rt2x00: rt2800lib: fix frequency offset boundary calculation
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blobb16521e6bf4a1250ccbef85f580e08c334faf0d7
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
36 * Utility functions.
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
52 * Radio control handlers.
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
56 int status;
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
66 * Initialize all data queues.
68 rt2x00queue_init_queues(rt2x00dev);
71 * Enable radio.
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
86 * Enable queues.
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92 rt2x00link_start_vcocal(rt2x00dev);
95 * Start watchdog monitoring.
97 rt2x00link_start_watchdog(rt2x00dev);
99 return 0;
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 return;
108 * Stop watchdog monitoring.
110 rt2x00link_stop_watchdog(rt2x00dev);
113 * Stop all queues
115 rt2x00link_stop_agc(rt2x00dev);
116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117 rt2x00link_stop_vcocal(rt2x00dev);
118 rt2x00link_stop_tuner(rt2x00dev);
119 rt2x00queue_stop_queues(rt2x00dev);
120 rt2x00queue_flush_queues(rt2x00dev, true);
123 * Disable radio.
125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 rt2x00led_led_activity(rt2x00dev, false);
128 rt2x00leds_led_radio(rt2x00dev, false);
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 struct ieee80211_vif *vif)
134 struct rt2x00_dev *rt2x00dev = data;
135 struct rt2x00_intf *intf = vif_to_intf(vif);
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 return;
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147 rt2x00queue_update_beacon(rt2x00dev, vif);
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
152 struct rt2x00_dev *rt2x00dev =
153 container_of(work, struct rt2x00_dev, intf_work);
156 * Iterate over each interface and perform the
157 * requested configurations.
159 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 IEEE80211_IFACE_ITER_RESUME_ALL,
161 rt2x00lib_intf_scheduled_iter,
162 rt2x00dev);
165 static void rt2x00lib_autowakeup(struct work_struct *work)
167 struct rt2x00_dev *rt2x00dev =
168 container_of(work, struct rt2x00_dev, autowakeup_work.work);
170 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
171 return;
173 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
174 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
175 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
179 * Interrupt context handlers.
181 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
182 struct ieee80211_vif *vif)
184 struct rt2x00_dev *rt2x00dev = data;
185 struct sk_buff *skb;
188 * Only AP mode interfaces do broad- and multicast buffering
190 if (vif->type != NL80211_IFTYPE_AP)
191 return;
194 * Send out buffered broad- and multicast frames
196 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
197 while (skb) {
198 rt2x00mac_tx(rt2x00dev->hw, NULL, skb);
199 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
203 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
204 struct ieee80211_vif *vif)
206 struct rt2x00_dev *rt2x00dev = data;
208 if (vif->type != NL80211_IFTYPE_AP &&
209 vif->type != NL80211_IFTYPE_ADHOC &&
210 vif->type != NL80211_IFTYPE_MESH_POINT &&
211 vif->type != NL80211_IFTYPE_WDS)
212 return;
215 * Update the beacon without locking. This is safe on PCI devices
216 * as they only update the beacon periodically here. This should
217 * never be called for USB devices.
219 WARN_ON(rt2x00_is_usb(rt2x00dev));
220 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
223 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
225 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
226 return;
228 /* send buffered bc/mc frames out for every bssid */
229 ieee80211_iterate_active_interfaces_atomic(
230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
231 rt2x00lib_bc_buffer_iter, rt2x00dev);
233 * Devices with pre tbtt interrupt don't need to update the beacon
234 * here as they will fetch the next beacon directly prior to
235 * transmission.
