block_size
;
669 sector_t r_sector_first
;
670 sector_t r_sector_last
;
675 char b
[BDEVNAME_SIZE
];
676 unsigned int pp_size
= le32_to_cpu(e
->pp_size
);
677 unsigned int data_size
= le32_to_cpu(e
->data_size
);
679 page1
= alloc_page(GFP_KERNEL
);
680 page2
= alloc_page(GFP_KERNEL
);
682 if (!page1
|| !page2
) {
687 r_sector_first
= le64_to_cpu(e
->data_sector
) * (block_size
>> 9);
689 if ((pp_size
>> 9) < conf
->chunk_sectors
) {
691 data_disks
= data_size
/ pp_size
;
692 strip_sectors
= pp_size
>> 9;
694 data_disks
= conf
->raid_disks
- conf
->max_degraded
;
695 strip_sectors
= (data_size
>> 9) / data_disks
;
697 r_sector_last
= r_sector_first
+
698 (data_disks
- 1) * conf
->chunk_sectors
+
701 data_disks
= conf
->raid_disks
- conf
->max_degraded
;
702 strip_sectors
= conf
->chunk_sectors
;
703 r_sector_last
= r_sector_first
+ (data_size
>> 9);
706 pr_debug("%s: array sector first: %llu last: %llu\n", __func__
,
707 (unsigned long long)r_sector_first
,
708 (unsigned long long)r_sector_last
);
710 /* if start and end is 4k aligned, use a 4k block */
711 if (block_size
== 512 &&
712 (r_sector_first
& (STRIPE_SECTORS
- 1)) == 0 &&
713 (r_sector_last
& (STRIPE_SECTORS
- 1)) == 0)
714 block_size
= STRIPE_SIZE
;
716 /* iterate through blocks in strip */
717 for (i
= 0; i
< strip_sectors
; i
+= (block_size
>> 9)) {
718 bool update_parity
= false;
719 sector_t parity_sector
;
720 struct md_rdev
*parity_rdev
;
721 struct stripe_head sh
;
725 pr_debug("%s:%*s iter %d start\n", __func__
, indent
, "", i
);
728 memset(page_address(page1
), 0, PAGE_SIZE
);
730 /* iterate through data member disks */
731 for (disk
= 0; disk
< data_disks
; disk
++) {
733 struct md_rdev
*rdev
;
735 sector_t r_sector
= r_sector_first
+ i
+
736 (disk
* conf
->chunk_sectors
);
738 pr_debug("%s:%*s data member disk %d start\n",
739 __func__
, indent
, "", disk
);
742 if (r_sector
>= r_sector_last
) {
743 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
744 __func__
, indent
, "",
745 (unsigned long long)r_sector
);
750 update_parity
= true;
752 /* map raid sector to member disk */
753 sector
= raid5_compute_sector(conf
, r_sector
, 0,
755 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
756 __func__
, indent
, "",
757 (unsigned long long)r_sector
, dd_idx
,
758 (unsigned long long)sector
);
760 rdev
= conf
->disks
[dd_idx
].rdev
;
761 if (!rdev
|| (!test_bit(In_sync
, &rdev
->flags
) &&
762 sector
>= rdev
->recovery_offset
)) {
763 pr_debug("%s:%*s data member disk %d missing\n",
764 __func__
, indent
, "", dd_idx
);
765 update_parity
= false;
769 pr_debug("%s:%*s reading data member disk %s sector %llu\n",
770 __func__
, indent
, "", bdevname(rdev
->bdev
, b
),
771 (unsigned long long)sector
);
772 if (!sync_page_io(rdev
, sector
, block_size
, page2
,
773 REQ_OP_READ
, 0, false)) {
774 md_error(mddev
, rdev
);
775 pr_debug("%s:%*s read failed!\n", __func__
,
781 ppl_xor(block_size
, page1
, page2
);
790 pr_debug("%s:%*s reading pp disk sector %llu\n",
791 __func__
, indent
, "",
792 (unsigned long long)(ppl_sector
+ i
));
793 if (!sync_page_io(log
->rdev
,
794 ppl_sector
- log
->rdev
->data_offset
+ i
,
795 block_size
, page2
, REQ_OP_READ
, 0,
797 pr_debug("%s:%*s read failed!\n", __func__
,
799 md_error(mddev
, log
->rdev
