1 // SPDX-License-Identifier: GPL-2.0-only
3 * arch/arm/kernel/kprobes-test.c
5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
9 * This file contains test code for ARM kprobes.
11 * The top level function run_all_tests() executes tests for all of the
12 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
13 * fall into two categories; run_api_tests() checks basic functionality of the
14 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
15 * instruction decoding and simulation.
17 * run_test_cases() first checks the kprobes decoding table for self consistency
18 * (using table_test()) then executes a series of test cases for each of the CPU
19 * instruction forms. coverage_start() and coverage_end() are used to verify
20 * that these test cases cover all of the possible combinations of instructions
21 * described by the kprobes decoding tables.
23 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
24 * which use the macros defined in kprobes-test.h. The rest of this
25 * documentation will describe the operation of the framework used by these
33 * The methodology used to test an ARM instruction 'test_insn' is to use
34 * inline assembler like:
37 * test_case: test_insn
40 * When the test case is run a kprobe is placed of each nop. The
41 * post-handler of the test_before probe is used to modify the saved CPU
42 * register context to that which we require for the test case. The
43 * pre-handler of the of the test_after probe saves a copy of the CPU
44 * register context. In this way we can execute test_insn with a specific
45 * register context and see the results afterwards.
47 * To actually test the kprobes instruction emulation we perform the above
48 * step a second time but with an additional kprobe on the test_case
49 * instruction itself. If the emulation is accurate then the results seen
50 * by the test_after probe will be identical to the first run which didn't
51 * have a probe on test_case.
53 * Each test case is run several times with a variety of variations in the
54 * flags value of stored in CPSR, and for Thumb code, different ITState.
56 * For instructions which can modify PC, a second test_after probe is used
60 * test_case: test_insn
66 * The test case is constructed such that test_insn branches to
67 * test_after2, or, if testing a conditional instruction, it may just
68 * continue to test_after. The probes inserted at both locations let us
69 * determine which happened. A similar approach is used for testing
70 * backwards branches...
73 * b test_done @ helps to cope with off by 1 branches
77 * test_case: test_insn
81 * The macros used to generate the assembler instructions describe above
82 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
83 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
84 * 99 represent: test_before, test_case, test_after2 and test_done.
89 * Each test case is wrapped between the pair of macros TESTCASE_START and
90 * TESTCASE_END. As well as performing the inline assembler boilerplate,
91 * these call out to the kprobes_test_case_start() and
92 * kprobes_test_case_end() functions which drive the execution of the test
93 * case. The specific arguments to use for each test case are stored as
94 * inline data constructed using the various TEST_ARG_* macros. Putting
95 * this all together, a simple test case may look like:
97 * TESTCASE_START("Testing mov r0, r7")
98 * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
100 * TEST_INSTRUCTION("mov r0, r7")
103 * Note, in practice the single convenience macro TEST_R would be used for this
106 * The above would expand to assembler looking something like:
109 * bl __kprobes_test_case_start
110 * .pushsection .rodata
112 * .ascii "mov r0, r7" @ text title for test case
115 * @ start of inline data...
116 * .word 10b @ pointer to title in .rodata section
126 * .byte TEST_ISA @ flags, including ISA being tested
127 * .short 50f-0f @ offset of 'test_before'
128 * .short 2f-0f @ offset of 'test_after2' (if relevent)
129 * .short 99f-0f @ offset of 'test_done'
130 * @ start of test case code...
132 * .code TEST_ISA @ switch to ISA being tested
135 * 50: nop @ location for 'test_before' probe
136 * 1: mov r0, r7 @ the test case instruction 'test_insn'
137 * nop @ location for 'test_after' probe
141 * 99: bl __kprobes_test_case_end_##TEST_ISA
144 * When the above is execute the following happens...
146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
147 * for a stack buffer and calls the C function kprobes_test_case_start().