237 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
238 return;
240 /* fetch next beacon */
241 ieee80211_iterate_active_interfaces_atomic(
242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
243 rt2x00lib_beaconupdate_iter, rt2x00dev);
245 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
247 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
249 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
250 return;
252 /* fetch next beacon */
253 ieee80211_iterate_active_interfaces_atomic(
254 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
255 rt2x00lib_beaconupdate_iter, rt2x00dev);
257 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
259 void rt2x00lib_dmastart(struct queue_entry *entry)
261 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
262 rt2x00queue_index_inc(entry, Q_INDEX);
264 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
266 void rt2x00lib_dmadone(struct queue_entry *entry)
268 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
269 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
270 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
272 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
274 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277 struct ieee80211_bar *bar = (void *) entry->skb->data;
278 struct rt2x00_bar_list_entry *bar_entry;
279 int ret;
281 if (likely(!ieee80211_is_back_req(bar->frame_control)))
282 return 0;
285 * Unlike all other frames, the status report for BARs does
286 * not directly come from the hardware as it is incapable of
287 * matching a BA to a previously send BAR. The hardware will
288 * report all BARs as if they weren't acked at all.
290 * Instead the RX-path will scan for incoming BAs and set the
291 * block_acked flag if it sees one that was likely caused by
292 * a BAR from us.
294 * Remove remaining BARs here and return their status for
295 * TX done processing.
297 ret = 0;
298 rcu_read_lock();
299 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
300 if (bar_entry->entry != entry)
301 continue;
303 spin_lock_bh(&rt2x00dev->bar_list_lock);
304 /* Return whether this BAR was blockacked or not */
305 ret = bar_entry->block_acked;
306 /* Remove the BAR from our checklist */
307 list_del_rcu(&bar_entry->list);
308 spin_unlock_bh(&rt2x00dev->bar_list_lock);
309 kfree_rcu(bar_entry, head);
311 break;
313 rcu_read_unlock();
315 return ret;
318 void rt2x00lib_txdone(struct queue_entry *entry,
319 struct txdone_entry_desc *txdesc)
321 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
322 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
323 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
324 unsigned int header_length, i;
325 u8 rate_idx, rate_flags, retry_rates;
326 u8 skbdesc_flags = skbdesc->flags;
327 bool success;
330 * Unmap the skb.
332 rt2x00queue_unmap_skb(entry);
335 * Remove the extra tx headroom from the skb.
337 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
340 * Signal that the TX descriptor is no longer in the skb.
342 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
345 * Determine the length of 802.11 header.
347 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
350 * Remove L2 padding which was added during
352 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
353 rt2x00queue_remove_l2pad(entry->skb, header_length);
356 * If the IV/EIV data was stripped from the frame before it was
357 * passed to the hardware, we should now reinsert it again because
358 * mac80211 will expect the same data to be present it the
359 * frame as it was passed to us.
361 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
362 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
365 * Send frame to debugfs immediately, after this call is completed
366 * we are going to overwrite the skb->cb array.
368 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
371 * Determine if the frame has been successfully transmitted and
372 * remove BARs from our check list while checking for their
373 * TX status.
375 success =
376 rt2x00lib_txdone_bar_status(entry) ||
377 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
378 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
381 * Update TX statistics.
383 rt2x00dev->link.qual.tx_success += success;
384 rt2x00dev->link.qual.tx_failed += !success;
386 rate_idx = skbdesc->tx_rate_idx;
387 rate_flags = skbdesc->tx_rate_flags;
388 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
389 (txdesc->retry + 1) : 1;
392 * Initialize TX status
394 memset(&tx_info->status, 0, sizeof(tx_info->status));
395 tx_info->status.ack_signal = 0;
398 * Frame was send with retries, hardware tried
399 * different rates to send out the frame, at each
400 * retry it lowered the rate 1 step except when the
401 * lowest rate was used.
403 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
404 tx_info->status.rates[i].idx = rate_idx - i;
405 tx_info->status.rates[i].flags = rate_flags;
407 if (rate_idx - i == 0) {
409 * The lowest rate (index 0) was used until the
410 * number of max retries was reached.
412 tx_info->status.rates[i].count = retry_rates - i;
413 i++;
414 break;
416 tx_info->status.rates[i].count = 1;
418 if (i < (IEEE80211_TX_MAX_RATES - 1))
419 tx_info->status.rates[i].idx = -1; /* terminate */
421 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
422 if (success)
423 tx_info->flags |= IEEE80211_TX_STAT_ACK;
424 else
425 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
429 * Every single frame has it's own tx status, hence report
430 * every frame as ampdu of size 1.
