1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/mmu.c
5 * Copyright (C) 1995-2005 Russell King
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/fixmap.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <asm/smp_plat.h>
26 #include <asm/highmem.h>
27 #include <asm/system_info.h>
28 #include <asm/traps.h>
29 #include <asm/procinfo.h>
30 #include <asm/memory.h>
31 #include <asm/pgalloc.h>
32 #include <asm/kasan_def.h>
34 #include <asm/mach/arch.h>
35 #include <asm/mach/map.h>
36 #include <asm/mach/pci.h>
37 #include <asm/fixmap.h>
43 extern unsigned long __atags_pointer
;
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
49 struct page
*empty_zero_page
;
50 EXPORT_SYMBOL(empty_zero_page
);
53 * The pmd table for the upper-most set of pages.
57 pmdval_t user_pmd_table
= _PAGE_USER_TABLE
;
59 #define CPOLICY_UNCACHED 0
60 #define CPOLICY_BUFFERED 1
61 #define CPOLICY_WRITETHROUGH 2
62 #define CPOLICY_WRITEBACK 3
63 #define CPOLICY_WRITEALLOC 4
65 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
66 static unsigned int ecc_mask __initdata
= 0;
68 pgprot_t pgprot_kernel
;
70 EXPORT_SYMBOL(pgprot_user
);
71 EXPORT_SYMBOL(pgprot_kernel
);
74 const char policy
[16];
80 static struct cachepolicy cache_policies
[] __initdata
= {
84 .pmd
= PMD_SECT_UNCACHED
,
85 .pte
= L_PTE_MT_UNCACHED
,
89 .pmd
= PMD_SECT_BUFFERED
,
90 .pte
= L_PTE_MT_BUFFERABLE
,
92 .policy
= "writethrough",
95 .pte
= L_PTE_MT_WRITETHROUGH
,
97 .policy
= "writeback",
100 .pte
= L_PTE_MT_WRITEBACK
,
102 .policy
= "writealloc",
104 .pmd
= PMD_SECT_WBWA
,
105 .pte
= L_PTE_MT_WRITEALLOC
,
109 #ifdef CONFIG_CPU_CP15
110 static unsigned long initial_pmd_value __initdata
= 0;
113 * Initialise the cache_policy variable with the initial state specified
114 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
115 * the C code sets the page tables up with the same policy as the head
116 * assembly code, which avoids an illegal state where the TLBs can get
117 * confused. See comments in early_cachepolicy() for more information.
119 void __init
init_default_cache_policy(unsigned long pmd
)
123 initial_pmd_value
= pmd
;
125 pmd
&= PMD_SECT_CACHE_MASK
;
127 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++)
128 if (cache_policies
[i
].pmd
== pmd
) {
133 if (i
== ARRAY_SIZE(cache_policies
))
134 pr_err("ERROR: could not find cache policy\n");
138 * These are useful for identifying cache coherency problems by allowing
139 * the cache or the cache and writebuffer to be turned off. (Note: the
140 * write buffer should not be on and the cache off).
142 static int __init
early_cachepolicy(char *p
)
144 int i
, selected
= -1;
146 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
147 int len
= strlen(cache_policies
[i
].policy
);
149 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
156 pr_err("ERROR: unknown or unsupported cache policy\n");
159 * This restriction is partly to do with the way we boot; it is
160 * unpredictable to have memory mapped using two different sets of
161 * memory attributes (shared, type, and cache attribs). We can not
162 * change these attributes once the initial assembly has setup the
165 if (cpu_architecture() >= CPU_ARCH_ARMv6
&& selected
!= cachepolicy
) {
166 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
167 cache_policies
[cachepolicy
].policy
);
171 if (selected
!= cachepolicy
) {
172 unsigned long cr
= __clear_cr(cache_policies
[selected
].cr_mask
);
173 cachepolicy
= selected
;
179 early_param("cachepolicy", early_cachepolicy
);
181 static int __init
early_nocache(char *__unused
)
183 char *p
= "buffered";
184 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p
);
185 early_cachepolicy(p
);
188 early_param("nocache", early_nocache
);
190 static int __init
early_nowrite(char *__unused
)
192 char *p
= "uncached";
193 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p
);
194 early_cachepolicy(p
);
197 early_param("nowb", early_nowrite
);
199 #ifndef CONFIG_ARM_LPAE
200 static int __init
early_ecc(char *p
)
202 if (memcmp(p
, "on", 2) == 0)
203 ecc_mask
= PMD_PROTECTION
;
204 else if (memcmp(p
, "off", 3) == 0)
208 early_param("ecc", early_ecc
);
211 #else /* ifdef CONFIG_CPU_CP15 */
213 static int __init
early_cachepolicy(char *p
)
215 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
217 early_param("cachepolicy", early_cachepolicy
);
219 static int __init
noalign_setup(char *__unused
)
221 pr_warn("noalign kernel parameter not supported without cp15\n");
223 __setup("noalign", noalign_setup
);
225 #endif /* ifdef CONFIG_CPU_CP15 / else */
227 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
228 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
229 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231 static struct mem_type mem_types
[] __ro_after_init
= {
232 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
