2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
;
83 int sysctl_tcp_max_reordering __read_mostly
= 300;
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit
= 1000;
92 int sysctl_tcp_stdurg __read_mostly
;
93 int sysctl_tcp_rfc1337 __read_mostly
;
94 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
95 int sysctl_tcp_frto __read_mostly
= 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
97 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
98 int sysctl_tcp_early_retrans __read_mostly
= 3;
99 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 #define REXMIT_NONE 0 /* no loss recovery to do */
125 #define REXMIT_LOST 1 /* retransmit packets marked lost */
126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
131 static bool __once __read_mostly
;
134 struct net_device
*dev
;
139 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
140 if (!dev
|| len
>= dev
->mtu
)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev
? dev
->name
: "Unknown driver");
147 /* Adapt the MSS value used to make delayed ack decision to the
150 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
152 struct inet_connection_sock
*icsk
= inet_csk(sk
);
153 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
156 icsk
->icsk_ack
.last_seg_size
= 0;
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
161 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
162 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
163 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
165 /* Account for possibly-removed options */
166 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
167 MAX_TCP_OPTION_SPACE
))
168 tcp_gro_dev_warn(sk
, skb
, len
);
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
173 * "len" is invariant segment length, including TCP header.
175 len
+= skb
->data
- skb_transport_header(skb
);
176 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
182 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
183 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
188 len
-= tcp_sk(sk
)->tcp_header_len
;
189 icsk
->icsk_ack
.last_seg_size
= len
;
191 icsk
->icsk_ack
.rcv_mss
= len
;
195 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
196 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
197 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
201 static void tcp_incr_quickack(struct sock
*sk
)
203 struct inet_connection_sock
*icsk
= inet_csk(sk
);
204 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
208 if (quickacks
> icsk
->icsk_ack
.quick
)
209 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
212 static void tcp_enter_quickack_mode(struct sock
*sk
)
214 struct inet_connection_sock
*icsk
= inet_csk(sk
);
215 tcp_incr_quickack(sk
);
216 icsk
->icsk_ack
.pingpong
= 0;
217 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
220 /* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
224 static bool tcp_in_quickack_mode(struct sock
*sk
)
226 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
227 const struct dst_entry
*dst
= __sk_dst_get(sk
);
229 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
230 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
233 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
235 if (tp
->ecn_flags
& TCP_ECN_OK
)
236 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
239 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
241 if (tcp_hdr(skb
)->cwr
)
242 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
247 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
250 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
252 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
253 case INET_ECN_NOT_ECT
:
254 /* Funny extension: if ECT is not set on a segment,
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
258 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
259 tcp_enter_quickack_mode((struct sock
*)tp
);
262 if (tcp_ca_needs_ecn((struct sock
*)tp
))
263 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
265 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock
*)tp
);
268 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
270 tp
->ecn_flags
|= TCP_ECN_SEEN
;
273 if (tcp_ca_needs_ecn((struct sock
*)tp
))
274 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
275 tp
->ecn_flags
|= TCP_ECN_SEEN
;
280 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
282 if (tp
->ecn_flags
& TCP_ECN_OK
)
283 __tcp_ecn_check_ce(tp
, skb
);
286 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
288 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
289 tp
->ecn_flags
&= ~TCP_ECN_OK
;
292 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
294 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
295 tp
->ecn_flags
&= ~TCP_ECN_OK
;
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
300 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
305 /* Buffer size and advertised window tuning.
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
310 static void tcp_sndbuf_expand(struct sock
*sk
)
312 const struct tcp_sock
*tp
= tcp_sk(sk
);
313 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
320 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
324 per_mss
= roundup_pow_of_two(per_mss
) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
327 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
328 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
334 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
335 sndmem
*= nr_segs
* per_mss
;
337 if (sk
->sk_sndbuf
< sndmem
)
338 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
361 * The scheme does not work when sender sends good segments opening
362 * window and then starts to feed us spaghetti. But it should work
363 * in common situations. Otherwise, we have to rely on queue collapsing.
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
369 struct tcp_sock
*tp
= tcp_sk(sk
);
371 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
372 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
374 while (tp
->rcv_ssthresh
<= window
) {
375 if (truesize
<= skb
->len
)
376 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
384 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
386 struct tcp_sock
*tp
= tcp_sk(sk
);
389 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
390 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
391 !tcp_under_memory_pressure(sk
)) {
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
397 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
398 incr
= 2 * tp
->advmss
;
400 incr
= __tcp_grow_window(sk
, skb
);
403 incr
= max_t(int, incr
, 2 * skb
->len
);
404 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
406 inet_csk(sk
)->icsk_ack
.quick
|= 1;
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock
*sk
)
414 u32 mss
= tcp_sk(sk
)->advmss
;
417 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
418 tcp_default_init_rwnd(mss
);
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
423 if (sysctl_tcp_moderate_rcvbuf
)
426 if (sk
->sk_rcvbuf
< rcvmem
)
427 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
430 /* 4. Try to fixup all. It is made immediately after connection enters
433 void tcp_init_buffer_space(struct sock
*sk
)
435 struct tcp_sock
*tp
= tcp_sk(sk
);
438 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
439 tcp_fixup_rcvbuf(sk
);
440 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
441 tcp_sndbuf_expand(sk
);
443 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
444 tp
->rcvq_space
.time
= tcp_time_stamp
;
445 tp
->rcvq_space
.seq
= tp
->copied_seq
;
447 maxwin
= tcp_full_space(sk
);
449 if (tp
->window_clamp
>= maxwin
) {
450 tp
->window_clamp
= maxwin
;
452 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
453 tp
->window_clamp
= max(maxwin
-
454 (maxwin
>> sysctl_tcp_app_win
),
458 /* Force reservation of one segment. */
459 if (sysctl_tcp_app_win
&&
460 tp
->window_clamp
> 2 * tp
->advmss
&&
461 tp
->window_clamp
+ tp
->advmss
> maxwin
)
462 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
464 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
465 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
468 /* 5. Recalculate window clamp after socket hit its memory bounds. */
469 static void tcp_clamp_window(struct sock
*sk
)
471 struct tcp_sock
*tp
= tcp_sk(sk
);
472 struct inet_connection_sock
*icsk
= inet_csk(sk
);
474 icsk
->icsk_ack
.quick
= 0;
476 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
477 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
478 !tcp_under_memory_pressure(sk
) &&
479 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
480 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
483 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
484 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 void tcp_initialize_rcv_mss(struct sock
*sk
)
496 const struct tcp_sock
*tp
= tcp_sk(sk
);
497 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
499 hint
= min(hint
, tp
->rcv_wnd
/ 2);
500 hint
= min(hint
, TCP_MSS_DEFAULT
);
501 hint
= max(hint
, TCP_MIN_MSS
);
503 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
507 /* Receiver "autotuning" code.
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
518 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
520 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
526 if (new_sample
!= 0) {
527 /* If we sample in larger samples in the non-timestamp
528 * case, we could grossly overestimate the RTT especially
529 * with chatty applications or bulk transfer apps which
530 * are stalled on filesystem I/O.
532 * Also, since we are only going for a minimum in the
533 * non-timestamp case, we do not smooth things out
534 * else with timestamps disabled convergence takes too
538 m
-= (new_sample
>> 3);
546 /* No previous measure. */
550 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
551 tp
->rcv_rtt_est
.rtt
= new_sample
;
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
556 if (tp
->rcv_rtt_est
.time
== 0)
558 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
560 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
563 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
564 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
567 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
568 const struct sk_buff
*skb
)
570 struct tcp_sock
*tp
= tcp_sk(sk
);
571 if (tp
->rx_opt
.rcv_tsecr
&&
572 (TCP_SKB_CB(skb
)->end_seq
-
573 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
574 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
578 * This function should be called every time data is copied to user space.
579 * It calculates the appropriate TCP receive buffer space.
581 void tcp_rcv_space_adjust(struct sock
*sk
)
583 struct tcp_sock
*tp
= tcp_sk(sk
);
587 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
588 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
591 /* Number of bytes copied to user in last RTT */
592 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
593 if (copied
<= tp
->rcvq_space
.space
)
597 * copied = bytes received in previous RTT, our base window
598 * To cope with packet losses, we need a 2x factor
599 * To cope with slow start, and sender growing its cwin by 100 %
600 * every RTT, we need a 4x factor, because the ACK we are sending
601 * now is for the next RTT, not the current one :
602 * <prev RTT . ><current RTT .. ><next RTT .... >
605 if (sysctl_tcp_moderate_rcvbuf
&&
606 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
607 int rcvwin
, rcvmem
, rcvbuf
;
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
612 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
614 /* If rate increased by 25%,
615 * assume slow start, rcvwin = 3 * copied
616 * If rate increased by 50%,
617 * assume sender can use 2x growth, rcvwin = 4 * copied
620 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
622 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
625 rcvwin
+= (rcvwin
>> 1);
628 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
629 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
632 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
633 if (rcvbuf
> sk
->sk_rcvbuf
) {
634 sk
->sk_rcvbuf
= rcvbuf
;
636 /* Make the window clamp follow along. */
637 tp
->window_clamp
= rcvwin
;
640 tp
->rcvq_space
.space
= copied
;
643 tp
->rcvq_space
.seq
= tp
->copied_seq
;
644 tp
->rcvq_space
.time
= tcp_time_stamp
;
647 /* There is something which you must keep in mind when you analyze the
648 * behavior of the tp->ato delayed ack timeout interval. When a
649 * connection starts up, we want to ack as quickly as possible. The
650 * problem is that "good" TCP's do slow start at the beginning of data
651 * transmission. The means that until we send the first few ACK's the
652 * sender will sit on his end and only queue most of his data, because
653 * he can only send snd_cwnd unacked packets at any given time. For
654 * each ACK we send, he increments snd_cwnd and transmits more of his
657 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
659 struct tcp_sock
*tp
= tcp_sk(sk
);
660 struct inet_connection_sock
*icsk
= inet_csk(sk
);
663 inet_csk_schedule_ack(sk
);
665 tcp_measure_rcv_mss(sk
, skb
);
667 tcp_rcv_rtt_measure(tp
);
669 now
= tcp_time_stamp
;
671 if (!icsk
->icsk_ack
.ato
) {
672 /* The _first_ data packet received, initialize
673 * delayed ACK engine.
675 tcp_incr_quickack(sk
);
676 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
678 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
680 if (m
<= TCP_ATO_MIN
/ 2) {
681 /* The fastest case is the first. */
682 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
683 } else if (m
< icsk
->icsk_ack
.ato
) {
684 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
685 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
686 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
687 } else if (m
> icsk
->icsk_rto
) {
688 /* Too long gap. Apparently sender failed to
689 * restart window, so that we send ACKs quickly.
691 tcp_incr_quickack(sk
);
695 icsk
->icsk_ack
.lrcvtime
= now
;
697 tcp_ecn_check_ce(tp
, skb
);
700 tcp_grow_window(sk
, skb
);
703 /* Called to compute a smoothed rtt estimate. The data fed to this
704 * routine either comes from timestamps, or from segments that were
705 * known _not_ to have been retransmitted [see Karn/Partridge
706 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
707 * piece by Van Jacobson.
708 * NOTE: the next three routines used to be one big routine.
709 * To save cycles in the RFC 1323 implementation it was better to break
710 * it up into three procedures. -- erics
712 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
714 struct tcp_sock
*tp
= tcp_sk(sk
);
715 long m
= mrtt_us
; /* RTT */
716 u32 srtt
= tp
->srtt_us
;
718 /* The following amusing code comes from Jacobson's
719 * article in SIGCOMM '88. Note that rtt and mdev
720 * are scaled versions of rtt and mean deviation.
721 * This is designed to be as fast as possible
722 * m stands for "measurement".
724 * On a 1990 paper the rto value is changed to:
725 * RTO = rtt + 4 * mdev
727 * Funny. This algorithm seems to be very broken.
728 * These formulae increase RTO, when it should be decreased, increase
729 * too slowly, when it should be increased quickly, decrease too quickly
730 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
731 * does not matter how to _calculate_ it. Seems, it was trap
732 * that VJ failed to avoid. 8)
735 m
-= (srtt
>> 3); /* m is now error in rtt est */
736 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
738 m
= -m
; /* m is now abs(error) */
739 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
740 /* This is similar to one of Eifel findings.
741 * Eifel blocks mdev updates when rtt decreases.
742 * This solution is a bit different: we use finer gain
743 * for mdev in this case (alpha*beta).
744 * Like Eifel it also prevents growth of rto,
745 * but also it limits too fast rto decreases,
746 * happening in pure Eifel.
751 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
753 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
754 if (tp
->mdev_us
> tp
->mdev_max_us
) {
755 tp
->mdev_max_us
= tp
->mdev_us
;
756 if (tp
->mdev_max_us
> tp
->rttvar_us
)
757 tp
->rttvar_us
= tp
->mdev_max_us
;
759 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
760 if (tp
->mdev_max_us
< tp
->rttvar_us
)
761 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
762 tp
->rtt_seq
= tp
->snd_nxt
;
763 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
766 /* no previous measure. */
767 srtt
= m
<< 3; /* take the measured time to be rtt */
768 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
769 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
770 tp
->mdev_max_us
= tp
->rttvar_us
;
771 tp
->rtt_seq
= tp
->snd_nxt
;
773 tp
->srtt_us
= max(1U, srtt
);
776 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
777 * Note: TCP stack does not yet implement pacing.
778 * FQ packet scheduler can be used to implement cheap but effective
779 * TCP pacing, to smooth the burst on large writes when packets
780 * in flight is significantly lower than cwnd (or rwin)
782 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
783 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
785 static void tcp_update_pacing_rate(struct sock
*sk
)
787 const struct tcp_sock
*tp
= tcp_sk(sk
);
790 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
791 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
793 /* current rate is (cwnd * mss) / srtt
794 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
795 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
798 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
799 * end of slow start and should slow down.
801 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
802 rate
*= sysctl_tcp_pacing_ss_ratio
;
804 rate
*= sysctl_tcp_pacing_ca_ratio
;
806 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
808 if (likely(tp
->srtt_us
))
809 do_div(rate
, tp
->srtt_us
);
811 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
812 * without any lock. We want to make sure compiler wont store
813 * intermediate values in this location.
815 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
816 sk
->sk_max_pacing_rate
);
819 /* Calculate rto without backoff. This is the second half of Van Jacobson's
820 * routine referred to above.
822 static void tcp_set_rto(struct sock
*sk
)
824 const struct tcp_sock
*tp
= tcp_sk(sk
);
825 /* Old crap is replaced with new one. 8)
828 * 1. If rtt variance happened to be less 50msec, it is hallucination.
829 * It cannot be less due to utterly erratic ACK generation made
830 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
831 * to do with delayed acks, because at cwnd>2 true delack timeout
832 * is invisible. Actually, Linux-2.4 also generates erratic
833 * ACKs in some circumstances.
835 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
837 /* 2. Fixups made earlier cannot be right.
838 * If we do not estimate RTO correctly without them,
839 * all the algo is pure shit and should be replaced
840 * with correct one. It is exactly, which we pretend to do.
843 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
844 * guarantees that rto is higher.
849 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
851 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
854 cwnd
= TCP_INIT_CWND
;
855 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
862 void tcp_disable_fack(struct tcp_sock
*tp
)
864 /* RFC3517 uses different metric in lost marker => reset on change */
866 tp
->lost_skb_hint
= NULL
;
867 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock
*tp
)
873 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
876 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
879 struct tcp_sock
*tp
= tcp_sk(sk
);
882 if (metric
> tp
->reordering
) {
883 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
885 #if FASTRETRANS_DEBUG > 1
886 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
887 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
891 tp
->undo_marker
? tp
->undo_retrans
: 0);
893 tcp_disable_fack(tp
);
898 /* This exciting event is worth to be remembered. 8) */
900 mib_idx
= LINUX_MIB_TCPTSREORDER
;
901 else if (tcp_is_reno(tp
))
902 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
903 else if (tcp_is_fack(tp
))
904 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
906 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
908 NET_INC_STATS(sock_net(sk
), mib_idx
);
911 /* This must be called before lost_out is incremented */
912 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
914 if (!tp
->retransmit_skb_hint
||
915 before(TCP_SKB_CB(skb
)->seq
,
916 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
917 tp
->retransmit_skb_hint
= skb
;
920 /* Sum the number of packets on the wire we have marked as lost.
921 * There are two cases we care about here:
922 * a) Packet hasn't been marked lost (nor retransmitted),
923 * and this is the first loss.
924 * b) Packet has been marked both lost and retransmitted,
925 * and this means we think it was lost again.
927 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
929 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
931 if (!(sacked
& TCPCB_LOST
) ||
932 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
933 tp
->lost
+= tcp_skb_pcount(skb
);
936 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
938 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
939 tcp_verify_retransmit_hint(tp
, skb
);
941 tp
->lost_out
+= tcp_skb_pcount(skb
);
942 tcp_sum_lost(tp
, skb
);
943 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
947 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
949 tcp_verify_retransmit_hint(tp
, skb
);
951 tcp_sum_lost(tp
, skb
);
952 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
953 tp
->lost_out
+= tcp_skb_pcount(skb
);
954 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
958 /* This procedure tags the retransmission queue when SACKs arrive.
960 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
961 * Packets in queue with these bits set are counted in variables
962 * sacked_out, retrans_out and lost_out, correspondingly.
964 * Valid combinations are:
965 * Tag InFlight Description
966 * 0 1 - orig segment is in flight.
967 * S 0 - nothing flies, orig reached receiver.
968 * L 0 - nothing flies, orig lost by net.
969 * R 2 - both orig and retransmit are in flight.
970 * L|R 1 - orig is lost, retransmit is in flight.
971 * S|R 1 - orig reached receiver, retrans is still in flight.
972 * (L|S|R is logically valid, it could occur when L|R is sacked,
973 * but it is equivalent to plain S and code short-curcuits it to S.
