2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/kthread.h>
254 #include <linux/percpu.h>
255 #include <linux/cryptohash.h>
256 #include <linux/fips.h>
257 #include <linux/ptrace.h>
258 #include <linux/kmemcheck.h>
259 #include <linux/workqueue.h>
260 #include <linux/irq.h>
261 #include <linux/syscalls.h>
262 #include <linux/completion.h>
263 #include <linux/uuid.h>
265 #include <asm/processor.h>
266 #include <asm/uaccess.h>
268 #include <asm/irq_regs.h>
271 #define CREATE_TRACE_POINTS
272 #include <trace/events/random.h>
274 /* #define ADD_INTERRUPT_BENCH */
277 * Configuration information
279 #define INPUT_POOL_SHIFT 12
280 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
281 #define OUTPUT_POOL_SHIFT 10
282 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
283 #define SEC_XFER_SIZE 512
284 #define EXTRACT_SIZE 10
286 #define DEBUG_RANDOM_BOOT 0
288 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291 * To allow fractional bits to be tracked, the entropy_count field is
292 * denominated in units of 1/8th bits.
294 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
295 * credit_entropy_bits() needs to be 64 bits wide.
297 #define ENTROPY_SHIFT 3
298 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301 * The minimum number of bits of entropy before we wake up a read on
302 * /dev/random. Should be enough to do a significant reseed.
304 static int random_read_wakeup_bits
= 64;
307 * If the entropy count falls under this number of bits, then we
308 * should wake up processes which are selecting or polling on write
309 * access to /dev/random.
311 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
314 * The minimum number of seconds between urandom pool reseeding. We
315 * do this to limit the amount of entropy that can be drained from the
316 * input pool even if there are heavy demands on /dev/urandom.
318 static int random_min_urandom_seed
= 60;
321 * Originally, we used a primitive polynomial of degree .poolwords
322 * over GF(2). The taps for various sizes are defined below. They
323 * were chosen to be evenly spaced except for the last tap, which is 1
324 * to get the twisting happening as fast as possible.
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a (modified) twisted Generalized Feedback Shift
328 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
329 * generators. ACM Transactions on Modeling and Computer Simulation
330 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
331 * GFSR generators II. ACM Transactions on Modeling and Computer
332 * Simulation 4:254-266)
334 * Thanks to Colin Plumb for suggesting this.
336 * The mixing operation is much less sensitive than the output hash,
337 * where we use SHA-1. All that we want of mixing operation is that
338 * it be a good non-cryptographic hash; i.e. it not produce collisions
339 * when fed "random" data of the sort we expect to see. As long as
340 * the pool state differs for different inputs, we have preserved the
341 * input entropy and done a good job. The fact that an intelligent
342 * attacker can construct inputs that will produce controlled
343 * alterations to the pool's state is not important because we don't
344 * consider such inputs to contribute any randomness. The only
345 * property we need with respect to them is that the attacker can't
346 * increase his/her knowledge of the pool's state. Since all
347 * additions are reversible (knowing the final state and the input,
348 * you can reconstruct the initial state), if an attacker has any
349 * uncertainty about the initial state, he/she can only shuffle that
350 * uncertainty about, but never cause any collisions (which would
351 * decrease the uncertainty).
353 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
354 * Videau in their paper, "The Linux Pseudorandom Number Generator
355 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
356 * paper, they point out that we are not using a true Twisted GFSR,
357 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
358 * is, with only three taps, instead of the six that we are using).
359 * As a result, the resulting polynomial is neither primitive nor
360 * irreducible, and hence does not have a maximal period over
361 * GF(2**32). They suggest a slight change to the generator
362 * polynomial which improves the resulting TGFSR polynomial to be
363 * irreducible, which we have made here.
365 static struct poolinfo
{
366 int poolbitshift
, poolwords
, poolbytes
, poolbits
, poolfracbits
;
367 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
368 int tap1
, tap2
, tap3
, tap4
, tap5
;
369 } poolinfo_table
[] = {
370 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
371 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
372 { S(128), 104, 76, 51, 25, 1 },
373 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
374 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
375 { S(32), 26, 19, 14, 7, 1 },
377 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
378 { S(2048), 1638, 1231, 819, 411, 1 },
380 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
381 { S(1024), 817, 615, 412, 204, 1 },
383 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
384 { S(1024), 819, 616, 410, 207, 2 },
386 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
387 { S(512), 411, 308, 208, 104, 1 },
389 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
390 { S(512), 409, 307, 206, 102, 2 },
391 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
392 { S(512), 409, 309, 205, 103, 2 },
394 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
395 { S(256), 205, 155, 101, 52, 1 },
397 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
398 { S(128), 103, 78, 51, 27, 2 },
400 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
401 { S(64), 52, 39, 26, 14, 1 },
406 * Static global variables
408 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
409 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
410 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait
);
411 static struct fasync_struct
*fasync
;
413 static DEFINE_SPINLOCK(random_ready_list_lock
);
414 static LIST_HEAD(random_ready_list
);
416 /**********************************************************************
418 * OS independent entropy store. Here are the functions which handle
419 * storing entropy in an entropy pool.