233 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
235 .prot_l1
= PMD_TYPE_TABLE
,
236 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
239 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
240 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
241 .prot_l1
= PMD_TYPE_TABLE
,
242 .prot_sect
= PROT_SECT_DEVICE
,
245 [MT_DEVICE_CACHED
] = { /* ioremap_cache */
246 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
247 .prot_l1
= PMD_TYPE_TABLE
,
248 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
251 [MT_DEVICE_WC
] = { /* ioremap_wc */
252 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
253 .prot_l1
= PMD_TYPE_TABLE
,
254 .prot_sect
= PROT_SECT_DEVICE
,
258 .prot_pte
= PROT_PTE_DEVICE
,
259 .prot_l1
= PMD_TYPE_TABLE
,
260 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
264 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
265 .domain
= DOMAIN_KERNEL
,
267 #ifndef CONFIG_ARM_LPAE
269 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
270 .domain
= DOMAIN_KERNEL
,
274 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
276 .prot_l1
= PMD_TYPE_TABLE
,
277 .domain
= DOMAIN_VECTORS
,
279 [MT_HIGH_VECTORS
] = {
280 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
281 L_PTE_USER
| L_PTE_RDONLY
,
282 .prot_l1
= PMD_TYPE_TABLE
,
283 .domain
= DOMAIN_VECTORS
,
286 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
287 .prot_l1
= PMD_TYPE_TABLE
,
288 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
289 .domain
= DOMAIN_KERNEL
,
292 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
294 .prot_l1
= PMD_TYPE_TABLE
,
295 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
296 .domain
= DOMAIN_KERNEL
,
299 .prot_sect
= PMD_TYPE_SECT
,
300 .domain
= DOMAIN_KERNEL
,
302 [MT_MEMORY_RWX_NONCACHED
] = {
303 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
305 .prot_l1
= PMD_TYPE_TABLE
,
306 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
307 .domain
= DOMAIN_KERNEL
,
309 [MT_MEMORY_RW_DTCM
] = {
310 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
312 .prot_l1
= PMD_TYPE_TABLE
,
313 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
314 .domain
= DOMAIN_KERNEL
,
316 [MT_MEMORY_RWX_ITCM
] = {
317 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
318 .prot_l1
= PMD_TYPE_TABLE
,
319 .domain
= DOMAIN_KERNEL
,
321 [MT_MEMORY_RW_SO
] = {
322 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
323 L_PTE_MT_UNCACHED
| L_PTE_XN
,
324 .prot_l1
= PMD_TYPE_TABLE
,
325 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
326 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
327 .domain
= DOMAIN_KERNEL
,
329 [MT_MEMORY_DMA_READY
] = {
330 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
332 .prot_l1
= PMD_TYPE_TABLE
,
333 .domain
= DOMAIN_KERNEL
,
337 const struct mem_type
*get_mem_type(unsigned int type
)
339 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
341 EXPORT_SYMBOL(get_mem_type
);
343 static pte_t
*(*pte_offset_fixmap
)(pmd_t
*dir
, unsigned long addr
);
345 static pte_t bm_pte
[PTRS_PER_PTE
+ PTE_HWTABLE_PTRS
]
346 __aligned(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
) __initdata
;
348 static pte_t
* __init
pte_offset_early_fixmap(pmd_t
*dir
, unsigned long addr
)
350 return &bm_pte
[pte_index(addr
)];
353 static pte_t
*pte_offset_late_fixmap(pmd_t
*dir
, unsigned long addr
)
355 return pte_offset_kernel(dir
, addr
);
358 static inline pmd_t
* __init
fixmap_pmd(unsigned long addr
)
360 return pmd_off_k(addr
);
363 void __init
early_fixmap_init(void)
368 * The early fixmap range spans multiple pmds, for which
369 * we are not prepared:
371 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region
) >> PMD_SHIFT
)
372 != FIXADDR_TOP
>> PMD_SHIFT
);
374 pmd
= fixmap_pmd(FIXADDR_TOP
);
375 pmd_populate_kernel(&init_mm
, pmd
, bm_pte
);
377 pte_offset_fixmap
= pte_offset_early_fixmap
;
381 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
382 * As a result, this can only be called with preemption disabled, as under
385 void __set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
, pgprot_t prot
)
387 unsigned long vaddr
= __fix_to_virt(idx
);
388 pte_t
*pte
= pte_offset_fixmap(pmd_off_k(vaddr
), vaddr
);
390 /* Make sure fixmap region does not exceed available allocation. */
391 BUILD_BUG_ON(FIXADDR_START
+ (__end_of_fixed_addresses
* PAGE_SIZE
) >
393 BUG_ON(idx
>= __end_of_fixed_addresses
);
395 /* we only support device mappings until pgprot_kernel has been set */
396 if (WARN_ON(pgprot_val(prot
) != pgprot_val(FIXMAP_PAGE_IO
) &&
397 pgprot_val(pgprot_kernel
) == 0))
400 if (pgprot_val(prot
))
401 set_pte_at(NULL
, vaddr
, pte
,
402 pfn_pte(phys
>> PAGE_SHIFT
, prot
));
404 pte_clear(NULL
, vaddr
, pte
);
405 local_flush_tlb_kernel_range(vaddr
, vaddr
+ PAGE_SIZE
);
409 * Adjust the PMD section entries according to the CPU in use.