);
804 ppl_xor(block_size
, page1
, page2
);
807 /* map raid sector to parity disk */
808 parity_sector
= raid5_compute_sector(conf
, r_sector_first
+ i
,
810 BUG_ON(sh
.pd_idx
!= le32_to_cpu(e
->parity_disk
));
811 parity_rdev
= conf
->disks
[sh
.pd_idx
].rdev
;
813 BUG_ON(parity_rdev
->bdev
->bd_dev
!= log
->rdev
->bdev
->bd_dev
);
814 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
815 __func__
, indent
, "",
816 (unsigned long long)parity_sector
,
817 bdevname(parity_rdev
->bdev
, b
));
818 if (!sync_page_io(parity_rdev
, parity_sector
, block_size
,
819 page1
, REQ_OP_WRITE
, 0, false)) {
820 pr_debug("%s:%*s parity write error!\n", __func__
,
822 md_error(mddev
, parity_rdev
);
835 static int ppl_recover(struct ppl_log
*log
, struct ppl_header
*pplhdr
,
838 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
839 struct md_rdev
*rdev
= log
->rdev
;
840 struct mddev
*mddev
= rdev
->mddev
;
841 sector_t ppl_sector
= rdev
->ppl
.sector
+ offset
+
842 (PPL_HEADER_SIZE
>> 9);
847 page
= alloc_page(GFP_KERNEL
);
851 /* iterate through all PPL entries saved */
852 for (i
= 0; i
< le32_to_cpu(pplhdr
->entries_count
); i
++) {
853 struct ppl_header_entry
*e
= &pplhdr
->entries
[i
];
854 u32 pp_size
= le32_to_cpu(e
->pp_size
);
855 sector_t sector
= ppl_sector
;
856 int ppl_entry_sectors
= pp_size
>> 9;
859 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
860 __func__
, rdev
->raid_disk
, i
,
861 (unsigned long long)ppl_sector
, pp_size
);
864 crc_stored
= le32_to_cpu(e
->checksum
);
866 /* read parial parity for this entry and calculate its checksum */
868 int s
= pp_size
> PAGE_SIZE
? PAGE_SIZE
: pp_size
;
870 if (!sync_page_io(rdev
, sector
- rdev
->data_offset
,
871 s
, page
, REQ_OP_READ
, 0, false)) {
872 md_error(mddev
, rdev
);
877 crc
= crc32c_le(crc
, page_address(page
), s
);
885 if (crc
!= crc_stored
) {
887 * Don't recover this entry if the checksum does not
888 * match, but keep going and try to recover other
891 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
892 __func__
, crc_stored
, crc
);
893 ppl_conf
->mismatch_count
++;
895 ret
= ppl_recover_entry(log
, e
, ppl_sector
);
898 ppl_conf
->recovered_entries
++;
901 ppl_sector
+= ppl_entry_sectors
;
904 /* flush the disk cache after recovery if necessary */
905 ret
= blkdev_issue_flush(rdev
->bdev
, GFP_KERNEL
, NULL
);
911 static int ppl_write_empty_header(struct ppl_log
*log
)
914 struct ppl_header
*pplhdr
;
915 struct md_rdev
*rdev
= log
->rdev
;
918 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__
,
919 rdev
->raid_disk
, (unsigned long long)rdev
->ppl
.sector
);
921 page
= alloc_page(GFP_NOIO
| __GFP_ZERO
);
925 pplhdr
= page_address(page
);
926 /* zero out PPL space to avoid collision with old PPLs */
927 blkdev_issue_zeroout(rdev
->bdev
, rdev
->ppl
.sector
,
928 log
->rdev
->ppl
.size
, GFP_NOIO
, 0);
929 memset(pplhdr
->reserved
, 0xff, PPL_HDR_RESERVED
);
930 pplhdr
->signature
= cpu_to_le32(log
->ppl_conf
->signature
);
931 pplhdr
->checksum
= cpu_to_le32(~crc32c_le(~0, pplhdr
, PAGE_SIZE
));
933 if (!sync_page_io(rdev
, rdev
->ppl
.sector
- rdev
->data_offset
,
934 PPL_HEADER_SIZE
, page
, REQ_OP_WRITE
| REQ_SYNC
|
935 REQ_FUA
, 0, false)) {
936 md_error(rdev
->mddev
, rdev
);