421 **********************************************************************/
423 struct entropy_store
;
424 struct entropy_store
{
425 /* read-only data: */
426 const struct poolinfo
*poolinfo
;
429 struct entropy_store
*pull
;
430 struct work_struct push_work
;
432 /* read-write data: */
433 unsigned long last_pulled
;
435 unsigned short add_ptr
;
436 unsigned short input_rotate
;
439 unsigned int initialized
:1;
440 unsigned int limit
:1;
441 unsigned int last_data_init
:1;
442 __u8 last_data
[EXTRACT_SIZE
];
445 static void push_to_pool(struct work_struct
*work
);
446 static __u32 input_pool_data
[INPUT_POOL_WORDS
];
447 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
];
448 static __u32 nonblocking_pool_data
[OUTPUT_POOL_WORDS
];
450 static struct entropy_store input_pool
= {
451 .poolinfo
= &poolinfo_table
[0],
454 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
455 .pool
= input_pool_data
458 static struct entropy_store blocking_pool
= {
459 .poolinfo
= &poolinfo_table
[1],
463 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
464 .pool
= blocking_pool_data
,
465 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
469 static struct entropy_store nonblocking_pool
= {
470 .poolinfo
= &poolinfo_table
[1],
471 .name
= "nonblocking",
473 .lock
= __SPIN_LOCK_UNLOCKED(nonblocking_pool
.lock
),
474 .pool
= nonblocking_pool_data
,
475 .push_work
= __WORK_INITIALIZER(nonblocking_pool
.push_work
,
479 static __u32
const twist_table
[8] = {
480 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
481 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
484 * This function adds bytes into the entropy "pool". It does not
485 * update the entropy estimate. The caller should call
486 * credit_entropy_bits if this is appropriate.
488 * The pool is stirred with a primitive polynomial of the appropriate
489 * degree, and then twisted. We twist by three bits at a time because
490 * it's cheap to do so and helps slightly in the expected case where
491 * the entropy is concentrated in the low-order bits.
493 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
496 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
498 int wordmask
= r
->poolinfo
->poolwords
- 1;
499 const char *bytes
= in
;
502 tap1
= r
->poolinfo
->tap1
;
503 tap2
= r
->poolinfo
->tap2
;
504 tap3
= r
->poolinfo
->tap3
;
505 tap4
= r
->poolinfo
->tap4
;
506 tap5
= r
->poolinfo
->tap5
;
508 input_rotate
= r
->input_rotate
;
511 /* mix one byte at a time to simplify size handling and churn faster */
513 w
= rol32(*bytes
++, input_rotate
);
514 i
= (i
- 1) & wordmask
;
516 /* XOR in the various taps */
518 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
519 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
520 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
521 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
522 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
524 /* Mix the result back in with a twist */
525 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
528 * Normally, we add 7 bits of rotation to the pool.
529 * At the beginning of the pool, add an extra 7 bits
530 * rotation, so that successive passes spread the
531 * input bits across the pool evenly.
533 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
536 r
->input_rotate
= input_rotate
;
540 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
543 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
544 _mix_pool_bytes(r
, in
, nbytes
);
547 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
552 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
553 spin_lock_irqsave(&r
->lock
, flags
);
554 _mix_pool_bytes(r
, in
, nbytes
);
555 spin_unlock_irqrestore(&r
->lock
, flags
);
561 unsigned short reg_idx
;
566 * This is a fast mixing routine used by the interrupt randomness
567 * collector. It's hardcoded for an 128 bit pool and assumes that any
568 * locks that might be needed are taken by the caller.
570 static void fast_mix(struct fast_pool
*f
)
572 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
573 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
576 b
= rol32(b
, 6); d
= rol32(d
, 27);
580 b
= rol32(b
, 16); d
= rol32(d
, 14);
584 b
= rol32(b
, 6); d
= rol32(d
, 27);
588 b
= rol32(b
, 16); d
= rol32(d
, 14);
591 f
->pool
[0] = a
; f
->pool
[1] = b
;
592 f
->pool
[2] = c
; f
->pool
[3] = d
;
596 static void process_random_ready_list(void)
599 struct random_ready_callback
*rdy
, *tmp
;
601 spin_lock_irqsave(&random_ready_list_lock
, flags
);
602 list_for_each_entry_safe(rdy
, tmp
, &random_ready_list
, list
) {
603 struct module
*owner
= rdy
->owner
;
605 list_del_init(&rdy
->list
);
609 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
613 * Credit (or debit) the entropy store with n bits of entropy.
614 * Use credit_entropy_bits_safe() if the value comes from userspace
615 * or otherwise should be checked for extreme values.