411 static void __init
build_mem_type_table(void)
413 struct cachepolicy
*cp
;
414 unsigned int cr
= get_cr();
415 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
416 int cpu_arch
= cpu_architecture();
419 if (cpu_arch
< CPU_ARCH_ARMv6
) {
420 #if defined(CONFIG_CPU_DCACHE_DISABLE)
421 if (cachepolicy
> CPOLICY_BUFFERED
)
422 cachepolicy
= CPOLICY_BUFFERED
;
423 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
424 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
425 cachepolicy
= CPOLICY_WRITETHROUGH
;
428 if (cpu_arch
< CPU_ARCH_ARMv5
) {
429 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
430 cachepolicy
= CPOLICY_WRITEBACK
;
435 if (cachepolicy
!= CPOLICY_WRITEALLOC
) {
436 pr_warn("Forcing write-allocate cache policy for SMP\n");
437 cachepolicy
= CPOLICY_WRITEALLOC
;
439 if (!(initial_pmd_value
& PMD_SECT_S
)) {
440 pr_warn("Forcing shared mappings for SMP\n");
441 initial_pmd_value
|= PMD_SECT_S
;
446 * Strip out features not present on earlier architectures.
447 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
448 * without extended page tables don't have the 'Shared' bit.
450 if (cpu_arch
< CPU_ARCH_ARMv5
)
451 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
452 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
453 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
454 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
455 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
458 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
459 * "update-able on write" bit on ARM610). However, Xscale and
460 * Xscale3 require this bit to be cleared.
462 if (cpu_is_xscale_family()) {
463 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
464 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
465 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
467 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
468 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
469 if (mem_types
[i
].prot_l1
)
470 mem_types
[i
].prot_l1
|= PMD_BIT4
;
471 if (mem_types
[i
].prot_sect
)
472 mem_types
[i
].prot_sect
|= PMD_BIT4
;
477 * Mark the device areas according to the CPU/architecture.
479 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
480 if (!cpu_is_xsc3()) {
482 * Mark device regions on ARMv6+ as execute-never
483 * to prevent speculative instruction fetches.
485 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
486 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
487 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
488 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
490 /* Also setup NX memory mapping */
491 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
493 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
495 * For ARMv7 with TEX remapping,
496 * - shared device is SXCB=1100
497 * - nonshared device is SXCB=0100
498 * - write combine device mem is SXCB=0001
499 * (Uncached Normal memory)
501 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
502 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
503 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
504 } else if (cpu_is_xsc3()) {
507 * - shared device is TEXCB=00101
508 * - nonshared device is TEXCB=01000
509 * - write combine device mem is TEXCB=00100
510 * (Inner/Outer Uncacheable in xsc3 parlance)
512 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
513 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
514 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
517 * For ARMv6 and ARMv7 without TEX remapping,
518 * - shared device is TEXCB=00001
519 * - nonshared device is TEXCB=01000
520 * - write combine device mem is TEXCB=00100
521 * (Uncached Normal in ARMv6 parlance).
523 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
524 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
525 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
529 * On others, write combining is "Uncached/Buffered"
531 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
535 * Now deal with the memory-type mappings
537 cp
= &cache_policies
[cachepolicy
];
538 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
540 #ifndef CONFIG_ARM_LPAE
542 * We don't use domains on ARMv6 (since this causes problems with
543 * v6/v7 kernels), so we must use a separate memory type for user
544 * r/o, kernel r/w to map the vectors page.
546 if (cpu_arch
== CPU_ARCH_ARMv6
)
547 vecs_pgprot
|= L_PTE_MT_VECTORS
;
550 * Check is it with support for the PXN bit
551 * in the Short-descriptor translation table format descriptors.
553 if (cpu_arch
== CPU_ARCH_ARMv7
&&
554 (read_cpuid_ext(CPUID_EXT_MMFR0
) & 0xF) >= 4) {
555 user_pmd_table
|= PMD_PXNTABLE
;
560 * ARMv6 and above have extended page tables.
562 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
563 #ifndef CONFIG_ARM_LPAE
565 * Mark cache clean areas and XIP ROM read only
566 * from SVC mode and no access from userspace.
568 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
569 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
570 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
574 * If the initial page tables were created with the S bit
575 * set, then we need to do the same here for the same
576 * reasons given in early_cachepolicy().
578 if (initial_pmd_value
& PMD_SECT_S
) {
579 user_pgprot
|= L_PTE_SHARED
;
580 kern_pgprot
|= L_PTE_SHARED
;
581 vecs_pgprot
|= L_PTE_SHARED
;
582 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
583 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
584 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
585 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
586 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
587 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
588 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
589 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
590 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
591 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
592 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
597 * Non-cacheable Normal - intended for memory areas that must
598 * not cause dirty cache line writebacks when used
600 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
601 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
602 /* Non-cacheable Normal is XCB = 001 */
603 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
606 /* For both ARMv6 and non-TEX-remapping ARMv7 */
607 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
611 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
614 #ifdef CONFIG_ARM_LPAE
616 * Do not generate access flag faults for the kernel mappings.