974 * L|S is logically invalid, it would mean -1 packet in flight 8))
976 * These 6 states form finite state machine, controlled by the following events:
977 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
978 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
979 * 3. Loss detection event of two flavors:
980 * A. Scoreboard estimator decided the packet is lost.
981 * A'. Reno "three dupacks" marks head of queue lost.
982 * A''. Its FACK modification, head until snd.fack is lost.
983 * B. SACK arrives sacking SND.NXT at the moment, when the
984 * segment was retransmitted.
985 * 4. D-SACK added new rule: D-SACK changes any tag to S.
987 * It is pleasant to note, that state diagram turns out to be commutative,
988 * so that we are allowed not to be bothered by order of our actions,
989 * when multiple events arrive simultaneously. (see the function below).
991 * Reordering detection.
992 * --------------------
993 * Reordering metric is maximal distance, which a packet can be displaced
994 * in packet stream. With SACKs we can estimate it:
996 * 1. SACK fills old hole and the corresponding segment was not
997 * ever retransmitted -> reordering. Alas, we cannot use it
998 * when segment was retransmitted.
999 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1000 * for retransmitted and already SACKed segment -> reordering..
1001 * Both of these heuristics are not used in Loss state, when we cannot
1002 * account for retransmits accurately.
1004 * SACK block validation.
1005 * ----------------------
1007 * SACK block range validation checks that the received SACK block fits to
1008 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1009 * Note that SND.UNA is not included to the range though being valid because
1010 * it means that the receiver is rather inconsistent with itself reporting
1011 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1012 * perfectly valid, however, in light of RFC2018 which explicitly states
1013 * that "SACK block MUST reflect the newest segment. Even if the newest
1014 * segment is going to be discarded ...", not that it looks very clever
1015 * in case of head skb. Due to potentional receiver driven attacks, we
1016 * choose to avoid immediate execution of a walk in write queue due to
1017 * reneging and defer head skb's loss recovery to standard loss recovery
1018 * procedure that will eventually trigger (nothing forbids us doing this).
1020 * Implements also blockage to start_seq wrap-around. Problem lies in the
1021 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1022 * there's no guarantee that it will be before snd_nxt (n). The problem
1023 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1026 * <- outs wnd -> <- wrapzone ->
1027 * u e n u_w e_w s n_w
1029 * |<------------+------+----- TCP seqno space --------------+---------->|
1030 * ...-- <2^31 ->| |<--------...
1031 * ...---- >2^31 ------>| |<--------...
1033 * Current code wouldn't be vulnerable but it's better still to discard such
1034 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1035 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1036 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1037 * equal to the ideal case (infinite seqno space without wrap caused issues).
1039 * With D-SACK the lower bound is extended to cover sequence space below
1040 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1041 * again, D-SACK block must not to go across snd_una (for the same reason as
1042 * for the normal SACK blocks, explained above). But there all simplicity
1043 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1044 * fully below undo_marker they do not affect behavior in anyway and can
1045 * therefore be safely ignored. In rare cases (which are more or less
1046 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1047 * fragmentation and packet reordering past skb's retransmission. To consider
1048 * them correctly, the acceptable range must be extended even more though
1049 * the exact amount is rather hard to quantify. However, tp->max_window can
1050 * be used as an exaggerated estimate.
1052 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1053 u32 start_seq
, u32 end_seq
)
1055 /* Too far in future, or reversed (interpretation is ambiguous) */
1056 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1059 /* Nasty start_seq wrap-around check (see comments above) */
1060 if (!before(start_seq
, tp
->snd_nxt
))
1063 /* In outstanding window? ...This is valid exit for D-SACKs too.
1064 * start_seq == snd_una is non-sensical (see comments above)
1066 if (after(start_seq
, tp
->snd_una
))
1069 if (!is_dsack
|| !tp
->undo_marker
)
1072 /* ...Then it's D-SACK, and must reside below snd_una completely */
1073 if (after(end_seq
, tp
->snd_una
))
1076 if (!before(start_seq
, tp
->undo_marker
))
1080 if (!after(end_seq
, tp
->undo_marker
))
1083 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1084 * start_seq < undo_marker and end_seq >= undo_marker.
1086 return !before(start_seq
, end_seq
- tp
->max_window
);
1089 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1090 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1093 struct tcp_sock
*tp
= tcp_sk(sk
);
1094 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1095 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1096 bool dup_sack
= false;
1098 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1101 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1102 } else if (num_sacks
> 1) {
1103 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1104 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1106 if (!after(end_seq_0
, end_seq_1
) &&
1107 !before(start_seq_0
, start_seq_1
)) {
1110 NET_INC_STATS(sock_net(sk
),
1111 LINUX_MIB_TCPDSACKOFORECV
);
1115 /* D-SACK for already forgotten data... Do dumb counting. */
1116 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1117 !after(end_seq_0
, prior_snd_una
) &&
1118 after(end_seq_0
, tp
->undo_marker
))
1124 struct tcp_sacktag_state
{
1127 /* Timestamps for earliest and latest never-retransmitted segment
1128 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1129 * but congestion control should still get an accurate delay signal.
1131 struct skb_mstamp first_sackt
;
1132 struct skb_mstamp last_sackt
;
1133 struct skb_mstamp ack_time
; /* Timestamp when the S/ACK was received */
1134 struct rate_sample
*rate
;
1138 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1139 * the incoming SACK may not exactly match but we can find smaller MSS
1140 * aligned portion of it that matches. Therefore we might need to fragment
1141 * which may fail and creates some hassle (caller must handle error case
1144 * FIXME: this could be merged to shift decision code
1146 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1147 u32 start_seq
, u32 end_seq
)
1151 unsigned int pkt_len
;
1154 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1155 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1157 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1158 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1159 mss
= tcp_skb_mss(skb
);
1160 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1163 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1167 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1172 /* Round if necessary so that SACKs cover only full MSSes
1173 * and/or the remaining small portion (if present)
1175 if (pkt_len
> mss
) {
1176 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1177 if (!in_sack
&& new_len
< pkt_len
)
1182 if (pkt_len
>= skb
->len
&& !in_sack
)
1185 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1194 static u8
tcp_sacktag_one(struct sock
*sk
,
1195 struct tcp_sacktag_state
*state
, u8 sacked
,
1196 u32 start_seq
, u32 end_seq
,
1197 int dup_sack
, int pcount
,
1198 const struct skb_mstamp
*xmit_time
)
1200 struct tcp_sock
*tp
= tcp_sk(sk
);
1201 int fack_count
= state
->fack_count
;
1203 /* Account D-SACK for retransmitted packet. */
1204 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1205 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1206 after(end_seq
, tp
->undo_marker
))
1208 if (sacked
& TCPCB_SACKED_ACKED
)
1209 state
->reord
= min(fack_count
, state
->reord
);
1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1213 if (!after(end_seq
, tp
->snd_una
))
1216 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1217 tcp_rack_advance(tp
, sacked
, end_seq
,
1218 xmit_time
, &state
->ack_time
);
1220 if (sacked
& TCPCB_SACKED_RETRANS
) {
1221 /* If the segment is not tagged as lost,
1222 * we do not clear RETRANS, believing
1223 * that retransmission is still in flight.
1225 if (sacked
& TCPCB_LOST
) {
1226 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1227 tp
->lost_out
-= pcount
;
1228 tp
->retrans_out
-= pcount
;
1231 if (!(sacked
& TCPCB_RETRANS
)) {
1232 /* New sack for not retransmitted frame,
1233 * which was in hole. It is reordering.
1235 if (before(start_seq
,
1236 tcp_highest_sack_seq(tp
)))
1237 state
->reord
= min(fack_count
,
1239 if (!after(end_seq
, tp
->high_seq
))
1240 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1241 if (state
->first_sackt
.v64
== 0)
1242 state
->first_sackt
= *xmit_time
;
1243 state
->last_sackt
= *xmit_time
;
1246 if (sacked
& TCPCB_LOST
) {
1247 sacked
&= ~TCPCB_LOST
;
1248 tp
->lost_out
-= pcount
;
1252 sacked
|= TCPCB_SACKED_ACKED
;
1253 state
->flag
|= FLAG_DATA_SACKED
;
1254 tp
->sacked_out
+= pcount
;
1255 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1257 fack_count
+= pcount
;
1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1260 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1261 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1262 tp
->lost_cnt_hint
+= pcount
;
1264 if (fack_count
> tp
->fackets_out
)
1265 tp
->fackets_out
= fack_count
;
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1272 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1273 sacked
&= ~TCPCB_SACKED_RETRANS
;
1274 tp
->retrans_out
-= pcount
;
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1283 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1284 struct tcp_sacktag_state
*state
,
1285 unsigned int pcount
, int shifted
, int mss
,
1288 struct tcp_sock
*tp
= tcp_sk(sk
);
1289 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1290 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1291 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1301 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1302 start_seq
, end_seq
, dup_sack
, pcount
,
1304 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1306 if (skb
== tp
->lost_skb_hint
)
1307 tp
->lost_cnt_hint
+= pcount
;
1309 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1310 TCP_SKB_CB(skb
)->seq
+= shifted
;
1312 tcp_skb_pcount_add(prev
, pcount
);
1313 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1314 tcp_skb_pcount_add(skb
, -pcount
);
1316 /* When we're adding to gso_segs == 1, gso_size will be zero,
1317 * in theory this shouldn't be necessary but as long as DSACK
1318 * code can come after this skb later on it's better to keep
1319 * setting gso_size to something.
1321 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1322 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb
) <= 1)
1326 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1332 BUG_ON(!tcp_skb_pcount(skb
));
1333 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1337 /* Whole SKB was eaten :-) */
1339 if (skb
== tp
->retransmit_skb_hint
)
1340 tp
->retransmit_skb_hint
= prev
;
1341 if (skb
== tp
->lost_skb_hint
) {
1342 tp
->lost_skb_hint
= prev
;
1343 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1346 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1347 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1348 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1349 TCP_SKB_CB(prev
)->end_seq
++;
1351 if (skb
== tcp_highest_sack(sk
))
1352 tcp_advance_highest_sack(sk
, skb
);
1354 tcp_skb_collapse_tstamp(prev
, skb
);
1355 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
))
1356 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
= 0;
1358 tcp_unlink_write_queue(skb
, sk
);
1359 sk_wmem_free_skb(sk
, skb
);
1361 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1366 /* I wish gso_size would have a bit more sane initialization than
1367 * something-or-zero which complicates things
1369 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1371 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1374 /* Shifting pages past head area doesn't work */
1375 static int skb_can_shift(const struct sk_buff
*skb
)
1377 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1383 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1384 struct tcp_sacktag_state
*state
,
1385 u32 start_seq
, u32 end_seq
,
1388 struct tcp_sock
*tp
= tcp_sk(sk
);
1389 struct sk_buff
*prev
;
1395 if (!sk_can_gso(sk
))
1398 /* Normally R but no L won't result in plain S */
1400 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1402 if (!skb_can_shift(skb
))
1404 /* This frame is about to be dropped (was ACKed). */
1405 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1408 /* Can only happen with delayed DSACK + discard craziness */
1409 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1411 prev
= tcp_write_queue_prev(sk
, skb
);
1413 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1416 if (!tcp_skb_can_collapse_to(prev
))
1419 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1420 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1424 pcount
= tcp_skb_pcount(skb
);
1425 mss
= tcp_skb_seglen(skb
);
1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1428 * drop this restriction as unnecessary
1430 if (mss
!= tcp_skb_seglen(prev
))
1433 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1435 /* CHECKME: This is non-MSS split case only?, this will
1436 * cause skipped skbs due to advancing loop btw, original
1437 * has that feature too
1439 if (tcp_skb_pcount(skb
) <= 1)
1442 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1444 /* TODO: head merge to next could be attempted here
1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1446 * though it might not be worth of the additional hassle
1448 * ...we can probably just fallback to what was done
1449 * previously. We could try merging non-SACKed ones
1450 * as well but it probably isn't going to buy off
1451 * because later SACKs might again split them, and
1452 * it would make skb timestamp tracking considerably
1458 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1460 BUG_ON(len
> skb
->len
);
1462 /* MSS boundaries should be honoured or else pcount will
1463 * severely break even though it makes things bit trickier.
1464 * Optimize common case to avoid most of the divides
1466 mss
= tcp_skb_mss(skb
);
1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1469 * drop this restriction as unnecessary
1471 if (mss
!= tcp_skb_seglen(prev
))
1476 } else if (len
< mss
) {
1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1485 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1488 if (!skb_shift(prev
, skb
, len
))
1490 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1493 /* Hole filled allows collapsing with the next as well, this is very
1494 * useful when hole on every nth skb pattern happens
1496 if (prev
== tcp_write_queue_tail(sk
))
1498 skb
= tcp_write_queue_next(sk
, prev
);
1500 if (!skb_can_shift(skb
) ||
1501 (skb
== tcp_send_head(sk
)) ||
1502 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1503 (mss
!= tcp_skb_seglen(skb
)))
1507 if (skb_shift(prev
, skb
, len
)) {
1508 pcount
+= tcp_skb_pcount(skb
);
1509 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1513 state
->fack_count
+= pcount
;
1520 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1524 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1525 struct tcp_sack_block
*next_dup
,
1526 struct tcp_sacktag_state
*state
,
1527 u32 start_seq
, u32 end_seq
,
1530 struct tcp_sock
*tp
= tcp_sk(sk
);
1531 struct sk_buff
*tmp
;
1533 tcp_for_write_queue_from(skb
, sk
) {
1535 bool dup_sack
= dup_sack_in
;
1537 if (skb
== tcp_send_head(sk
))
1540 /* queue is in-order => we can short-circuit the walk early */
1541 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1545 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1546 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1547 next_dup
->start_seq
,
1553 /* skb reference here is a bit tricky to get right, since
1554 * shifting can eat and free both this skb and the next,
1555 * so not even _safe variant of the loop is enough.
1558 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1559 start_seq
, end_seq
, dup_sack
);
1568 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1574 if (unlikely(in_sack
< 0))
1578 TCP_SKB_CB(skb
)->sacked
=
1581 TCP_SKB_CB(skb
)->sacked
,
1582 TCP_SKB_CB(skb
)->seq
,
1583 TCP_SKB_CB(skb
)->end_seq
,
1585 tcp_skb_pcount(skb
),
1587 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1589 if (!before(TCP_SKB_CB(skb
)->seq
,
1590 tcp_highest_sack_seq(tp
)))
1591 tcp_advance_highest_sack(sk
, skb
);
1594 state
->fack_count
+= tcp_skb_pcount(skb
);
1599 /* Avoid all extra work that is being done by sacktag while walking in
1602 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1603 struct tcp_sacktag_state
*state
,
1606 tcp_for_write_queue_from(skb
, sk
) {
1607 if (skb
== tcp_send_head(sk
))
1610 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1613 state
->fack_count
+= tcp_skb_pcount(skb
);
1618 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1620 struct tcp_sack_block
*next_dup
,
1621 struct tcp_sacktag_state
*state
,
1627 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1628 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1629 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1630 next_dup
->start_seq
, next_dup
->end_seq
,
1637 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1639 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1643 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1644 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1646 struct tcp_sock
*tp
= tcp_sk(sk
);
1647 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1648 TCP_SKB_CB(ack_skb
)->sacked
);
1649 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1650 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1651 struct tcp_sack_block
*cache
;
1652 struct sk_buff
*skb
;
1653 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1655 bool found_dup_sack
= false;
1657 int first_sack_index
;
1660 state
->reord
= tp
->packets_out
;
1662 if (!tp
->sacked_out
) {
1663 if (WARN_ON(tp
->fackets_out
))
1664 tp
->fackets_out
= 0;
1665 tcp_highest_sack_reset(sk
);
1668 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1669 num_sacks
, prior_snd_una
);
1670 if (found_dup_sack
) {
1671 state
->flag
|= FLAG_DSACKING_ACK
;
1672 tp
->delivered
++; /* A spurious retransmission is delivered */
1675 /* Eliminate too old ACKs, but take into
1676 * account more or less fresh ones, they can
1677 * contain valid SACK info.