617 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
619 int entropy_count
, orig
;
620 const int pool_size
= r
->poolinfo
->poolfracbits
;
621 int nfrac
= nbits
<< ENTROPY_SHIFT
;
627 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
630 entropy_count
+= nfrac
;
633 * Credit: we have to account for the possibility of
634 * overwriting already present entropy. Even in the
635 * ideal case of pure Shannon entropy, new contributions
636 * approach the full value asymptotically:
638 * entropy <- entropy + (pool_size - entropy) *
639 * (1 - exp(-add_entropy/pool_size))
641 * For add_entropy <= pool_size/2 then
642 * (1 - exp(-add_entropy/pool_size)) >=
643 * (add_entropy/pool_size)*0.7869...
644 * so we can approximate the exponential with
645 * 3/4*add_entropy/pool_size and still be on the
646 * safe side by adding at most pool_size/2 at a time.
648 * The use of pool_size-2 in the while statement is to
649 * prevent rounding artifacts from making the loop
650 * arbitrarily long; this limits the loop to log2(pool_size)*2
651 * turns no matter how large nbits is.
654 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
655 /* The +2 corresponds to the /4 in the denominator */
658 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
660 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
662 entropy_count
+= add
;
664 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
667 if (unlikely(entropy_count
< 0)) {
668 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
669 r
->name
, entropy_count
);
672 } else if (entropy_count
> pool_size
)
673 entropy_count
= pool_size
;
674 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
677 r
->entropy_total
+= nbits
;
678 if (!r
->initialized
&& r
->entropy_total
> 128) {
680 r
->entropy_total
= 0;
681 if (r
== &nonblocking_pool
) {
682 prandom_reseed_late();
683 process_random_ready_list();
684 wake_up_all(&urandom_init_wait
);
685 pr_notice("random: %s pool is initialized\n", r
->name
);
689 trace_credit_entropy_bits(r
->name
, nbits
,
690 entropy_count
>> ENTROPY_SHIFT
,
691 r
->entropy_total
, _RET_IP_
);
693 if (r
== &input_pool
) {
694 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
696 /* should we wake readers? */
697 if (entropy_bits
>= random_read_wakeup_bits
) {
698 wake_up_interruptible(&random_read_wait
);
699 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
701 /* If the input pool is getting full, send some
702 * entropy to the two output pools, flipping back and
703 * forth between them, until the output pools are 75%
706 if (entropy_bits
> random_write_wakeup_bits
&&
708 r
->entropy_total
>= 2*random_read_wakeup_bits
) {
709 static struct entropy_store
*last
= &blocking_pool
;
710 struct entropy_store
*other
= &blocking_pool
;
712 if (last
== &blocking_pool
)
713 other
= &nonblocking_pool
;
714 if (other
->entropy_count
<=
715 3 * other
->poolinfo
->poolfracbits
/ 4)
717 if (last
->entropy_count
<=
718 3 * last
->poolinfo
->poolfracbits
/ 4) {
719 schedule_work(&last
->push_work
);
720 r
->entropy_total
= 0;
726 static void credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
728 const int nbits_max
= (int)(~0U >> (ENTROPY_SHIFT
+ 1));
730 /* Cap the value to avoid overflows */
731 nbits
= min(nbits
, nbits_max
);
732 nbits
= max(nbits
, -nbits_max
);
734 credit_entropy_bits(r
, nbits
);
737 /*********************************************************************
739 * Entropy input management
741 *********************************************************************/
743 /* There is one of these per entropy source */
744 struct timer_rand_state
{
746 long last_delta
, last_delta2
;
747 unsigned dont_count_entropy
:1;
750 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
753 * Add device- or boot-specific data to the input and nonblocking
754 * pools to help initialize them to unique values.
756 * None of this adds any entropy, it is meant to avoid the
757 * problem of the nonblocking pool having similar initial state
758 * across largely identical devices.
760 void add_device_randomness(const void *buf
, unsigned int size
)
762 unsigned long time
= random_get_entropy() ^ jiffies
;
765 trace_add_device_randomness(size
, _RET_IP_
);
766 spin_lock_irqsave(&input_pool
.lock
, flags
);
767 _mix_pool_bytes(&input_pool
, buf
, size
);
768 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
769 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
771 spin_lock_irqsave(&nonblocking_pool
.lock
, flags
);
772 _mix_pool_bytes(&nonblocking_pool
, buf
, size
);
773 _mix_pool_bytes(&nonblocking_pool
, &time
, sizeof(time
));
774 spin_unlock_irqrestore(&nonblocking_pool
.lock
, flags
);
776 EXPORT_SYMBOL(add_device_randomness
);
778 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
781 * This function adds entropy to the entropy "pool" by using timing
782 * delays. It uses the timer_rand_state structure to make an estimate
783 * of how many bits of entropy this call has added to the pool.
785 * The number "num" is also added to the pool - it should somehow describe
786 * the type of event which just happened. This is currently 0-255 for
787 * keyboard scan codes, and 256 upwards for interrupts.