618 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
619 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
620 if (mem_types
[i
].prot_sect
)
621 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
623 kern_pgprot
|= PTE_EXT_AF
;
624 vecs_pgprot
|= PTE_EXT_AF
;
627 * Set PXN for user mappings
629 user_pgprot
|= PTE_EXT_PXN
;
632 for (i
= 0; i
< 16; i
++) {
633 pteval_t v
= pgprot_val(protection_map
[i
]);
634 protection_map
[i
] = __pgprot(v
| user_pgprot
);
637 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
638 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
640 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
641 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
642 L_PTE_DIRTY
| kern_pgprot
);
644 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
645 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
646 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
647 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
648 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
649 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
650 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
651 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
652 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
656 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
660 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
663 pr_info("Memory policy: %sData cache %s\n",
664 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
666 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
667 struct mem_type
*t
= &mem_types
[i
];
669 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
671 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
675 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
676 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
677 unsigned long size
, pgprot_t vma_prot
)
680 return pgprot_noncached(vma_prot
);
681 else if (file
->f_flags
& O_SYNC
)
682 return pgprot_writecombine(vma_prot
);
685 EXPORT_SYMBOL(phys_mem_access_prot
);
688 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
690 static void __init
*early_alloc(unsigned long sz
)
692 void *ptr
= memblock_alloc(sz
, sz
);
695 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
701 static void *__init
late_alloc(unsigned long sz
)
703 void *ptr
= (void *)__get_free_pages(GFP_PGTABLE_KERNEL
, get_order(sz
));
705 if (!ptr
|| !pgtable_pte_page_ctor(virt_to_page(ptr
)))
710 static pte_t
* __init
arm_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
712 void *(*alloc
)(unsigned long sz
))
714 if (pmd_none(*pmd
)) {
715 pte_t
*pte
= alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
716 __pmd_populate(pmd
, __pa(pte
), prot
);
718 BUG_ON(pmd_bad(*pmd
));
719 return pte_offset_kernel(pmd
, addr
);
722 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
725 return arm_pte_alloc(pmd
, addr
, prot
, early_alloc
);
728 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
729 unsigned long end
, unsigned long pfn
,
730 const struct mem_type
*type
,
731 void *(*alloc
)(unsigned long sz
),
734 pte_t
*pte
= arm_pte_alloc(pmd
, addr
, type
->prot_l1
, alloc
);
736 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)),
737 ng
? PTE_EXT_NG
: 0);
739 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
742 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
743 unsigned long end
, phys_addr_t phys
,
744 const struct mem_type
*type
, bool ng
)
748 #ifndef CONFIG_ARM_LPAE
750 * In classic MMU format, puds and pmds are folded in to
751 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
752 * group of L1 entries making up one logical pointer to
753 * an L2 table (2MB), where as PMDs refer to the individual
754 * L1 entries (1MB). Hence increment to get the correct
755 * offset for odd 1MB sections.
756 * (See arch/arm/include/asm/pgtable-2level.h)
758 if (addr
& SECTION_SIZE
)
762 *pmd
= __pmd(phys
| type
->prot_sect
| (ng
? PMD_SECT_nG
: 0));
763 phys
+= SECTION_SIZE
;
764 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
769 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
770 unsigned long end
, phys_addr_t phys
,
771 const struct mem_type
*type
,
772 void *(*alloc
)(unsigned long sz
), bool ng
)
774 pmd_t
*pmd
= pmd_offset(pud
, addr
);
779 * With LPAE, we must loop over to map
780 * all the pmds for the given range.
782 next
= pmd_addr_end(addr
, end
);
785 * Try a section mapping - addr, next and phys must all be
786 * aligned to a section boundary.
788 if (type
->prot_sect
&&
789 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
790 __map_init_section(pmd
, addr
, next
, phys
, type
, ng
);
792 alloc_init_pte(pmd
, addr
, next
,
793 __phys_to_pfn(phys
), type
, alloc
, ng
);
798 } while (pmd
++, addr
= next
, addr
!= end
);
801 static void __init
alloc_init_pud(p4d_t
*p4d
, unsigned long addr
,
802 unsigned long end
, phys_addr_t phys
,
803 const struct mem_type
*type
,
804 void *(*alloc
)(unsigned long sz
), bool ng
)
806 pud_t
*pud
= pud_offset(p4d
, addr
);
810 next
= pud_addr_end(addr
, end
);
811 alloc_init_pmd(pud
, addr
, next
, phys
, type
, alloc
, ng
);
813 } while (pud
++, addr
= next
, addr
!= end
);
816 static void __init
alloc_init_p4d(pgd_t
*pgd
, unsigned long addr
,
817 unsigned long end
, phys_addr_t phys
,
818 const struct mem_type
*type
,
819 void *(*alloc
)(unsigned long sz
), bool ng
)
821 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
825 next
= p4d_addr_end(addr
, end
);
826 alloc_init_pud(p4d
, addr
, next
, phys
, type
, alloc
, ng
);
828 } while (p4d
++, addr
= next
, addr
!= end
);
831 #ifndef CONFIG_ARM_LPAE
832 static void __init
create_36bit_mapping(struct mm_struct
*mm
,
834 const struct mem_type
*type
,
837 unsigned long addr
, length
, end
;
842 phys
= __pfn_to_phys(md
->pfn
);
843 length
= PAGE_ALIGN(md
->length
);
845 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
846 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
847 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
851 /* N.B. ARMv6 supersections are only defined to work with domain 0.
852 * Since domain assignments can in fact be arbitrary, the
853 * 'domain == 0' check below is required to insure that ARMv6
854 * supersections are only allocated for domain 0 regardless
855 * of the actual domain assignments in use.