148 * This C function will do some initial processing of the inline data and
149 * setup some global state. It then inserts the test_before and test_after
150 * kprobes and returns a value which causes the assembler wrapper to jump
151 * to the start of the test case code, (local label '0').
153 * When the test case code executes, the test_before probe will be hit and
154 * test_before_post_handler will call setup_test_context(). This fills the
155 * stack buffer and CPU registers with a test pattern and then processes
156 * the test case arguments. In our example there is one TEST_ARG_REG which
157 * indicates that R7 should be loaded with the value 0x12345678.
159 * When the test_before probe ends, the test case continues and executes
160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
161 * pre-handler for this (test_after_pre_handler) will save a copy of the
162 * CPU register context. This should now have R0 holding the same value as
165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
166 * an assembler wrapper which switches back to the ISA used by the test
167 * code and calls the C function kprobes_test_case_end().
169 * For each run through the test case, test_case_run_count is incremented
170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
171 * register and stack buffer contents from the test case just run. It then
172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
173 * value to cause the test case code to be re-run.
175 * For odd numbered runs, kprobes_test_case_end() compares the register and
176 * stack buffer contents to those that were saved on the previous even
177 * numbered run (the one without the kprobe on test_insn). These should be
178 * the same if the kprobe instruction simulation routine is correct.
180 * The pair of test case runs is repeated with different combinations of
181 * flag values in CPSR and, for Thumb, different ITState. This is
182 * controlled by test_context_cpsr().
184 * BUILDING TEST CASES
185 * -------------------
188 * As an aid to building test cases, the stack buffer is initialised with
189 * some special values:
191 * [SP+13*4] Contains SP+120. This can be used to test instructions
192 * which load a value into SP.
194 * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
195 * this holds the target address of the branch, 'test_after2'.
196 * This can be used to test instructions which load a PC value
200 #include <linux/kernel.h>
201 #include <linux/module.h>
202 #include <linux/slab.h>
203 #include <linux/sched/clock.h>
204 #include <linux/kprobes.h>
205 #include <linux/errno.h>
206 #include <linux/stddef.h>
207 #include <linux/bug.h>
208 #include <asm/opcodes.h>
211 #include "test-core.h"
212 #include "../decode-arm.h"
213 #include "../decode-thumb.h"
216 #define BENCHMARKING 1
223 static bool test_regs_ok
;
224 static int test_func_instance
;
225 static int pre_handler_called
;
226 static int post_handler_called
;
227 static int kretprobe_handler_called
;
228 static int tests_failed
;
230 #define FUNC_ARG1 0x12345678
231 #define FUNC_ARG2 0xabcdef
234 #ifndef CONFIG_THUMB2_KERNEL
236 #define RET(reg) "mov pc, "#reg
238 long arm_func(long r0
, long r1
);
240 static void __used __naked
__arm_kprobes_test_func(void)
242 __asm__
__volatile__ (
244 ".type arm_func, %%function \n\t"
246 "adds r0, r0, r1 \n\t"
248 ".code "NORMAL_ISA
/* Back to Thumb if necessary */
249 : : : "r0", "r1", "cc"
253 #else /* CONFIG_THUMB2_KERNEL */
255 #define RET(reg) "bx "#reg
257 long thumb16_func(long r0
, long r1
);
258 long thumb32even_func(long r0
, long r1