790 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
792 struct entropy_store
*r
;
798 long delta
, delta2
, delta3
;
802 sample
.jiffies
= jiffies
;
803 sample
.cycles
= random_get_entropy();
805 r
= nonblocking_pool
.initialized
? &input_pool
: &nonblocking_pool
;
806 mix_pool_bytes(r
, &sample
, sizeof(sample
));
809 * Calculate number of bits of randomness we probably added.
810 * We take into account the first, second and third-order deltas
811 * in order to make our estimate.
814 if (!state
->dont_count_entropy
) {
815 delta
= sample
.jiffies
- state
->last_time
;
816 state
->last_time
= sample
.jiffies
;
818 delta2
= delta
- state
->last_delta
;
819 state
->last_delta
= delta
;
821 delta3
= delta2
- state
->last_delta2
;
822 state
->last_delta2
= delta2
;
836 * delta is now minimum absolute delta.
837 * Round down by 1 bit on general principles,
838 * and limit entropy entimate to 12 bits.
840 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
845 void add_input_randomness(unsigned int type
, unsigned int code
,
848 static unsigned char last_value
;
850 /* ignore autorepeat and the like */
851 if (value
== last_value
)
855 add_timer_randomness(&input_timer_state
,
856 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
857 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
859 EXPORT_SYMBOL_GPL(add_input_randomness
);
861 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
863 #ifdef ADD_INTERRUPT_BENCH
864 static unsigned long avg_cycles
, avg_deviation
;
866 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
867 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
869 static void add_interrupt_bench(cycles_t start
)
871 long delta
= random_get_entropy() - start
;
873 /* Use a weighted moving average */
874 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
876 /* And average deviation */
877 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
878 avg_deviation
+= delta
;
881 #define add_interrupt_bench(x)
884 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
886 __u32
*ptr
= (__u32
*) regs
;
890 if (f
->reg_idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
892 return *(ptr
+ f
->reg_idx
++);
895 void add_interrupt_randomness(int irq
, int irq_flags
)
897 struct entropy_store
*r
;
898 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
899 struct pt_regs
*regs
= get_irq_regs();
900 unsigned long now
= jiffies
;
901 cycles_t cycles
= random_get_entropy();
902 __u32 c_high
, j_high
;
908 cycles
= get_reg(fast_pool
, regs
);
909 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
910 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
911 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
912 fast_pool
->pool
[1] ^= now
^ c_high
;
913 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
914 fast_pool
->pool
[2] ^= ip
;
915 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
916 get_reg(fast_pool
, regs
);
919 add_interrupt_bench(cycles
);
921 if ((fast_pool
->count
< 64) &&
922 !time_after(now
, fast_pool
->last
+ HZ
))
925 r
= nonblocking_pool
.initialized
? &input_pool
: &nonblocking_pool
;
926 if (!spin_trylock(&r
->lock
))
929 fast_pool
->last
= now
;
930 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
933 * If we have architectural seed generator, produce a seed and
934 * add it to the pool. For the sake of paranoia don't let the
935 * architectural seed generator dominate the input from the
938 if (arch_get_random_seed_long(&seed
)) {
939 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
942 spin_unlock(&r
->lock
);
944 fast_pool
->count
= 0;
946 /* award one bit for the contents of the fast pool */
947 credit_entropy_bits(r
, credit
+ 1);
951 void add_disk_randomness(struct gendisk
*disk
)
953 if (!disk
|| !disk
->random
)
955 /* first major is 1, so we get >= 0x200 here */
956 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
957 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
959 EXPORT_SYMBOL_GPL(add_disk_randomness
);
962 /*********************************************************************
964 * Entropy extraction routines
966 *********************************************************************/
968 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
969 size_t nbytes
, int min
, int rsvd
);
972 * This utility inline function is responsible for transferring entropy
973 * from the primary pool to the secondary extraction pool. We make
974 * sure we pull enough for a 'catastrophic reseed'.
976 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
977 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
980 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
981 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
984 if (r
->limit
== 0 && random_min_urandom_seed
) {
985 unsigned long now
= jiffies
;
988 r
->last_pulled
+ random_min_urandom_seed
* HZ
))
990 r
->last_pulled
= now
;
993 _xfer_secondary_pool(r
, nbytes
);
996 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
998 __u32 tmp
[OUTPUT_POOL_WORDS
];
1000 /* For /dev/random's pool, always leave two wakeups' worth */
1001 int rsvd_bytes
= r
->limit
? 0 : random_read_wakeup_bits
/ 4;
1004 /* pull at least as much as a wakeup */
1005 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
1006 /* but never more than the buffer size */
1007 bytes
= min_t(int, bytes
, sizeof(tmp
));
1009 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
1010 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
1011 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
1012 random_read_wakeup_bits
/ 8, rsvd_bytes
);
1013 mix_pool_bytes(r
, tmp
, bytes
);
1014 credit_entropy_bits(r
, bytes
*8);
1018 * Used as a workqueue function so that when the input pool is getting
1019 * full, we can "spill over" some entropy to the output pools. That
1020 * way the output pools can store some of the excess entropy instead
1021 * of letting it go to waste.