1679 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1682 if (!tp
->packets_out
)
1686 first_sack_index
= 0;
1687 for (i
= 0; i
< num_sacks
; i
++) {
1688 bool dup_sack
= !i
&& found_dup_sack
;
1690 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1691 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1693 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1694 sp
[used_sacks
].start_seq
,
1695 sp
[used_sacks
].end_seq
)) {
1699 if (!tp
->undo_marker
)
1700 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1702 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1704 /* Don't count olds caused by ACK reordering */
1705 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1706 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1708 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1711 NET_INC_STATS(sock_net(sk
), mib_idx
);
1713 first_sack_index
= -1;
1717 /* Ignore very old stuff early */
1718 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1724 /* order SACK blocks to allow in order walk of the retrans queue */
1725 for (i
= used_sacks
- 1; i
> 0; i
--) {
1726 for (j
= 0; j
< i
; j
++) {
1727 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1728 swap(sp
[j
], sp
[j
+ 1]);
1730 /* Track where the first SACK block goes to */
1731 if (j
== first_sack_index
)
1732 first_sack_index
= j
+ 1;
1737 skb
= tcp_write_queue_head(sk
);
1738 state
->fack_count
= 0;
1741 if (!tp
->sacked_out
) {
1742 /* It's already past, so skip checking against it */
1743 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1745 cache
= tp
->recv_sack_cache
;
1746 /* Skip empty blocks in at head of the cache */
1747 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1752 while (i
< used_sacks
) {
1753 u32 start_seq
= sp
[i
].start_seq
;
1754 u32 end_seq
= sp
[i
].end_seq
;
1755 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1756 struct tcp_sack_block
*next_dup
= NULL
;
1758 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1759 next_dup
= &sp
[i
+ 1];
1761 /* Skip too early cached blocks */
1762 while (tcp_sack_cache_ok(tp
, cache
) &&
1763 !before(start_seq
, cache
->end_seq
))
1766 /* Can skip some work by looking recv_sack_cache? */
1767 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1768 after(end_seq
, cache
->start_seq
)) {
1771 if (before(start_seq
, cache
->start_seq
)) {
1772 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1774 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1781 /* Rest of the block already fully processed? */
1782 if (!after(end_seq
, cache
->end_seq
))
1785 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1789 /* ...tail remains todo... */
1790 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1791 /* ...but better entrypoint exists! */
1792 skb
= tcp_highest_sack(sk
);
1795 state
->fack_count
= tp
->fackets_out
;
1800 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1801 /* Check overlap against next cached too (past this one already) */
1806 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1807 skb
= tcp_highest_sack(sk
);
1810 state
->fack_count
= tp
->fackets_out
;
1812 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1815 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1816 start_seq
, end_seq
, dup_sack
);
1822 /* Clear the head of the cache sack blocks so we can skip it next time */
1823 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1824 tp
->recv_sack_cache
[i
].start_seq
= 0;
1825 tp
->recv_sack_cache
[i
].end_seq
= 0;
1827 for (j
= 0; j
< used_sacks
; j
++)
1828 tp
->recv_sack_cache
[i
++] = sp
[j
];
1830 if ((state
->reord
< tp
->fackets_out
) &&
1831 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1832 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1834 tcp_verify_left_out(tp
);
1837 #if FASTRETRANS_DEBUG > 0
1838 WARN_ON((int)tp
->sacked_out
< 0);
1839 WARN_ON((int)tp
->lost_out
< 0);
1840 WARN_ON((int)tp
->retrans_out
< 0);
1841 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1847 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1849 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1853 holes
= max(tp
->lost_out
, 1U);
1854 holes
= min(holes
, tp
->packets_out
);
1856 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1857 tp
->sacked_out
= tp
->packets_out
- holes
;
1863 /* If we receive more dupacks than we expected counting segments
1864 * in assumption of absent reordering, interpret this as reordering.
1865 * The only another reason could be bug in receiver TCP.
1867 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1869 struct tcp_sock
*tp
= tcp_sk(sk
);
1870 if (tcp_limit_reno_sacked(tp
))
1871 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1876 static void tcp_add_reno_sack(struct sock
*sk
)
1878 struct tcp_sock
*tp
= tcp_sk(sk
);
1879 u32 prior_sacked
= tp
->sacked_out
;
1882 tcp_check_reno_reordering(sk
, 0);
1883 if (tp
->sacked_out
> prior_sacked
)
1884 tp
->delivered
++; /* Some out-of-order packet is delivered */
1885 tcp_verify_left_out(tp
);
1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1890 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1892 struct tcp_sock
*tp
= tcp_sk(sk
);
1895 /* One ACK acked hole. The rest eat duplicate ACKs. */
1896 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1897 if (acked
- 1 >= tp
->sacked_out
)
1900 tp
->sacked_out
-= acked
- 1;
1902 tcp_check_reno_reordering(sk
, acked
);
1903 tcp_verify_left_out(tp
);
1906 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1911 void tcp_clear_retrans(struct tcp_sock
*tp
)
1913 tp
->retrans_out
= 0;
1915 tp
->undo_marker
= 0;
1916 tp
->undo_retrans
= -1;
1917 tp
->fackets_out
= 0;
1921 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1923 tp
->undo_marker
= tp
->snd_una
;
1924 /* Retransmission still in flight may cause DSACKs later. */
1925 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1928 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1929 * and reset tags completely, otherwise preserve SACKs. If receiver
1930 * dropped its ofo queue, we will know this due to reneging detection.
1932 void tcp_enter_loss(struct sock
*sk
)
1934 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1935 struct tcp_sock
*tp
= tcp_sk(sk
);
1936 struct net
*net
= sock_net(sk
);
1937 struct sk_buff
*skb
;
1938 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1939 bool is_reneg
; /* is receiver reneging on SACKs? */
1942 /* Reduce ssthresh if it has not yet been made inside this window. */
1943 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1944 !after(tp
->high_seq
, tp
->snd_una
) ||
1945 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1946 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1947 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1948 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1952 tp
->snd_cwnd_cnt
= 0;
1953 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1955 tp
->retrans_out
= 0;
1958 if (tcp_is_reno(tp
))
1959 tcp_reset_reno_sack(tp
);
1961 skb
= tcp_write_queue_head(sk
);
1962 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1964 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1966 tp
->fackets_out
= 0;
1968 tcp_clear_all_retrans_hints(tp
);
1970 tcp_for_write_queue(skb
, sk
) {
1971 if (skb
== tcp_send_head(sk
))
1974 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1977 tcp_sum_lost(tp
, skb
);
1978 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1980 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1981 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1982 tp
->lost_out
+= tcp_skb_pcount(skb
);
1985 tcp_verify_left_out(tp
);
1987 /* Timeout in disordered state after receiving substantial DUPACKs
1988 * suggests that the degree of reordering is over-estimated.
1990 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1991 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1992 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1993 net
->ipv4
.sysctl_tcp_reordering
);
1994 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1995 tp
->high_seq
= tp
->snd_nxt
;
1996 tcp_ecn_queue_cwr(tp
);
1998 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1999 * loss recovery is underway except recurring timeout(s) on
2000 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2002 * In theory F-RTO can be used repeatedly during loss recovery.
2003 * In practice this interacts badly with broken middle-boxes that
2004 * falsely raise the receive window, which results in repeated
2005 * timeouts and stop-and-go behavior.
2007 tp
->frto
= sysctl_tcp_frto
&&
2008 (new_recovery
|| icsk
->icsk_retransmits
) &&
2009 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2012 /* If ACK arrived pointing to a remembered SACK, it means that our
2013 * remembered SACKs do not reflect real state of receiver i.e.
2014 * receiver _host_ is heavily congested (or buggy).
2016 * To avoid big spurious retransmission bursts due to transient SACK
2017 * scoreboard oddities that look like reneging, we give the receiver a
2018 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2019 * restore sanity to the SACK scoreboard. If the apparent reneging
2020 * persists until this RTO then we'll clear the SACK scoreboard.
2022 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2024 if (flag
& FLAG_SACK_RENEGING
) {
2025 struct tcp_sock
*tp
= tcp_sk(sk
);
2026 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2027 msecs_to_jiffies(10));
2029 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2030 delay
, TCP_RTO_MAX
);
2036 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2038 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2041 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2042 * counter when SACK is enabled (without SACK, sacked_out is used for
2045 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2046 * segments up to the highest received SACK block so far and holes in
2049 * With reordering, holes may still be in flight, so RFC3517 recovery
2050 * uses pure sacked_out (total number of SACKed segments) even though
2051 * it violates the RFC that uses duplicate ACKs, often these are equal
2052 * but when e.g. out-of-window ACKs or packet duplication occurs,
2053 * they differ. Since neither occurs due to loss, TCP should really
2056 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2058 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2061 /* Linux NewReno/SACK/FACK/ECN state machine.
2062 * --------------------------------------
2064 * "Open" Normal state, no dubious events, fast path.
2065 * "Disorder" In all the respects it is "Open",
2066 * but requires a bit more attention. It is entered when
2067 * we see some SACKs or dupacks. It is split of "Open"
2068 * mainly to move some processing from fast path to slow one.
2069 * "CWR" CWND was reduced due to some Congestion Notification event.
2070 * It can be ECN, ICMP source quench, local device congestion.
2071 * "Recovery" CWND was reduced, we are fast-retransmitting.
2072 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2074 * tcp_fastretrans_alert() is entered:
2075 * - each incoming ACK, if state is not "Open"
2076 * - when arrived ACK is unusual, namely:
2081 * Counting packets in flight is pretty simple.
2083 * in_flight = packets_out - left_out + retrans_out
2085 * packets_out is SND.NXT-SND.UNA counted in packets.
2087 * retrans_out is number of retransmitted segments.
2089 * left_out is number of segments left network, but not ACKed yet.
2091 * left_out = sacked_out + lost_out
2093 * sacked_out: Packets, which arrived to receiver out of order
2094 * and hence not ACKed. With SACKs this number is simply
2095 * amount of SACKed data. Even without SACKs
2096 * it is easy to give pretty reliable estimate of this number,
2097 * counting duplicate ACKs.
2099 * lost_out: Packets lost by network. TCP has no explicit
2100 * "loss notification" feedback from network (for now).
2101 * It means that this number can be only _guessed_.
2102 * Actually, it is the heuristics to predict lossage that
2103 * distinguishes different algorithms.
2105 * F.e. after RTO, when all the queue is considered as lost,
2106 * lost_out = packets_out and in_flight = retrans_out.
2108 * Essentially, we have now a few algorithms detecting
2111 * If the receiver supports SACK:
2113 * RFC6675/3517: It is the conventional algorithm. A packet is
2114 * considered lost if the number of higher sequence packets
2115 * SACKed is greater than or equal the DUPACK thoreshold
2116 * (reordering). This is implemented in tcp_mark_head_lost and
2117 * tcp_update_scoreboard.
2119 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2120 * (2017-) that checks timing instead of counting DUPACKs.
2121 * Essentially a packet is considered lost if it's not S/ACKed
2122 * after RTT + reordering_window, where both metrics are
2123 * dynamically measured and adjusted. This is implemented in
2124 * tcp_rack_mark_lost.
2126 * FACK (Disabled by default. Subsumbed by RACK):
2127 * It is the simplest heuristics. As soon as we decided
2128 * that something is lost, we decide that _all_ not SACKed
2129 * packets until the most forward SACK are lost. I.e.
2130 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2131 * It is absolutely correct estimate, if network does not reorder
2132 * packets. And it loses any connection to reality when reordering
2133 * takes place. We use FACK by default until reordering
2134 * is suspected on the path to this destination.
2136 * If the receiver does not support SACK:
2138 * NewReno (RFC6582): in Recovery we assume that one segment
2139 * is lost (classic Reno). While we are in Recovery and
2140 * a partial ACK arrives, we assume that one more packet
2141 * is lost (NewReno). This heuristics are the same in NewReno
2144 * Really tricky (and requiring careful tuning) part of algorithm
2145 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2146 * The first determines the moment _when_ we should reduce CWND and,
2147 * hence, slow down forward transmission. In fact, it determines the moment
2148 * when we decide that hole is caused by loss, rather than by a reorder.
2150 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2151 * holes, caused by lost packets.
2153 * And the most logically complicated part of algorithm is undo
2154 * heuristics. We detect false retransmits due to both too early
2155 * fast retransmit (reordering) and underestimated RTO, analyzing
2156 * timestamps and D-SACKs. When we detect that some segments were
2157 * retransmitted by mistake and CWND reduction was wrong, we undo
2158 * window reduction and abort recovery phase. This logic is hidden
2159 * inside several functions named tcp_try_undo_<something>.
2162 /* This function decides, when we should leave Disordered state
2163 * and enter Recovery phase, reducing congestion window.
2165 * Main question: may we further continue forward transmission
2166 * with the same cwnd?
2168 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2170 struct tcp_sock
*tp
= tcp_sk(sk
);
2172 /* Trick#1: The loss is proven. */
2176 /* Not-A-Trick#2 : Classic rule... */
2177 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2183 /* Detect loss in event "A" above by marking head of queue up as lost.
2184 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2185 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2186 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2187 * the maximum SACKed segments to pass before reaching this limit.
2189 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2191 struct tcp_sock
*tp
= tcp_sk(sk
);
2192 struct sk_buff
*skb
;
2193 int cnt
, oldcnt
, lost
;
2195 /* Use SACK to deduce losses of new sequences sent during recovery */
2196 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2198 WARN_ON(packets
> tp
->packets_out
);
2199 if (tp
->lost_skb_hint
) {
2200 skb
= tp
->lost_skb_hint
;
2201 cnt
= tp
->lost_cnt_hint
;
2202 /* Head already handled? */
2203 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2206 skb
= tcp_write_queue_head(sk
);
2210 tcp_for_write_queue_from(skb
, sk
) {
2211 if (skb
== tcp_send_head(sk
))
2213 /* TODO: do this better */
2214 /* this is not the most efficient way to do this... */
2215 tp
->lost_skb_hint
= skb
;
2216 tp
->lost_cnt_hint
= cnt
;
2218 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2222 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2223 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2224 cnt
+= tcp_skb_pcount(skb
);
2226 if (cnt
> packets
) {
2227 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2228 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2229 (oldcnt
>= packets
))
2232 mss
= tcp_skb_mss(skb
);
2233 /* If needed, chop off the prefix to mark as lost. */
2234 lost
= (packets
- oldcnt
) * mss
;
2235 if (lost
< skb
->len
&&
2236 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2241 tcp_skb_mark_lost(tp
, skb
);
2246 tcp_verify_left_out(tp
);
2249 /* Account newly detected lost packet(s) */
2251 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2253 struct tcp_sock
*tp
= tcp_sk(sk
);
2255 if (tcp_is_reno(tp
)) {
2256 tcp_mark_head_lost(sk
, 1, 1);
2257 } else if (tcp_is_fack(tp
)) {
2258 int lost
= tp
->fackets_out
- tp
->reordering
;
2261 tcp_mark_head_lost(sk
, lost
, 0);
2263 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2264 if (sacked_upto
>= 0)
2265 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2266 else if (fast_rexmit
)
2267 tcp_mark_head_lost(sk
, 1, 1);
2271 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2273 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2274 before(tp
->rx_opt
.rcv_tsecr
, when
);
2277 /* skb is spurious retransmitted if the returned timestamp echo
2278 * reply is prior to the skb transmission time
2280 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2281 const struct sk_buff
*skb
)
2283 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2284 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2287 /* Nothing was retransmitted or returned timestamp is less
2288 * than timestamp of the first retransmission.
2290 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2292 return !tp
->retrans_stamp
||
2293 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2296 /* Undo procedures. */
2298 /* We can clear retrans_stamp when there are no retransmissions in the
2299 * window. It would seem that it is trivially available for us in
2300 * tp->retrans_out, however, that kind of assumptions doesn't consider
2301 * what will happen if errors occur when sending retransmission for the
2302 * second time. ...It could the that such segment has only
2303 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2304 * the head skb is enough except for some reneging corner cases that
2305 * are not worth the effort.
2307 * Main reason for all this complexity is the fact that connection dying
2308 * time now depends on the validity of the retrans_stamp, in particular,
2309 * that successive retransmissions of a segment must not advance
2310 * retrans_stamp under any conditions.
2312 static bool tcp_any_retrans_done(const struct sock
*sk
)
2314 const struct tcp_sock
*tp
= tcp_sk(sk
);
2315 struct sk_buff
*skb
;
2317 if (tp
->retrans_out
)
2320 skb
= tcp_write_queue_head(sk
);
2321 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2327 #if FASTRETRANS_DEBUG > 1
2328 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2330 struct tcp_sock
*tp
= tcp_sk(sk
);
2331 struct inet_sock
*inet
= inet_sk(sk
);
2333 if (sk
->sk_family
== AF_INET
) {
2334 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2336 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2337 tp
->snd_cwnd
, tcp_left_out(tp
),
2338 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2341 #if IS_ENABLED(CONFIG_IPV6)
2342 else if (sk
->sk_family
== AF_INET6
) {
2343 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2345 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2346 tp
->snd_cwnd
, tcp_left_out(tp
),
2347 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2353 #define DBGUNDO(x...) do { } while (0)
2356 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2358 struct tcp_sock
*tp
= tcp_sk(sk
);
2361 struct sk_buff
*skb
;
2363 tcp_for_write_queue(skb
, sk
) {
2364 if (skb
== tcp_send_head(sk
))
2366 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2369 tcp_clear_all_retrans_hints(tp
);
2372 if (tp
->prior_ssthresh
) {
2373 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2375 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2377 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2378 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2379 tcp_ecn_withdraw_cwr(tp
);
2382 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2383 tp
->undo_marker
= 0;
2386 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2388 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2391 /* People celebrate: "We love our President!" */
2392 static bool tcp_try_undo_recovery(struct sock
*sk
)
2394 struct tcp_sock
*tp
= tcp_sk(sk
);
2396 if (tcp_may_undo(tp
)) {
2399 /* Happy end! We did not retransmit anything
2400 * or our original transmission succeeded.
2402 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2403 tcp_undo_cwnd_reduction(sk
, false);
2404 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2405 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2407 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2409 NET_INC_STATS(sock_net(sk
), mib_idx
);
2411 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2412 /* Hold old state until something *above* high_seq
2413 * is ACKed. For Reno it is MUST to prevent false
2414 * fast retransmits (RFC2582). SACK TCP is safe. */
2415 if (!tcp_any_retrans_done(sk
))
2416 tp
->retrans_stamp
= 0;
2419 tcp_set_ca_state(sk
, TCP_CA_Open
);
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static bool tcp_try_undo_dsack(struct sock
*sk
)
2426 struct tcp_sock
*tp
= tcp_sk(sk
);
2428 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2429 DBGUNDO(sk
, "D-SACK");
2430 tcp_undo_cwnd_reduction(sk
, false);
2431 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2437 /* Undo during loss recovery after partial ACK or using F-RTO. */
2438 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2440 struct tcp_sock
*tp
= tcp_sk(sk
);
2442 if (frto_undo
|| tcp_may_undo(tp
)) {
2443 tcp_undo_cwnd_reduction(sk
, true);
2445 DBGUNDO(sk
, "partial loss");
2446 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2448 NET_INC_STATS(sock_net(sk
),
2449 LINUX_MIB_TCPSPURIOUSRTOS
);
2450 inet_csk(sk
)->icsk_retransmits
= 0;
2451 if (frto_undo
|| tcp_is_sack(tp
))
2452 tcp_set_ca_state(sk
, TCP_CA_Open
);
2458 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459 * It computes the number of packets to send (sndcnt) based on packets newly
2461 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2462 * cwnd reductions across a full RTT.