858 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
859 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
863 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
864 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
865 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
870 * Shift bits [35:32] of address into bits [23:20] of PMD
873 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
875 pgd
= pgd_offset(mm
, addr
);
878 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
879 pud_t
*pud
= pud_offset(p4d
, addr
);
880 pmd_t
*pmd
= pmd_offset(pud
, addr
);
883 for (i
= 0; i
< 16; i
++)
884 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
|
885 (ng
? PMD_SECT_nG
: 0));
887 addr
+= SUPERSECTION_SIZE
;
888 phys
+= SUPERSECTION_SIZE
;
889 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
890 } while (addr
!= end
);
892 #endif /* !CONFIG_ARM_LPAE */
894 static void __init
__create_mapping(struct mm_struct
*mm
, struct map_desc
*md
,
895 void *(*alloc
)(unsigned long sz
),
898 unsigned long addr
, length
, end
;
900 const struct mem_type
*type
;
903 type
= &mem_types
[md
->type
];
905 #ifndef CONFIG_ARM_LPAE
907 * Catch 36-bit addresses
909 if (md
->pfn
>= 0x100000) {
910 create_36bit_mapping(mm
, md
, type
, ng
);
915 addr
= md
->virtual & PAGE_MASK
;
916 phys
= __pfn_to_phys(md
->pfn
);
917 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
919 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
920 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
921 (long long)__pfn_to_phys(md
->pfn
), addr
);
925 pgd
= pgd_offset(mm
, addr
);
928 unsigned long next
= pgd_addr_end(addr
, end
);
930 alloc_init_p4d(pgd
, addr
, next
, phys
, type
, alloc
, ng
);
934 } while (pgd
++, addr
!= end
);
938 * Create the page directory entries and any necessary
939 * page tables for the mapping specified by `md'. We
940 * are able to cope here with varying sizes and address
941 * offsets, and we take full advantage of sections and
944 static void __init
create_mapping(struct map_desc
*md
)
946 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
947 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
948 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
952 if (md
->type
== MT_DEVICE
&&
953 md
->virtual >= PAGE_OFFSET
&& md
->virtual < FIXADDR_START
&&
954 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
955 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
956 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
959 __create_mapping(&init_mm
, md
, early_alloc
, false);
962 void __init
create_mapping_late(struct mm_struct
*mm
, struct map_desc
*md
,
965 #ifdef CONFIG_ARM_LPAE
969 p4d
= p4d_alloc(mm
, pgd_offset(mm
, md
->virtual), md
->virtual);
972 pud
= pud_alloc(mm
, p4d
, md
->virtual);
975 pmd_alloc(mm
, pud
, 0);
977 __create_mapping(mm
, md
, late_alloc
, ng
);
981 * Create the architecture specific mappings
983 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
986 struct vm_struct
*vm
;
987 struct static_vm
*svm
;
992 svm
= memblock_alloc(sizeof(*svm
) * nr
, __alignof__(*svm
));
994 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
995 __func__
, sizeof(*svm
) * nr
, __alignof__(*svm
));
997 for (md
= io_desc
; nr
; md
++, nr
--) {
1001 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
1002 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
1003 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
1004 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
1005 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
1006 vm
->caller
= iotable_init
;
1007 add_static_vm_early(svm
++);
1011 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
1014 struct vm_struct
*vm
;
1015 struct static_vm
*svm
;
1017 svm
= memblock_alloc(sizeof(*svm
), __alignof__(*svm
));
1019 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1020 __func__
, sizeof(*svm
), __alignof__(*svm
));
1023 vm
->addr
= (void *)addr
;
1025 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
1026 vm
->caller
= caller
;
1027 add_static_vm_early(svm
);
1030 #ifndef CONFIG_ARM_LPAE
1033 * The Linux PMD is made of two consecutive section entries covering 2MB
1034 * (see definition in include/asm/pgtable-2level.h). However a call to
1035 * create_mapping() may optimize static mappings by using individual
1036 * 1MB section mappings. This leaves the actual PMD potentially half
1037 * initialized if the top or bottom section entry isn't used, leaving it
1038 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1039 * the virtual space left free by that unused section entry.
1041 * Let's avoid the issue by inserting dummy vm entries covering the unused
1042 * PMD halves once the static mappings are in place.
1045 static void __init
pmd_empty_section_gap(unsigned long addr
)
1047 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
1050 static void __init
fill_pmd_gaps(void)
1052 struct static_vm
*svm
;
1053 struct vm_struct
*vm
;
1054 unsigned long addr
, next
= 0;
1057 list_for_each_entry(svm
, &static_vmlist
, list
) {
1059 addr
= (unsigned long)vm
->addr
;
1064 * Check if this vm starts on an odd section boundary.
1065 * If so and the first section entry for this PMD is free
1066 * then we block the corresponding virtual address.
1068 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1069 pmd
= pmd_off_k(addr
);
1071 pmd_empty_section_gap(addr
& PMD_MASK
);
1075 * Then check if this vm ends on an odd section boundary.
1076 * If so and the second section entry for this PMD is empty
1077 * then we block the corresponding virtual address.
1080 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1081 pmd
= pmd_off_k(addr
) + 1;
1083 pmd_empty_section_gap(addr
);
1086 /* no need to look at any vm entry until we hit the next PMD */
1087 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
1092 #define fill_pmd_gaps() do { } while (0)
1095 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1096 static void __init
pci_reserve_io(void)
1098 struct static_vm
*svm
;
1100 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
1104 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
1107 #define pci_reserve_io() do { } while (0)
1110 #ifdef CONFIG_DEBUG_LL
1111 void __init
debug_ll_io_init(void)
1113 struct map_desc map
;
1115 debug_ll_addr(&map
.pfn
, &map
.virtual);
1116 if (!map
.pfn
|| !map
.virtual)
1118 map
.pfn
= __phys_to_pfn(map
.pfn
);
1119 map
.virtual &= PAGE_MASK
;
1120 map
.length
= PAGE_SIZE
;
1121 map
.type
= MT_DEVICE
;
1122 iotable_init(&map
, 1);
1126 static void * __initdata vmalloc_min
=
1127 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1130 * vmalloc=size forces the vmalloc area to be exactly 'size'
1131 * bytes. This can be used to increase (or decrease) the vmalloc
1132 * area - the default is 240m.