1023 static void push_to_pool(struct work_struct
*work
)
1025 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1028 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1029 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1030 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1034 * This function decides how many bytes to actually take from the
1035 * given pool, and also debits the entropy count accordingly.
1037 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1040 int entropy_count
, orig
;
1041 size_t ibytes
, nfrac
;
1043 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1045 /* Can we pull enough? */
1047 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
1049 /* If limited, never pull more than available */
1051 int have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1053 if ((have_bytes
-= reserved
) < 0)
1055 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1060 if (unlikely(entropy_count
< 0)) {
1061 pr_warn("random: negative entropy count: pool %s count %d\n",
1062 r
->name
, entropy_count
);
1066 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1067 if ((size_t) entropy_count
> nfrac
)
1068 entropy_count
-= nfrac
;
1072 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1075 trace_debit_entropy(r
->name
, 8 * ibytes
);
1077 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1078 wake_up_interruptible(&random_write_wait
);
1079 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1086 * This function does the actual extraction for extract_entropy and
1087 * extract_entropy_user.
1089 * Note: we assume that .poolwords is a multiple of 16 words.
1091 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1096 unsigned long l
[LONGS(20)];
1098 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1099 unsigned long flags
;
1102 * If we have an architectural hardware random number
1103 * generator, use it for SHA's initial vector
1106 for (i
= 0; i
< LONGS(20); i
++) {
1108 if (!arch_get_random_long(&v
))
1113 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1114 spin_lock_irqsave(&r
->lock
, flags
);
1115 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1116 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1119 * We mix the hash back into the pool to prevent backtracking
1120 * attacks (where the attacker knows the state of the pool
1121 * plus the current outputs, and attempts to find previous
1122 * ouputs), unless the hash function can be inverted. By
1123 * mixing at least a SHA1 worth of hash data back, we make
1124 * brute-forcing the feedback as hard as brute-forcing the
1127 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1128 spin_unlock_irqrestore(&r
->lock
, flags
);
1130 memzero_explicit(workspace
, sizeof(workspace
));
1133 * In case the hash function has some recognizable output
1134 * pattern, we fold it in half. Thus, we always feed back
1135 * twice as much data as we output.
1137 hash
.w
[0] ^= hash
.w
[3];
1138 hash
.w
[1] ^= hash
.w
[4];
1139 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1141 memcpy(out
, &hash
, EXTRACT_SIZE
);
1142 memzero_explicit(&hash
, sizeof(hash
));
1146 * This function extracts randomness from the "entropy pool", and
1147 * returns it in a buffer.
1149 * The min parameter specifies the minimum amount we can pull before
1150 * failing to avoid races that defeat catastrophic reseeding while the
1151 * reserved parameter indicates how much entropy we must leave in the
1152 * pool after each pull to avoid starving other readers.
1154 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1155 size_t nbytes
, int min
, int reserved
)
1158 __u8 tmp
[EXTRACT_SIZE
];
1159 unsigned long flags
;
1161 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1163 spin_lock_irqsave(&r
->lock
, flags
);
1164 if (!r
->last_data_init
) {
1165 r
->last_data_init
= 1;
1166 spin_unlock_irqrestore(&r
->lock
, flags
);
1167 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1168 ENTROPY_BITS(r
), _RET_IP_
);
1169 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1170 extract_buf(r
, tmp
);
1171 spin_lock_irqsave(&r
->lock
, flags
);
1172 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1174 spin_unlock_irqrestore(&r
->lock
, flags
);
1177 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1178 xfer_secondary_pool(r
, nbytes
);
1179 nbytes
= account(r
, nbytes
, min
, reserved
);
1182 extract_buf(r
, tmp
);
1185 spin_lock_irqsave(&r
->lock
, flags
);
1186 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1187 panic("Hardware RNG duplicated output!\n");
1188 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1189 spin_unlock_irqrestore(&r
->lock
, flags
);
1191 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1192 memcpy(buf
, tmp
, i
);
1198 /* Wipe data just returned from memory */
1199 memzero_explicit(tmp
, sizeof(tmp
));
1205 * This function extracts randomness from the "entropy pool", and
1206 * returns it in a userspace buffer.
1208 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1212 __u8 tmp
[EXTRACT_SIZE
];
1213 int large_request
= (nbytes
> 256);
1215 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1216 xfer_secondary_pool(r
, nbytes
);
1217 nbytes
= account(r
, nbytes
, 0, 0);
1220 if (large_request
&& need_resched()) {
1221 if (signal_pending(current
)) {
1229 extract_buf(r
, tmp
);
1230 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1231 if (copy_to_user(buf
, tmp
, i
)) {
1241 /* Wipe data just returned from memory */
1242 memzero_explicit(tmp
, sizeof(tmp
));
1248 * This function is the exported kernel interface. It returns some
1249 * number of good random numbers, suitable for key generation, seeding
1250 * TCP sequence numbers, etc. It does not rely on the hardware random
1251 * number generator. For random bytes direct from the hardware RNG
1252 * (when available), use get_random_bytes_arch().