2463 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2464 * But when the retransmits are acked without further losses, PRR
2465 * slow starts cwnd up to ssthresh to speed up the recovery.
2467 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2469 struct tcp_sock
*tp
= tcp_sk(sk
);
2471 tp
->high_seq
= tp
->snd_nxt
;
2472 tp
->tlp_high_seq
= 0;
2473 tp
->snd_cwnd_cnt
= 0;
2474 tp
->prior_cwnd
= tp
->snd_cwnd
;
2475 tp
->prr_delivered
= 0;
2477 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2478 tcp_ecn_queue_cwr(tp
);
2481 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2483 struct tcp_sock
*tp
= tcp_sk(sk
);
2485 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2487 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2490 tp
->prr_delivered
+= newly_acked_sacked
;
2492 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2494 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2495 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2496 !(flag
& FLAG_LOST_RETRANS
)) {
2497 sndcnt
= min_t(int, delta
,
2498 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2499 newly_acked_sacked
) + 1);
2501 sndcnt
= min(delta
, newly_acked_sacked
);
2503 /* Force a fast retransmit upon entering fast recovery */
2504 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2505 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2508 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2510 struct tcp_sock
*tp
= tcp_sk(sk
);
2512 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2515 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2516 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2517 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2518 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2519 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2521 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2524 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2525 void tcp_enter_cwr(struct sock
*sk
)
2527 struct tcp_sock
*tp
= tcp_sk(sk
);
2529 tp
->prior_ssthresh
= 0;
2530 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2531 tp
->undo_marker
= 0;
2532 tcp_init_cwnd_reduction(sk
);
2533 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2536 EXPORT_SYMBOL(tcp_enter_cwr
);
2538 static void tcp_try_keep_open(struct sock
*sk
)
2540 struct tcp_sock
*tp
= tcp_sk(sk
);
2541 int state
= TCP_CA_Open
;
2543 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2544 state
= TCP_CA_Disorder
;
2546 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2547 tcp_set_ca_state(sk
, state
);
2548 tp
->high_seq
= tp
->snd_nxt
;
2552 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2554 struct tcp_sock
*tp
= tcp_sk(sk
);
2556 tcp_verify_left_out(tp
);
2558 if (!tcp_any_retrans_done(sk
))
2559 tp
->retrans_stamp
= 0;
2561 if (flag
& FLAG_ECE
)
2564 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2565 tcp_try_keep_open(sk
);
2569 static void tcp_mtup_probe_failed(struct sock
*sk
)
2571 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2573 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2574 icsk
->icsk_mtup
.probe_size
= 0;
2575 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2578 static void tcp_mtup_probe_success(struct sock
*sk
)
2580 struct tcp_sock
*tp
= tcp_sk(sk
);
2581 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2583 /* FIXME: breaks with very large cwnd */
2584 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2585 tp
->snd_cwnd
= tp
->snd_cwnd
*
2586 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2587 icsk
->icsk_mtup
.probe_size
;
2588 tp
->snd_cwnd_cnt
= 0;
2589 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2590 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2592 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2593 icsk
->icsk_mtup
.probe_size
= 0;
2594 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2595 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2598 /* Do a simple retransmit without using the backoff mechanisms in
2599 * tcp_timer. This is used for path mtu discovery.
2600 * The socket is already locked here.
2602 void tcp_simple_retransmit(struct sock
*sk
)
2604 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2605 struct tcp_sock
*tp
= tcp_sk(sk
);
2606 struct sk_buff
*skb
;
2607 unsigned int mss
= tcp_current_mss(sk
);
2608 u32 prior_lost
= tp
->lost_out
;
2610 tcp_for_write_queue(skb
, sk
) {
2611 if (skb
== tcp_send_head(sk
))
2613 if (tcp_skb_seglen(skb
) > mss
&&
2614 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2615 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2616 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2617 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2619 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2623 tcp_clear_retrans_hints_partial(tp
);
2625 if (prior_lost
== tp
->lost_out
)
2628 if (tcp_is_reno(tp
))
2629 tcp_limit_reno_sacked(tp
);
2631 tcp_verify_left_out(tp
);
2633 /* Don't muck with the congestion window here.
2634 * Reason is that we do not increase amount of _data_
2635 * in network, but units changed and effective
2636 * cwnd/ssthresh really reduced now.
2638 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2639 tp
->high_seq
= tp
->snd_nxt
;
2640 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2641 tp
->prior_ssthresh
= 0;
2642 tp
->undo_marker
= 0;
2643 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2645 tcp_xmit_retransmit_queue(sk
);
2647 EXPORT_SYMBOL(tcp_simple_retransmit
);
2649 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2651 struct tcp_sock
*tp
= tcp_sk(sk
);
2654 if (tcp_is_reno(tp
))
2655 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2657 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2659 NET_INC_STATS(sock_net(sk
), mib_idx
);
2661 tp
->prior_ssthresh
= 0;
2664 if (!tcp_in_cwnd_reduction(sk
)) {
2666 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2667 tcp_init_cwnd_reduction(sk
);
2669 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2672 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2673 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2675 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2678 struct tcp_sock
*tp
= tcp_sk(sk
);
2679 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2681 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2682 tcp_try_undo_loss(sk
, false))
2685 /* The ACK (s)acks some never-retransmitted data meaning not all
2686 * the data packets before the timeout were lost. Therefore we
2687 * undo the congestion window and state. This is essentially
2688 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2689 * a retransmitted skb is permantly marked, we can apply such an
2690 * operation even if F-RTO was not used.
2692 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2693 tcp_try_undo_loss(sk
, tp
->undo_marker
))
2696 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2697 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2698 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2699 tp
->frto
= 0; /* Step 3.a. loss was real */
2700 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2701 tp
->high_seq
= tp
->snd_nxt
;
2702 /* Step 2.b. Try send new data (but deferred until cwnd
2703 * is updated in tcp_ack()). Otherwise fall back to
2704 * the conventional recovery.
2706 if (tcp_send_head(sk
) &&
2707 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2708 *rexmit
= REXMIT_NEW
;
2716 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2717 tcp_try_undo_recovery(sk
);
2720 if (tcp_is_reno(tp
)) {
2721 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2722 * delivered. Lower inflight to clock out (re)tranmissions.
2724 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2725 tcp_add_reno_sack(sk
);
2726 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2727 tcp_reset_reno_sack(tp
);
2729 *rexmit
= REXMIT_LOST
;
2732 /* Undo during fast recovery after partial ACK. */
2733 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
)
2735 struct tcp_sock
*tp
= tcp_sk(sk
);
2737 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2738 /* Plain luck! Hole if filled with delayed
2739 * packet, rather than with a retransmit.
2741 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2743 /* We are getting evidence that the reordering degree is higher
2744 * than we realized. If there are no retransmits out then we
2745 * can undo. Otherwise we clock out new packets but do not
2746 * mark more packets lost or retransmit more.
2748 if (tp
->retrans_out
)
2751 if (!tcp_any_retrans_done(sk
))
2752 tp
->retrans_stamp
= 0;
2754 DBGUNDO(sk
, "partial recovery");
2755 tcp_undo_cwnd_reduction(sk
, true);
2756 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2757 tcp_try_keep_open(sk
);
2763 static void tcp_rack_identify_loss(struct sock
*sk
, int *ack_flag
,
2764 const struct skb_mstamp
*ack_time
)
2766 struct tcp_sock
*tp
= tcp_sk(sk
);
2768 /* Use RACK to detect loss */
2769 if (sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
) {
2770 u32 prior_retrans
= tp
->retrans_out
;
2772 tcp_rack_mark_lost(sk
, ack_time
);
2773 if (prior_retrans
> tp
->retrans_out
)
2774 *ack_flag
|= FLAG_LOST_RETRANS
;
2778 /* Process an event, which can update packets-in-flight not trivially.
2779 * Main goal of this function is to calculate new estimate for left_out,
2780 * taking into account both packets sitting in receiver's buffer and
2781 * packets lost by network.
2783 * Besides that it updates the congestion state when packet loss or ECN
2784 * is detected. But it does not reduce the cwnd, it is done by the
2785 * congestion control later.
2787 * It does _not_ decide what to send, it is made in function
2788 * tcp_xmit_retransmit_queue().
2790 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2791 bool is_dupack
, int *ack_flag
, int *rexmit
,
2792 const struct skb_mstamp
*ack_time
)
2794 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2795 struct tcp_sock
*tp
= tcp_sk(sk
);
2796 int fast_rexmit
= 0, flag
= *ack_flag
;
2797 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2798 (tcp_fackets_out(tp
) > tp
->reordering
));
2800 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2802 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2803 tp
->fackets_out
= 0;
2805 /* Now state machine starts.
2806 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2807 if (flag
& FLAG_ECE
)
2808 tp
->prior_ssthresh
= 0;
2810 /* B. In all the states check for reneging SACKs. */
2811 if (tcp_check_sack_reneging(sk
, flag
))
2814 /* C. Check consistency of the current state. */
2815 tcp_verify_left_out(tp
);
2817 /* D. Check state exit conditions. State can be terminated
2818 * when high_seq is ACKed. */
2819 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2820 WARN_ON(tp
->retrans_out
!= 0);
2821 tp
->retrans_stamp
= 0;
2822 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2823 switch (icsk
->icsk_ca_state
) {
2825 /* CWR is to be held something *above* high_seq
2826 * is ACKed for CWR bit to reach receiver. */
2827 if (tp
->snd_una
!= tp
->high_seq
) {
2828 tcp_end_cwnd_reduction(sk
);
2829 tcp_set_ca_state(sk
, TCP_CA_Open
);
2833 case TCP_CA_Recovery
:
2834 if (tcp_is_reno(tp
))
2835 tcp_reset_reno_sack(tp
);
2836 if (tcp_try_undo_recovery(sk
))
2838 tcp_end_cwnd_reduction(sk
);
2843 /* E. Process state. */
2844 switch (icsk
->icsk_ca_state
) {
2845 case TCP_CA_Recovery
:
2846 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2847 if (tcp_is_reno(tp
) && is_dupack
)
2848 tcp_add_reno_sack(sk
);
2850 if (tcp_try_undo_partial(sk
, acked
))
2852 /* Partial ACK arrived. Force fast retransmit. */
2853 do_lost
= tcp_is_reno(tp
) ||
2854 tcp_fackets_out(tp
) > tp
->reordering
;
2856 if (tcp_try_undo_dsack(sk
)) {
2857 tcp_try_keep_open(sk
);
2860 tcp_rack_identify_loss(sk
, ack_flag
, ack_time
);
2863 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2864 tcp_rack_identify_loss(sk
, ack_flag
, ack_time
);
2865 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2866 (*ack_flag
& FLAG_LOST_RETRANS
)))
2868 /* Change state if cwnd is undone or retransmits are lost */
2870 if (tcp_is_reno(tp
)) {
2871 if (flag
& FLAG_SND_UNA_ADVANCED
)
2872 tcp_reset_reno_sack(tp
);
2874 tcp_add_reno_sack(sk
);
2877 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2878 tcp_try_undo_dsack(sk
);
2880 tcp_rack_identify_loss(sk
, ack_flag
, ack_time
);
2881 if (!tcp_time_to_recover(sk
, flag
)) {
2882 tcp_try_to_open(sk
, flag
);
2886 /* MTU probe failure: don't reduce cwnd */
2887 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2888 icsk
->icsk_mtup
.probe_size
&&
2889 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2890 tcp_mtup_probe_failed(sk
);
2891 /* Restores the reduction we did in tcp_mtup_probe() */
2893 tcp_simple_retransmit(sk
);
2897 /* Otherwise enter Recovery state */
2898 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2903 tcp_update_scoreboard(sk
, fast_rexmit
);
2904 *rexmit
= REXMIT_LOST
;
2907 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2909 struct tcp_sock
*tp
= tcp_sk(sk
);
2910 u32 wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2912 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_time_stamp
,
2913 rtt_us
? : jiffies_to_usecs(1));
2916 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2917 long seq_rtt_us
, long sack_rtt_us
,
2920 const struct tcp_sock
*tp
= tcp_sk(sk
);
2922 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2923 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2924 * Karn's algorithm forbids taking RTT if some retransmitted data
2925 * is acked (RFC6298).
2928 seq_rtt_us
= sack_rtt_us
;
2930 /* RTTM Rule: A TSecr value received in a segment is used to
2931 * update the averaged RTT measurement only if the segment
2932 * acknowledges some new data, i.e., only if it advances the
2933 * left edge of the send window.
2934 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2936 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2938 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2939 tp
->rx_opt
.rcv_tsecr
);
2943 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2944 * always taken together with ACK, SACK, or TS-opts. Any negative
2945 * values will be skipped with the seq_rtt_us < 0 check above.
2947 tcp_update_rtt_min(sk
, ca_rtt_us
);
2948 tcp_rtt_estimator(sk
, seq_rtt_us
);
2951 /* RFC6298: only reset backoff on valid RTT measurement. */
2952 inet_csk(sk
)->icsk_backoff
= 0;
2956 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2957 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2961 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2962 struct skb_mstamp now
;
2964 skb_mstamp_get(&now
);
2965 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2968 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
2972 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2974 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2976 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2977 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2980 /* Restart timer after forward progress on connection.
2981 * RFC2988 recommends to restart timer to now+rto.
2983 void tcp_rearm_rto(struct sock
*sk
)
2985 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2986 struct tcp_sock
*tp
= tcp_sk(sk
);
2988 /* If the retrans timer is currently being used by Fast Open
2989 * for SYN-ACK retrans purpose, stay put.
2991 if (tp
->fastopen_rsk
)
2994 if (!tp
->packets_out
) {
2995 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2997 u32 rto
= inet_csk(sk
)->icsk_rto
;
2998 /* Offset the time elapsed after installing regular RTO */
2999 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
3000 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3001 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3002 const u32 rto_time_stamp
=
3003 tcp_skb_timestamp(skb
) + rto
;
3004 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3005 /* delta may not be positive if the socket is locked
3006 * when the retrans timer fires and is rescheduled.
3011 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3016 /* If we get here, the whole TSO packet has not been acked. */
3017 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3019 struct tcp_sock
*tp
= tcp_sk(sk
);
3022 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3024 packets_acked
= tcp_skb_pcount(skb
);
3025 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3027 packets_acked
-= tcp_skb_pcount(skb
);
3029 if (packets_acked
) {
3030 BUG_ON(tcp_skb_pcount(skb
) == 0);
3031 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3034 return packets_acked
;
3037 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3040 const struct skb_shared_info
*shinfo
;
3042 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3043 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3046 shinfo
= skb_shinfo(skb
);
3047 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3048 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
))
3049 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3052 /* Remove acknowledged frames from the retransmission queue. If our packet
3053 * is before the ack sequence we can discard it as it's confirmed to have
3054 * arrived at the other end.
3056 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3057 u32 prior_snd_una
, int *acked
,
3058 struct tcp_sacktag_state
*sack
)
3060 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3061 struct skb_mstamp first_ackt
, last_ackt
;
3062 struct skb_mstamp
*now
= &sack
->ack_time
;
3063 struct tcp_sock
*tp
= tcp_sk(sk
);
3064 u32 prior_sacked
= tp
->sacked_out
;
3065 u32 reord
= tp
->packets_out
;
3066 bool fully_acked
= true;
3067 long sack_rtt_us
= -1L;
3068 long seq_rtt_us
= -1L;
3069 long ca_rtt_us
= -1L;
3070 struct sk_buff
*skb
;
3072 u32 last_in_flight
= 0;
3078 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3079 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3080 u8 sacked
= scb
->sacked
;
3083 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3085 /* Determine how many packets and what bytes were acked, tso and else */
3086 if (after(scb
->end_seq
, tp
->snd_una
)) {
3087 if (tcp_skb_pcount(skb
) == 1 ||
3088 !after(tp
->snd_una
, scb
->seq
))
3091 acked_pcount
= tcp_tso_acked(sk
, skb
);
3094 fully_acked
= false;
3096 /* Speedup tcp_unlink_write_queue() and next loop */
3097 prefetchw(skb
->next
);
3098 acked_pcount
= tcp_skb_pcount(skb
);
3101 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3102 if (sacked
& TCPCB_SACKED_RETRANS
)
3103 tp
->retrans_out
-= acked_pcount
;
3104 flag
|= FLAG_RETRANS_DATA_ACKED
;
3105 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3106 last_ackt
= skb
->skb_mstamp
;
3107 WARN_ON_ONCE(last_ackt
.v64
== 0);
3108 if (!first_ackt
.v64
)
3109 first_ackt
= last_ackt
;
3111 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3112 reord
= min(pkts_acked
, reord
);
3113 if (!after(scb
->end_seq
, tp
->high_seq
))
3114 flag
|= FLAG_ORIG_SACK_ACKED
;
3117 if (sacked
& TCPCB_SACKED_ACKED
) {
3118 tp
->sacked_out
-= acked_pcount
;
3119 } else if (tcp_is_sack(tp
)) {
3120 tp
->delivered
+= acked_pcount
;
3121 if (!tcp_skb_spurious_retrans(tp
, skb
))
3122 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3126 if (sacked
& TCPCB_LOST
)
3127 tp
->lost_out
-= acked_pcount
;
3129 tp
->packets_out
-= acked_pcount
;
3130 pkts_acked
+= acked_pcount
;
3131 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3133 /* Initial outgoing SYN's get put onto the write_queue
3134 * just like anything else we transmit. It is not
3135 * true data, and if we misinform our callers that
3136 * this ACK acks real data, we will erroneously exit
3137 * connection startup slow start one packet too
3138 * quickly. This is severely frowned upon behavior.
