1 // SPDX-License-Identifier: GPL-2.0-only
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
10 #include <linux/bitops.h>
11 #include <linux/compiler.h>
12 #include <linux/errno.h>
13 #include <linux/filter.h>
14 #include <linux/netdevice.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/if_vlan.h>
19 #include <asm/cacheflush.h>
20 #include <asm/hwcap.h>
21 #include <asm/opcodes.h>
22 #include <asm/system_info.h>
24 #include "bpf_jit_32.h"
27 * eBPF prog stack layout:
30 * original ARM_SP => +-----+
31 * | | callee saved registers
32 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
33 * | ... | eBPF JIT scratch space
34 * eBPF fp register => +-----+
35 * (BPF_FP) | ... | eBPF prog stack
37 * |RSVD | JIT scratchpad
38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
40 * | ... | Function call stack
45 * The callee saved registers depends on whether frame pointers are enabled.
46 * With frame pointers (to be compliant with the ABI):
49 * original ARM_SP => +--------------+ \
51 * current ARM_FP => +--------------+ } callee saved registers
56 * Without frame pointers:
59 * original ARM_SP => +--------------+
60 * | r4-r9,fp,lr | callee saved registers
61 * current ARM_FP => +--------------+
64 * When popping registers off the stack at the end of a BPF function, we
65 * reference them via the current ARM_FP register.
67 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
68 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
70 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
71 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
74 /* Stack layout - these are offsets from (top of stack - 4) */
95 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
96 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
97 * BPF_REG_FP and Tail call counts.
103 * Negative "register" values indicate the register is stored on the stack
104 * and are the offset from the top of the eBPF JIT scratch space.
106 #define STACK_OFFSET(k) (-4 - (k) * 4)
107 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
109 #ifdef CONFIG_FRAME_POINTER
110 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
112 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
115 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
116 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
117 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
119 #define FLAG_IMM_OVERFLOW (1 << 0)
122 * Map eBPF registers to ARM 32bit registers or stack scratch space.
124 * 1. First argument is passed using the arm 32bit registers and rest of the
125 * arguments are passed on stack scratch space.
126 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
127 * arguments are mapped to scratch space on stack.
128 * 3. We need two 64 bit temp registers to do complex operations on eBPF
131 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
132 * registers, we have to map each eBPF registers with two arm 32 bit regs or
133 * scratch memory space and we have to build eBPF 64 bit register from those.
136 static const s8 bpf2a32
[][2] = {
137 /* return value from in-kernel function, and exit value from eBPF */
138 [BPF_REG_0
] = {ARM_R1
, ARM_R0
},
139 /* arguments from eBPF program to in-kernel function */
140 [BPF_REG_1
] = {ARM_R3
, ARM_R2
},
141 /* Stored on stack scratch space */
142 [BPF_REG_2
] = {STACK_OFFSET(BPF_R2_HI
), STACK_OFFSET(BPF_R2_LO
)},
143 [BPF_REG_3
] = {STACK_OFFSET(BPF_R3_HI
), STACK_OFFSET(BPF_R3_LO
)},
144 [BPF_REG_4
] = {STACK_OFFSET(BPF_R4_HI
), STACK_OFFSET(BPF_R4_LO
)},
145 [BPF_REG_5
] = {STACK_OFFSET(BPF_R5_HI
), STACK_OFFSET(BPF_R5_LO
)},
146 /* callee saved registers that in-kernel function will preserve */
147 [BPF_REG_6
] = {ARM_R5
, ARM_R4
},
148 /* Stored on stack scratch space */
149 [BPF_REG_7
] = {STACK_OFFSET(BPF_R7_HI
), STACK_OFFSET(BPF_R7_LO
)},
150 [BPF_REG_8
] = {STACK_OFFSET(BPF_R8_HI
), STACK_OFFSET(BPF_R8_LO
)},
151 [BPF_REG_9
] = {STACK_OFFSET(BPF_R9_HI
), STACK_OFFSET(BPF_R9_LO
)},
152 /* Read only Frame Pointer to access Stack */
153 [BPF_REG_FP
] = {STACK_OFFSET(BPF_FP_HI
), STACK_OFFSET(BPF_FP_LO
)},
154 /* Temporary Register for internal BPF JIT, can be used
155 * for constant blindings and others.
157 [TMP_REG_1
] = {ARM_R7
, ARM_R6
},
158 [TMP_REG_2
] = {ARM_R9
, ARM_R8
},
159 /* Tail call count. Stored on stack scratch space. */
160 [TCALL_CNT
] = {STACK_OFFSET(BPF_TC_HI
), STACK_OFFSET(BPF_TC_LO
)},
161 /* temporary register for blinding constants.
162 * Stored on stack scratch space.
164 [BPF_REG_AX
] = {STACK_OFFSET(BPF_AX_HI
), STACK_OFFSET(BPF_AX_LO
)},
167 #define dst_lo dst[1]
168 #define dst_hi dst[0]
169 #define src_lo src[1]
170 #define src_hi src[0]
176 * idx : index of current last JITed instruction.
177 * prologue_bytes : bytes used in prologue.
178 * epilogue_offset : offset of epilogue starting.
179 * offsets : array of eBPF instruction offsets in
181 * target : final JITed code.
182 * epilogue_bytes : no of bytes used in epilogue.
183 * imm_count : no of immediate counts used for global
185 * imms : array of global variable addresses.
189 const struct bpf_prog
*prog
;
191 unsigned int prologue_bytes
;
192 unsigned int epilogue_offset
;
193 unsigned int cpu_architecture
;
198 #if __LINUX_ARM_ARCH__ < 7
206 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
207 * (where the assembly routines like __aeabi_uidiv could cause problems).
209 static u32
jit_udiv32(u32 dividend
, u32 divisor
)
211 return dividend
/ divisor
;
214 static u32
jit_mod32(u32 dividend
, u32 divisor
)
216 return dividend
% divisor
;
219 static inline void _emit(int cond
, u32 inst
, struct jit_ctx
*ctx
)
221 inst
|= (cond
<< 28);
222 inst
= __opcode_to_mem_arm(inst
);
224 if (ctx
->target
!= NULL
)
225 ctx
->target
[ctx
->idx
] = inst
;
231 * Emit an instruction that will be executed unconditionally.
233 static inline void emit(u32 inst
, struct jit_ctx
*ctx
)
235 _emit(ARM_COND_AL
, inst
, ctx
);
239 * This is rather horrid, but necessary to convert an integer constant
240 * to an immediate operand for the opcodes, and be able to detect at
241 * build time whether the constant can't be converted (iow, usable in
244 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
245 #define const_imm8m(x) \
248 if (!(v & ~0x000000ff)) \
249 r = imm12val(v, 0); \
250 else if (!(v & ~0xc000003f)) \
251 r = imm12val(v, 2); \
252 else if (!(v & ~0xf000000f)) \
253 r = imm12val(v, 4); \
254 else if (!(v & ~0xfc000003)) \
255 r = imm12val(v, 6); \
256 else if (!(v & ~0xff000000)) \
257 r = imm12val(v, 8); \
258 else if (!(v & ~0x3fc00000)) \
259 r = imm12val(v, 10); \
260 else if (!(v & ~0x0ff00000)) \
261 r = imm12val(v, 12); \
262 else if (!(v & ~0x03fc0000)) \
263 r = imm12val(v, 14); \
264 else if (!(v & ~0x00ff0000)) \
265 r = imm12val(v, 16); \
266 else if (!(v & ~0x003fc000)) \
267 r = imm12val(v, 18); \
268 else if (!(v & ~0x000ff000)) \
269 r = imm12val(v, 20); \
270 else if (!(v & ~0x0003fc00)) \
271 r = imm12val(v, 22); \
272 else if (!(v & ~0x0000ff00)) \
273 r = imm12val(v, 24); \
274 else if (!(v & ~0x00003fc0)) \
275 r = imm12val(v, 26); \
276 else if (!(v & ~0x00000ff0)) \
277 r = imm12val(v, 28); \
278 else if (!(v & ~0x000003fc)) \
279 r = imm12val(v, 30); \
285 * Checks if immediate value can be converted to imm12(12 bits) value.
287 static int imm8m(u32 x
)
291 for (rot
= 0; rot
< 16; rot
++)
292 if ((x
& ~ror32(0xff, 2 * rot
)) == 0)
293 return rol32(x
, 2 * rot
) | (rot
<< 8);
297 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
299 static u32
arm_bpf_ldst_imm12(u32 op
, u8 rt
, u8 rn
, s16 imm12
)
301 op
|= rt
<< 12 | rn
<< 16;
303 op
|= ARM_INST_LDST__U
;
306 return op
| (imm12
& ARM_INST_LDST__IMM12
);
309 static u32
arm_bpf_ldst_imm8(u32 op
, u8 rt
, u8 rn
, s16 imm8
)
311 op
|= rt
<< 12 | rn
<< 16;
313 op
|= ARM_INST_LDST__U
;
316 return op
| (imm8
& 0xf0) << 4 | (imm8
& 0x0f);
319 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
320 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
321 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
322 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
324 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
325 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
326 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
327 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
330 * Initializes the JIT space with undefined instructions.