1134 static int __init
early_vmalloc(char *arg
)
1136 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1138 if (vmalloc_reserve
< SZ_16M
) {
1139 vmalloc_reserve
= SZ_16M
;
1140 pr_warn("vmalloc area too small, limiting to %luMB\n",
1141 vmalloc_reserve
>> 20);
1144 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1145 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1146 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1147 vmalloc_reserve
>> 20);
1150 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1153 early_param("vmalloc", early_vmalloc
);
1155 phys_addr_t arm_lowmem_limit __initdata
= 0;
1157 void __init
adjust_lowmem_bounds(void)
1159 phys_addr_t block_start
, block_end
, memblock_limit
= 0;
1160 u64 vmalloc_limit
, i
;
1161 phys_addr_t lowmem_limit
= 0;
1164 * Let's use our own (unoptimized) equivalent of __pa() that is
1165 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1166 * The result is used as the upper bound on physical memory address
1167 * and may itself be outside the valid range for which phys_addr_t
1168 * and therefore __pa() is defined.
1170 vmalloc_limit
= (u64
)(uintptr_t)vmalloc_min
- PAGE_OFFSET
+ PHYS_OFFSET
;
1173 * The first usable region must be PMD aligned. Mark its start
1174 * as MEMBLOCK_NOMAP if it isn't
1176 for_each_mem_range(i
, &block_start
, &block_end
) {
1177 if (!IS_ALIGNED(block_start
, PMD_SIZE
)) {
1180 len
= round_up(block_start
, PMD_SIZE
) - block_start
;
1181 memblock_mark_nomap(block_start
, len
);
1186 for_each_mem_range(i
, &block_start
, &block_end
) {
1187 if (block_start
< vmalloc_limit
) {
1188 if (block_end
> lowmem_limit
)
1190 * Compare as u64 to ensure vmalloc_limit does
1191 * not get truncated. block_end should always
1192 * fit in phys_addr_t so there should be no
1193 * issue with assignment.
1195 lowmem_limit
= min_t(u64
,
1200 * Find the first non-pmd-aligned page, and point
1201 * memblock_limit at it. This relies on rounding the
1202 * limit down to be pmd-aligned, which happens at the
1203 * end of this function.
1205 * With this algorithm, the start or end of almost any
1206 * bank can be non-pmd-aligned. The only exception is
1207 * that the start of the bank 0 must be section-
1208 * aligned, since otherwise memory would need to be
1209 * allocated when mapping the start of bank 0, which
1210 * occurs before any free memory is mapped.
1212 if (!memblock_limit
) {
1213 if (!IS_ALIGNED(block_start
, PMD_SIZE
))
1214 memblock_limit
= block_start
;
1215 else if (!IS_ALIGNED(block_end
, PMD_SIZE
))
1216 memblock_limit
= lowmem_limit
;
1222 arm_lowmem_limit
= lowmem_limit
;
1224 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1226 if (!memblock_limit
)
1227 memblock_limit
= arm_lowmem_limit
;
1230 * Round the memblock limit down to a pmd size. This
1231 * helps to ensure that we will allocate memory from the
1232 * last full pmd, which should be mapped.
1234 memblock_limit
= round_down(memblock_limit
, PMD_SIZE
);
1236 if (!IS_ENABLED(CONFIG_HIGHMEM
) || cache_is_vipt_aliasing()) {
1237 if (memblock_end_of_DRAM() > arm_lowmem_limit
) {
1238 phys_addr_t end
= memblock_end_of_DRAM();
1240 pr_notice("Ignoring RAM at %pa-%pa\n",
1241 &memblock_limit
, &end
);
1242 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1244 memblock_remove(memblock_limit
, end
- memblock_limit
);
1248 memblock_set_current_limit(memblock_limit
);
1251 static inline void prepare_page_table(void)
1257 * Clear out all the mappings below the kernel image.
1261 * KASan's shadow memory inserts itself between the TASK_SIZE
1262 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1264 for (addr
= 0; addr
< KASAN_SHADOW_START
; addr
+= PMD_SIZE
)
1265 pmd_clear(pmd_off_k(addr
));
1267 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1268 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1269 * are using a thumb-compiled kernel, there there will be 8MB more
1270 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1272 for (addr
= KASAN_SHADOW_END
; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1273 pmd_clear(pmd_off_k(addr
));
1275 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1276 pmd_clear(pmd_off_k(addr
));
1279 #ifdef CONFIG_XIP_KERNEL
1280 /* The XIP kernel is mapped in the module area -- skip over it */
1281 addr
= ((unsigned long)_exiprom
+ PMD_SIZE
- 1) & PMD_MASK
;
1283 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1284 pmd_clear(pmd_off_k(addr
));
1287 * Find the end of the first block of lowmem.
1289 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1290 if (end
>= arm_lowmem_limit
)
1291 end
= arm_lowmem_limit
;
1294 * Clear out all the kernel space mappings, except for the first
1295 * memory bank, up to the vmalloc region.