432 * TODO: if we can find out how many frames were aggregated
433 * by the hw we could provide the real ampdu_len to mac80211
434 * which would allow the rc algorithm to better decide on
435 * which rates are suitable.
437 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
438 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
439 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
440 tx_info->status.ampdu_len = 1;
441 tx_info->status.ampdu_ack_len = success ? 1 : 0;
443 if (!success)
444 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
447 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
448 if (success)
449 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
450 else
451 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
455 * Only send the status report to mac80211 when it's a frame
456 * that originated in mac80211. If this was a extra frame coming
457 * through a mac80211 library call (RTS/CTS) then we should not
458 * send the status report back.
460 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
461 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
462 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
463 else
464 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
465 } else
466 dev_kfree_skb_any(entry->skb);
469 * Make this entry available for reuse.
471 entry->skb = NULL;
472 entry->flags = 0;
474 rt2x00dev->ops->lib->clear_entry(entry);
476 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
479 * If the data queue was below the threshold before the txdone
480 * handler we must make sure the packet queue in the mac80211 stack
481 * is reenabled when the txdone handler has finished. This has to be
482 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
483 * before it was stopped.
485 spin_lock_bh(&entry->queue->tx_lock);
486 if (!rt2x00queue_threshold(entry->queue))
487 rt2x00queue_unpause_queue(entry->queue);
488 spin_unlock_bh(&entry->queue->tx_lock);
490 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
492 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
494 struct txdone_entry_desc txdesc;
496 txdesc.flags = 0;
497 __set_bit(status, &txdesc.flags);
498 txdesc.retry = 0;
500 rt2x00lib_txdone(entry, &txdesc);
502 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
504 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
506 struct ieee80211_mgmt *mgmt = (void *)data;
507 u8 *pos, *end;
509 pos = (u8 *)mgmt->u.beacon.variable;
510 end = data + len;
511 while (pos < end) {
512 if (pos + 2 + pos[1] > end)
513 return NULL;
515 if (pos[0] == ie)
516 return pos;
518 pos += 2 + pos[1];
521 return NULL;
524 static void rt2x00lib_sleep(struct work_struct *work)
526 struct rt2x00_dev *rt2x00dev =
527 container_of(work, struct rt2x00_dev, sleep_work);
529 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
530 return;
533 * Check again is powersaving is enabled, to prevent races from delayed
534 * work execution.
536 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
537 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
538 IEEE80211_CONF_CHANGE_PS);
541 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
542 struct sk_buff *skb,
543 struct rxdone_entry_desc *rxdesc)
545 struct rt2x00_bar_list_entry *entry;
546 struct ieee80211_bar *ba = (void *)skb->data;
548 if (likely(!ieee80211_is_back(ba->frame_control)))
549 return;
551 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
552 return;
554 rcu_read_lock();
555 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
557 if (ba->start_seq_num != entry->start_seq_num)
558 continue;
560 #define TID_CHECK(a, b) ( \
561 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
562 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
564 if (!TID_CHECK(ba->control, entry->control))
565 continue;
567 #undef TID_CHECK
569 if (compare_ether_addr(ba->ra, entry->ta))
570 continue;
572 if (compare_ether_addr(ba->ta, entry->ra))
573 continue;
575 /* Mark BAR since we received the according BA */
576 spin_lock_bh(&rt2x00dev->bar_list_lock);
577 entry->block_acked = 1;
578 spin_unlock_bh(&rt2x00dev->bar_list_lock);
579 break;
581 rcu_read_unlock();
585 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
586 struct sk_buff *skb,
587 struct rxdone_entry_desc *rxdesc)
589 struct ieee80211_hdr *hdr = (void *) skb->data;
590 struct ieee80211_tim_ie *tim_ie;
591 u8 *tim;
592 u8 tim_len;
593 bool cam;
595 /* If this is not a beacon, or if mac80211 has no powersaving
596 * configured, or if the device is already in powersaving mode
597 * we can exit now. */
598 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
599 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
600 return;
602 /* min. beacon length + FCS_LEN */
603 if (skb->len <= 40 + FCS_LEN)
604 return;
606 /* and only beacons from the associated BSSID, please */
607 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
608 !rt2x00dev->aid)
609 return;
611 rt2x00dev->last_beacon = jiffies;
613 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
614 if (!tim)
615 return;
617 if (tim[1] < sizeof(*tim_ie))
618 return;
620 tim_len = tim[1];
621 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
623 /* Check whenever the PHY can be turned off again. */
625 /* 1. What about buffered unicast traffic for our AID? */
626 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
628 /* 2. Maybe the AP wants to send multicast/broadcast data? */
629 cam |= (tim_ie->bitmap_ctrl & 0x01);
631 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
632 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
635 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
636 struct rxdone_entry_desc *rxdesc)
638 struct ieee80211_supported_band *sband;
639 const struct rt2x00_rate *rate;
640 unsigned int i;
641 int signal = rxdesc->signal;
642 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
644 switch (rxdesc->rate_mode) {
645 case RATE_MODE_CCK:
646 case RATE_MODE_OFDM:
648 * For non-HT rates the MCS value needs to contain the
649 * actually used rate modulation (CCK or OFDM).