1254 void get_random_bytes(void *buf
, int nbytes
)
1256 #if DEBUG_RANDOM_BOOT > 0
1257 if (unlikely(nonblocking_pool
.initialized
== 0))
1258 printk(KERN_NOTICE
"random: %pF get_random_bytes called "
1259 "with %d bits of entropy available\n",
1261 nonblocking_pool
.entropy_total
);
1263 trace_get_random_bytes(nbytes
, _RET_IP_
);
1264 extract_entropy(&nonblocking_pool
, buf
, nbytes
, 0, 0);
1266 EXPORT_SYMBOL(get_random_bytes
);
1269 * Add a callback function that will be invoked when the nonblocking
1270 * pool is initialised.
1272 * returns: 0 if callback is successfully added
1273 * -EALREADY if pool is already initialised (callback not called)
1274 * -ENOENT if module for callback is not alive
1276 int add_random_ready_callback(struct random_ready_callback
*rdy
)
1278 struct module
*owner
;
1279 unsigned long flags
;
1280 int err
= -EALREADY
;
1282 if (likely(nonblocking_pool
.initialized
))
1286 if (!try_module_get(owner
))
1289 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1290 if (nonblocking_pool
.initialized
)
1295 list_add(&rdy
->list
, &random_ready_list
);
1299 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1305 EXPORT_SYMBOL(add_random_ready_callback
);
1308 * Delete a previously registered readiness callback function.
1310 void del_random_ready_callback(struct random_ready_callback
*rdy
)
1312 unsigned long flags
;
1313 struct module
*owner
= NULL
;
1315 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1316 if (!list_empty(&rdy
->list
)) {
1317 list_del_init(&rdy
->list
);
1320 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1324 EXPORT_SYMBOL(del_random_ready_callback
);
1327 * This function will use the architecture-specific hardware random
1328 * number generator if it is available. The arch-specific hw RNG will
1329 * almost certainly be faster than what we can do in software, but it
1330 * is impossible to verify that it is implemented securely (as
1331 * opposed, to, say, the AES encryption of a sequence number using a
1332 * key known by the NSA). So it's useful if we need the speed, but
1333 * only if we're willing to trust the hardware manufacturer not to
1334 * have put in a back door.
1336 void get_random_bytes_arch(void *buf
, int nbytes
)
1340 trace_get_random_bytes_arch(nbytes
, _RET_IP_
);
1343 int chunk
= min(nbytes
, (int)sizeof(unsigned long));
1345 if (!arch_get_random_long(&v
))
1348 memcpy(p
, &v
, chunk
);
1354 extract_entropy(&nonblocking_pool
, p
, nbytes
, 0, 0);
1356 EXPORT_SYMBOL(get_random_bytes_arch
);
1360 * init_std_data - initialize pool with system data
1362 * @r: pool to initialize
1364 * This function clears the pool's entropy count and mixes some system
1365 * data into the pool to prepare it for use. The pool is not cleared
1366 * as that can only decrease the entropy in the pool.
1368 static void init_std_data(struct entropy_store
*r
)
1371 ktime_t now
= ktime_get_real();
1374 r
->last_pulled
= jiffies
;
1375 mix_pool_bytes(r
, &now
, sizeof(now
));
1376 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1377 if (!arch_get_random_seed_long(&rv
) &&
1378 !arch_get_random_long(&rv
))
1379 rv
= random_get_entropy();
1380 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1382 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1386 * Note that setup_arch() may call add_device_randomness()
1387 * long before we get here. This allows seeding of the pools
1388 * with some platform dependent data very early in the boot
1389 * process. But it limits our options here. We must use
1390 * statically allocated structures that already have all
1391 * initializations complete at compile time. We should also
1392 * take care not to overwrite the precious per platform data
1395 static int rand_initialize(void)
1397 init_std_data(&input_pool
);
1398 init_std_data(&blocking_pool
);
1399 init_std_data(&nonblocking_pool
);
1402 early_initcall(rand_initialize
);
1405 void rand_initialize_disk(struct gendisk
*disk
)
1407 struct timer_rand_state
*state
;
1410 * If kzalloc returns null, we just won't use that entropy
1413 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1415 state
->last_time
= INITIAL_JIFFIES
;
1416 disk
->random
= state
;
1422 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1429 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1431 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1434 trace_random_read(n
*8, (nbytes
-n
)*8,
1435 ENTROPY_BITS(&blocking_pool
),
1436 ENTROPY_BITS(&input_pool
));