1297 for (addr
= __phys_to_virt(end
);
1298 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1299 pmd_clear(pmd_off_k(addr
));
1302 #ifdef CONFIG_ARM_LPAE
1303 /* the first page is reserved for pgd */
1304 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1305 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1307 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1311 * Reserve the special regions of memory
1313 void __init
arm_mm_memblock_reserve(void)
1316 * Reserve the page tables. These are already in use,
1317 * and can only be in node 0.
1319 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1321 #ifdef CONFIG_SA1111
1323 * Because of the SA1111 DMA bug, we want to preserve our
1324 * precious DMA-able memory...
1326 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1331 * Set up the device mappings. Since we clear out the page tables for all
1332 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1333 * device mappings. This means earlycon can be used to debug this function
1334 * Any other function or debugging method which may touch any device _will_
1337 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1339 struct map_desc map
;
1344 * Allocate the vector page early.
1346 vectors
= early_alloc(PAGE_SIZE
* 2);
1348 early_trap_init(vectors
);
1351 * Clear page table except top pmd used by early fixmaps
1353 for (addr
= VMALLOC_START
; addr
< (FIXADDR_TOP
& PMD_MASK
); addr
+= PMD_SIZE
)
1354 pmd_clear(pmd_off_k(addr
));
1356 if (__atags_pointer
) {
1357 /* create a read-only mapping of the device tree */
1358 map
.pfn
= __phys_to_pfn(__atags_pointer
& SECTION_MASK
);
1359 map
.virtual = FDT_FIXED_BASE
;
1360 map
.length
= FDT_FIXED_SIZE
;
1362 create_mapping(&map
);
1366 * Map the kernel if it is XIP.
1367 * It is always first in the modulearea.
1369 #ifdef CONFIG_XIP_KERNEL
1370 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1371 map
.virtual = MODULES_VADDR
;
1372 map
.length
= ((unsigned long)_exiprom
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1374 create_mapping(&map
);
1378 * Map the cache flushing regions.
1381 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1382 map
.virtual = FLUSH_BASE
;
1384 map
.type
= MT_CACHECLEAN
;
1385 create_mapping(&map
);
1387 #ifdef FLUSH_BASE_MINICACHE
1388 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1389 map
.virtual = FLUSH_BASE_MINICACHE
;
1391 map
.type
= MT_MINICLEAN
;
1392 create_mapping(&map
);
1396 * Create a mapping for the machine vectors at the high-vectors
1397 * location (0xffff0000). If we aren't using high-vectors, also
1398 * create a mapping at the low-vectors virtual address.
1400 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1401 map
.virtual = 0xffff0000;
1402 map
.length
= PAGE_SIZE
;
1403 #ifdef CONFIG_KUSER_HELPERS
1404 map
.type
= MT_HIGH_VECTORS
;
1406 map
.type
= MT_LOW_VECTORS
;
1408 create_mapping(&map
);
1410 if (!vectors_high()) {
1412 map
.length
= PAGE_SIZE
* 2;
1413 map
.type
= MT_LOW_VECTORS
;
1414 create_mapping(&map
);
1417 /* Now create a kernel read-only mapping */
1419 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1420 map
.length
= PAGE_SIZE
;
1421 map
.type
= MT_LOW_VECTORS
;
1422 create_mapping(&map
);
1425 * Ask the machine support to map in the statically mapped devices.
1433 /* Reserve fixed i/o space in VMALLOC region */
1437 * Finally flush the caches and tlb to ensure that we're in a
1438 * consistent state wrt the writebuffer. This also ensures that
1439 * any write-allocated cache lines in the vector page are written
1440 * back. After this point, we can start to touch devices again.
1442 local_flush_tlb_all();
1445 /* Enable asynchronous aborts */
1449 static void __init
kmap_init(void)
1451 #ifdef CONFIG_HIGHMEM
1452 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1453 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1456 early_pte_alloc(pmd_off_k(FIXADDR_START
), FIXADDR_START
,
1457 _PAGE_KERNEL_TABLE
);
1460 static void __init
map_lowmem(void)
1462 phys_addr_t kernel_x_start
= round_down(__pa(KERNEL_START
), SECTION_SIZE
);
1463 phys_addr_t kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1464 phys_addr_t start
, end
;
1467 /* Map all the lowmem memory banks. */
1468 for_each_mem_range(i
, &start
, &end
) {
1469 struct map_desc map
;
1471 if (end
> arm_lowmem_limit
)
1472 end
= arm_lowmem_limit
;
1476 if (end
< kernel_x_start
) {
1477 map
.pfn
= __phys_to_pfn(start
);
1478 map
.virtual = __phys_to_virt(start
);
1479 map
.length
= end
- start
;
1480 map
.type
= MT_MEMORY_RWX
;
1482 create_mapping(&map
);
1483 } else if (start
>= kernel_x_end
) {
1484 map
.pfn
= __phys_to_pfn(start
);
1485 map
.virtual = __phys_to_virt(start
);
1486 map
.length
= end
- start
;
1487 map
.type
= MT_MEMORY_RW
;
1489 create_mapping(&map
);
1491 /* This better cover the entire kernel */
1492 if (start
< kernel_x_start
) {
1493 map
.pfn
= __phys_to_pfn(start
);
1494 map
.virtual = __phys_to_virt(start
);
1495 map
.length
= kernel_x_start
- start
;
1496 map
.type
= MT_MEMORY_RW
;
1498 create_mapping(&map
);
1501 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1502 map
.virtual = __phys_to_virt(kernel_x_start
);
1503 map
.length
= kernel_x_end
- kernel_x_start
;
1504 map
.type
= MT_MEMORY_RWX
;
1506 create_mapping(&map
);
1508 if (kernel_x_end
< end
) {
1509 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1510 map
.virtual = __phys_to_virt(kernel_x_end
);
1511 map
.length
= end
- kernel_x_end
;
1512 map
.type
= MT_MEMORY_RW
;
1514 create_mapping(&map
);
1520 #ifdef CONFIG_ARM_PV_FIXUP
1521 typedef void pgtables_remap(long long offset
, unsigned long pgd
);
1522 pgtables_remap lpae_pgtables_remap_asm
;
1525 * early_paging_init() recreates boot time page table setup, allowing machines
1526 * to switch over to a high (>4G) address space on LPAE systems
1528 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1530 pgtables_remap
*lpae_pgtables_remap
;
1531 unsigned long pa_pgd
;
1532 unsigned int cr
, ttbcr
;
1535 if (!mdesc
->pv_fixup
)
1538 offset
= mdesc
->pv_fixup();
1543 * Get the address of the remap function in the 1:1 identity
1544 * mapping setup by the early page table assembly code. We
1545 * must get this prior to the pv update. The following barrier
1546 * ensures that this is complete before we fixup any P:V offsets.