651 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
652 signal = RATE_MCS(rxdesc->rate_mode, signal);
654 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
655 for (i = 0; i < sband->n_bitrates; i++) {
656 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
657 if (((type == RXDONE_SIGNAL_PLCP) &&
658 (rate->plcp == signal)) ||
659 ((type == RXDONE_SIGNAL_BITRATE) &&
660 (rate->bitrate == signal)) ||
661 ((type == RXDONE_SIGNAL_MCS) &&
662 (rate->mcs == signal))) {
663 return i;
666 break;
667 case RATE_MODE_HT_MIX:
668 case RATE_MODE_HT_GREENFIELD:
669 if (signal >= 0 && signal <= 76)
670 return signal;
671 break;
672 default:
673 break;
676 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
677 rxdesc->rate_mode, signal, type);
678 return 0;
681 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
683 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
684 struct rxdone_entry_desc rxdesc;
685 struct sk_buff *skb;
686 struct ieee80211_rx_status *rx_status;
687 unsigned int header_length;
688 int rate_idx;
690 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
691 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
692 goto submit_entry;
694 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
695 goto submit_entry;
698 * Allocate a new sk_buffer. If no new buffer available, drop the
699 * received frame and reuse the existing buffer.
701 skb = rt2x00queue_alloc_rxskb(entry, gfp);
702 if (!skb)
703 goto submit_entry;
706 * Unmap the skb.
708 rt2x00queue_unmap_skb(entry);
711 * Extract the RXD details.
713 memset(&rxdesc, 0, sizeof(rxdesc));
714 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
717 * Check for valid size in case we get corrupted descriptor from
718 * hardware.
720 if (unlikely(rxdesc.size == 0 ||
721 rxdesc.size > entry->queue->data_size)) {
722 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
723 rxdesc.size, entry->queue->data_size);
724 dev_kfree_skb(entry->skb);
725 goto renew_skb;
729 * The data behind the ieee80211 header must be
730 * aligned on a 4 byte boundary.
732 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
735 * Hardware might have stripped the IV/EIV/ICV data,
736 * in that case it is possible that the data was
737 * provided separately (through hardware descriptor)
738 * in which case we should reinsert the data into the frame.
740 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
741 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
742 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
743 &rxdesc);
744 else if (header_length &&
745 (rxdesc.size > header_length) &&
746 (rxdesc.dev_flags & RXDONE_L2PAD))
747 rt2x00queue_remove_l2pad(entry->skb, header_length);
749 /* Trim buffer to correct size */
750 skb_trim(entry->skb, rxdesc.size);
753 * Translate the signal to the correct bitrate index.
755 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
756 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
757 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
758 rxdesc.flags |= RX_FLAG_HT;
761 * Check if this is a beacon, and more frames have been
762 * buffered while we were in powersaving mode.
764 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
767 * Check for incoming BlockAcks to match to the BlockAckReqs
768 * we've send out.
770 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
773 * Update extra components
775 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
776 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
777 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
780 * Initialize RX status information, and send frame
781 * to mac80211.