1440 /* Pool is (near) empty. Maybe wait and retry. */
1444 wait_event_interruptible(random_read_wait
,
1445 ENTROPY_BITS(&input_pool
) >=
1446 random_read_wakeup_bits
);
1447 if (signal_pending(current
))
1448 return -ERESTARTSYS
;
1453 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1455 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
1459 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1463 if (unlikely(nonblocking_pool
.initialized
== 0))
1464 printk_once(KERN_NOTICE
"random: %s urandom read "
1465 "with %d bits of entropy available\n",
1466 current
->comm
, nonblocking_pool
.entropy_total
);
1468 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
1469 ret
= extract_entropy_user(&nonblocking_pool
, buf
, nbytes
);
1471 trace_urandom_read(8 * nbytes
, ENTROPY_BITS(&nonblocking_pool
),
1472 ENTROPY_BITS(&input_pool
));
1477 random_poll(struct file
*file
, poll_table
* wait
)
1481 poll_wait(file
, &random_read_wait
, wait
);
1482 poll_wait(file
, &random_write_wait
, wait
);
1484 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1485 mask
|= POLLIN
| POLLRDNORM
;
1486 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1487 mask
|= POLLOUT
| POLLWRNORM
;
1492 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1496 const char __user
*p
= buffer
;
1499 bytes
= min(count
, sizeof(buf
));
1500 if (copy_from_user(&buf
, p
, bytes
))
1506 mix_pool_bytes(r
, buf
, bytes
);
1513 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
1514 size_t count
, loff_t
*ppos
)
1518 ret
= write_pool(&blocking_pool
, buffer
, count
);
1521 ret
= write_pool(&nonblocking_pool
, buffer
, count
);
1525 return (ssize_t
)count
;
1528 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1530 int size
, ent_count
;
1531 int __user
*p
= (int __user
*)arg
;
1536 /* inherently racy, no point locking */
1537 ent_count
= ENTROPY_BITS(&input_pool
);
1538 if (put_user(ent_count
, p
))
1541 case RNDADDTOENTCNT
:
1542 if (!capable(CAP_SYS_ADMIN
))
1544 if (get_user(ent_count
, p
))
1546 credit_entropy_bits_safe(&input_pool
, ent_count
);
1549 if (!capable(CAP_SYS_ADMIN
))
1551 if (get_user(ent_count
, p
++))
1555 if (get_user(size
, p
++))
1557 retval
= write_pool(&input_pool
, (const char __user
*)p
,
1561 credit_entropy_bits_safe(&input_pool
, ent_count
);
1566 * Clear the entropy pool counters. We no longer clear
1567 * the entropy pool, as that's silly.
1569 if (!capable(CAP_SYS_ADMIN
))
1571 input_pool
.entropy_count
= 0;
1572 nonblocking_pool
.entropy_count
= 0;
1573 blocking_pool
.entropy_count
= 0;
1580 static int random_fasync(int fd
, struct file
*filp
, int on
)
1582 return fasync_helper(fd
, filp
, on
, &fasync
);
1585 const struct file_operations random_fops
= {
1586 .read
= random_read
,
1587 .write
= random_write
,
1588 .poll
= random_poll
,
1589 .unlocked_ioctl
= random_ioctl
,
1590 .fasync
= random_fasync
,
1591 .llseek
= noop_llseek
,
1594 const struct file_operations urandom_fops
= {
1595 .read
= urandom_read
,
1596 .write
= random_write
,
1597 .unlocked_ioctl
= random_ioctl
,
1598 .fasync
= random_fasync
,
1599 .llseek
= noop_llseek
,
1602 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
1603 unsigned int, flags
)
1605 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
1608 if (count
> INT_MAX
)
1611 if (flags
& GRND_RANDOM
)
1612 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
1614 if (unlikely(nonblocking_pool
.initialized
== 0)) {
1615 if (flags
& GRND_NONBLOCK
)
1617 wait_event_interruptible(urandom_init_wait
,
1618 nonblocking_pool
.initialized
);
1619 if (signal_pending(current
))
1620 return -ERESTARTSYS
;
1622 return urandom_read(NULL
, buf
, count
, NULL
);
1625 /********************************************************************
1629 ********************************************************************/
1631 #ifdef CONFIG_SYSCTL
1633 #include <linux/sysctl.h>
1635 static int min_read_thresh
= 8, min_write_thresh
;
1636 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
1637 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
1638 static char sysctl_bootid
[16];
1641 * This function is used to return both the bootid UUID, and random
1642 * UUID. The difference is in whether table->data is NULL; if it is,
1643 * then a new UUID is generated and returned to the user.
1645 * If the user accesses this via the proc interface, the UUID will be
1646 * returned as an ASCII string in the standard UUID format; if via the
1647 * sysctl system call, as 16 bytes of binary data.