332 static void jit_fill_hole(void *area
, unsigned int size
)
335 /* We are guaranteed to have aligned memory. */
336 for (ptr
= area
; size
>= sizeof(u32
); size
-= sizeof(u32
))
337 *ptr
++ = __opcode_to_mem_arm(ARM_INST_UDF
);
340 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
341 /* EABI requires the stack to be aligned to 64-bit boundaries */
342 #define STACK_ALIGNMENT 8
344 /* Stack must be aligned to 32-bit boundaries */
345 #define STACK_ALIGNMENT 4
348 /* total stack size used in JITed code */
349 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
350 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
352 #if __LINUX_ARM_ARCH__ < 7
354 static u16
imm_offset(u32 k
, struct jit_ctx
*ctx
)
356 unsigned int i
= 0, offset
;
359 /* on the "fake" run we just count them (duplicates included) */
360 if (ctx
->target
== NULL
) {
365 while ((i
< ctx
->imm_count
) && ctx
->imms
[i
]) {
366 if (ctx
->imms
[i
] == k
)
371 if (ctx
->imms
[i
] == 0)
374 /* constants go just after the epilogue */
375 offset
= ctx
->offsets
[ctx
->prog
->len
- 1] * 4;
376 offset
+= ctx
->prologue_bytes
;
377 offset
+= ctx
->epilogue_bytes
;
380 ctx
->target
[offset
/ 4] = k
;
382 /* PC in ARM mode == address of the instruction + 8 */
383 imm
= offset
- (8 + ctx
->idx
* 4);
387 * literal pool is too far, signal it into flags. we
388 * can only detect it on the second pass unfortunately.
390 ctx
->flags
|= FLAG_IMM_OVERFLOW
;
397 #endif /* __LINUX_ARM_ARCH__ */
399 static inline int bpf2a32_offset(int bpf_to
, int bpf_from
,
400 const struct jit_ctx
*ctx
) {
403 if (ctx
->target
== NULL
)
405 to
= ctx
->offsets
[bpf_to
];
406 from
= ctx
->offsets
[bpf_from
];
408 return to
- from
- 1;
412 * Move an immediate that's not an imm8m to a core register.
414 static inline void emit_mov_i_no8m(const u8 rd
, u32 val
, struct jit_ctx
*ctx
)
416 #if __LINUX_ARM_ARCH__ < 7
417 emit(ARM_LDR_I(rd
, ARM_PC
, imm_offset(val
, ctx
)), ctx
);
419 emit(ARM_MOVW(rd
, val
& 0xffff), ctx
);
421 emit(ARM_MOVT(rd
, val
>> 16), ctx
);
425 static inline void emit_mov_i(const u8 rd
, u32 val
, struct jit_ctx
*ctx
)
427 int imm12
= imm8m(val
);
430 emit(ARM_MOV_I(rd
, imm12
), ctx
);
432 emit_mov_i_no8m(rd
, val
, ctx
);
435 static void emit_bx_r(u8 tgt_reg
, struct jit_ctx
*ctx
)
437 if (elf_hwcap
& HWCAP_THUMB
)
438 emit(ARM_BX(tgt_reg
), ctx
);
440 emit(ARM_MOV_R(ARM_PC
, tgt_reg
), ctx
);
443 static inline void emit_blx_r(u8 tgt_reg
, struct jit_ctx
*ctx
)
445 #if __LINUX_ARM_ARCH__ < 5
446 emit(ARM_MOV_R(ARM_LR
, ARM_PC
), ctx
);
447 emit_bx_r(tgt_reg
, ctx
);
449 emit(ARM_BLX_R(tgt_reg
), ctx
);
453 static inline int epilogue_offset(const struct jit_ctx
*ctx
)
456 /* No need for 1st dummy run */
457 if (ctx
->target
== NULL
)
459 to
= ctx
->epilogue_offset
;
462 return to
- from
- 2;
465 static inline void emit_udivmod(u8 rd
, u8 rm
, u8 rn
, struct jit_ctx
*ctx
, u8 op
)
467 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
469 #if __LINUX_ARM_ARCH__ == 7
470 if (elf_hwcap
& HWCAP_IDIVA
) {
472 emit(ARM_UDIV(rd
, rm
, rn
), ctx
);
474 emit(ARM_UDIV(ARM_IP
, rm
, rn
), ctx
);
475 emit(ARM_MLS(rd
, rn
, ARM_IP
, rm
), ctx
);
482 * For BPF_ALU | BPF_DIV | BPF_K instructions
483 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
484 * function, we need to save it on caller side to save
485 * it from getting destroyed within callee.
486 * After the return from the callee, we restore ARM_R0
490 emit(ARM_MOV_R(tmp
[0], ARM_R1
), ctx
);
491 emit(ARM_MOV_R(ARM_R1
, rn
), ctx
);
494 emit(ARM_MOV_R(tmp
[1], ARM_R0
), ctx
);
495 emit(ARM_MOV_R(ARM_R0
, rm
), ctx
);
498 /* Call appropriate function */
499 emit_mov_i(ARM_IP
, op
== BPF_DIV
?
500 (u32
)jit_udiv32
: (u32
)jit_mod32
, ctx
);
501 emit_blx_r(ARM_IP
, ctx
);
503 /* Save return value */
505 emit(ARM_MOV_R(rd
, ARM_R0
), ctx
);
507 /* Restore ARM_R0 and ARM_R1 */
509 emit(ARM_MOV_R(ARM_R1
, tmp
[0]), ctx
);
511 emit(ARM_MOV_R(ARM_R0
, tmp
[1]), ctx
);
514 /* Is the translated BPF register on stack? */
515 static bool is_stacked(s8 reg
)
520 /* If a BPF register is on the stack (stk is true), load it to the
521 * supplied temporary register and return the temporary register
522 * for subsequent operations, otherwise just use the CPU register.
524 static s8
arm_bpf_get_reg32(s8 reg
, s8 tmp
, struct jit_ctx
*ctx
)
526 if (is_stacked(reg
)) {
527 emit(ARM_LDR_I(tmp
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(reg
)), ctx
);
533 static const s8
*arm_bpf_get_reg64(const s8
*reg
, const s8
*tmp
,
536 if (is_stacked(reg
[1])) {
537 if (__LINUX_ARM_ARCH__
>= 6 ||
538 ctx
->cpu_architecture
>= CPU_ARCH_ARMv5TE
) {
539 emit(ARM_LDRD_I(tmp
[1], ARM_FP
,
540 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
542 emit(ARM_LDR_I(tmp
[1], ARM_FP
,
543 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
544 emit(ARM_LDR_I(tmp
[0], ARM_FP
,
545 EBPF_SCRATCH_TO_ARM_FP(reg
[0])), ctx
);
552 /* If a BPF register is on the stack (stk is true), save the register
553 * back to the stack. If the source register is not the same, then
554 * move it into the correct register.