783 rx_status = IEEE80211_SKB_RXCB(entry->skb);
785 /* Ensure that all fields of rx_status are initialized
786 * properly. The skb->cb array was used for driver
787 * specific informations, so rx_status might contain
788 * garbage.
790 memset(rx_status, 0, sizeof(*rx_status));
792 rx_status->mactime = rxdesc.timestamp;
793 rx_status->band = rt2x00dev->curr_band;
794 rx_status->freq = rt2x00dev->curr_freq;
795 rx_status->rate_idx = rate_idx;
796 rx_status->signal = rxdesc.rssi;
797 rx_status->flag = rxdesc.flags;
798 rx_status->antenna = rt2x00dev->link.ant.active.rx;
800 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
802 renew_skb:
804 * Replace the skb with the freshly allocated one.
806 entry->skb = skb;
808 submit_entry:
809 entry->flags = 0;
810 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
811 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
812 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
813 rt2x00dev->ops->lib->clear_entry(entry);
815 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
818 * Driver initialization handlers.
820 const struct rt2x00_rate rt2x00_supported_rates[12] = {
822 .flags = DEV_RATE_CCK,
823 .bitrate = 10,
824 .ratemask = BIT(0),
825 .plcp = 0x00,
826 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
829 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
830 .bitrate = 20,
831 .ratemask = BIT(1),
832 .plcp = 0x01,
833 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
836 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
837 .bitrate = 55,
838 .ratemask = BIT(2),
839 .plcp = 0x02,
840 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
843 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
844 .bitrate = 110,
845 .ratemask = BIT(3),
846 .plcp = 0x03,
847 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
850 .flags = DEV_RATE_OFDM,
851 .bitrate = 60,
852 .ratemask = BIT(4),
853 .plcp = 0x0b,
854 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
857 .flags = DEV_RATE_OFDM,
858 .bitrate = 90,
859 .ratemask = BIT(5),
860 .plcp = 0x0f,
861 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
864 .flags = DEV_RATE_OFDM,
865 .bitrate = 120,
866 .ratemask = BIT(6),
867 .plcp = 0x0a,
868 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
871 .flags = DEV_RATE_OFDM,
872 .bitrate = 180,
873 .ratemask = BIT(7),
874 .plcp = 0x0e,
875 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
878 .flags = DEV_RATE_OFDM,
879 .bitrate = 240,
880 .ratemask = BIT(8),
881 .plcp = 0x09,
882 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
885 .flags = DEV_RATE_OFDM,
886 .bitrate = 360,
887 .ratemask = BIT(9),
888 .plcp = 0x0d,
889 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
892 .flags = DEV_RATE_OFDM,
893 .bitrate = 480,
894 .ratemask = BIT(10),
895 .plcp = 0x08,
896 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
899 .flags = DEV_RATE_OFDM,
900 .bitrate = 540,
901 .ratemask = BIT(11),
902 .plcp = 0x0c,
903 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
907 static void rt2x00lib_channel(struct ieee80211_channel *entry,
908 const int channel, const int tx_power,
909 const int value)
911 /* XXX: this assumption about the band is wrong for 802.11j */
912 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
913 entry->center_freq = ieee80211_channel_to_frequency(channel,
914 entry->band);
915 entry->hw_value = value;
916 entry->max_power = tx_power;
917 entry->max_antenna_gain = 0xff;
920 static void rt2x00lib_rate(struct ieee80211_rate *entry,
921 const u16 index, const struct rt2x00_rate *rate)
923 entry->flags = 0;
924 entry->bitrate = rate->bitrate;
925 entry->hw_value = index;
926 entry->hw_value_short = index;
928 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
929 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
932 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
933 struct hw_mode_spec *spec)
935 struct ieee80211_hw *hw = rt2x00dev->hw;
936 struct ieee80211_channel *channels;
937 struct ieee80211_rate *rates;
938 unsigned int num_rates;
939 unsigned int i;
941 num_rates = 0;
942 if (spec->supported_rates & SUPPORT_RATE_CCK)
943 num_rates += 4;
944 if (spec->supported_rates & SUPPORT_RATE_OFDM)
945 num_rates += 8;
947 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
948 if (!channels)
949 return -ENOMEM;
951 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
952 if (!rates)
953 goto exit_free_channels;
956 * Initialize Rate list.