3140 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3141 flag
|= FLAG_DATA_ACKED
;
3143 flag
|= FLAG_SYN_ACKED
;
3144 tp
->retrans_stamp
= 0;
3150 tcp_unlink_write_queue(skb
, sk
);
3151 sk_wmem_free_skb(sk
, skb
);
3152 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3153 tp
->retransmit_skb_hint
= NULL
;
3154 if (unlikely(skb
== tp
->lost_skb_hint
))
3155 tp
->lost_skb_hint
= NULL
;
3159 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3161 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3162 tp
->snd_up
= tp
->snd_una
;
3164 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3165 flag
|= FLAG_SACK_RENEGING
;
3167 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3168 seq_rtt_us
= skb_mstamp_us_delta(now
, &first_ackt
);
3169 ca_rtt_us
= skb_mstamp_us_delta(now
, &last_ackt
);
3171 if (sack
->first_sackt
.v64
) {
3172 sack_rtt_us
= skb_mstamp_us_delta(now
, &sack
->first_sackt
);
3173 ca_rtt_us
= skb_mstamp_us_delta(now
, &sack
->last_sackt
);
3175 sack
->rate
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet, or -1 */
3176 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3179 if (flag
& FLAG_ACKED
) {
3181 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3182 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3183 tcp_mtup_probe_success(sk
);
3186 if (tcp_is_reno(tp
)) {
3187 tcp_remove_reno_sacks(sk
, pkts_acked
);
3191 /* Non-retransmitted hole got filled? That's reordering */
3192 if (reord
< prior_fackets
&& reord
<= tp
->fackets_out
)
3193 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3195 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3196 prior_sacked
- tp
->sacked_out
;
3197 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3200 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3202 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3203 sack_rtt_us
> skb_mstamp_us_delta(now
, &skb
->skb_mstamp
)) {
3204 /* Do not re-arm RTO if the sack RTT is measured from data sent
3205 * after when the head was last (re)transmitted. Otherwise the
3206 * timeout may continue to extend in loss recovery.
3211 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3212 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3213 .rtt_us
= ca_rtt_us
,
3214 .in_flight
= last_in_flight
};
3216 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3219 #if FASTRETRANS_DEBUG > 0
3220 WARN_ON((int)tp
->sacked_out
< 0);
3221 WARN_ON((int)tp
->lost_out
< 0);
3222 WARN_ON((int)tp
->retrans_out
< 0);
3223 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3224 icsk
= inet_csk(sk
);
3226 pr_debug("Leak l=%u %d\n",
3227 tp
->lost_out
, icsk
->icsk_ca_state
);
3230 if (tp
->sacked_out
) {
3231 pr_debug("Leak s=%u %d\n",
3232 tp
->sacked_out
, icsk
->icsk_ca_state
);
3235 if (tp
->retrans_out
) {
3236 pr_debug("Leak r=%u %d\n",
3237 tp
->retrans_out
, icsk
->icsk_ca_state
);
3238 tp
->retrans_out
= 0;
3242 *acked
= pkts_acked
;
3246 static void tcp_ack_probe(struct sock
*sk
)
3248 const struct tcp_sock
*tp
= tcp_sk(sk
);
3249 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3251 /* Was it a usable window open? */
3253 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3254 icsk
->icsk_backoff
= 0;
3255 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3256 /* Socket must be waked up by subsequent tcp_data_snd_check().
3257 * This function is not for random using!
3260 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3262 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3267 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3269 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3270 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3273 /* Decide wheather to run the increase function of congestion control. */
3274 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3276 /* If reordering is high then always grow cwnd whenever data is
3277 * delivered regardless of its ordering. Otherwise stay conservative
3278 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3279 * new SACK or ECE mark may first advance cwnd here and later reduce
3280 * cwnd in tcp_fastretrans_alert() based on more states.
3282 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3283 return flag
& FLAG_FORWARD_PROGRESS
;
3285 return flag
& FLAG_DATA_ACKED
;
3288 /* The "ultimate" congestion control function that aims to replace the rigid
3289 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3290 * It's called toward the end of processing an ACK with precise rate
3291 * information. All transmission or retransmission are delayed afterwards.
3293 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3294 int flag
, const struct rate_sample
*rs
)
3296 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3298 if (icsk
->icsk_ca_ops
->cong_control
) {
3299 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3303 if (tcp_in_cwnd_reduction(sk
)) {
3304 /* Reduce cwnd if state mandates */
3305 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3306 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3307 /* Advance cwnd if state allows */
3308 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3310 tcp_update_pacing_rate(sk
);
3313 /* Check that window update is acceptable.
3314 * The function assumes that snd_una<=ack<=snd_next.
3316 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3317 const u32 ack
, const u32 ack_seq
,
3320 return after(ack
, tp
->snd_una
) ||
3321 after(ack_seq
, tp
->snd_wl1
) ||
3322 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3325 /* If we update tp->snd_una, also update tp->bytes_acked */
3326 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3328 u32 delta
= ack
- tp
->snd_una
;
3330 sock_owned_by_me((struct sock
*)tp
);
3331 tp
->bytes_acked
+= delta
;
3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3336 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3338 u32 delta
= seq
- tp
->rcv_nxt
;
3340 sock_owned_by_me((struct sock
*)tp
);
3341 tp
->bytes_received
+= delta
;
3345 /* Update our send window.
3347 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3348 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3350 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3353 struct tcp_sock
*tp
= tcp_sk(sk
);
3355 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3357 if (likely(!tcp_hdr(skb
)->syn
))
3358 nwin
<<= tp
->rx_opt
.snd_wscale
;
3360 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3361 flag
|= FLAG_WIN_UPDATE
;
3362 tcp_update_wl(tp
, ack_seq
);
3364 if (tp
->snd_wnd
!= nwin
) {
3367 /* Note, it is the only place, where
3368 * fast path is recovered for sending TCP.
3371 tcp_fast_path_check(sk
);
3373 if (tcp_send_head(sk
))
3374 tcp_slow_start_after_idle_check(sk
);
3376 if (nwin
> tp
->max_window
) {
3377 tp
->max_window
= nwin
;
3378 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3383 tcp_snd_una_update(tp
, ack
);
3388 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3389 u32
*last_oow_ack_time
)
3391 if (*last_oow_ack_time
) {
3392 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3394 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3395 NET_INC_STATS(net
, mib_idx
);
3396 return true; /* rate-limited: don't send yet! */
3400 *last_oow_ack_time
= tcp_time_stamp
;
3402 return false; /* not rate-limited: go ahead, send dupack now! */
3405 /* Return true if we're currently rate-limiting out-of-window ACKs and
3406 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3407 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3408 * attacks that send repeated SYNs or ACKs for the same connection. To
3409 * do this, we do not send a duplicate SYNACK or ACK if the remote
3410 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3412 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3413 int mib_idx
, u32
*last_oow_ack_time
)
3415 /* Data packets without SYNs are not likely part of an ACK loop. */
3416 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3420 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3426 /* unprotected vars, we dont care of overwrites */
3427 static u32 challenge_timestamp
;
3428 static unsigned int challenge_count
;
3429 struct tcp_sock
*tp
= tcp_sk(sk
);
3432 /* First check our per-socket dupack rate limit. */
3433 if (__tcp_oow_rate_limited(sock_net(sk
),
3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3435 &tp
->last_oow_ack_time
))
3438 /* Then check host-wide RFC 5961 rate limit. */
3440 if (now
!= challenge_timestamp
) {
3441 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3443 challenge_timestamp
= now
;
3444 WRITE_ONCE(challenge_count
, half
+
3445 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3447 count
= READ_ONCE(challenge_count
);
3449 WRITE_ONCE(challenge_count
, count
- 1);
3450 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3455 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3457 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3458 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3461 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3463 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3464 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3465 * extra check below makes sure this can only happen
3466 * for pure ACK frames. -DaveM
3468 * Not only, also it occurs for expired timestamps.
3471 if (tcp_paws_check(&tp
->rx_opt
, 0))
3472 tcp_store_ts_recent(tp
);
3476 /* This routine deals with acks during a TLP episode.
3477 * We mark the end of a TLP episode on receiving TLP dupack or when
3478 * ack is after tlp_high_seq.
3479 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3481 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3483 struct tcp_sock
*tp
= tcp_sk(sk
);
3485 if (before(ack
, tp
->tlp_high_seq
))
3488 if (flag
& FLAG_DSACKING_ACK
) {
3489 /* This DSACK means original and TLP probe arrived; no loss */
3490 tp
->tlp_high_seq
= 0;
3491 } else if (after(ack
, tp
->tlp_high_seq
)) {
3492 /* ACK advances: there was a loss, so reduce cwnd. Reset
3493 * tlp_high_seq in tcp_init_cwnd_reduction()
3495 tcp_init_cwnd_reduction(sk
);
3496 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3497 tcp_end_cwnd_reduction(sk
);
3498 tcp_try_keep_open(sk
);
3499 NET_INC_STATS(sock_net(sk
),
3500 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3501 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3502 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3503 /* Pure dupack: original and TLP probe arrived; no loss */
3504 tp
->tlp_high_seq
= 0;
3508 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3510 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3512 if (icsk
->icsk_ca_ops
->in_ack_event
)
3513 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3516 /* Congestion control has updated the cwnd already. So if we're in
3517 * loss recovery then now we do any new sends (for FRTO) or
3518 * retransmits (for CA_Loss or CA_recovery) that make sense.
3520 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3522 struct tcp_sock
*tp
= tcp_sk(sk
);
3524 if (rexmit
== REXMIT_NONE
)
3527 if (unlikely(rexmit
== 2)) {
3528 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3530 if (after(tp
->snd_nxt
, tp
->high_seq
))
3534 tcp_xmit_retransmit_queue(sk
);
3537 /* This routine deals with incoming acks, but not outgoing ones. */
3538 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3540 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3541 struct tcp_sock
*tp
= tcp_sk(sk
);
3542 struct tcp_sacktag_state sack_state
;
3543 struct rate_sample rs
= { .prior_delivered
= 0 };
3544 u32 prior_snd_una
= tp
->snd_una
;
3545 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3546 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3547 bool is_dupack
= false;
3549 int prior_packets
= tp
->packets_out
;
3550 u32 delivered
= tp
->delivered
;
3551 u32 lost
= tp
->lost
;
3552 int acked
= 0; /* Number of packets newly acked */
3553 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3555 sack_state
.first_sackt
.v64
= 0;
3556 sack_state
.rate
= &rs
;
3558 /* We very likely will need to access write queue head. */
3559 prefetchw(sk
->sk_write_queue
.next
);
3561 /* If the ack is older than previous acks
3562 * then we can probably ignore it.
3564 if (before(ack
, prior_snd_una
)) {
3565 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3566 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3567 tcp_send_challenge_ack(sk
, skb
);
3573 /* If the ack includes data we haven't sent yet, discard
3574 * this segment (RFC793 Section 3.9).
3576 if (after(ack
, tp
->snd_nxt
))
3579 skb_mstamp_get(&sack_state
.ack_time
);
3581 if (icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3584 if (after(ack
, prior_snd_una
)) {
3585 flag
|= FLAG_SND_UNA_ADVANCED
;
3586 icsk
->icsk_retransmits
= 0;
3589 prior_fackets
= tp
->fackets_out
;
3590 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3592 /* ts_recent update must be made after we are sure that the packet
3595 if (flag
& FLAG_UPDATE_TS_RECENT
)
3596 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3598 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3599 /* Window is constant, pure forward advance.
3600 * No more checks are required.
3601 * Note, we use the fact that SND.UNA>=SND.WL2.
3603 tcp_update_wl(tp
, ack_seq
);
3604 tcp_snd_una_update(tp
, ack
);
3605 flag
|= FLAG_WIN_UPDATE
;
3607 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3609 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3611 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3613 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3616 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3618 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3620 if (TCP_SKB_CB(skb
)->sacked
)
3621 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3624 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3626 ack_ev_flags
|= CA_ACK_ECE
;
3629 if (flag
& FLAG_WIN_UPDATE
)
3630 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3632 tcp_in_ack_event(sk
, ack_ev_flags
);
3635 /* We passed data and got it acked, remove any soft error
3636 * log. Something worked...
3638 sk
->sk_err_soft
= 0;
3639 icsk
->icsk_probes_out
= 0;
3640 tp
->rcv_tstamp
= tcp_time_stamp
;
3644 /* See if we can take anything off of the retransmit queue. */
3645 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, &acked
,
3648 if (tcp_ack_is_dubious(sk
, flag
)) {
3649 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3650 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
,
3651 &sack_state
.ack_time
);
3653 if (tp
->tlp_high_seq
)
3654 tcp_process_tlp_ack(sk
, ack
, flag
);
3656 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3659 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3660 tcp_schedule_loss_probe(sk
);
3661 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3662 lost
= tp
->lost
- lost
; /* freshly marked lost */
3663 tcp_rate_gen(sk
, delivered
, lost
, &sack_state
.ack_time
,
3665 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3666 tcp_xmit_recovery(sk
, rexmit
);
3670 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3671 if (flag
& FLAG_DSACKING_ACK
)
3672 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
,
3673 &sack_state
.ack_time
);
3674 /* If this ack opens up a zero window, clear backoff. It was
3675 * being used to time the probes, and is probably far higher than
3676 * it needs to be for normal retransmission.
3678 if (tcp_send_head(sk
))
3681 if (tp
->tlp_high_seq
)
3682 tcp_process_tlp_ack(sk
, ack
, flag
);
3686 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3690 /* If data was SACKed, tag it and see if we should send more data.
3691 * If data was DSACKed, see if we can undo a cwnd reduction.
3693 if (TCP_SKB_CB(skb
)->sacked
) {
3694 skb_mstamp_get(&sack_state
.ack_time
);
3695 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3697 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
,
3698 &sack_state
.ack_time
);
3699 tcp_xmit_recovery(sk
, rexmit
);
3702 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3706 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3707 bool syn
, struct tcp_fastopen_cookie
*foc
,
3710 /* Valid only in SYN or SYN-ACK with an even length. */
3711 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3714 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3715 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3716 memcpy(foc
->val
, cookie
, len
);
3723 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3724 * But, this can also be called on packets in the established flow when
3725 * the fast version below fails.
3727 void tcp_parse_options(const struct sk_buff
*skb
,
3728 struct tcp_options_received
*opt_rx
, int estab
,
3729 struct tcp_fastopen_cookie
*foc
)
3731 const unsigned char *ptr
;
3732 const struct tcphdr
*th
= tcp_hdr(skb
);
3733 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3735 ptr
= (const unsigned char *)(th
+ 1);
3736 opt_rx
->saw_tstamp
= 0;
3738 while (length
> 0) {
3739 int opcode
= *ptr
++;
3745 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3750 if (opsize
< 2) /* "silly options" */
3752 if (opsize
> length
)
3753 return; /* don't parse partial options */
3756 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3757 u16 in_mss
= get_unaligned_be16(ptr
);
3759 if (opt_rx
->user_mss
&&
3760 opt_rx
->user_mss
< in_mss
)
3761 in_mss
= opt_rx
->user_mss
;
3762 opt_rx
->mss_clamp
= in_mss
;
3767 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3768 !estab
&& sysctl_tcp_window_scaling
) {
3769 __u8 snd_wscale
= *(__u8
*)ptr
;
3770 opt_rx
->wscale_ok
= 1;
3771 if (snd_wscale
> 14) {
3772 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3777 opt_rx
->snd_wscale
= snd_wscale
;
3780 case TCPOPT_TIMESTAMP
:
3781 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3782 ((estab
&& opt_rx
->tstamp_ok
) ||
3783 (!estab
&& sysctl_tcp_timestamps
))) {
3784 opt_rx
->saw_tstamp
= 1;
3785 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3786 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3789 case TCPOPT_SACK_PERM
:
3790 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3791 !estab
&& sysctl_tcp_sack
) {
3792 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3793 tcp_sack_reset(opt_rx
);
3798 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3799 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3801 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3804 #ifdef CONFIG_TCP_MD5SIG
3807 * The MD5 Hash has already been
3808 * checked (see tcp_v{4,6}_do_rcv()).
3812 case TCPOPT_FASTOPEN
:
3813 tcp_parse_fastopen_option(
3814 opsize
- TCPOLEN_FASTOPEN_BASE
,
3815 ptr
, th
->syn
, foc
, false);
3819 /* Fast Open option shares code 254 using a
3820 * 16 bits magic number.
3822 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3823 get_unaligned_be16(ptr
) ==
3824 TCPOPT_FASTOPEN_MAGIC
)
3825 tcp_parse_fastopen_option(opsize
-
3826 TCPOLEN_EXP_FASTOPEN_BASE
,
3827 ptr
+ 2, th
->syn
, foc
, true);
3836 EXPORT_SYMBOL(tcp_parse_options
);
3838 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3840 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3842 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3843 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3844 tp
->rx_opt
.saw_tstamp
= 1;
3846 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3849 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3851 tp
->rx_opt
.rcv_tsecr
= 0;
3857 /* Fast parse options. This hopes to only see timestamps.
3858 * If it is wrong it falls back on tcp_parse_options().
3860 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3861 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3863 /* In the spirit of fast parsing, compare doff directly to constant
3864 * values. Because equality is used, short doff can be ignored here.
3866 if (th
->doff
== (sizeof(*th
) / 4)) {
3867 tp
->rx_opt
.saw_tstamp
= 0;
3869 } else if (tp
->rx_opt
.tstamp_ok
&&
3870 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3871 if (tcp_parse_aligned_timestamp(tp
, th
))
3875 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3876 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3877 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3882 #ifdef CONFIG_TCP_MD5SIG
3884 * Parse MD5 Signature option
3886 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3888 int length
= (th
->doff
<< 2) - sizeof(*th
);
3889 const u8
*ptr
= (const u8
*)(th
+ 1);
3891 /* If the TCP option is too short, we can short cut */
3892 if (length
< TCPOLEN_MD5SIG
)
3895 while (length
> 0) {
3896 int opcode
= *ptr
++;
3907 if (opsize
< 2 || opsize
> length
)
3909 if (opcode
== TCPOPT_MD5SIG
)
3910 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3917 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3920 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3922 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3923 * it can pass through stack. So, the following predicate verifies that
3924 * this segment is not used for anything but congestion avoidance or
3925 * fast retransmit. Moreover, we even are able to eliminate most of such
3926 * second order effects, if we apply some small "replay" window (~RTO)
3927 * to timestamp space.