1548 lpae_pgtables_remap
= (pgtables_remap
*)(unsigned long)__pa(lpae_pgtables_remap_asm
);
1549 pa_pgd
= __pa(swapper_pg_dir
);
1552 pr_info("Switching physical address space to 0x%08llx\n",
1553 (u64
)PHYS_OFFSET
+ offset
);
1555 /* Re-set the phys pfn offset, and the pv offset */
1556 __pv_offset
+= offset
;
1557 __pv_phys_pfn_offset
+= PFN_DOWN(offset
);
1559 /* Run the patch stub to update the constants */
1560 fixup_pv_table(&__pv_table_begin
,
1561 (&__pv_table_end
- &__pv_table_begin
) << 2);
1564 * We changing not only the virtual to physical mapping, but also
1565 * the physical addresses used to access memory. We need to flush
1566 * all levels of cache in the system with caching disabled to
1567 * ensure that all data is written back, and nothing is prefetched
1568 * into the caches. We also need to prevent the TLB walkers
1569 * allocating into the caches too. Note that this is ARMv7 LPAE
1573 set_cr(cr
& ~(CR_I
| CR_C
));
1574 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr
));
1575 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1576 : : "r" (ttbcr
& ~(3 << 8 | 3 << 10)));
1580 * Fixup the page tables - this must be in the idmap region as
1581 * we need to disable the MMU to do this safely, and hence it
1582 * needs to be assembly. It's fairly simple, as we're using the
1583 * temporary tables setup by the initial assembly code.
1585 lpae_pgtables_remap(offset
, pa_pgd
);
1587 /* Re-enable the caches and cacheable TLB walks */
1588 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr
));
1594 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1598 if (!mdesc
->pv_fixup
)
1601 offset
= mdesc
->pv_fixup();
1605 pr_crit("Physical address space modification is only to support Keystone2.\n");
1606 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1607 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1608 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1613 static void __init
early_fixmap_shutdown(void)
1616 unsigned long va
= fix_to_virt(__end_of_permanent_fixed_addresses
- 1);
1618 pte_offset_fixmap
= pte_offset_late_fixmap
;
1619 pmd_clear(fixmap_pmd(va
));
1620 local_flush_tlb_kernel_page(va
);
1622 for (i
= 0; i
< __end_of_permanent_fixed_addresses
; i
++) {
1624 struct map_desc map
;
1626 map
.virtual = fix_to_virt(i
);
1627 pte
= pte_offset_early_fixmap(pmd_off_k(map
.virtual), map
.virtual);
1629 /* Only i/o device mappings are supported ATM */
1630 if (pte_none(*pte
) ||
1631 (pte_val(*pte
) & L_PTE_MT_MASK
) != L_PTE_MT_DEV_SHARED
)
1634 map
.pfn
= pte_pfn(*pte
);
1635 map
.type
= MT_DEVICE
;
1636 map
.length
= PAGE_SIZE
;
1638 create_mapping(&map
);
1643 * paging_init() sets up the page tables, initialises the zone memory
1644 * maps, and sets up the zero page, bad page and bad page tables.
1646 void __init
paging_init(const struct machine_desc
*mdesc
)
1650 prepare_page_table();
1652 memblock_set_current_limit(arm_lowmem_limit
);
1653 dma_contiguous_remap();
1654 early_fixmap_shutdown();
1655 devicemaps_init(mdesc
);
1659 top_pmd
= pmd_off_k(0xffff0000);
1661 /* allocate the zero page. */
1662 zero_page
= early_alloc(PAGE_SIZE
);
1666 empty_zero_page
= virt_to_page(zero_page
);
1667 __flush_dcache_page(NULL
, empty_zero_page
);
1670 void __init
early_mm_init(const struct machine_desc
*mdesc
)
1672 build_mem_type_table();
1673 early_paging_init(mdesc
);
1676 void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
1677 pte_t
*ptep
, pte_t pteval
)
1679 unsigned long ext
= 0;
1681 if (addr
< TASK_SIZE
&& pte_valid_user(pteval
)) {
1682 if (!pte_special(pteval
))
1683 __sync_icache_dcache(pteval
);
1687 set_pte_ext(ptep
, pteval
, ext
);