556 static void arm_bpf_put_reg32(s8 reg
, s8 src
, struct jit_ctx
*ctx
)
559 emit(ARM_STR_I(src
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(reg
)), ctx
);
561 emit(ARM_MOV_R(reg
, src
), ctx
);
564 static void arm_bpf_put_reg64(const s8
*reg
, const s8
*src
,
567 if (is_stacked(reg
[1])) {
568 if (__LINUX_ARM_ARCH__
>= 6 ||
569 ctx
->cpu_architecture
>= CPU_ARCH_ARMv5TE
) {
570 emit(ARM_STRD_I(src
[1], ARM_FP
,
571 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
573 emit(ARM_STR_I(src
[1], ARM_FP
,
574 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
575 emit(ARM_STR_I(src
[0], ARM_FP
,
576 EBPF_SCRATCH_TO_ARM_FP(reg
[0])), ctx
);
579 if (reg
[1] != src
[1])
580 emit(ARM_MOV_R(reg
[1], src
[1]), ctx
);
581 if (reg
[0] != src
[0])
582 emit(ARM_MOV_R(reg
[0], src
[0]), ctx
);
586 static inline void emit_a32_mov_i(const s8 dst
, const u32 val
,
589 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
591 if (is_stacked(dst
)) {
592 emit_mov_i(tmp
[1], val
, ctx
);
593 arm_bpf_put_reg32(dst
, tmp
[1], ctx
);
595 emit_mov_i(dst
, val
, ctx
);
599 static void emit_a32_mov_i64(const s8 dst
[], u64 val
, struct jit_ctx
*ctx
)
601 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
602 const s8
*rd
= is_stacked(dst_lo
) ? tmp
: dst
;
604 emit_mov_i(rd
[1], (u32
)val
, ctx
);
605 emit_mov_i(rd
[0], val
>> 32, ctx
);
607 arm_bpf_put_reg64(dst
, rd
, ctx
);
610 /* Sign extended move */
611 static inline void emit_a32_mov_se_i64(const bool is64
, const s8 dst
[],
612 const u32 val
, struct jit_ctx
*ctx
) {
615 if (is64
&& (val
& (1<<31)))
616 val64
|= 0xffffffff00000000ULL
;
617 emit_a32_mov_i64(dst
, val64
, ctx
);
620 static inline void emit_a32_add_r(const u8 dst
, const u8 src
,
621 const bool is64
, const bool hi
,
622 struct jit_ctx
*ctx
) {
624 * adds dst_lo, dst_lo, src_lo
625 * adc dst_hi, dst_hi, src_hi
627 * add dst_lo, dst_lo, src_lo
630 emit(ARM_ADDS_R(dst
, dst
, src
), ctx
);
632 emit(ARM_ADC_R(dst
, dst
, src
), ctx
);
634 emit(ARM_ADD_R(dst
, dst
, src
), ctx
);
637 static inline void emit_a32_sub_r(const u8 dst
, const u8 src
,
638 const bool is64
, const bool hi
,
639 struct jit_ctx
*ctx
) {
641 * subs dst_lo, dst_lo, src_lo
642 * sbc dst_hi, dst_hi, src_hi
644 * sub dst_lo, dst_lo, src_lo
647 emit(ARM_SUBS_R(dst
, dst
, src
), ctx
);
649 emit(ARM_SBC_R(dst
, dst
, src
), ctx
);
651 emit(ARM_SUB_R(dst
, dst
, src
), ctx
);
654 static inline void emit_alu_r(const u8 dst
, const u8 src
, const bool is64
,
655 const bool hi
, const u8 op
, struct jit_ctx
*ctx
){
656 switch (BPF_OP(op
)) {
657 /* dst = dst + src */
659 emit_a32_add_r(dst
, src
, is64
, hi
, ctx
);
661 /* dst = dst - src */
663 emit_a32_sub_r(dst
, src
, is64
, hi
, ctx
);
665 /* dst = dst | src */
667 emit(ARM_ORR_R(dst
, dst
, src
), ctx
);
669 /* dst = dst & src */
671 emit(ARM_AND_R(dst
, dst
, src
), ctx
);
673 /* dst = dst ^ src */
675 emit(ARM_EOR_R(dst
, dst
, src
), ctx
);
677 /* dst = dst * src */
679 emit(ARM_MUL(dst
, dst
, src
), ctx
);
681 /* dst = dst << src */
683 emit(ARM_LSL_R(dst
, dst
, src
), ctx
);
685 /* dst = dst >> src */
687 emit(ARM_LSR_R(dst
, dst
, src
), ctx
);
689 /* dst = dst >> src (signed)*/
691 emit(ARM_MOV_SR(dst
, dst
, SRTYPE_ASR
, src
), ctx
);
696 /* ALU operation (32 bit)
699 static inline void emit_a32_alu_r(const s8 dst
, const s8 src
,
700 struct jit_ctx
*ctx
, const bool is64
,
701 const bool hi
, const u8 op
) {
702 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
705 rn
= arm_bpf_get_reg32(src
, tmp
[1], ctx
);
706 rd
= arm_bpf_get_reg32(dst
, tmp
[0], ctx
);
708 emit_alu_r(rd
, rn
, is64
, hi
, op
, ctx
);
709 arm_bpf_put_reg32(dst
, rd
, ctx
);
712 /* ALU operation (64 bit) */
713 static inline void emit_a32_alu_r64(const bool is64
, const s8 dst
[],
714 const s8 src
[], struct jit_ctx
*ctx
,
716 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
717 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
720 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
724 rs
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
727 emit_alu_r(rd
[1], rs
[1], true, false, op
, ctx
);
728 emit_alu_r(rd
[0], rs
[0], true, true, op
, ctx
);
732 rs
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
735 emit_alu_r(rd
[1], rs
, true, false, op
, ctx
);
736 if (!ctx
->prog
->aux
->verifier_zext
)
737 emit_a32_mov_i(rd
[0], 0, ctx
);
740 arm_bpf_put_reg64(dst
, rd
, ctx
);
743 /* dst = src (4 bytes)*/
744 static inline void emit_a32_mov_r(const s8 dst
, const s8 src
,
745 struct jit_ctx
*ctx
) {
746 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
749 rt
= arm_bpf_get_reg32(src
, tmp
[0], ctx
);
750 arm_bpf_put_reg32(dst
, rt
, ctx
);
754 static inline void emit_a32_mov_r64(const bool is64
, const s8 dst
[],
756 struct jit_ctx
*ctx
) {
758 emit_a32_mov_r(dst_lo
, src_lo
, ctx
);
759 if (!ctx
->prog
->aux
->verifier_zext
)
760 /* Zero out high 4 bytes */
761 emit_a32_mov_i(dst_hi
, 0, ctx
);
762 } else if (__LINUX_ARM_ARCH__
< 6 &&
763 ctx
->cpu_architecture
< CPU_ARCH_ARMv5TE
) {
764 /* complete 8 byte move */
765 emit_a32_mov_r(dst_lo
, src_lo
, ctx
);
766 emit_a32_mov_r(dst_hi
, src_hi
, ctx
);
767 } else if (is_stacked(src_lo
) && is_stacked(dst_lo
)) {
768 const u8
*tmp
= bpf2a32
[TMP_REG_1
];
770 emit(ARM_LDRD_I(tmp
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(src_lo
)), ctx
);
771 emit(ARM_STRD_I(tmp
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(dst_lo
)), ctx
);
772 } else if (is_stacked(src_lo
)) {
773 emit(ARM_LDRD_I(dst
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(src_lo
)), ctx
);
774 } else if (is_stacked(dst_lo
)) {
775 emit(ARM_STRD_I(src
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(dst_lo
)), ctx
);
777 emit(ARM_MOV_R(dst
[0], src
[0]), ctx
);
778 emit(ARM_MOV_R(dst
[1], src
[1]), ctx
);
782 /* Shift operations */
783 static inline void emit_a32_alu_i(const s8 dst
, const u32 val
,
784 struct jit_ctx
*ctx
, const u8 op
) {
785 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
788 rd
= arm_bpf_get_reg32(dst
, tmp
[0], ctx
);
790 /* Do shift operation */
793 emit(ARM_LSL_I(rd
, rd
, val
), ctx
);
796 emit(ARM_LSR_I(rd
, rd
, val
), ctx
);
799 emit(ARM_ASR_I(rd
, rd
, val
), ctx
);
802 emit(ARM_RSB_I(rd
, rd
, val
), ctx
);
806 arm_bpf_put_reg32(dst
, rd
, ctx
);
809 /* dst = ~dst (64 bit) */
810 static inline void emit_a32_neg64(const s8 dst
[],
811 struct jit_ctx
*ctx
){
812 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
816 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
818 /* Do Negate Operation */
819 emit(ARM_RSBS_I(rd
[1], rd
[1], 0), ctx
);
820 emit(ARM_RSC_I(rd
[0], rd
[0], 0), ctx
);
822 arm_bpf_put_reg64(dst
, rd
, ctx
);
825 /* dst = dst << src */
826 static inline void emit_a32_lsh_r64(const s8 dst
[], const s8 src
[],
827 struct jit_ctx
*ctx
) {
828 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
829 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
834 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
835 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
837 /* Do LSH operation */
838 emit(ARM_SUB_I(ARM_IP
, rt
, 32), ctx
);
839 emit(ARM_RSB_I(tmp2
[0], rt
, 32), ctx
);
840 emit(ARM_MOV_SR(ARM_LR
, rd
[0], SRTYPE_ASL
, rt
), ctx
);
841 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[1], SRTYPE_ASL
, ARM_IP
), ctx
);
842 emit(ARM_ORR_SR(ARM_IP
, ARM_LR
, rd
[1], SRTYPE_LSR
, tmp2
[0]), ctx
);
843 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_ASL
, rt
), ctx
);
845 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
846 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
849 /* dst = dst >> src (signed)*/
850 static inline void emit_a32_arsh_r64(const s8 dst
[], const s8 src
[],
851 struct jit_ctx
*ctx
) {
852 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
853 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
858 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
859 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
861 /* Do the ARSH operation */
862 emit(ARM_RSB_I(ARM_IP
, rt
, 32), ctx
);
863 emit(ARM_SUBS_I(tmp2
[0], rt
, 32), ctx
);
864 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_LSR
, rt
), ctx
);
865 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASL
, ARM_IP
), ctx
);
867 ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASR
, tmp2
[0]), ctx
);
868 emit(ARM_MOV_SR(ARM_IP
, rd
[0], SRTYPE_ASR
, rt
), ctx
);
870 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
871 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
874 /* dst = dst >> src */
875 static inline void emit_a32_rsh_r64(const s8 dst
[], const s8 src
[],
876 struct jit_ctx
*ctx
) {
877 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
878 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
883 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
884 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
886 /* Do RSH operation */
887 emit(ARM_RSB_I(ARM_IP
, rt
, 32), ctx
);
888 emit(ARM_SUBS_I(tmp2
[0], rt
, 32), ctx
);
889 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_LSR
, rt
), ctx
);
890 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASL
, ARM_IP
), ctx
);
891 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_LSR
, tmp2
[0]), ctx
);
892 emit(ARM_MOV_SR(ARM_IP
, rd
[0], SRTYPE_LSR
, rt
), ctx
);
894 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
895 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
898 /* dst = dst << val */
899 static inline void emit_a32_lsh_i64(const s8 dst
[],
900 const u32 val
, struct jit_ctx
*ctx
){
901 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
902 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
906 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
908 /* Do LSH operation */
910 emit(ARM_MOV_SI(tmp2
[0], rd
[0], SRTYPE_ASL
, val
), ctx
);
911 emit(ARM_ORR_SI(rd
[0], tmp2
[0], rd
[1], SRTYPE_LSR
, 32 - val
), ctx
);
912 emit(ARM_MOV_SI(rd
[1], rd
[1], SRTYPE_ASL
, val
), ctx
);
915 emit(ARM_MOV_R(rd
[0], rd
[1]), ctx
);
917 emit(ARM_MOV_SI(rd
[0], rd
[1], SRTYPE_ASL
, val
- 32), ctx
);
918 emit(ARM_EOR_R(rd
[1], rd
[1], rd
[1]), ctx
);
921 arm_bpf_put_reg64(dst
, rd
, ctx
);
924 /* dst = dst >> val */
925 static inline void emit_a32_rsh_i64(const s8 dst
[],
926 const u32 val
, struct jit_ctx
*ctx
) {
927 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
928 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
932 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
934 /* Do LSR operation */
936 /* An immediate value of 0 encodes a shift amount of 32
937 * for LSR. To shift by 0, don't do anything.