3929 * All these measures still do not guarantee that we reject wrapped ACKs
3930 * on networks with high bandwidth, when sequence space is recycled fastly,
3931 * but it guarantees that such events will be very rare and do not affect
3932 * connection seriously. This doesn't look nice, but alas, PAWS is really
3935 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3936 * states that events when retransmit arrives after original data are rare.
3937 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3938 * the biggest problem on large power networks even with minor reordering.
3939 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3940 * up to bandwidth of 18Gigabit/sec. 8) ]
3943 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3945 const struct tcp_sock
*tp
= tcp_sk(sk
);
3946 const struct tcphdr
*th
= tcp_hdr(skb
);
3947 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3948 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3950 return (/* 1. Pure ACK with correct sequence number. */
3951 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3953 /* 2. ... and duplicate ACK. */
3954 ack
== tp
->snd_una
&&
3956 /* 3. ... and does not update window. */
3957 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3959 /* 4. ... and sits in replay window. */
3960 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3963 static inline bool tcp_paws_discard(const struct sock
*sk
,
3964 const struct sk_buff
*skb
)
3966 const struct tcp_sock
*tp
= tcp_sk(sk
);
3968 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3969 !tcp_disordered_ack(sk
, skb
);
3972 /* Check segment sequence number for validity.
3974 * Segment controls are considered valid, if the segment
3975 * fits to the window after truncation to the window. Acceptability
3976 * of data (and SYN, FIN, of course) is checked separately.
3977 * See tcp_data_queue(), for example.
3979 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3980 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3981 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3982 * (borrowed from freebsd)
3985 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3987 return !before(end_seq
, tp
->rcv_wup
) &&
3988 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3991 /* When we get a reset we do this. */
3992 void tcp_reset(struct sock
*sk
)
3994 /* We want the right error as BSD sees it (and indeed as we do). */
3995 switch (sk
->sk_state
) {
3997 sk
->sk_err
= ECONNREFUSED
;
3999 case TCP_CLOSE_WAIT
:
4005 sk
->sk_err
= ECONNRESET
;
4007 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4010 if (!sock_flag(sk
, SOCK_DEAD
))
4011 sk
->sk_error_report(sk
);
4017 * Process the FIN bit. This now behaves as it is supposed to work
4018 * and the FIN takes effect when it is validly part of sequence
4019 * space. Not before when we get holes.
4021 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4022 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4025 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4026 * close and we go into CLOSING (and later onto TIME-WAIT)
4028 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4030 void tcp_fin(struct sock
*sk
)
4032 struct tcp_sock
*tp
= tcp_sk(sk
);
4034 inet_csk_schedule_ack(sk
);
4036 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4037 sock_set_flag(sk
, SOCK_DONE
);
4039 switch (sk
->sk_state
) {
4041 case TCP_ESTABLISHED
:
4042 /* Move to CLOSE_WAIT */
4043 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4044 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4047 case TCP_CLOSE_WAIT
:
4049 /* Received a retransmission of the FIN, do
4054 /* RFC793: Remain in the LAST-ACK state. */
4058 /* This case occurs when a simultaneous close
4059 * happens, we must ack the received FIN and
4060 * enter the CLOSING state.
4063 tcp_set_state(sk
, TCP_CLOSING
);
4066 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4068 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4071 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4072 * cases we should never reach this piece of code.
4074 pr_err("%s: Impossible, sk->sk_state=%d\n",
4075 __func__
, sk
->sk_state
);
4079 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4080 * Probably, we should reset in this case. For now drop them.
4082 skb_rbtree_purge(&tp
->out_of_order_queue
);
4083 if (tcp_is_sack(tp
))
4084 tcp_sack_reset(&tp
->rx_opt
);
4087 if (!sock_flag(sk
, SOCK_DEAD
)) {
4088 sk
->sk_state_change(sk
);
4090 /* Do not send POLL_HUP for half duplex close. */
4091 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4092 sk
->sk_state
== TCP_CLOSE
)
4093 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4095 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4099 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4102 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4103 if (before(seq
, sp
->start_seq
))
4104 sp
->start_seq
= seq
;
4105 if (after(end_seq
, sp
->end_seq
))
4106 sp
->end_seq
= end_seq
;
4112 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4114 struct tcp_sock
*tp
= tcp_sk(sk
);
4116 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4119 if (before(seq
, tp
->rcv_nxt
))
4120 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4122 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4124 NET_INC_STATS(sock_net(sk
), mib_idx
);
4126 tp
->rx_opt
.dsack
= 1;
4127 tp
->duplicate_sack
[0].start_seq
= seq
;
4128 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4132 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4134 struct tcp_sock
*tp
= tcp_sk(sk
);
4136 if (!tp
->rx_opt
.dsack
)
4137 tcp_dsack_set(sk
, seq
, end_seq
);
4139 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4142 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4144 struct tcp_sock
*tp
= tcp_sk(sk
);
4146 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4147 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4148 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4149 tcp_enter_quickack_mode(sk
);
4151 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4152 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4154 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4155 end_seq
= tp
->rcv_nxt
;
4156 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4163 /* These routines update the SACK block as out-of-order packets arrive or
4164 * in-order packets close up the sequence space.
4166 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4169 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4170 struct tcp_sack_block
*swalk
= sp
+ 1;
4172 /* See if the recent change to the first SACK eats into
4173 * or hits the sequence space of other SACK blocks, if so coalesce.
4175 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4176 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4179 /* Zap SWALK, by moving every further SACK up by one slot.
4180 * Decrease num_sacks.
4182 tp
->rx_opt
.num_sacks
--;
4183 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4187 this_sack
++, swalk
++;
4191 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4193 struct tcp_sock
*tp
= tcp_sk(sk
);
4194 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4195 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4201 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4202 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4203 /* Rotate this_sack to the first one. */
4204 for (; this_sack
> 0; this_sack
--, sp
--)
4205 swap(*sp
, *(sp
- 1));
4207 tcp_sack_maybe_coalesce(tp
);
4212 /* Could not find an adjacent existing SACK, build a new one,
4213 * put it at the front, and shift everyone else down. We
4214 * always know there is at least one SACK present already here.
4216 * If the sack array is full, forget about the last one.
4218 if (this_sack
>= TCP_NUM_SACKS
) {
4220 tp
->rx_opt
.num_sacks
--;
4223 for (; this_sack
> 0; this_sack
--, sp
--)
4227 /* Build the new head SACK, and we're done. */
4228 sp
->start_seq
= seq
;
4229 sp
->end_seq
= end_seq
;
4230 tp
->rx_opt
.num_sacks
++;
4233 /* RCV.NXT advances, some SACKs should be eaten. */
4235 static void tcp_sack_remove(struct tcp_sock
*tp
)
4237 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4238 int num_sacks
= tp
->rx_opt
.num_sacks
;
4241 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4242 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4243 tp
->rx_opt
.num_sacks
= 0;
4247 for (this_sack
= 0; this_sack
< num_sacks
;) {
4248 /* Check if the start of the sack is covered by RCV.NXT. */
4249 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4252 /* RCV.NXT must cover all the block! */
4253 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4255 /* Zap this SACK, by moving forward any other SACKS. */
4256 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4257 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4264 tp
->rx_opt
.num_sacks
= num_sacks
;
4268 * tcp_try_coalesce - try to merge skb to prior one
4271 * @from: buffer to add in queue
4272 * @fragstolen: pointer to boolean
4274 * Before queueing skb @from after @to, try to merge them
4275 * to reduce overall memory use and queue lengths, if cost is small.
4276 * Packets in ofo or receive queues can stay a long time.
4277 * Better try to coalesce them right now to avoid future collapses.
4278 * Returns true if caller should free @from instead of queueing it
4280 static bool tcp_try_coalesce(struct sock
*sk
,
4282 struct sk_buff
*from
,
4287 *fragstolen
= false;
4289 /* Its possible this segment overlaps with prior segment in queue */
4290 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4293 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4296 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4297 sk_mem_charge(sk
, delta
);
4298 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4299 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4300 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4301 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4305 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4307 sk_drops_add(sk
, skb
);
4311 /* This one checks to see if we can put data from the
4312 * out_of_order queue into the receive_queue.
4314 static void tcp_ofo_queue(struct sock
*sk
)
4316 struct tcp_sock
*tp
= tcp_sk(sk
);
4317 __u32 dsack_high
= tp
->rcv_nxt
;
4318 bool fin
, fragstolen
, eaten
;
4319 struct sk_buff
*skb
, *tail
;
4322 p
= rb_first(&tp
->out_of_order_queue
);
4324 skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4325 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4328 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4329 __u32 dsack
= dsack_high
;
4330 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4331 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4332 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4335 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4337 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4338 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4342 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4343 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4344 TCP_SKB_CB(skb
)->end_seq
);
4346 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4347 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4348 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4349 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4351 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4353 kfree_skb_partial(skb
, fragstolen
);
4355 if (unlikely(fin
)) {
4357 /* tcp_fin() purges tp->out_of_order_queue,
4358 * so we must end this loop right now.
4365 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4366 static int tcp_prune_queue(struct sock
*sk
);
4368 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4371 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4372 !sk_rmem_schedule(sk
, skb
, size
)) {
4374 if (tcp_prune_queue(sk
) < 0)
4377 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4378 if (!tcp_prune_ofo_queue(sk
))
4385 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4387 struct tcp_sock
*tp
= tcp_sk(sk
);
4388 struct rb_node
**p
, *q
, *parent
;
4389 struct sk_buff
*skb1
;
4393 tcp_ecn_check_ce(tp
, skb
);
4395 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4396 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4401 /* Disable header prediction. */
4403 inet_csk_schedule_ack(sk
);
4405 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4406 seq
= TCP_SKB_CB(skb
)->seq
;
4407 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4408 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4409 tp
->rcv_nxt
, seq
, end_seq
);
4411 p
= &tp
->out_of_order_queue
.rb_node
;
4412 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4413 /* Initial out of order segment, build 1 SACK. */
4414 if (tcp_is_sack(tp
)) {
4415 tp
->rx_opt
.num_sacks
= 1;
4416 tp
->selective_acks
[0].start_seq
= seq
;
4417 tp
->selective_acks
[0].end_seq
= end_seq
;
4419 rb_link_node(&skb
->rbnode
, NULL
, p
);
4420 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4421 tp
->ooo_last_skb
= skb
;
4425 /* In the typical case, we are adding an skb to the end of the list.
4426 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4428 if (tcp_try_coalesce(sk
, tp
->ooo_last_skb
, skb
, &fragstolen
)) {
4430 tcp_grow_window(sk
, skb
);
4431 kfree_skb_partial(skb
, fragstolen
);
4435 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4436 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4437 parent
= &tp
->ooo_last_skb
->rbnode
;
4438 p
= &parent
->rb_right
;
4442 /* Find place to insert this segment. Handle overlaps on the way. */
4446 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4447 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4448 p
= &parent
->rb_left
;
4451 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4452 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4453 /* All the bits are present. Drop. */
4454 NET_INC_STATS(sock_net(sk
),
4455 LINUX_MIB_TCPOFOMERGE
);
4458 tcp_dsack_set(sk
, seq
, end_seq
);
4461 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4462 /* Partial overlap. */
4463 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4465 /* skb's seq == skb1's seq and skb covers skb1.
4466 * Replace skb1 with skb.
4468 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4469 &tp
->out_of_order_queue
);
4470 tcp_dsack_extend(sk
,
4471 TCP_SKB_CB(skb1
)->seq
,
4472 TCP_SKB_CB(skb1
)->end_seq
);
4473 NET_INC_STATS(sock_net(sk
),
4474 LINUX_MIB_TCPOFOMERGE
);
4478 } else if (tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4481 p
= &parent
->rb_right
;
4484 /* Insert segment into RB tree. */
4485 rb_link_node(&skb
->rbnode
, parent
, p
);
4486 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4489 /* Remove other segments covered by skb. */
4490 while ((q
= rb_next(&skb
->rbnode
)) != NULL
) {
4491 skb1
= rb_entry(q
, struct sk_buff
, rbnode
);
4493 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4495 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4496 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4500 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4501 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4502 TCP_SKB_CB(skb1
)->end_seq
);
4503 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4506 /* If there is no skb after us, we are the last_skb ! */
4508 tp
->ooo_last_skb
= skb
;
4511 if (tcp_is_sack(tp
))
4512 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4515 tcp_grow_window(sk
, skb
);
4517 skb_set_owner_r(skb
, sk
);
4521 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4525 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4527 __skb_pull(skb
, hdrlen
);
4529 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4530 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4532 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4533 skb_set_owner_r(skb
, sk
);
4538 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4540 struct sk_buff
*skb
;
4548 if (size
> PAGE_SIZE
) {
4549 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4551 data_len
= npages
<< PAGE_SHIFT
;
4552 size
= data_len
+ (size
& ~PAGE_MASK
);
4554 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4555 PAGE_ALLOC_COSTLY_ORDER
,
4556 &err
, sk
->sk_allocation
);
4560 skb_put(skb
, size
- data_len
);
4561 skb
->data_len
= data_len
;
4564 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4567 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4571 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4572 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4573 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4575 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4576 WARN_ON_ONCE(fragstolen
); /* should not happen */
4588 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4590 struct tcp_sock
*tp
= tcp_sk(sk
);
4591 bool fragstolen
= false;
4594 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4599 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4601 tcp_ecn_accept_cwr(tp
, skb
);
4603 tp
->rx_opt
.dsack
= 0;
4605 /* Queue data for delivery to the user.
4606 * Packets in sequence go to the receive queue.
4607 * Out of sequence packets to the out_of_order_queue.
4609 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4610 if (tcp_receive_window(tp
) == 0)
4613 /* Ok. In sequence. In window. */
4614 if (tp
->ucopy
.task
== current
&&
4615 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4616 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4617 int chunk
= min_t(unsigned int, skb
->len
,
4620 __set_current_state(TASK_RUNNING
);
4622 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4623 tp
->ucopy
.len
-= chunk
;
4624 tp
->copied_seq
+= chunk
;
4625 eaten
= (chunk
== skb
->len
);
4626 tcp_rcv_space_adjust(sk
);
4633 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4634 sk_forced_mem_schedule(sk
, skb
->truesize
);
4635 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4638 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4640 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4642 tcp_event_data_recv(sk
, skb
);
4643 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4646 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4649 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4650 * gap in queue is filled.
4652 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4653 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4656 if (tp
->rx_opt
.num_sacks
)
4657 tcp_sack_remove(tp
);
4659 tcp_fast_path_check(sk
);
4662 kfree_skb_partial(skb
, fragstolen
);
4663 if (!sock_flag(sk
, SOCK_DEAD
))
4664 sk
->sk_data_ready(sk
);
4668 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4669 /* A retransmit, 2nd most common case. Force an immediate ack. */
4670 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4671 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4674 tcp_enter_quickack_mode(sk
);
4675 inet_csk_schedule_ack(sk
);
4681 /* Out of window. F.e. zero window probe. */
4682 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4685 tcp_enter_quickack_mode(sk
);
4687 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4688 /* Partial packet, seq < rcv_next < end_seq */
4689 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4690 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4691 TCP_SKB_CB(skb
)->end_seq
);
4693 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4695 /* If window is closed, drop tail of packet. But after
4696 * remembering D-SACK for its head made in previous line.
4698 if (!tcp_receive_window(tp
))
4703 tcp_data_queue_ofo(sk
, skb
);
4706 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4709 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4711 return rb_entry_safe(rb_next(&skb
->rbnode
), struct sk_buff
, rbnode
);
4714 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4715 struct sk_buff_head
*list
,
4716 struct rb_root
*root
)
4718 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4721 __skb_unlink(skb
, list
);
4723 rb_erase(&skb
->rbnode
, root
);
4726 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4731 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4732 static void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4734 struct rb_node
**p
= &root
->rb_node
;
4735 struct rb_node
*parent
= NULL
;
4736 struct sk_buff
*skb1
;
4740 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4741 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4742 p
= &parent
->rb_left
;
4744 p
= &parent
->rb_right
;
4746 rb_link_node(&skb
->rbnode
, parent
, p
);
4747 rb_insert_color(&skb
->rbnode
, root
);
4750 /* Collapse contiguous sequence of skbs head..tail with
4751 * sequence numbers start..end.
4753 * If tail is NULL, this means until the end of the queue.
4755 * Segments with FIN/SYN are not collapsed (only because this
4759 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4760 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4762 struct sk_buff
*skb
= head
, *n
;
4763 struct sk_buff_head tmp
;
4766 /* First, check that queue is collapsible and find
4767 * the point where collapsing can be useful.
4770 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4771 n
= tcp_skb_next(skb
, list
);
4773 /* No new bits? It is possible on ofo queue. */
4774 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4775 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4781 /* The first skb to collapse is:
4783 * - bloated or contains data before "start" or
4784 * overlaps to the next one.
4786 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4787 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4788 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4789 end_of_skbs
= false;
4793 if (n
&& n
!= tail
&&
4794 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4795 end_of_skbs
= false;
4799 /* Decided to skip this, advance start seq. */
4800 start
= TCP_SKB_CB(skb
)->end_seq
;
4803 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4806 __skb_queue_head_init(&tmp
);
4808 while (before(start
, end
)) {
4809 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4810 struct sk_buff
*nskb
;
4812 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4816 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4817 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4819 __skb_queue_before(list
, skb
, nskb
);
4821 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4822 skb_set_owner_r(nskb
, sk
);
4824 /* Copy data, releasing collapsed skbs. */
4826 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4827 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4831 size
= min(copy
, size
);
4832 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4834 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4838 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4839 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4842 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4848 skb_queue_walk_safe(&tmp
, skb
, n
)
4849 tcp_rbtree_insert(root
, skb
);
4852 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4853 * and tcp_collapse() them until all the queue is collapsed.