944 static int ppl_load_distributed(struct ppl_log
*log
)
946 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
947 struct md_rdev
*rdev
= log
->rdev
;
948 struct mddev
*mddev
= rdev
->mddev
;
949 struct page
*page
, *page2
, *tmp
;
950 struct ppl_header
*pplhdr
= NULL
, *prev_pplhdr
= NULL
;
954 sector_t pplhdr_offset
= 0, prev_pplhdr_offset
= 0;
956 pr_debug("%s: disk: %d\n", __func__
, rdev
->raid_disk
);
957 /* read PPL headers, find the recent one */
958 page
= alloc_page(GFP_KERNEL
);
962 page2
= alloc_page(GFP_KERNEL
);
968 /* searching ppl area for latest ppl */
969 while (pplhdr_offset
< rdev
->ppl
.size
- (PPL_HEADER_SIZE
>> 9)) {
970 if (!sync_page_io(rdev
,
971 rdev
->ppl
.sector
- rdev
->data_offset
+
972 pplhdr_offset
, PAGE_SIZE
, page
, REQ_OP_READ
,
974 md_error(mddev
, rdev
);
976 /* if not able to read - don't recover any PPL */
980 pplhdr
= page_address(page
);
982 /* check header validity */
983 crc_stored
= le32_to_cpu(pplhdr
->checksum
);
984 pplhdr
->checksum
= 0;
985 crc
= ~crc32c_le(~0, pplhdr
, PAGE_SIZE
);
987 if (crc_stored
!= crc
) {
988 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
989 __func__
, crc_stored
, crc
,
990 (unsigned long long)pplhdr_offset
);
991 pplhdr
= prev_pplhdr
;
992 pplhdr_offset
= prev_pplhdr_offset
;
996 signature
= le32_to_cpu(pplhdr
->signature
);
998 if (mddev
->external
) {
1000 * For external metadata the header signature is set and
1001 * validated in userspace.
1003 ppl_conf
->signature
= signature
;
1004 } else if (ppl_conf
->signature
!= signature
) {
1005 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1006 __func__
, signature
, ppl_conf
->signature
,
1007 (unsigned long long)pplhdr_offset
);
1008 pplhdr
= prev_pplhdr
;
1009 pplhdr_offset
= prev_pplhdr_offset
;
1013 if (prev_pplhdr
&& le64_to_cpu(prev_pplhdr
->generation
) >
1014 le64_to_cpu(pplhdr
->generation
)) {
1015 /* previous was newest */
1016 pplhdr
= prev_pplhdr
;
1017 pplhdr_offset
= prev_pplhdr_offset
;
1021 prev_pplhdr_offset
= pplhdr_offset
;
1022 prev_pplhdr
= pplhdr
;
1028 /* calculate next potential ppl offset */
1029 for (i
= 0; i
< le32_to_cpu(pplhdr
->entries_count
); i
++)
1031 le32_to_cpu(pplhdr
->entries
[i
].pp_size
) >> 9;
1032 pplhdr_offset
+= PPL_HEADER_SIZE
>> 9;
1035 /* no valid ppl found */
1037 ppl_conf
->mismatch_count
++;
1039 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1040 __func__
, (unsigned long long)pplhdr_offset
,
1041 le64_to_cpu(pplhdr
->generation
));
1043 /* attempt to recover from log if we are starting a dirty array */
1044 if (pplhdr
&& !mddev
->pers
&& mddev
->recovery_cp
!= MaxSector
)
1045 ret
= ppl_recover(log
, pplhdr
, pplhdr_offset
);
1047 /* write empty header if we are starting the array */
1048 if (!ret
&& !mddev
->pers
)
1049 ret
= ppl_write_empty_header(log
);
1054 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1055 __func__
, ret
, ppl_conf
->mismatch_count
,
1056 ppl_conf
->recovered_entries
);
1060 static int ppl_load(struct ppl_conf
*ppl_conf
)
1064 bool signature_set
= false;
1067 for (i
= 0; i
< ppl_conf
->count
; i
++) {
1068 struct ppl_log
*log
= &ppl_conf
->child_logs
[i
];
1070 /* skip missing drive */
1074 ret
= ppl_load_distributed(log
);
1079 * For external metadata we can't check if the signature is