939 } else if (val
< 32) {
940 emit(ARM_MOV_SI(tmp2
[1], rd
[1], SRTYPE_LSR
, val
), ctx
);
941 emit(ARM_ORR_SI(rd
[1], tmp2
[1], rd
[0], SRTYPE_ASL
, 32 - val
), ctx
);
942 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_LSR
, val
), ctx
);
943 } else if (val
== 32) {
944 emit(ARM_MOV_R(rd
[1], rd
[0]), ctx
);
945 emit(ARM_MOV_I(rd
[0], 0), ctx
);
947 emit(ARM_MOV_SI(rd
[1], rd
[0], SRTYPE_LSR
, val
- 32), ctx
);
948 emit(ARM_MOV_I(rd
[0], 0), ctx
);
951 arm_bpf_put_reg64(dst
, rd
, ctx
);
954 /* dst = dst >> val (signed) */
955 static inline void emit_a32_arsh_i64(const s8 dst
[],
956 const u32 val
, struct jit_ctx
*ctx
){
957 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
958 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
962 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
964 /* Do ARSH operation */
966 /* An immediate value of 0 encodes a shift amount of 32
967 * for ASR. To shift by 0, don't do anything.
969 } else if (val
< 32) {
970 emit(ARM_MOV_SI(tmp2
[1], rd
[1], SRTYPE_LSR
, val
), ctx
);
971 emit(ARM_ORR_SI(rd
[1], tmp2
[1], rd
[0], SRTYPE_ASL
, 32 - val
), ctx
);
972 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, val
), ctx
);
973 } else if (val
== 32) {
974 emit(ARM_MOV_R(rd
[1], rd
[0]), ctx
);
975 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, 31), ctx
);
977 emit(ARM_MOV_SI(rd
[1], rd
[0], SRTYPE_ASR
, val
- 32), ctx
);
978 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, 31), ctx
);
981 arm_bpf_put_reg64(dst
, rd
, ctx
);
984 static inline void emit_a32_mul_r64(const s8 dst
[], const s8 src
[],
985 struct jit_ctx
*ctx
) {
986 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
987 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
990 /* Setup operands for multiplication */
991 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
992 rt
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
994 /* Do Multiplication */
995 emit(ARM_MUL(ARM_IP
, rd
[1], rt
[0]), ctx
);
996 emit(ARM_MUL(ARM_LR
, rd
[0], rt
[1]), ctx
);
997 emit(ARM_ADD_R(ARM_LR
, ARM_IP
, ARM_LR
), ctx
);
999 emit(ARM_UMULL(ARM_IP
, rd
[0], rd
[1], rt
[1]), ctx
);
1000 emit(ARM_ADD_R(rd
[0], ARM_LR
, rd
[0]), ctx
);
1002 arm_bpf_put_reg32(dst_lo
, ARM_IP
, ctx
);
1003 arm_bpf_put_reg32(dst_hi
, rd
[0], ctx
);
1006 static bool is_ldst_imm(s16 off
, const u8 size
)
1019 /* Need to make sure off+4 does not overflow. */
1020 off_max
= 0xfff - 4;
1023 return -off_max
<= off
&& off
<= off_max
;
1026 /* *(size *)(dst + off) = src */
1027 static inline void emit_str_r(const s8 dst
, const s8 src
[],
1028 s16 off
, struct jit_ctx
*ctx
, const u8 sz
){
1029 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1032 rd
= arm_bpf_get_reg32(dst
, tmp
[1], ctx
);
1034 if (!is_ldst_imm(off
, sz
)) {
1035 emit_a32_mov_i(tmp
[0], off
, ctx
);
1036 emit(ARM_ADD_R(tmp
[0], tmp
[0], rd
), ctx
);
1043 emit(ARM_STRB_I(src_lo
, rd
, off
), ctx
);
1046 /* Store a HalfWord */
1047 emit(ARM_STRH_I(src_lo
, rd
, off
), ctx
);
1051 emit(ARM_STR_I(src_lo
, rd
, off
), ctx
);
1054 /* Store a Double Word */
1055 emit(ARM_STR_I(src_lo
, rd
, off
), ctx
);
1056 emit(ARM_STR_I(src_hi
, rd
, off
+ 4), ctx
);
1061 /* dst = *(size*)(src + off) */
1062 static inline void emit_ldx_r(const s8 dst
[], const s8 src
,
1063 s16 off
, struct jit_ctx
*ctx
, const u8 sz
){
1064 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1065 const s8
*rd
= is_stacked(dst_lo
) ? tmp
: dst
;
1068 if (!is_ldst_imm(off
, sz
)) {
1069 emit_a32_mov_i(tmp
[0], off
, ctx
);
1070 emit(ARM_ADD_R(tmp
[0], tmp
[0], src
), ctx
);
1073 } else if (rd
[1] == rm
) {
1074 emit(ARM_MOV_R(tmp
[0], rm
), ctx
);
1080 emit(ARM_LDRB_I(rd
[1], rm
, off
), ctx
);
1081 if (!ctx
->prog
->aux
->verifier_zext
)
1082 emit_a32_mov_i(rd
[0], 0, ctx
);
1085 /* Load a HalfWord */
1086 emit(ARM_LDRH_I(rd
[1], rm
, off
), ctx
);
1087 if (!ctx
->prog
->aux
->verifier_zext
)
1088 emit_a32_mov_i(rd
[0], 0, ctx
);
1092 emit(ARM_LDR_I(rd
[1], rm
, off
), ctx
);
1093 if (!ctx
->prog
->aux
->verifier_zext
)
1094 emit_a32_mov_i(rd
[0], 0, ctx
);
1097 /* Load a Double Word */
1098 emit(ARM_LDR_I(rd
[1], rm
, off
), ctx
);
1099 emit(ARM_LDR_I(rd
[0], rm
, off
+ 4), ctx
);
1102 arm_bpf_put_reg64(dst
, rd
, ctx
);
1105 /* Arithmatic Operation */
1106 static inline void emit_ar_r(const u8 rd
, const u8 rt
, const u8 rm
,
1107 const u8 rn
, struct jit_ctx
*ctx
, u8 op
,
1112 emit(ARM_AND_R(ARM_IP
, rt
, rn
), ctx
);
1113 emit(ARM_AND_R(ARM_LR
, rd
, rm
), ctx
);
1114 emit(ARM_ORRS_R(ARM_IP
, ARM_LR
, ARM_IP
), ctx
);
1116 emit(ARM_ANDS_R(ARM_IP
, rt
, rn
), ctx
);
1126 emit(ARM_CMP_R(rd
, rm
), ctx
);
1127 /* Only compare low halve if high halve are equal. */
1128 _emit(ARM_COND_EQ
, ARM_CMP_R(rt
, rn
), ctx
);
1130 emit(ARM_CMP_R(rt
, rn
), ctx
);
1135 emit(ARM_CMP_R(rn
, rt
), ctx
);
1137 emit(ARM_SBCS_R(ARM_IP
, rm
, rd
), ctx
);
1141 emit(ARM_CMP_R(rt
, rn
), ctx
);
1143 emit(ARM_SBCS_R(ARM_IP
, rd
, rm
), ctx
);
1148 static int out_offset
= -1; /* initialized on the first pass of build_body() */
1149 static int emit_bpf_tail_call(struct jit_ctx
*ctx
)
1152 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1153 const s8
*r2
= bpf2a32
[BPF_REG_2
];
1154 const s8
*r3
= bpf2a32
[BPF_REG_3
];
1155 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1156 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1157 const s8
*tcc
= bpf2a32
[TCALL_CNT
];
1159 const int idx0
= ctx
->idx
;
1160 #define cur_offset (ctx->idx - idx0)
1161 #define jmp_offset (out_offset - (cur_offset) - 2)
1163 s8 r_array
, r_index