958 for (i = 0; i < num_rates; i++)
959 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
962 * Initialize Channel list.
964 for (i = 0; i < spec->num_channels; i++) {
965 rt2x00lib_channel(&channels[i],
966 spec->channels[i].channel,
967 spec->channels_info[i].max_power, i);
971 * Intitialize 802.11b, 802.11g
972 * Rates: CCK, OFDM.
973 * Channels: 2.4 GHz
975 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
976 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
977 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
978 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
979 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
980 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
981 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
982 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
983 &spec->ht, sizeof(spec->ht));
987 * Intitialize 802.11a
988 * Rates: OFDM.
989 * Channels: OFDM, UNII, HiperLAN2.
991 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
992 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
993 spec->num_channels - 14;
994 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
995 num_rates - 4;
996 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
997 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
998 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
999 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1000 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1001 &spec->ht, sizeof(spec->ht));
1004 return 0;
1006 exit_free_channels:
1007 kfree(channels);
1008 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1009 return -ENOMEM;
1012 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1014 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1015 ieee80211_unregister_hw(rt2x00dev->hw);
1017 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1018 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1019 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1020 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1021 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1024 kfree(rt2x00dev->spec.channels_info);
1027 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1029 struct hw_mode_spec *spec = &rt2x00dev->spec;
1030 int status;
1032 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1033 return 0;
1036 * Initialize HW modes.
1038 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1039 if (status)
1040 return status;
1043 * Initialize HW fields.
1045 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1048 * Initialize extra TX headroom required.
1050 rt2x00dev->hw->extra_tx_headroom =
1051 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1052 rt2x00dev->extra_tx_headroom);
1055 * Take TX headroom required for alignment into account.
1057 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1058 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1059 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1060 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1063 * Tell mac80211 about the size of our private STA structure.
1065 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1068 * Allocate tx status FIFO for driver use.
1070 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1072 * Allocate the txstatus fifo. In the worst case the tx
1073 * status fifo has to hold the tx status of all entries
1074 * in all tx queues. Hence, calculate the kfifo size as
1075 * tx_queues * entry_num and round up to the nearest
1076 * power of 2.
1078 int kfifo_size =
1079 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1080 rt2x00dev->tx->limit *
1081 sizeof(u32));
1083 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1084 GFP_KERNEL);
1085 if (status)
1086 return status;
1090 * Initialize tasklets if used by the driver. Tasklets are
1091 * disabled until the interrupts are turned on. The driver
1092 * has to handle that.
1094 #define RT2X00_TASKLET_INIT(taskletname) \
1095 if (rt2x00dev->ops->lib->taskletname) { \
1096 tasklet_init(&rt2x00dev->taskletname, \
1097 rt2x00dev->ops->lib->taskletname, \
1098 (unsigned long)rt2x00dev); \
1101 RT2X00_TASKLET_INIT(txstatus_tasklet);
1102 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1103 RT2X00_TASKLET_INIT(tbtt_tasklet);
1104 RT2X00_TASKLET_INIT(rxdone_tasklet);
1105 RT2X00_TASKLET_INIT(autowake_tasklet);
1107 #undef RT2X00_TASKLET_INIT
1110 * Register HW.
1112 status = ieee80211_register_hw(rt2x00dev->hw);
1113 if (status)
1114 return status;
1116 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1118 return 0;
1122 * Initialization/uninitialization handlers.
1124 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1126 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1127 return;
1130 * Unregister extra components.
1132 rt2x00rfkill_unregister(rt2x00dev);
1135 * Allow the HW to uninitialize.
1137 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1140 * Free allocated queue entries.
1142 rt2x00queue_uninitialize(rt2x00dev);
1145 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1147 int status;
1149 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1150 return 0;
1153 * Allocate all queue entries.
1155 status = rt2x00queue_initialize(rt2x00dev);
1156 if (status)
1157 return status;
1160 * Initialize the device.