4855 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4857 struct tcp_sock
*tp
= tcp_sk(sk
);
4858 struct sk_buff
*skb
, *head
;
4862 p
= rb_first(&tp
->out_of_order_queue
);
4863 skb
= rb_entry_safe(p
, struct sk_buff
, rbnode
);
4866 p
= rb_last(&tp
->out_of_order_queue
);
4867 /* Note: This is possible p is NULL here. We do not
4868 * use rb_entry_safe(), as ooo_last_skb is valid only
4869 * if rbtree is not empty.
4871 tp
->ooo_last_skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4874 start
= TCP_SKB_CB(skb
)->seq
;
4875 end
= TCP_SKB_CB(skb
)->end_seq
;
4877 for (head
= skb
;;) {
4878 skb
= tcp_skb_next(skb
, NULL
);
4880 /* Range is terminated when we see a gap or when
4881 * we are at the queue end.
4884 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4885 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4886 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4887 head
, skb
, start
, end
);
4891 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4892 start
= TCP_SKB_CB(skb
)->seq
;
4893 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4894 end
= TCP_SKB_CB(skb
)->end_seq
;
4899 * Clean the out-of-order queue to make room.
4900 * We drop high sequences packets to :
4901 * 1) Let a chance for holes to be filled.
4902 * 2) not add too big latencies if thousands of packets sit there.
4903 * (But if application shrinks SO_RCVBUF, we could still end up
4904 * freeing whole queue here)
4906 * Return true if queue has shrunk.
4908 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4910 struct tcp_sock
*tp
= tcp_sk(sk
);
4911 struct rb_node
*node
, *prev
;
4913 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4916 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4917 node
= &tp
->ooo_last_skb
->rbnode
;
4919 prev
= rb_prev(node
);
4920 rb_erase(node
, &tp
->out_of_order_queue
);
4921 tcp_drop(sk
, rb_entry(node
, struct sk_buff
, rbnode
));
4923 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4924 !tcp_under_memory_pressure(sk
))
4928 tp
->ooo_last_skb
= rb_entry(prev
, struct sk_buff
, rbnode
);
4930 /* Reset SACK state. A conforming SACK implementation will
4931 * do the same at a timeout based retransmit. When a connection
4932 * is in a sad state like this, we care only about integrity
4933 * of the connection not performance.
4935 if (tp
->rx_opt
.sack_ok
)
4936 tcp_sack_reset(&tp
->rx_opt
);
4940 /* Reduce allocated memory if we can, trying to get
4941 * the socket within its memory limits again.
4943 * Return less than zero if we should start dropping frames
4944 * until the socket owning process reads some of the data
4945 * to stabilize the situation.
4947 static int tcp_prune_queue(struct sock
*sk
)
4949 struct tcp_sock
*tp
= tcp_sk(sk
);
4951 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4953 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4955 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4956 tcp_clamp_window(sk
);
4957 else if (tcp_under_memory_pressure(sk
))
4958 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4960 tcp_collapse_ofo_queue(sk
);
4961 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4962 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
4963 skb_peek(&sk
->sk_receive_queue
),
4965 tp
->copied_seq
, tp
->rcv_nxt
);
4968 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4971 /* Collapsing did not help, destructive actions follow.
4972 * This must not ever occur. */
4974 tcp_prune_ofo_queue(sk
);
4976 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4979 /* If we are really being abused, tell the caller to silently
4980 * drop receive data on the floor. It will get retransmitted
4981 * and hopefully then we'll have sufficient space.
4983 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4985 /* Massive buffer overcommit. */
4990 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4992 const struct tcp_sock
*tp
= tcp_sk(sk
);
4994 /* If the user specified a specific send buffer setting, do
4997 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5000 /* If we are under global TCP memory pressure, do not expand. */
5001 if (tcp_under_memory_pressure(sk
))
5004 /* If we are under soft global TCP memory pressure, do not expand. */
5005 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5008 /* If we filled the congestion window, do not expand. */
5009 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5015 /* When incoming ACK allowed to free some skb from write_queue,
5016 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5017 * on the exit from tcp input handler.
5019 * PROBLEM: sndbuf expansion does not work well with largesend.
5021 static void tcp_new_space(struct sock
*sk
)
5023 struct tcp_sock
*tp
= tcp_sk(sk
);
5025 if (tcp_should_expand_sndbuf(sk
)) {
5026 tcp_sndbuf_expand(sk
);
5027 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5030 sk
->sk_write_space(sk
);
5033 static void tcp_check_space(struct sock
*sk
)
5035 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5036 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5037 /* pairs with tcp_poll() */
5039 if (sk
->sk_socket
&&
5040 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5042 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5043 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5048 static inline void tcp_data_snd_check(struct sock
*sk
)
5050 tcp_push_pending_frames(sk
);
5051 tcp_check_space(sk
);
5055 * Check if sending an ack is needed.
5057 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5059 struct tcp_sock
*tp
= tcp_sk(sk
);
5061 /* More than one full frame received... */
5062 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5063 /* ... and right edge of window advances far enough.
5064 * (tcp_recvmsg() will send ACK otherwise). Or...
5066 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5067 /* We ACK each frame or... */
5068 tcp_in_quickack_mode(sk
) ||
5069 /* We have out of order data. */
5070 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5071 /* Then ack it now */
5074 /* Else, send delayed ack. */
5075 tcp_send_delayed_ack(sk
);
5079 static inline void tcp_ack_snd_check(struct sock
*sk
)
5081 if (!inet_csk_ack_scheduled(sk
)) {
5082 /* We sent a data segment already. */
5085 __tcp_ack_snd_check(sk
, 1);
5089 * This routine is only called when we have urgent data
5090 * signaled. Its the 'slow' part of tcp_urg. It could be
5091 * moved inline now as tcp_urg is only called from one
5092 * place. We handle URGent data wrong. We have to - as
5093 * BSD still doesn't use the correction from RFC961.
5094 * For 1003.1g we should support a new option TCP_STDURG to permit
5095 * either form (or just set the sysctl tcp_stdurg).
5098 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5100 struct tcp_sock
*tp
= tcp_sk(sk
);
5101 u32 ptr
= ntohs(th
->urg_ptr
);
5103 if (ptr
&& !sysctl_tcp_stdurg
)
5105 ptr
+= ntohl(th
->seq
);
5107 /* Ignore urgent data that we've already seen and read. */
5108 if (after(tp
->copied_seq
, ptr
))
5111 /* Do not replay urg ptr.
5113 * NOTE: interesting situation not covered by specs.
5114 * Misbehaving sender may send urg ptr, pointing to segment,
5115 * which we already have in ofo queue. We are not able to fetch
5116 * such data and will stay in TCP_URG_NOTYET until will be eaten
5117 * by recvmsg(). Seems, we are not obliged to handle such wicked
5118 * situations. But it is worth to think about possibility of some
5119 * DoSes using some hypothetical application level deadlock.
5121 if (before(ptr
, tp
->rcv_nxt
))
5124 /* Do we already have a newer (or duplicate) urgent pointer? */
5125 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5128 /* Tell the world about our new urgent pointer. */
5131 /* We may be adding urgent data when the last byte read was
5132 * urgent. To do this requires some care. We cannot just ignore
5133 * tp->copied_seq since we would read the last urgent byte again
5134 * as data, nor can we alter copied_seq until this data arrives
5135 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5137 * NOTE. Double Dutch. Rendering to plain English: author of comment
5138 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5139 * and expect that both A and B disappear from stream. This is _wrong_.
5140 * Though this happens in BSD with high probability, this is occasional.
5141 * Any application relying on this is buggy. Note also, that fix "works"
5142 * only in this artificial test. Insert some normal data between A and B and we will
5143 * decline of BSD again. Verdict: it is better to remove to trap
5146 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5147 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5148 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5150 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5151 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5156 tp
->urg_data
= TCP_URG_NOTYET
;
5159 /* Disable header prediction. */
5163 /* This is the 'fast' part of urgent handling. */
5164 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5166 struct tcp_sock
*tp
= tcp_sk(sk
);
5168 /* Check if we get a new urgent pointer - normally not. */
5170 tcp_check_urg(sk
, th
);
5172 /* Do we wait for any urgent data? - normally not... */
5173 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5174 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5177 /* Is the urgent pointer pointing into this packet? */
5178 if (ptr
< skb
->len
) {
5180 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5182 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5183 if (!sock_flag(sk
, SOCK_DEAD
))
5184 sk
->sk_data_ready(sk
);
5189 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5191 struct tcp_sock
*tp
= tcp_sk(sk
);
5192 int chunk
= skb
->len
- hlen
;
5195 if (skb_csum_unnecessary(skb
))
5196 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5198 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5201 tp
->ucopy
.len
-= chunk
;
5202 tp
->copied_seq
+= chunk
;
5203 tcp_rcv_space_adjust(sk
);
5209 /* Accept RST for rcv_nxt - 1 after a FIN.
5210 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5211 * FIN is sent followed by a RST packet. The RST is sent with the same
5212 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5213 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5214 * ACKs on the closed socket. In addition middleboxes can drop either the
5215 * challenge ACK or a subsequent RST.
5217 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5219 struct tcp_sock
*tp
= tcp_sk(sk
);
5221 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5222 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5226 /* Does PAWS and seqno based validation of an incoming segment, flags will
5227 * play significant role here.
5229 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5230 const struct tcphdr
*th
, int syn_inerr
)
5232 struct tcp_sock
*tp
= tcp_sk(sk
);
5233 bool rst_seq_match
= false;
5235 /* RFC1323: H1. Apply PAWS check first. */
5236 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5237 tcp_paws_discard(sk
, skb
)) {
5239 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5240 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5241 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5242 &tp
->last_oow_ack_time
))
5243 tcp_send_dupack(sk
, skb
);
5246 /* Reset is accepted even if it did not pass PAWS. */
5249 /* Step 1: check sequence number */
5250 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5251 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5252 * (RST) segments are validated by checking their SEQ-fields."
5253 * And page 69: "If an incoming segment is not acceptable,
5254 * an acknowledgment should be sent in reply (unless the RST
5255 * bit is set, if so drop the segment and return)".
5260 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5261 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5262 &tp
->last_oow_ack_time
))
5263 tcp_send_dupack(sk
, skb
);
5264 } else if (tcp_reset_check(sk
, skb
)) {
5270 /* Step 2: check RST bit */
5272 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5273 * FIN and SACK too if available):
5274 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5275 * the right-most SACK block,
5277 * RESET the connection
5279 * Send a challenge ACK
5281 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5282 tcp_reset_check(sk
, skb
)) {
5283 rst_seq_match
= true;
5284 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5285 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5286 int max_sack
= sp
[0].end_seq
;
5289 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5291 max_sack
= after(sp
[this_sack
].end_seq
,
5293 sp
[this_sack
].end_seq
: max_sack
;
5296 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5297 rst_seq_match
= true;
5303 tcp_send_challenge_ack(sk
, skb
);
5307 /* step 3: check security and precedence [ignored] */
5309 /* step 4: Check for a SYN
5310 * RFC 5961 4.2 : Send a challenge ack
5315 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5316 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5317 tcp_send_challenge_ack(sk
, skb
);
5329 * TCP receive function for the ESTABLISHED state.
5331 * It is split into a fast path and a slow path. The fast path is
5333 * - A zero window was announced from us - zero window probing
5334 * is only handled properly in the slow path.
5335 * - Out of order segments arrived.
5336 * - Urgent data is expected.
5337 * - There is no buffer space left
5338 * - Unexpected TCP flags/window values/header lengths are received
5339 * (detected by checking the TCP header against pred_flags)
5340 * - Data is sent in both directions. Fast path only supports pure senders
5341 * or pure receivers (this means either the sequence number or the ack
5342 * value must stay constant)
5343 * - Unexpected TCP option.
5345 * When these conditions are not satisfied it drops into a standard
5346 * receive procedure patterned after RFC793 to handle all cases.
5347 * The first three cases are guaranteed by proper pred_flags setting,
5348 * the rest is checked inline. Fast processing is turned on in
5349 * tcp_data_queue when everything is OK.
5351 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5352 const struct tcphdr
*th
, unsigned int len
)
5354 struct tcp_sock
*tp
= tcp_sk(sk
);
5356 if (unlikely(!sk
->sk_rx_dst
))
5357 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5359 * Header prediction.
5360 * The code loosely follows the one in the famous
5361 * "30 instruction TCP receive" Van Jacobson mail.
5363 * Van's trick is to deposit buffers into socket queue
5364 * on a device interrupt, to call tcp_recv function
5365 * on the receive process context and checksum and copy
5366 * the buffer to user space. smart...
5368 * Our current scheme is not silly either but we take the
5369 * extra cost of the net_bh soft interrupt processing...
5370 * We do checksum and copy also but from device to kernel.
5373 tp
->rx_opt
.saw_tstamp
= 0;
5375 /* pred_flags is 0xS?10 << 16 + snd_wnd
5376 * if header_prediction is to be made
5377 * 'S' will always be tp->tcp_header_len >> 2
5378 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5379 * turn it off (when there are holes in the receive
5380 * space for instance)
5381 * PSH flag is ignored.
5384 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5385 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5386 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5387 int tcp_header_len
= tp
->tcp_header_len
;
5389 /* Timestamp header prediction: tcp_header_len
5390 * is automatically equal to th->doff*4 due to pred_flags
5394 /* Check timestamp */
5395 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5396 /* No? Slow path! */
5397 if (!tcp_parse_aligned_timestamp(tp
, th
))
5400 /* If PAWS failed, check it more carefully in slow path */
5401 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5404 /* DO NOT update ts_recent here, if checksum fails
5405 * and timestamp was corrupted part, it will result
5406 * in a hung connection since we will drop all
5407 * future packets due to the PAWS test.
5411 if (len
<= tcp_header_len
) {
5412 /* Bulk data transfer: sender */
5413 if (len
== tcp_header_len
) {
5414 /* Predicted packet is in window by definition.
5415 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416 * Hence, check seq<=rcv_wup reduces to:
5418 if (tcp_header_len
==
5419 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5420 tp
->rcv_nxt
== tp
->rcv_wup
)
5421 tcp_store_ts_recent(tp
);
5423 /* We know that such packets are checksummed
5426 tcp_ack(sk
, skb
, 0);
5428 tcp_data_snd_check(sk
);
5430 } else { /* Header too small */
5431 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5436 bool fragstolen
= false;
5438 if (tp
->ucopy
.task
== current
&&
5439 tp
->copied_seq
== tp
->rcv_nxt
&&
5440 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5441 sock_owned_by_user(sk
)) {
5442 __set_current_state(TASK_RUNNING
);
5444 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5445 /* Predicted packet is in window by definition.
5446 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5447 * Hence, check seq<=rcv_wup reduces to:
5449 if (tcp_header_len
==
5450 (sizeof(struct tcphdr
) +
5451 TCPOLEN_TSTAMP_ALIGNED
) &&
5452 tp
->rcv_nxt
== tp
->rcv_wup
)
5453 tcp_store_ts_recent(tp
);
5455 tcp_rcv_rtt_measure_ts(sk
, skb
);
5457 __skb_pull(skb
, tcp_header_len
);
5458 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5459 NET_INC_STATS(sock_net(sk
),
5460 LINUX_MIB_TCPHPHITSTOUSER
);
5465 if (tcp_checksum_complete(skb
))
5468 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5471 /* Predicted packet is in window by definition.
5472 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5473 * Hence, check seq<=rcv_wup reduces to:
5475 if (tcp_header_len
==
5476 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5477 tp
->rcv_nxt
== tp
->rcv_wup
)
5478 tcp_store_ts_recent(tp
);
5480 tcp_rcv_rtt_measure_ts(sk
, skb
);
5482 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5484 /* Bulk data transfer: receiver */
5485 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5489 tcp_event_data_recv(sk
, skb
);
5491 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5492 /* Well, only one small jumplet in fast path... */
5493 tcp_ack(sk
, skb
, FLAG_DATA
);
5494 tcp_data_snd_check(sk
);
5495 if (!inet_csk_ack_scheduled(sk
))
5499 __tcp_ack_snd_check(sk
, 0);
5502 kfree_skb_partial(skb
, fragstolen
);
5503 sk
->sk_data_ready(sk
);
5509 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5512 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5516 * Standard slow path.
5519 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5523 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5526 tcp_rcv_rtt_measure_ts(sk
, skb
);
5528 /* Process urgent data. */
5529 tcp_urg(sk
, skb
, th
);
5531 /* step 7: process the segment text */
5532 tcp_data_queue(sk
, skb
);
5534 tcp_data_snd_check(sk
);
5535 tcp_ack_snd_check(sk
);
5539 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5540 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5545 EXPORT_SYMBOL(tcp_rcv_established
);
5547 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5549 struct tcp_sock
*tp
= tcp_sk(sk
);
5550 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5552 tcp_set_state(sk
, TCP_ESTABLISHED
);
5553 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5556 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5557 security_inet_conn_established(sk
, skb
);
5560 /* Make sure socket is routed, for correct metrics. */
5561 icsk
->icsk_af_ops
->rebuild_header(sk
);
5563 tcp_init_metrics(sk
);
5565 tcp_init_congestion_control(sk
);
5567 /* Prevent spurious tcp_cwnd_restart() on first data
5570 tp
->lsndtime
= tcp_time_stamp
;
5572 tcp_init_buffer_space(sk
);
5574 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5575 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5577 if (!tp
->rx_opt
.snd_wscale
)
5578 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5582 if (!sock_flag(sk
, SOCK_DEAD
)) {
5583 sk
->sk_state_change(sk
);
5584 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5588 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5589 struct tcp_fastopen_cookie
*cookie
)
5591 struct tcp_sock
*tp
= tcp_sk(sk
);
5592 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5593 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5594 bool syn_drop
= false;
5596 if (mss
== tp
->rx_opt
.user_mss
) {
5597 struct tcp_options_received opt
;
5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 tcp_clear_options(&opt
);
5601 opt
.user_mss
= opt
.mss_clamp
= 0;
5602 tcp_parse_options(synack
, &opt
, 0, NULL
);
5603 mss
= opt
.mss_clamp
;
5606 if (!tp
->syn_fastopen
) {
5607 /* Ignore an unsolicited cookie */
5609 } else if (tp
->total_retrans
) {
5610 /* SYN timed out and the SYN-ACK neither has a cookie nor
5611 * acknowledges data. Presumably the remote received only
5612 * the retransmitted (regular) SYNs: either the original
5613 * SYN-data or the corresponding SYN-ACK was dropped.