;
1166 /* if (index >= array->map.max_entries)
1169 BUILD_BUG_ON(offsetof(struct bpf_array
, map
.max_entries
) >
1170 ARM_INST_LDST__IMM12
);
1171 off
= offsetof(struct bpf_array
, map
.max_entries
);
1172 r_array
= arm_bpf_get_reg32(r2
[1], tmp2
[0], ctx
);
1173 /* index is 32-bit for arrays */
1174 r_index
= arm_bpf_get_reg32(r3
[1], tmp2
[1], ctx
);
1175 /* array->map.max_entries */
1176 emit(ARM_LDR_I(tmp
[1], r_array
, off
), ctx
);
1177 /* index >= array->map.max_entries */
1178 emit(ARM_CMP_R(r_index
, tmp
[1]), ctx
);
1179 _emit(ARM_COND_CS
, ARM_B(jmp_offset
), ctx
);
1181 /* tmp2[0] = array, tmp2[1] = index */
1183 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1187 lo
= (u32
)MAX_TAIL_CALL_CNT
;
1188 hi
= (u32
)((u64
)MAX_TAIL_CALL_CNT
>> 32);
1189 tc
= arm_bpf_get_reg64(tcc
, tmp
, ctx
);
1190 emit(ARM_CMP_I(tc
[0], hi
), ctx
);
1191 _emit(ARM_COND_EQ
, ARM_CMP_I(tc
[1], lo
), ctx
);
1192 _emit(ARM_COND_HI
, ARM_B(jmp_offset
), ctx
);
1193 emit(ARM_ADDS_I(tc
[1], tc
[1], 1), ctx
);
1194 emit(ARM_ADC_I(tc
[0], tc
[0], 0), ctx
);
1195 arm_bpf_put_reg64(tcc
, tmp
, ctx
);
1197 /* prog = array->ptrs[index]
1201 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array
, ptrs
)) < 0);
1202 off
= imm8m(offsetof(struct bpf_array
, ptrs
));
1203 emit(ARM_ADD_I(tmp
[1], r_array
, off
), ctx
);
1204 emit(ARM_LDR_R_SI(tmp
[1], tmp
[1], r_index
, SRTYPE_ASL
, 2), ctx
);
1205 emit(ARM_CMP_I(tmp
[1], 0), ctx
);
1206 _emit(ARM_COND_EQ
, ARM_B(jmp_offset
), ctx
);
1208 /* goto *(prog->bpf_func + prologue_size); */
1209 BUILD_BUG_ON(offsetof(struct bpf_prog
, bpf_func
) >
1210 ARM_INST_LDST__IMM12
);
1211 off
= offsetof(struct bpf_prog
, bpf_func
);
1212 emit(ARM_LDR_I(tmp
[1], tmp
[1], off
), ctx
);
1213 emit(ARM_ADD_I(tmp
[1], tmp
[1], ctx
->prologue_bytes
), ctx
);
1214 emit_bx_r(tmp
[1], ctx
);
1217 if (out_offset
== -1)
1218 out_offset
= cur_offset
;
1219 if (cur_offset
!= out_offset
) {
1220 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1221 cur_offset
, out_offset
);
1229 /* 0xabcd => 0xcdab */
1230 static inline void emit_rev16(const u8 rd
, const u8 rn
, struct jit_ctx
*ctx
)
1232 #if __LINUX_ARM_ARCH__ < 6
1233 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1235 emit(ARM_AND_I(tmp2
[1], rn
, 0xff), ctx
);
1236 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 8), ctx
);
1237 emit(ARM_AND_I(tmp2
[0], tmp2
[0], 0xff), ctx
);
1238 emit(ARM_ORR_SI(rd
, tmp2
[0], tmp2
[1], SRTYPE_LSL
, 8), ctx
);
1240 emit(ARM_REV16(rd
, rn
), ctx
);
1244 /* 0xabcdefgh => 0xghefcdab */
1245 static inline void emit_rev32(const u8 rd
, const u8 rn
, struct jit_ctx
*ctx
)
1247 #if __LINUX_ARM_ARCH__ < 6
1248 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1250 emit(ARM_AND_I(tmp2
[1], rn
, 0xff), ctx
);
1251 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 24), ctx
);
1252 emit(ARM_ORR_SI(ARM_IP
, tmp2
[0], tmp2
[1], SRTYPE_LSL
, 24), ctx
);
1254 emit(ARM_MOV_SI(tmp2
[1], rn
, SRTYPE_LSR
, 8), ctx
);
1255 emit(ARM_AND_I(tmp2
[1], tmp2
[1], 0xff), ctx
);
1256 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 16), ctx
);
1257 emit(ARM_AND_I(tmp2
[0], tmp2
[0], 0xff), ctx
);
1258 emit(ARM_MOV_SI(tmp2
[0], tmp2
[0], SRTYPE_LSL
, 8), ctx
);
1259 emit(ARM_ORR_SI(tmp2
[0], tmp2
[0], tmp2
[1], SRTYPE_LSL
, 16), ctx
);
1260 emit(ARM_ORR_R(rd
, ARM_IP
, tmp2
[0]), ctx
);
1263 emit(ARM_REV(rd
, rn
), ctx
);
1267 // push the scratch stack register on top of the stack
1268 static inline void emit_push_r64(const s8 src
[], struct jit_ctx
*ctx
)
1270 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1274 rt
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
1276 reg_set
= (1 << rt
[1]) | (1 << rt
[0]);
1277 emit(ARM_PUSH(reg_set
), ctx
);
1280 static void build_prologue(struct jit_ctx
*ctx
)
1282 const s8 arm_r0
= bpf2a32
[BPF_REG_0
][1];
1283 const s8
*bpf_r1
= bpf2a32
[BPF_REG_1
];
1284 const s8
*bpf_fp
= bpf2a32
[BPF_REG_FP
];
1285 const s8
*tcc
= bpf2a32
[TCALL_CNT
];
1287 /* Save callee saved registers. */
1288 #ifdef CONFIG_FRAME_POINTER
1289 u16 reg_set
= CALLEE_PUSH_MASK
| 1 << ARM_IP
| 1 << ARM_PC
;
1290 emit(ARM_MOV_R(ARM_IP
, ARM_SP
), ctx
);
1291 emit(ARM_PUSH(reg_set
), ctx
);
1292 emit(ARM_SUB_I(ARM_FP
, ARM_IP
, 4), ctx
);
1294 emit(ARM_PUSH(CALLEE_PUSH_MASK
), ctx
);
1295 emit(ARM_MOV_R(ARM_FP
, ARM_SP
), ctx
);
1298 /* sub r2, sp, #SCRATCH_SIZE */
1299 emit(ARM_MOV_I(bpf_r1
[0], 0), ctx
);
1300 emit(ARM_SUB_I(bpf_r1
[1], ARM_SP
, SCRATCH_SIZE
), ctx
);
1302 ctx
->stack_size
= imm8m(STACK_SIZE
);
1304 /* Set up function call stack */
1305 emit(ARM_SUB_I(ARM_SP
, ARM_SP
, ctx
->stack_size
), ctx
);
1307 /* Set up BPF prog stack base register */
1308 emit_a32_mov_r64(true, bpf_fp
, bpf_r1
, ctx
);
1310 /* Initialize Tail Count */
1311 emit(ARM_MOV_I(bpf_r1
[1], 0), ctx
);
1312 emit_a32_mov_r64(true, tcc
, bpf_r1
, ctx
);
1314 /* Move BPF_CTX to BPF_R1 */
1315 emit(ARM_MOV_R(bpf_r1
[1], arm_r0
), ctx
);
1317 /* end of prologue */
1320 /* restore callee saved registers. */
1321 static void build_epilogue(struct jit_ctx
*ctx
)
1323 #ifdef CONFIG_FRAME_POINTER
1324 /* When using frame pointers, some additional registers need to
1326 u16 reg_set
= CALLEE_POP_MASK
| 1 << ARM_SP
;
1327 emit(ARM_SUB_I(ARM_SP
, ARM_FP
, hweight16(reg_set
) * 4), ctx
);
1328 emit(ARM_LDM(ARM_SP
, reg_set
), ctx
);
1330 /* Restore callee saved registers. */
1331 emit(ARM_MOV_R(ARM_SP
, ARM_FP
), ctx
);
1332 emit(ARM_POP(CALLEE_POP_MASK
), ctx
);
1337 * Convert an eBPF instruction to native instruction, i.e
1338 * JITs an eBPF instruction.