1649 static int proc_do_uuid(struct ctl_table
*table
, int write
,
1650 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1652 struct ctl_table fake_table
;
1653 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
1658 generate_random_uuid(uuid
);
1660 static DEFINE_SPINLOCK(bootid_spinlock
);
1662 spin_lock(&bootid_spinlock
);
1664 generate_random_uuid(uuid
);
1665 spin_unlock(&bootid_spinlock
);
1668 sprintf(buf
, "%pU", uuid
);
1670 fake_table
.data
= buf
;
1671 fake_table
.maxlen
= sizeof(buf
);
1673 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
1677 * Return entropy available scaled to integral bits
1679 static int proc_do_entropy(struct ctl_table
*table
, int write
,
1680 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1682 struct ctl_table fake_table
;
1685 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
1687 fake_table
.data
= &entropy_count
;
1688 fake_table
.maxlen
= sizeof(entropy_count
);
1690 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
1693 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
1694 extern struct ctl_table random_table
[];
1695 struct ctl_table random_table
[] = {
1697 .procname
= "poolsize",
1698 .data
= &sysctl_poolsize
,
1699 .maxlen
= sizeof(int),
1701 .proc_handler
= proc_dointvec
,
1704 .procname
= "entropy_avail",
1705 .maxlen
= sizeof(int),
1707 .proc_handler
= proc_do_entropy
,
1708 .data
= &input_pool
.entropy_count
,
1711 .procname
= "read_wakeup_threshold",
1712 .data
= &random_read_wakeup_bits
,
1713 .maxlen
= sizeof(int),
1715 .proc_handler
= proc_dointvec_minmax
,
1716 .extra1
= &min_read_thresh
,
1717 .extra2
= &max_read_thresh
,
1720 .procname
= "write_wakeup_threshold",
1721 .data
= &random_write_wakeup_bits
,
1722 .maxlen
= sizeof(int),
1724 .proc_handler
= proc_dointvec_minmax
,
1725 .extra1
= &min_write_thresh
,
1726 .extra2
= &max_write_thresh
,
1729 .procname
= "urandom_min_reseed_secs",
1730 .data
= &random_min_urandom_seed
,
1731 .maxlen
= sizeof(int),
1733 .proc_handler
= proc_dointvec
,
1736 .procname
= "boot_id",
1737 .data
= &sysctl_bootid
,
1740 .proc_handler
= proc_do_uuid
,
1746 .proc_handler
= proc_do_uuid
,
1748 #ifdef ADD_INTERRUPT_BENCH
1750 .procname
= "add_interrupt_avg_cycles",
1751 .data
= &avg_cycles
,
1752 .maxlen
= sizeof(avg_cycles
),
1754 .proc_handler
= proc_doulongvec_minmax
,
1757 .procname
= "add_interrupt_avg_deviation",
1758 .data
= &avg_deviation
,
1759 .maxlen
= sizeof(avg_deviation
),
1761 .proc_handler
= proc_doulongvec_minmax
,
1766 #endif /* CONFIG_SYSCTL */
1768 static u32 random_int_secret
[MD5_MESSAGE_BYTES
/ 4] ____cacheline_aligned
;
1770 int random_int_secret_init(void)
1772 get_random_bytes(random_int_secret
, sizeof(random_int_secret
));
1777 * Get a random word for internal kernel use only. Similar to urandom but
1778 * with the goal of minimal entropy pool depletion. As a result, the random
1779 * value is not cryptographically secure but for several uses the cost of
1780 * depleting entropy is too high
1782 static DEFINE_PER_CPU(__u32
[MD5_DIGEST_WORDS
], get_random_int_hash
);
1783 unsigned int get_random_int(void)
1788 if (arch_get_random_int(&ret
))
1791 hash
= get_cpu_var(get_random_int_hash
);
1793 hash
[0] += current
->pid
+ jiffies
+ random_get_entropy();
1794 md5_transform(hash
, random_int_secret
);
1796 put_cpu_var(get_random_int_hash
);
1800 EXPORT_SYMBOL(get_random_int
);
1803 * Same as get_random_int(), but returns unsigned long.
1805 unsigned long get_random_long(void)
1810 if (arch_get_random_long(&ret
))
1813 hash
= get_cpu_var(get_random_int_hash
);
1815 hash
[0] += current
->pid
+ jiffies
+ random_get_entropy();
1816 md5_transform(hash
, random_int_secret
);
1817 ret
= *(unsigned long *)hash
;
1818 put_cpu_var(get_random_int_hash
);
1822 EXPORT_SYMBOL(get_random_long
);
1825 * randomize_range() returns a start address such that
1827 * [...... <range> .....]
1830 * a <range> with size "len" starting at the return value is inside in the
1831 * area defined by [start, end], but is otherwise randomized.
1834 randomize_range(unsigned long start
, unsigned long end
, unsigned long len
)
1836 unsigned long range
= end
- len
- start
;
1838 if (end
<= start
+ len
)
1840 return PAGE_ALIGN(get_random_int() % range
+ start
);
1843 /* Interface for in-kernel drivers of true hardware RNGs.
1844 * Those devices may produce endless random bits and will be throttled
1845 * when our pool is full.
1847 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
1850 struct entropy_store
*poolp
= &input_pool
;
1852 /* Suspend writing if we're above the trickle threshold.
1853 * We'll be woken up again once below random_write_wakeup_thresh,
1854 * or when the calling thread is about to terminate.
1856 wait_event_interruptible(random_write_wait
, kthread_should_stop() ||
1857 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
1858 mix_pool_bytes(poolp
, buffer
, count
);
1859 credit_entropy_bits(poolp
, entropy
);
1861 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);