5615 syn_drop
= (cookie
->len
< 0 && data
);
5616 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5617 /* We requested a cookie but didn't get it. If we did not use
5618 * the (old) exp opt format then try so next time (try_exp=1).
5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5621 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5624 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5626 if (data
) { /* Retransmit unacked data in SYN */
5627 tcp_for_write_queue_from(data
, sk
) {
5628 if (data
== tcp_send_head(sk
) ||
5629 __tcp_retransmit_skb(sk
, data
, 1))
5633 NET_INC_STATS(sock_net(sk
),
5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5637 tp
->syn_data_acked
= tp
->syn_data
;
5638 if (tp
->syn_data_acked
)
5639 NET_INC_STATS(sock_net(sk
),
5640 LINUX_MIB_TCPFASTOPENACTIVE
);
5642 tcp_fastopen_add_skb(sk
, synack
);
5647 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5648 const struct tcphdr
*th
)
5650 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5651 struct tcp_sock
*tp
= tcp_sk(sk
);
5652 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5653 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5655 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5656 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5657 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5661 * "If the state is SYN-SENT then
5662 * first check the ACK bit
5663 * If the ACK bit is set
5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 * a reset (unless the RST bit is set, if so drop
5666 * the segment and return)"
5668 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5669 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5670 goto reset_and_undo
;
5672 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5673 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5675 NET_INC_STATS(sock_net(sk
),
5676 LINUX_MIB_PAWSACTIVEREJECTED
);
5677 goto reset_and_undo
;
5680 /* Now ACK is acceptable.
5682 * "If the RST bit is set
5683 * If the ACK was acceptable then signal the user "error:
5684 * connection reset", drop the segment, enter CLOSED state,
5685 * delete TCB, and return."
5694 * "fifth, if neither of the SYN or RST bits is set then
5695 * drop the segment and return."
5701 goto discard_and_undo
;
5704 * "If the SYN bit is on ...
5705 * are acceptable then ...
5706 * (our SYN has been ACKed), change the connection
5707 * state to ESTABLISHED..."
5710 tcp_ecn_rcv_synack(tp
, th
);
5712 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5713 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5715 /* Ok.. it's good. Set up sequence numbers and
5716 * move to established.
5718 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5719 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5721 /* RFC1323: The window in SYN & SYN/ACK segments is
5724 tp
->snd_wnd
= ntohs(th
->window
);
5726 if (!tp
->rx_opt
.wscale_ok
) {
5727 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5728 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5731 if (tp
->rx_opt
.saw_tstamp
) {
5732 tp
->rx_opt
.tstamp_ok
= 1;
5733 tp
->tcp_header_len
=
5734 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5735 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5736 tcp_store_ts_recent(tp
);
5738 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5741 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5742 tcp_enable_fack(tp
);
5745 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5746 tcp_initialize_rcv_mss(sk
);
5748 /* Remember, tcp_poll() does not lock socket!
5749 * Change state from SYN-SENT only after copied_seq
5750 * is initialized. */
5751 tp
->copied_seq
= tp
->rcv_nxt
;
5755 tcp_finish_connect(sk
, skb
);
5757 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5758 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5761 if (sk
->sk_write_pending
||
5762 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5763 icsk
->icsk_ack
.pingpong
) {
5764 /* Save one ACK. Data will be ready after
5765 * several ticks, if write_pending is set.
5767 * It may be deleted, but with this feature tcpdumps
5768 * look so _wonderfully_ clever, that I was not able
5769 * to stand against the temptation 8) --ANK
5771 inet_csk_schedule_ack(sk
);
5772 tcp_enter_quickack_mode(sk
);
5773 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5774 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5785 /* No ACK in the segment */
5789 * "If the RST bit is set
5791 * Otherwise (no ACK) drop the segment and return."
5794 goto discard_and_undo
;
5798 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5799 tcp_paws_reject(&tp
->rx_opt
, 0))
5800 goto discard_and_undo
;
5803 /* We see SYN without ACK. It is attempt of
5804 * simultaneous connect with crossed SYNs.
5805 * Particularly, it can be connect to self.
5807 tcp_set_state(sk
, TCP_SYN_RECV
);
5809 if (tp
->rx_opt
.saw_tstamp
) {
5810 tp
->rx_opt
.tstamp_ok
= 1;
5811 tcp_store_ts_recent(tp
);
5812 tp
->tcp_header_len
=
5813 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5815 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5818 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5819 tp
->copied_seq
= tp
->rcv_nxt
;
5820 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5822 /* RFC1323: The window in SYN & SYN/ACK segments is
5825 tp
->snd_wnd
= ntohs(th
->window
);
5826 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5827 tp
->max_window
= tp
->snd_wnd
;
5829 tcp_ecn_rcv_syn(tp
, th
);
5832 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5833 tcp_initialize_rcv_mss(sk
);
5835 tcp_send_synack(sk
);
5837 /* Note, we could accept data and URG from this segment.
5838 * There are no obstacles to make this (except that we must
5839 * either change tcp_recvmsg() to prevent it from returning data
5840 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5842 * However, if we ignore data in ACKless segments sometimes,
5843 * we have no reasons to accept it sometimes.
5844 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5845 * is not flawless. So, discard packet for sanity.
5846 * Uncomment this return to process the data.
5853 /* "fifth, if neither of the SYN or RST bits is set then
5854 * drop the segment and return."
5858 tcp_clear_options(&tp
->rx_opt
);
5859 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5863 tcp_clear_options(&tp
->rx_opt
);
5864 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5869 * This function implements the receiving procedure of RFC 793 for
5870 * all states except ESTABLISHED and TIME_WAIT.
5871 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5872 * address independent.
5875 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5877 struct tcp_sock
*tp
= tcp_sk(sk
);
5878 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5879 const struct tcphdr
*th
= tcp_hdr(skb
);
5880 struct request_sock
*req
;
5884 switch (sk
->sk_state
) {
5898 /* It is possible that we process SYN packets from backlog,
5899 * so we need to make sure to disable BH right there.
5902 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
5913 tp
->rx_opt
.saw_tstamp
= 0;
5914 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5918 /* Do step6 onward by hand. */
5919 tcp_urg(sk
, skb
, th
);
5921 tcp_data_snd_check(sk
);
5925 tp
->rx_opt
.saw_tstamp
= 0;
5926 req
= tp
->fastopen_rsk
;
5928 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5929 sk
->sk_state
!= TCP_FIN_WAIT1
);
5931 if (!tcp_check_req(sk
, skb
, req
, true))
5935 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5938 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5941 /* step 5: check the ACK field */
5942 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5943 FLAG_UPDATE_TS_RECENT
) > 0;
5945 switch (sk
->sk_state
) {
5951 tcp_synack_rtt_meas(sk
, req
);
5953 /* Once we leave TCP_SYN_RECV, we no longer need req
5957 inet_csk(sk
)->icsk_retransmits
= 0;
5958 reqsk_fastopen_remove(sk
, req
, false);
5960 /* Make sure socket is routed, for correct metrics. */
5961 icsk
->icsk_af_ops
->rebuild_header(sk
);
5962 tcp_init_congestion_control(sk
);
5965 tp
->copied_seq
= tp
->rcv_nxt
;
5966 tcp_init_buffer_space(sk
);
5969 tcp_set_state(sk
, TCP_ESTABLISHED
);
5970 sk
->sk_state_change(sk
);
5972 /* Note, that this wakeup is only for marginal crossed SYN case.
5973 * Passively open sockets are not waked up, because
5974 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5977 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5979 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5980 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5981 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5983 if (tp
->rx_opt
.tstamp_ok
)
5984 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5987 /* Re-arm the timer because data may have been sent out.
5988 * This is similar to the regular data transmission case
5989 * when new data has just been ack'ed.
5991 * (TFO) - we could try to be more aggressive and
5992 * retransmitting any data sooner based on when they
5997 tcp_init_metrics(sk
);
5999 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6000 tcp_update_pacing_rate(sk
);
6002 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6003 tp
->lsndtime
= tcp_time_stamp
;
6005 tcp_initialize_rcv_mss(sk
);
6006 tcp_fast_path_on(tp
);
6009 case TCP_FIN_WAIT1
: {
6012 /* If we enter the TCP_FIN_WAIT1 state and we are a
6013 * Fast Open socket and this is the first acceptable
6014 * ACK we have received, this would have acknowledged
6015 * our SYNACK so stop the SYNACK timer.
6018 /* Return RST if ack_seq is invalid.
6019 * Note that RFC793 only says to generate a
6020 * DUPACK for it but for TCP Fast Open it seems
6021 * better to treat this case like TCP_SYN_RECV
6026 /* We no longer need the request sock. */
6027 reqsk_fastopen_remove(sk
, req
, false);
6030 if (tp
->snd_una
!= tp
->write_seq
)
6033 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6034 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6038 if (!sock_flag(sk
, SOCK_DEAD
)) {
6039 /* Wake up lingering close() */
6040 sk
->sk_state_change(sk
);
6044 if (tp
->linger2
< 0 ||
6045 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6046 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
6048 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6052 tmo
= tcp_fin_time(sk
);
6053 if (tmo
> TCP_TIMEWAIT_LEN
) {
6054 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6055 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6056 /* Bad case. We could lose such FIN otherwise.
6057 * It is not a big problem, but it looks confusing
6058 * and not so rare event. We still can lose it now,
6059 * if it spins in bh_lock_sock(), but it is really
6062 inet_csk_reset_keepalive_timer(sk
, tmo
);
6064 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6071 if (tp
->snd_una
== tp
->write_seq
) {
6072 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6078 if (tp
->snd_una
== tp
->write_seq
) {
6079 tcp_update_metrics(sk
);
6086 /* step 6: check the URG bit */
6087 tcp_urg(sk
, skb
, th
);
6089 /* step 7: process the segment text */
6090 switch (sk
->sk_state
) {
6091 case TCP_CLOSE_WAIT
:
6094 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6098 /* RFC 793 says to queue data in these states,
6099 * RFC 1122 says we MUST send a reset.
6100 * BSD 4.4 also does reset.
6102 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6103 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6104 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6105 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6111 case TCP_ESTABLISHED
:
6112 tcp_data_queue(sk
, skb
);
6117 /* tcp_data could move socket to TIME-WAIT */
6118 if (sk
->sk_state
!= TCP_CLOSE
) {
6119 tcp_data_snd_check(sk
);
6120 tcp_ack_snd_check(sk
);
6129 EXPORT_SYMBOL(tcp_rcv_state_process
);
6131 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6133 struct inet_request_sock
*ireq
= inet_rsk(req
);
6135 if (family
== AF_INET
)
6136 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6137 &ireq
->ir_rmt_addr
, port
);
6138 #if IS_ENABLED(CONFIG_IPV6)
6139 else if (family
== AF_INET6
)
6140 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6141 &ireq
->ir_v6_rmt_addr
, port
);
6145 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6147 * If we receive a SYN packet with these bits set, it means a
6148 * network is playing bad games with TOS bits. In order to
6149 * avoid possible false congestion notifications, we disable
6150 * TCP ECN negotiation.
6152 * Exception: tcp_ca wants ECN. This is required for DCTCP
6153 * congestion control: Linux DCTCP asserts ECT on all packets,
6154 * including SYN, which is most optimal solution; however,
6155 * others, such as FreeBSD do not.
6157 static void tcp_ecn_create_request(struct request_sock
*req
,
6158 const struct sk_buff
*skb
,
6159 const struct sock
*listen_sk
,
6160 const struct dst_entry
*dst
)
6162 const struct tcphdr
*th
= tcp_hdr(skb
);
6163 const struct net
*net
= sock_net(listen_sk
);
6164 bool th_ecn
= th
->ece
&& th
->cwr
;
6171 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6172 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6173 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6175 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6176 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6177 inet_rsk(req
)->ecn_ok
= 1;
6180 static void tcp_openreq_init(struct request_sock
*req
,
6181 const struct tcp_options_received
*rx_opt
,
6182 struct sk_buff
*skb
, const struct sock
*sk
)
6184 struct inet_request_sock
*ireq
= inet_rsk(req
);
6186 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6188 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6189 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6190 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6191 tcp_rsk(req
)->last_oow_ack_time
= 0;
6192 req
->mss
= rx_opt
->mss_clamp
;
6193 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6194 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6195 ireq
->sack_ok
= rx_opt
->sack_ok
;
6196 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6197 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6200 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6201 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6202 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6205 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6206 struct sock
*sk_listener
,
6207 bool attach_listener
)
6209 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6213 struct inet_request_sock
*ireq
= inet_rsk(req
);
6215 kmemcheck_annotate_bitfield(ireq
, flags
);
6217 #if IS_ENABLED(CONFIG_IPV6)
6218 ireq
->pktopts
= NULL
;
6220 atomic64_set(&ireq
->ir_cookie
, 0);
6221 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6222 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6223 ireq
->ireq_family
= sk_listener
->sk_family
;
6228 EXPORT_SYMBOL(inet_reqsk_alloc
);
6231 * Return true if a syncookie should be sent
6233 static bool tcp_syn_flood_action(const struct sock
*sk
,
6234 const struct sk_buff
*skb
,
6237 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6238 const char *msg
= "Dropping request";
6239 bool want_cookie
= false;
6240 struct net
*net
= sock_net(sk
);
6242 #ifdef CONFIG_SYN_COOKIES
6243 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6244 msg
= "Sending cookies";
6246 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6249 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6251 if (!queue
->synflood_warned
&&
6252 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6253 xchg(&queue
->synflood_warned
, 1) == 0)
6254 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6255 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6260 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6261 struct request_sock
*req
,
6262 const struct sk_buff
*skb
)
6264 if (tcp_sk(sk
)->save_syn
) {
6265 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6268 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6271 memcpy(©
[1], skb_network_header(skb
), len
);
6272 req
->saved_syn
= copy
;
6277 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6278 const struct tcp_request_sock_ops
*af_ops
,
6279 struct sock
*sk
, struct sk_buff
*skb
)
6281 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6282 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6283 struct tcp_options_received tmp_opt
;
6284 struct tcp_sock
*tp
= tcp_sk(sk
);
6285 struct net
*net
= sock_net(sk
);
6286 struct sock
*fastopen_sk
= NULL
;
6287 struct dst_entry
*dst
= NULL
;
6288 struct request_sock
*req
;
6289 bool want_cookie
= false;
6292 /* TW buckets are converted to open requests without
6293 * limitations, they conserve resources and peer is
6294 * evidently real one.
6296 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6297 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6298 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6303 if (sk_acceptq_is_full(sk
)) {
6304 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6308 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6312 tcp_rsk(req
)->af_specific
= af_ops
;
6313 tcp_rsk(req
)->ts_off
= 0;
6315 tcp_clear_options(&tmp_opt
);
6316 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6317 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6318 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6320 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6321 tcp_clear_options(&tmp_opt
);
6323 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6324 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6325 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6327 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6328 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6330 af_ops
->init_req(req
, sk
, skb
);
6332 if (security_inet_conn_request(sk
, skb
, req
))
6335 if (tmp_opt
.tstamp_ok
)
6336 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(skb
);
6338 if (!want_cookie
&& !isn
) {
6339 /* VJ's idea. We save last timestamp seen
6340 * from the destination in peer table, when entering
6341 * state TIME-WAIT, and check against it before
6342 * accepting new connection request.
6344 * If "isn" is not zero, this request hit alive
6345 * timewait bucket, so that all the necessary checks
6346 * are made in the function processing timewait state.
6348 if (net
->ipv4
.tcp_death_row
.sysctl_tw_recycle
) {
6351 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6353 if (dst
&& strict
&&
6354 !tcp_peer_is_proven(req
, dst
, true,
6355 tmp_opt
.saw_tstamp
)) {
6356 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6357 goto drop_and_release
;
6360 /* Kill the following clause, if you dislike this way. */
6361 else if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6362 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6363 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6364 !tcp_peer_is_proven(req
, dst
, false,
6365 tmp_opt
.saw_tstamp
)) {
6366 /* Without syncookies last quarter of
6367 * backlog is filled with destinations,
6368 * proven to be alive.
6369 * It means that we continue to communicate
6370 * to destinations, already remembered
6371 * to the moment of synflood.
6373 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6375 goto drop_and_release
;
6378 isn
= af_ops
->init_seq(skb
);
6381 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6386 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6389 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6390 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6391 if (!tmp_opt
.tstamp_ok
)
6392 inet_rsk(req
)->ecn_ok
= 0;
6395 tcp_rsk(req
)->snt_isn
= isn
;
6396 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6397 tcp_openreq_init_rwin(req
, sk
, dst
);
6399 tcp_reqsk_record_syn(sk
, req
, skb
);
6400 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6403 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6404 &foc
, TCP_SYNACK_FASTOPEN
);
6405 /* Add the child socket directly into the accept queue */
6406 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6407 sk
->sk_data_ready(sk
);
6408 bh_unlock_sock(fastopen_sk
);
6409 sock_put(fastopen_sk
);
6411 tcp_rsk(req
)->tfo_listener
= false;
6413 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6414 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6415 !want_cookie
? TCP_SYNACK_NORMAL
:
6433 EXPORT_SYMBOL(tcp_conn_request
);