1340 * 0 - Successfully JITed an 8-byte eBPF instruction
1341 * >0 - Successfully JITed a 16-byte eBPF instruction
1342 * <0 - Failed to JIT.
1344 static int build_insn(const struct bpf_insn
*insn
, struct jit_ctx
*ctx
)
1346 const u8 code
= insn
->code
;
1347 const s8
*dst
= bpf2a32
[insn
->dst_reg
];
1348 const s8
*src
= bpf2a32
[insn
->src_reg
];
1349 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1350 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1351 const s16 off
= insn
->off
;
1352 const s32 imm
= insn
->imm
;
1353 const int i
= insn
- ctx
->prog
->insnsi
;
1354 const bool is64
= BPF_CLASS(code
) == BPF_ALU64
;
1356 s8 rd_lo
, rt
, rm
, rn
;
1359 #define check_imm(bits, imm) do { \
1360 if ((imm) >= (1 << ((bits) - 1)) || \
1361 (imm) < -(1 << ((bits) - 1))) { \
1362 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1367 #define check_imm24(imm) check_imm(24, imm)
1370 /* ALU operations */
1373 case BPF_ALU
| BPF_MOV
| BPF_K
:
1374 case BPF_ALU
| BPF_MOV
| BPF_X
:
1375 case BPF_ALU64
| BPF_MOV
| BPF_K
:
1376 case BPF_ALU64
| BPF_MOV
| BPF_X
:
1377 switch (BPF_SRC(code
)) {
1380 /* Special mov32 for zext */
1381 emit_a32_mov_i(dst_hi
, 0, ctx
);
1384 emit_a32_mov_r64(is64
, dst
, src
, ctx
);
1387 /* Sign-extend immediate value to destination reg */
1388 emit_a32_mov_se_i64(is64
, dst
, imm
, ctx
);
1392 /* dst = dst + src/imm */
1393 /* dst = dst - src/imm */
1394 /* dst = dst | src/imm */
1395 /* dst = dst & src/imm */
1396 /* dst = dst ^ src/imm */
1397 /* dst = dst * src/imm */
1398 /* dst = dst << src */
1399 /* dst = dst >> src */
1400 case BPF_ALU
| BPF_ADD
| BPF_K
:
1401 case BPF_ALU
| BPF_ADD
| BPF_X
:
1402 case BPF_ALU
| BPF_SUB
| BPF_K
:
1403 case BPF_ALU
| BPF_SUB
| BPF_X
:
1404 case BPF_ALU
| BPF_OR
| BPF_K
:
1405 case BPF_ALU
| BPF_OR
| BPF_X
:
1406 case BPF_ALU
| BPF_AND
| BPF_K
:
1407 case BPF_ALU
| BPF_AND
| BPF_X
:
1408 case BPF_ALU
| BPF_XOR
| BPF_K
:
1409 case BPF_ALU
| BPF_XOR
| BPF_X
:
1410 case BPF_ALU
| BPF_MUL
| BPF_K
:
1411 case BPF_ALU
| BPF_MUL
| BPF_X
:
1412 case BPF_ALU
| BPF_LSH
| BPF_X
:
1413 case BPF_ALU
| BPF_RSH
| BPF_X
:
1414 case BPF_ALU
| BPF_ARSH
| BPF_X
:
1415 case BPF_ALU64
| BPF_ADD
| BPF_K
:
1416 case BPF_ALU64
| BPF_ADD
| BPF_X
:
1417 case BPF_ALU64
| BPF_SUB
| BPF_K
:
1418 case BPF_ALU64
| BPF_SUB
| BPF_X
:
1419 case BPF_ALU64
| BPF_OR
| BPF_K
:
1420 case BPF_ALU64
| BPF_OR
| BPF_X
:
1421 case BPF_ALU64
| BPF_AND
| BPF_K
:
1422 case BPF_ALU64
| BPF_AND
| BPF_X
:
1423 case BPF_ALU64
| BPF_XOR
| BPF_K
:
1424 case BPF_ALU64
| BPF_XOR
| BPF_X
:
1425 switch (BPF_SRC(code
)) {
1427 emit_a32_alu_r64(is64
, dst
, src
, ctx
, BPF_OP(code
));
1430 /* Move immediate value to the temporary register
1431 * and then do the ALU operation on the temporary
1432 * register as this will sign-extend the immediate
1433 * value into temporary reg and then it would be
1434 * safe to do the operation on it.
1436 emit_a32_mov_se_i64(is64
, tmp2
, imm
, ctx
);
1437 emit_a32_alu_r64(is64
, dst
, tmp2
, ctx
, BPF_OP(code
));
1441 /* dst = dst / src(imm) */
1442 /* dst = dst % src(imm) */
1443 case BPF_ALU
| BPF_DIV
| BPF_K
:
1444 case BPF_ALU
| BPF_DIV
| BPF_X
:
1445 case BPF_ALU
| BPF_MOD
| BPF_K
:
1446 case BPF_ALU
| BPF_MOD
| BPF_X
:
1447 rd_lo
= arm_bpf_get_reg32(dst_lo
, tmp2
[1], ctx
);
1448 switch (BPF_SRC(code
)) {
1450 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[0], ctx
);
1454 emit_a32_mov_i(rt
, imm
, ctx
);
1460 emit_udivmod(rd_lo
, rd_lo
, rt
, ctx
, BPF_OP(code
));
1461 arm_bpf_put_reg32(dst_lo
, rd_lo
, ctx
);
1462 if (!ctx
->prog
->aux
->verifier_zext
)
1463 emit_a32_mov_i(dst_hi
, 0, ctx
);
1465 case BPF_ALU64
| BPF_DIV
| BPF_K
:
1466 case BPF_ALU64
| BPF_DIV
| BPF_X
:
1467 case BPF_ALU64
| BPF_MOD
| BPF_K
:
1468 case BPF_ALU64
| BPF_MOD
| BPF_X
:
1470 /* dst = dst << imm */
1471 /* dst = dst >> imm */
1472 /* dst = dst >> imm (signed) */
1473 case BPF_ALU
| BPF_LSH
| BPF_K
:
1474 case BPF_ALU
| BPF_RSH
| BPF_K
:
1475 case BPF_ALU
| BPF_ARSH
| BPF_K
:
1476 if (unlikely(imm
> 31))
1479 emit_a32_alu_i(dst_lo
, imm
, ctx
, BPF_OP(code
));
1480 if (!ctx
->prog
->aux
->verifier_zext
)
1481 emit_a32_mov_i(dst_hi
, 0, ctx
);
1483 /* dst = dst << imm */
1484 case BPF_ALU64
| BPF_LSH
| BPF_K
:
1485 if (unlikely(imm
> 63))
1487 emit_a32_lsh_i64(dst
, imm
, ctx
);
1489 /* dst = dst >> imm */
1490 case BPF_ALU64
| BPF_RSH
| BPF_K
:
1491 if (unlikely(imm
> 63))
1493 emit_a32_rsh_i64(dst
, imm
, ctx
);
1495 /* dst = dst << src */
1496 case BPF_ALU64
| BPF_LSH
| BPF_X
:
1497 emit_a32_lsh_r64(dst
, src
, ctx
);
1499 /* dst = dst >> src */
1500 case BPF_ALU64
| BPF_RSH
| BPF_X
:
1501 emit_a32_rsh_r64(dst
, src
, ctx
);
1503 /* dst = dst >> src (signed) */
1504 case BPF_ALU64
| BPF_ARSH
| BPF_X
:
1505 emit_a32_arsh_r64(dst
, src
, ctx
);
1507 /* dst = dst >> imm (signed) */
1508 case BPF_ALU64
| BPF_ARSH
| BPF_K
:
1509 if (unlikely(imm
> 63))
1511 emit_a32_arsh_i64(dst
, imm
, ctx
);
1514 case BPF_ALU
| BPF_NEG
:
1515 emit_a32_alu_i(dst_lo
, 0, ctx
, BPF_OP(code
));
1516 if (!ctx
->prog
->aux
->verifier_zext
)
1517 emit_a32_mov_i(dst_hi
, 0, ctx
);
1519 /* dst = ~dst (64 bit) */
1520 case BPF_ALU64
| BPF_NEG
:
1521 emit_a32_neg64(dst
, ctx
);
1523 /* dst = dst * src/imm */
1524 case BPF_ALU64
| BPF_MUL
| BPF_X
:
1525 case BPF_ALU64
| BPF_MUL
| BPF_K
:
1526 switch (BPF_SRC(code
)) {
1528 emit_a32_mul_r64(dst
, src
, ctx
);
1531 /* Move immediate value to the temporary register
1532 * and then do the multiplication on it as this
1533 * will sign-extend the immediate value into temp
1534 * reg then it would be safe to do the operation
1537 emit_a32_mov_se_i64(is64
, tmp2
, imm
, ctx
);
1538 emit_a32_mul_r64(dst
, tmp2
, ctx
);
1542 /* dst = htole(dst) */
1543 /* dst = htobe(dst) */
1544 case BPF_ALU
| BPF_END
| BPF_FROM_LE
:
1545 case BPF_ALU
| BPF_END
| BPF_FROM_BE
:
1546 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1547 if (BPF_SRC(code
) == BPF_FROM_LE
)
1548 goto emit_bswap_uxt
;
1551 emit_rev16(rd
[1], rd
[1], ctx
);
1552 goto emit_bswap_uxt
;
1554 emit_rev32(rd
[1], rd
[1], ctx
);
1555 goto emit_bswap_uxt
;
1557 emit_rev32(ARM_LR
, rd
[1], ctx
);
1558 emit_rev32(rd
[1], rd
[0], ctx
);
1559 emit(ARM_MOV_R(rd
[0], ARM_LR
), ctx
);
1566 /* zero-extend 16 bits into 64 bits */
1567 #if __LINUX_ARM_ARCH__ < 6
1568 emit_a32_mov_i(tmp2
[1], 0xffff, ctx
);
1569 emit(ARM_AND_R(rd
[1], rd
[1], tmp2
[1]), ctx
);
1571 emit(ARM_UXTH(rd
[1], rd
[1]), ctx
);
1573 if (!ctx
->prog
->aux
->verifier_zext
)
1574 emit(ARM_EOR_R(rd
[0], rd
[0], rd
[0]), ctx
);
1577 /* zero-extend 32 bits into 64 bits */
1578 if (!ctx
->prog
->aux
->verifier_zext
)
1579 emit(ARM_EOR_R(rd
[0], rd
[0], rd
[0]), ctx
);
1586 arm_bpf_put_reg64(dst
, rd
, ctx
);
1589 case BPF_LD
| BPF_IMM
| BPF_DW
:
1591 u64 val
= (u32
)imm
| (u64
)insn
[1].imm
<< 32;
1593 emit_a32_mov_i64(dst
, val
, ctx
);
1597 /* LDX: dst = *(size *)(src + off) */
1598 case BPF_LDX
| BPF_MEM
| BPF_W
:
1599 case BPF_LDX
| BPF_MEM
| BPF_H
:
1600 case BPF_LDX
| BPF_MEM
| BPF_B
:
1601 case BPF_LDX
| BPF_MEM
| BPF_DW
:
1602 rn
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1603 emit_ldx_r(dst
, rn
, off
, ctx
, BPF_SIZE(code
));
1605 /* ST: *(size *)(dst + off) = imm */
1606 case BPF_ST
| BPF_MEM
| BPF_W
:
1607 case BPF_ST
| BPF_MEM
| BPF_H
:
1608 case BPF_ST
| BPF_MEM
| BPF_B
:
1609 case BPF_ST
| BPF_MEM
| BPF_DW
:
1610 switch (BPF_SIZE(code
)) {
1612 /* Sign-extend immediate value into temp reg */
1613 emit_a32_mov_se_i64(true, tmp2
, imm
, ctx
);
1618 emit_a32_mov_i(tmp2
[1], imm
, ctx
);
1621 emit_str_r(dst_lo
, tmp2
, off
, ctx
, BPF_SIZE(code
));
1623 /* STX XADD: lock *(u32 *)(dst + off) += src */
1624 case BPF_STX
| BPF_XADD
| BPF_W
:
1625 /* STX XADD: lock *(u64 *)(dst + off) += src */
1626 case BPF_STX
| BPF_XADD
| BPF_DW
:
1628 /* STX: *(size *)(dst + off) = src */
1629 case BPF_STX
| BPF_MEM
| BPF_W
:
1630 case BPF_STX
| BPF_MEM
| BPF_H
:
1631 case BPF_STX
| BPF_MEM
| BPF_B
:
1632 case BPF_STX
| BPF_MEM
| BPF_DW
:
1633 rs
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
1634 emit_str_r(dst_lo
, rs
, off
, ctx
, BPF_SIZE(code
));
1636 /* PC += off if dst == src */
1637 /* PC += off if dst > src */
1638 /* PC += off if dst >= src */
1639 /* PC += off if dst < src */
1640 /* PC += off if dst <= src */
1641 /* PC += off if dst != src */
1642 /* PC += off if dst > src (signed) */
1643 /* PC += off if dst >= src (signed) */
1644 /* PC += off if dst < src (signed) */
1645 /* PC += off if dst <= src (signed) */
1646 /* PC += off if dst & src */
1647 case BPF_JMP
| BPF_JEQ
| BPF_X
:
1648 case BPF_JMP
| BPF_JGT
| BPF_X
:
1649 case BPF_JMP
| BPF_JGE
| BPF_X
:
1650 case BPF_JMP
| BPF_JNE
| BPF_X
:
1651 case BPF_JMP
| BPF_JSGT
| BPF_X
:
1652 case BPF_JMP
| BPF_JSGE
| BPF_X
:
1653 case BPF_JMP
| BPF_JSET
| BPF_X
:
1654 case BPF_JMP
| BPF_JLE
| BPF_X
:
1655 case BPF_JMP
| BPF_JLT
| BPF_X
:
1656 case BPF_JMP
| BPF_JSLT
| BPF_X
:
1657 case BPF_JMP
| BPF_JSLE
| BPF_X
:
1658 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
1659 case BPF_JMP32
| BPF_JGT
| BPF_X
:
1660 case BPF_JMP32
| BPF_JGE
| BPF_X
:
1661 case BPF_JMP32
| BPF_JNE
| BPF_X
:
1662 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
1663 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
1664 case BPF_JMP32
| BPF_JSET
| BPF_X
:
1665 case BPF_JMP32
| BPF_JLE
| BPF_X
:
1666 case BPF_JMP32
| BPF_JLT
| BPF_X
:
1667 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
1668 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
1669 /* Setup source registers */
1670 rm
= arm_bpf_get_reg32(src_hi
, tmp2
[0], ctx
);
1671 rn
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1673 /* PC += off if dst == imm */
1674 /* PC += off if dst > imm */
1675 /* PC += off if dst >= imm */
1676 /* PC += off if dst < imm */
1677 /* PC += off if dst <= imm */
1678 /* PC += off if dst != imm */
1679 /* PC += off if dst > imm (signed) */
1680 /* PC += off if dst >= imm (signed) */
1681 /* PC += off if dst < imm (signed) */
1682 /* PC += off if dst <= imm (signed) */
1683 /* PC += off if dst & imm */
1684 case BPF_JMP
| BPF_JEQ
| BPF_K
:
1685 case BPF_JMP
| BPF_JGT
| BPF_K
:
1686 case BPF_JMP
| BPF_JGE
| BPF_K
:
1687 case BPF_JMP
| BPF_JNE
| BPF_K
:
1688 case BPF_JMP
| BPF_JSGT
| BPF_K
:
1689 case BPF_JMP
| BPF_JSGE
| BPF_K
:
1690 case BPF_JMP
| BPF_JSET
| BPF_K
:
1691 case BPF_JMP
| BPF_JLT
| BPF_K
:
1692 case BPF_JMP
| BPF_JLE
| BPF_K
:
1693 case BPF_JMP
| BPF_JSLT
| BPF_K
:
1694 case BPF_JMP
| BPF_JSLE
| BPF_K
:
1695 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
1696 case BPF_JMP32
| BPF_JGT
| BPF_K
:
1697 case BPF_JMP32
| BPF_JGE
| BPF_K
:
1698 case BPF_JMP32
| BPF_JNE
| BPF_K
:
1699 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
1700 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
1701 case BPF_JMP32
| BPF_JSET
| BPF_K
:
1702 case BPF_JMP32
| BPF_JLT
| BPF_K
:
1703 case BPF_JMP32
| BPF_JLE
| BPF_K
:
1704 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
1705 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
1710 /* Sign-extend immediate value */
1711 emit_a32_mov_se_i64(true, tmp2
, imm
, ctx
);
1713 /* Setup destination register */
1714 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1716 /* Check for the condition */
1717 emit_ar_r(rd
[0], rd
[1], rm
, rn
, ctx
, BPF_OP(code
),
1718 BPF_CLASS(code
) == BPF_JMP
);
1720 /* Setup JUMP instruction */
1721 jmp_offset
= bpf2a32_offset(i
+off
, i
, ctx
);
1722 switch (BPF_OP(code
)) {
1725 _emit(ARM_COND_NE
, ARM_B(jmp_offset
), ctx
);
1728 _emit(ARM_COND_EQ
, ARM_B(jmp_offset
), ctx
);
1731 _emit(ARM_COND_HI
, ARM_B(jmp_offset
), ctx
);
1734 _emit(ARM_COND_CS
, ARM_B(jmp_offset
), ctx
);
1737 _emit(ARM_COND_LT
, ARM_B(jmp_offset
), ctx
);