1080 * correct on a single drive, but we can check if it is the same
1083 if (ppl_conf
->mddev
->external
) {
1084 if (!signature_set
) {
1085 signature
= ppl_conf
->signature
;
1086 signature_set
= true;
1087 } else if (signature
!= ppl_conf
->signature
) {
1088 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1089 mdname(ppl_conf
->mddev
));
1096 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1097 __func__
, ret
, ppl_conf
->mismatch_count
,
1098 ppl_conf
->recovered_entries
);
1102 static void __ppl_exit_log(struct ppl_conf
*ppl_conf
)
1104 clear_bit(MD_HAS_PPL
, &ppl_conf
->mddev
->flags
);
1105 clear_bit(MD_HAS_MULTIPLE_PPLS
, &ppl_conf
->mddev
->flags
);
1107 kfree(ppl_conf
->child_logs
);
1110 bioset_free(ppl_conf
->bs
);
1111 mempool_destroy(ppl_conf
->io_pool
);
1112 kmem_cache_destroy(ppl_conf
->io_kc
);
1117 void ppl_exit_log(struct r5conf
*conf
)
1119 struct ppl_conf
*ppl_conf
= conf
->log_private
;
1122 __ppl_exit_log(ppl_conf
);
1123 conf
->log_private
= NULL
;
1127 static int ppl_validate_rdev(struct md_rdev
*rdev
)
1129 char b
[BDEVNAME_SIZE
];
1130 int ppl_data_sectors
;
1134 * The configured PPL size must be enough to store
1135 * the header and (at the very least) partial parity
1136 * for one stripe. Round it down to ensure the data
1137 * space is cleanly divisible by stripe size.
1139 ppl_data_sectors
= rdev
->ppl
.size
- (PPL_HEADER_SIZE
>> 9);
1141 if (ppl_data_sectors
> 0)
1142 ppl_data_sectors
= rounddown(ppl_data_sectors
, STRIPE_SECTORS
);
1144 if (ppl_data_sectors
<= 0) {
1145 pr_warn("md/raid:%s: PPL space too small on %s\n",
1146 mdname(rdev
->mddev
), bdevname(rdev
->bdev
, b
));
1150 ppl_size_new
= ppl_data_sectors
+ (PPL_HEADER_SIZE
>> 9);
1152 if ((rdev
->ppl
.sector
< rdev
->data_offset
&&
1153 rdev
->ppl
.sector
+ ppl_size_new
> rdev
->data_offset
) ||
1154 (rdev
->ppl
.sector
>= rdev
->data_offset
&&
1155 rdev
->data_offset
+ rdev
->sectors
> rdev
->ppl
.sector
)) {
1156 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1157 mdname(rdev
->mddev
), bdevname(rdev
->bdev
, b
));
1161 if (!rdev
->mddev
->external
&&
1162 ((rdev
->ppl
.offset
> 0 && rdev
->ppl
.offset
< (rdev
->sb_size
>> 9)) ||
1163 (rdev
->ppl
.offset
<= 0 && rdev
->ppl
.offset
+ ppl_size_new
> 0))) {
1164 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1165 mdname(rdev
->mddev
), bdevname(rdev
->bdev
, b
));
1169 rdev
->ppl
.size
= ppl_size_new
;
1174 static void ppl_init_child_log(struct ppl_log
*log
, struct md_rdev
*rdev
)
1176 if ((rdev
->ppl
.size
<< 9) >= (PPL_SPACE_SIZE
+
1177 PPL_HEADER_SIZE
) * 2) {
1178 log
->use_multippl
= true;
1179 set_bit(MD_HAS_MULTIPLE_PPLS
,
1180 &log
->ppl_conf
->mddev
->flags
);
1181 log
->entry_space
= PPL_SPACE_SIZE
;
1183 log
->use_multippl
= false;
1184 log
->entry_space
= (log
->rdev
->ppl
.size
<< 9) -
1187 log
->next_io_sector
= rdev
->ppl
.sector
;
1190 int ppl_init_log(struct r5conf
*conf
)
1192 struct ppl_conf
*ppl_conf
;
1193 struct mddev
*mddev
= conf
->mddev
;
1196 bool need_cache_flush
= false;
1198 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1199 mdname(conf
->mddev
));
1201 if (PAGE_SIZE
!= 4096)
1204 if (mddev
->level
!= 5) {
1205 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1206 mdname(mddev
), mddev
->level
);
1210 if (mddev