1162 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1163 if (status) {
1164 rt2x00queue_uninitialize(rt2x00dev);
1165 return status;
1168 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1170 return 0;
1173 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1175 int retval;
1177 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1178 return 0;
1181 * If this is the first interface which is added,
1182 * we should load the firmware now.
1184 retval = rt2x00lib_load_firmware(rt2x00dev);
1185 if (retval)
1186 return retval;
1189 * Initialize the device.
1191 retval = rt2x00lib_initialize(rt2x00dev);
1192 if (retval)
1193 return retval;
1195 rt2x00dev->intf_ap_count = 0;
1196 rt2x00dev->intf_sta_count = 0;
1197 rt2x00dev->intf_associated = 0;
1199 /* Enable the radio */
1200 retval = rt2x00lib_enable_radio(rt2x00dev);
1201 if (retval)
1202 return retval;
1204 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1206 return 0;
1209 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1211 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1212 return;
1215 * Perhaps we can add something smarter here,
1216 * but for now just disabling the radio should do.
1218 rt2x00lib_disable_radio(rt2x00dev);
1220 rt2x00dev->intf_ap_count = 0;
1221 rt2x00dev->intf_sta_count = 0;
1222 rt2x00dev->intf_associated = 0;
1225 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1227 struct ieee80211_iface_limit *if_limit;
1228 struct ieee80211_iface_combination *if_combination;
1230 if (rt2x00dev->ops->max_ap_intf < 2)
1231 return;
1234 * Build up AP interface limits structure.
1236 if_limit = &rt2x00dev->if_limits_ap;
1237 if_limit->max = rt2x00dev->ops->max_ap_intf;
1238 if_limit->types = BIT(NL80211_IFTYPE_AP);
1239 #ifdef CONFIG_MAC80211_MESH
1240 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1241 #endif
1244 * Build up AP interface combinations structure.
1246 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1247 if_combination->limits = if_limit;
1248 if_combination->n_limits = 1;
1249 if_combination->max_interfaces = if_limit->max;
1250 if_combination->num_different_channels = 1;
1253 * Finally, specify the possible combinations to mac80211.
1255 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1256 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1259 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1261 if (WARN_ON(!rt2x00dev->tx))
1262 return 0;
1264 if (rt2x00_is_usb(rt2x00dev))
1265 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1267 return rt2x00dev->tx[0].winfo_size;
1271 * driver allocation handlers.
1273 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1275 int retval = -ENOMEM;
1278 * Set possible interface combinations.
1280 rt2x00lib_set_if_combinations(rt2x00dev);
1283 * Allocate the driver data memory, if necessary.
1285 if (rt2x00dev->ops->drv_data_size > 0) {
1286 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1287 GFP_KERNEL);
1288 if (!rt2x00dev->drv_data) {
1289 retval = -ENOMEM;
1290 goto exit;
1294 spin_lock_init(&rt2x00dev->irqmask_lock);
1295 mutex_init(&rt2x00dev->csr_mutex);
1296 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1297 spin_lock_init(&rt2x00dev->bar_list_lock);
1299 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1302 * Make room for rt2x00_intf inside the per-interface
1303 * structure ieee80211_vif.
1305 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1308 * rt2x00 devices can only use the last n bits of the MAC address
1309 * for virtual interfaces.
1311 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1312 (rt2x00dev->ops->max_ap_intf - 1);
1315 * Initialize work.
1317 rt2x00dev->workqueue =
1318 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1319 if (!rt2x00dev->workqueue) {
1320 retval = -ENOMEM;
1321 goto exit;
1324 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1325 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1326 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1329 * Let the driver probe the device to detect the capabilities.
1331 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1332 if (retval) {
1333 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1334 goto exit;
1338 * Allocate queue array.
1340 retval = rt2x00queue_allocate(rt2x00dev);
1341 if (retval)
1342 goto exit;
1344 /* Cache TX headroom value */
1345 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1348 * Determine which operating modes are supported, all modes
1349 * which require beaconing, depend on the availability of
1350 * beacon entries.