1740 _emit(ARM_COND_GE
, ARM_B(jmp_offset
), ctx
);
1743 _emit(ARM_COND_LS
, ARM_B(jmp_offset
), ctx
);
1746 _emit(ARM_COND_CC
, ARM_B(jmp_offset
), ctx
);
1749 _emit(ARM_COND_LT
, ARM_B(jmp_offset
), ctx
);
1752 _emit(ARM_COND_GE
, ARM_B(jmp_offset
), ctx
);
1757 case BPF_JMP
| BPF_JA
:
1761 jmp_offset
= bpf2a32_offset(i
+off
, i
, ctx
);
1762 check_imm24(jmp_offset
);
1763 emit(ARM_B(jmp_offset
), ctx
);
1767 case BPF_JMP
| BPF_TAIL_CALL
:
1768 if (emit_bpf_tail_call(ctx
))
1772 case BPF_JMP
| BPF_CALL
:
1774 const s8
*r0
= bpf2a32
[BPF_REG_0
];
1775 const s8
*r1
= bpf2a32
[BPF_REG_1
];
1776 const s8
*r2
= bpf2a32
[BPF_REG_2
];
1777 const s8
*r3
= bpf2a32
[BPF_REG_3
];
1778 const s8
*r4
= bpf2a32
[BPF_REG_4
];
1779 const s8
*r5
= bpf2a32
[BPF_REG_5
];
1780 const u32 func
= (u32
)__bpf_call_base
+ (u32
)imm
;
1782 emit_a32_mov_r64(true, r0
, r1
, ctx
);
1783 emit_a32_mov_r64(true, r1
, r2
, ctx
);
1784 emit_push_r64(r5
, ctx
);
1785 emit_push_r64(r4
, ctx
);
1786 emit_push_r64(r3
, ctx
);
1788 emit_a32_mov_i(tmp
[1], func
, ctx
);
1789 emit_blx_r(tmp
[1], ctx
);
1791 emit(ARM_ADD_I(ARM_SP
, ARM_SP
, imm8m(24)), ctx
); // callee clean
1794 /* function return */
1795 case BPF_JMP
| BPF_EXIT
:
1796 /* Optimization: when last instruction is EXIT
1797 * simply fallthrough to epilogue.
1799 if (i
== ctx
->prog
->len
- 1)
1801 jmp_offset
= epilogue_offset(ctx
);
1802 check_imm24(jmp_offset
);
1803 emit(ARM_B(jmp_offset
), ctx
);
1806 pr_info_once("*** NOT YET: opcode %02x ***\n", code
);
1809 pr_err_once("unknown opcode %02x\n", code
);
1813 if (ctx
->flags
& FLAG_IMM_OVERFLOW
)
1815 * this instruction generated an overflow when
1816 * trying to access the literal pool, so
1817 * delegate this filter to the kernel interpreter.
1823 static int build_body(struct jit_ctx
*ctx
)
1825 const struct bpf_prog
*prog
= ctx
->prog
;
1828 for (i
= 0; i
< prog
->len
; i
++) {
1829 const struct bpf_insn
*insn
= &(prog
->insnsi
[i
]);
1832 ret
= build_insn(insn
, ctx
);
1834 /* It's used with loading the 64 bit immediate value. */
1837 if (ctx
->target
== NULL
)
1838 ctx
->offsets
[i
] = ctx
->idx
;
1842 if (ctx
->target
== NULL
)
1843 ctx
->offsets
[i
] = ctx
->idx
;
1845 /* If unsuccesfull, return with error code */
1852 static int validate_code(struct jit_ctx
*ctx
)
1856 for (i
= 0; i
< ctx
->idx
; i
++) {
1857 if (ctx
->target
[i
] == __opcode_to_mem_arm(ARM_INST_UDF
))
1864 void bpf_jit_compile(struct bpf_prog
*prog
)
1866 /* Nothing to do here. We support Internal BPF. */
1869 bool bpf_jit_needs_zext(void)
1874 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*prog
)
1876 struct bpf_prog
*tmp
, *orig_prog
= prog
;
1877 struct bpf_binary_header
*header
;
1878 bool tmp_blinded
= false;
1880 unsigned int tmp_idx
;
1881 unsigned int image_size
;
1884 /* If BPF JIT was not enabled then we must fall back to
1887 if (!prog
->jit_requested
)
1890 /* If constant blinding was enabled and we failed during blinding
1891 * then we must fall back to the interpreter. Otherwise, we save
1892 * the new JITed code.
1894 tmp
= bpf_jit_blind_constants(prog
);
1903 memset(&ctx
, 0, sizeof(ctx
));
1905 ctx
.cpu_architecture
= cpu_architecture();
1907 /* Not able to allocate memory for offsets[] , then
1908 * we must fall back to the interpreter
1910 ctx
.offsets
= kcalloc(prog
->len
, sizeof(int), GFP_KERNEL
);
1911 if (ctx
.offsets
== NULL
) {
1916 /* 1) fake pass to find in the length of the JITed code,
1917 * to compute ctx->offsets and other context variables
1918 * needed to compute final JITed code.
1919 * Also, calculate random starting pointer/start of JITed code
1920 * which is prefixed by random number of fault instructions.
1922 * If the first pass fails then there is no chance of it
1923 * being successful in the second pass, so just fall back
1924 * to the interpreter.
1926 if (build_body(&ctx
)) {
1932 build_prologue(&ctx
);
1933 ctx
.prologue_bytes
= (ctx
.idx
- tmp_idx
) * 4;
1935 ctx
.epilogue_offset
= ctx
.idx
;
1937 #if __LINUX_ARM_ARCH__ < 7
1939 build_epilogue(&ctx
);
1940 ctx
.epilogue_bytes
= (ctx
.idx
- tmp_idx
) * 4;
1942 ctx
.idx
+= ctx
.imm_count
;
1943 if (ctx
.imm_count
) {
1944 ctx
.imms
= kcalloc(ctx
.imm_count
, sizeof(u32
), GFP_KERNEL
);
1945 if (ctx
.imms
== NULL
) {
1951 /* there's nothing about the epilogue on ARMv7 */
1952 build_epilogue(&ctx
);
1954 /* Now we can get the actual image size of the JITed arm code.
1955 * Currently, we are not considering the THUMB-2 instructions
1956 * for jit, although it can decrease the size of the image.
1958 * As each arm instruction is of length 32bit, we are translating
1959 * number of JITed intructions into the size required to store these
1962 image_size
= sizeof(u32
) * ctx
.idx
;
1964 /* Now we know the size of the structure to make */
1965 header
= bpf_jit_binary_alloc(image_size
, &image_ptr
,
1966 sizeof(u32
), jit_fill_hole
);
1967 /* Not able to allocate memory for the structure then
1968 * we must fall back to the interpretation
1970 if (header
== NULL
) {
1975 /* 2.) Actual pass to generate final JIT code */
1976 ctx
.target
= (u32
*) image_ptr
;
1979 build_prologue(&ctx
);
1981 /* If building the body of the JITed code fails somehow,
1982 * we fall back to the interpretation.
1984 if (build_body(&ctx
) < 0) {
1986 bpf_jit_binary_free(header
);
1990 build_epilogue(&ctx
);
1992 /* 3.) Extra pass to validate JITed Code */
1993 if (validate_code(&ctx
)) {
1995 bpf_jit_binary_free(header
);
1999 flush_icache_range((u32
)header
, (u32
)(ctx
.target
+ ctx
.idx
));
2001 if (bpf_jit_enable
> 1)
2002 /* there are 2 passes here */
2003 bpf_jit_dump(prog
->len
, image_size
, 2, ctx
.target
);
2005 bpf_jit_binary_lock_ro(header
);
2006 prog
->bpf_func
= (void *)ctx
.target
;
2008 prog
->jited_len
= image_size
;
2011 #if __LINUX_ARM_ARCH__ < 7
2019 bpf_jit_prog_release_other(prog
, prog
== orig_prog
?