->bitmap_info
.file
|| mddev
->bitmap_info
.offset
) {
1211 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1216 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
1217 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1222 ppl_conf
= kzalloc(sizeof(struct ppl_conf
), GFP_KERNEL
);
1226 ppl_conf
->mddev
= mddev
;
1228 ppl_conf
->io_kc
= KMEM_CACHE(ppl_io_unit
, 0);
1229 if (!ppl_conf
->io_kc
) {
1234 ppl_conf
->io_pool
= mempool_create(conf
->raid_disks
, ppl_io_pool_alloc
,
1235 ppl_io_pool_free
, ppl_conf
->io_kc
);
1236 if (!ppl_conf
->io_pool
) {
1241 ppl_conf
->bs
= bioset_create(conf
->raid_disks
, 0, BIOSET_NEED_BVECS
);
1242 if (!ppl_conf
->bs
) {
1247 ppl_conf
->count
= conf
->raid_disks
;
1248 ppl_conf
->child_logs
= kcalloc(ppl_conf
->count
, sizeof(struct ppl_log
),
1250 if (!ppl_conf
->child_logs
) {
1255 atomic64_set(&ppl_conf
->seq
, 0);
1256 INIT_LIST_HEAD(&ppl_conf
->no_mem_stripes
);
1257 spin_lock_init(&ppl_conf
->no_mem_stripes_lock
);
1259 if (!mddev
->external
) {
1260 ppl_conf
->signature
= ~crc32c_le(~0, mddev
->uuid
, sizeof(mddev
->uuid
));
1261 ppl_conf
->block_size
= 512;
1263 ppl_conf
->block_size
= queue_logical_block_size(mddev
->queue
);
1266 for (i
= 0; i
< ppl_conf
->count
; i
++) {
1267 struct ppl_log
*log
= &ppl_conf
->child_logs
[i
];
1268 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
1270 mutex_init(&log
->io_mutex
);
1271 spin_lock_init(&log
->io_list_lock
);
1272 INIT_LIST_HEAD(&log
->io_list
);
1274 log
->ppl_conf
= ppl_conf
;
1278 struct request_queue
*q
;
1280 ret
= ppl_validate_rdev(rdev
);
1284 q
= bdev_get_queue(rdev
->bdev
);
1285 if (test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
1286 need_cache_flush
= true;
1287 ppl_init_child_log(log
, rdev
);
1291 if (need_cache_flush
)
1292 pr_warn("md/raid:%s: Volatile write-back cache should be disabled on all member drives when using PPL!\n",
1295 /* load and possibly recover the logs from the member disks */
1296 ret
= ppl_load(ppl_conf
);
1300 } else if (!mddev
->pers
&& mddev
->recovery_cp
== 0 &&
1301 ppl_conf
->recovered_entries
> 0 &&
1302 ppl_conf
->mismatch_count
== 0) {
1304 * If we are starting a dirty array and the recovery succeeds
1305 * without any issues, set the array as clean.
1307 mddev
->recovery_cp
= MaxSector
;
1308 set_bit(MD_SB_CHANGE_CLEAN
, &mddev
->sb_flags
);
1309 } else if (mddev
->pers
&& ppl_conf
->mismatch_count
> 0) {
1310 /* no mismatch allowed when enabling PPL for a running array */
1315 conf
->log_private
= ppl_conf
;
1316 set_bit(MD_HAS_PPL
, &ppl_conf
->mddev
->flags
);
1320 __ppl_exit_log(ppl_conf
);
1324 int ppl_modify_log(struct r5conf
*conf
, struct md_rdev
*rdev
, bool add
)
1326 struct ppl_conf
*ppl_conf
= conf
->log_private
;
1327 struct ppl_log
*log
;
1329 char b
[BDEVNAME_SIZE
];
1334 pr_debug("%s: disk: %d operation: %s dev: %s\n",
1335 __func__
, rdev
->raid_disk
, add
? "add" : "remove",
1336 bdevname(rdev
->bdev
, b
));
1338 if (rdev
->raid_disk
< 0)
1341 if (rdev
->raid_disk
>= ppl_conf
->count
)
1344 log
= &ppl_conf
->child_logs
[rdev
->raid_disk
];
1346 mutex_lock(&log
->io_mutex
);
1348 ret
= ppl_validate_rdev(rdev
);
1351 ret
= ppl_write_empty_header(log
);
1352 ppl_init_child_log(log
, rdev
);
1357 mutex_unlock(&log
->io_mutex
);