1352 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1353 if (rt2x00dev->bcn->limit > 0)
1354 rt2x00dev->hw->wiphy->interface_modes |=
1355 BIT(NL80211_IFTYPE_ADHOC) |
1356 BIT(NL80211_IFTYPE_AP) |
1357 #ifdef CONFIG_MAC80211_MESH
1358 BIT(NL80211_IFTYPE_MESH_POINT) |
1359 #endif
1360 BIT(NL80211_IFTYPE_WDS);
1362 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1365 * Initialize ieee80211 structure.
1367 retval = rt2x00lib_probe_hw(rt2x00dev);
1368 if (retval) {
1369 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1370 goto exit;
1374 * Register extra components.
1376 rt2x00link_register(rt2x00dev);
1377 rt2x00leds_register(rt2x00dev);
1378 rt2x00debug_register(rt2x00dev);
1379 rt2x00rfkill_register(rt2x00dev);
1381 return 0;
1383 exit:
1384 rt2x00lib_remove_dev(rt2x00dev);
1386 return retval;
1388 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1390 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1392 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1395 * Disable radio.
1397 rt2x00lib_disable_radio(rt2x00dev);
1400 * Stop all work.
1402 cancel_work_sync(&rt2x00dev->intf_work);
1403 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1404 cancel_work_sync(&rt2x00dev->sleep_work);
1405 if (rt2x00_is_usb(rt2x00dev)) {
1406 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1407 cancel_work_sync(&rt2x00dev->rxdone_work);
1408 cancel_work_sync(&rt2x00dev->txdone_work);
1410 if (rt2x00dev->workqueue)
1411 destroy_workqueue(rt2x00dev->workqueue);
1414 * Free the tx status fifo.
1416 kfifo_free(&rt2x00dev->txstatus_fifo);
1419 * Kill the tx status tasklet.
1421 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1422 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1423 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1424 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1425 tasklet_kill(&rt2x00dev->autowake_tasklet);
1428 * Uninitialize device.
1430 rt2x00lib_uninitialize(rt2x00dev);
1433 * Free extra components
1435 rt2x00debug_deregister(rt2x00dev);
1436 rt2x00leds_unregister(rt2x00dev);
1439 * Free ieee80211_hw memory.
1441 rt2x00lib_remove_hw(rt2x00dev);
1444 * Free firmware image.
1446 rt2x00lib_free_firmware(rt2x00dev);
1449 * Free queue structures.
1451 rt2x00queue_free(rt2x00dev);
1454 * Free the driver data.
1456 if (rt2x00dev->drv_data)
1457 kfree(rt2x00dev->drv_data);
1459 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1462 * Device state handlers
1464 #ifdef CONFIG_PM
1465 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1467 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1470 * Prevent mac80211 from accessing driver while suspended.
1472 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1473 return 0;
1476 * Cleanup as much as possible.
1478 rt2x00lib_uninitialize(rt2x00dev);
1481 * Suspend/disable extra components.
1483 rt2x00leds_suspend(rt2x00dev);
1484 rt2x00debug_deregister(rt2x00dev);
1487 * Set device mode to sleep for power management,
1488 * on some hardware this call seems to consistently fail.
1489 * From the specifications it is hard to tell why it fails,
1490 * and if this is a "bad thing".
1491 * Overall it is safe to just ignore the failure and
1492 * continue suspending. The only downside is that the
1493 * device will not be in optimal power save mode, but with
1494 * the radio and the other components already disabled the
1495 * device is as good as disabled.
1497 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1498 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1500 return 0;
1502 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1504 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1506 rt2x00_dbg(rt2x00dev, "Waking up\n");
1509 * Restore/enable extra components.
1511 rt2x00debug_register(rt2x00dev);
1512 rt2x00leds_resume(rt2x00dev);
1515 * We are ready again to receive requests from mac80211.
1517 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1519 return 0;
1521 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1522 #endif /* CONFIG_PM */
1525 * rt2x00lib module information.
1527 MODULE_AUTHOR(DRV_PROJECT);
1528 MODULE_VERSION(DRV_VERSION);
1529 MODULE_DESCRIPTION("rt2x00 library");
1530 MODULE_LICENSE("GPL");