);
259 long thumb32odd_func(long r0
, long r1
);
261 static void __used __naked
__thumb_kprobes_test_funcs(void)
263 __asm__
__volatile__ (
264 ".type thumb16_func, %%function \n\t"
266 "adds.n r0, r0, r1 \n\t"
270 ".type thumb32even_func, %%function \n\t"
271 "thumb32even_func: \n\t"
272 "adds.w r0, r0, r1 \n\t"
277 ".type thumb32odd_func, %%function \n\t"
278 "thumb32odd_func: \n\t"
279 "adds.w r0, r0, r1 \n\t"
282 : : : "r0", "r1", "cc"
286 #endif /* CONFIG_THUMB2_KERNEL */
289 static int call_test_func(long (*func
)(long, long), bool check_test_regs
)
293 ++test_func_instance
;
294 test_regs_ok
= false;
296 ret
= (*func
)(FUNC_ARG1
, FUNC_ARG2
);
297 if (ret
!= FUNC_ARG1
+ FUNC_ARG2
) {
298 pr_err("FAIL: call_test_func: func returned %lx\n", ret
);
302 if (check_test_regs
&& !test_regs_ok
) {
303 pr_err("FAIL: test regs not OK\n");
310 static int __kprobes
pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
312 pre_handler_called
= test_func_instance
;
313 if (regs
->ARM_r0
== FUNC_ARG1
&& regs
->ARM_r1
== FUNC_ARG2
)
318 static void __kprobes
post_handler(struct kprobe
*p
, struct pt_regs
*regs
,
321 post_handler_called
= test_func_instance
;
322 if (regs
->ARM_r0
!= FUNC_ARG1
+ FUNC_ARG2
|| regs
->ARM_r1
!= FUNC_ARG2
)
323 test_regs_ok
= false;
326 static struct kprobe the_kprobe
= {
328 .pre_handler
= pre_handler
,
329 .post_handler
= post_handler
332 static int test_kprobe(long (*func
)(long, long))
336 the_kprobe
.addr
= (kprobe_opcode_t
*)func
;
337 ret
= register_kprobe(&the_kprobe
);
339 pr_err("FAIL: register_kprobe failed with %d\n", ret
);
343 ret
= call_test_func(func
, true);
345 unregister_kprobe(&the_kprobe
);
346 the_kprobe
.flags
= 0; /* Clear disable flag to allow reuse */
350 if (pre_handler_called
!= test_func_instance
) {
351 pr_err("FAIL: kprobe pre_handler not called\n");
354 if (post_handler_called
!= test_func_instance
) {
355 pr_err("FAIL: kprobe post_handler not called\n");
358 if (!call_test_func(func
, false))
360 if (pre_handler_called
== test_func_instance
||
361 post_handler_called
== test_func_instance
) {
362 pr_err("FAIL: probe called after unregistering\n");
370 kretprobe_handler(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
372 kretprobe_handler_called
= test_func_instance
;
373 if (regs_return_value(regs
) == FUNC_ARG1
+ FUNC_ARG2
)
378 static struct kretprobe the_kretprobe
= {
379 .handler
= kretprobe_handler
,
382 static int test_kretprobe(long (*func
)(long, long))
386 the_kretprobe
.kp
.addr
= (kprobe_opcode_t
*)func
;
387 ret
= register_kretprobe(&the_kretprobe
);
389 pr_err("FAIL: register_kretprobe failed with %d\n", ret
);
393 ret
= call_test_func(func
, true);
395 unregister_kretprobe(&the_kretprobe
);
396 the_kretprobe
.kp
.flags
= 0; /* Clear disable flag to allow reuse */
400 if (kretprobe_handler_called
!= test_func_instance
) {
401 pr_err("FAIL: kretprobe handler not called\n");
404 if (!call_test_func(func
, false))
406 if (kretprobe_handler_called
== test_func_instance
) {
407 pr_err("FAIL: kretprobe called after unregistering\n");
414 static int run_api_tests(long (*func
)(long, long))
418 pr_info(" kprobe\n");
419 ret
= test_kprobe(func
);
423 pr_info(" kretprobe\n");
424 ret
= test_kretprobe(func
);
438 static void __naked
benchmark_nop(void)
440 __asm__
__volatile__ (
446 #ifdef CONFIG_THUMB2_KERNEL
452 static void __naked
benchmark_pushpop1(void)
454 __asm__
__volatile__ (
455 "stmdb"wide
" sp!, {r3-r11,lr} \n\t"
456 "ldmia"wide
" sp!, {r3-r11,pc}"
460 static void __naked
benchmark_pushpop2(void)
462 __asm__
__volatile__ (
463 "stmdb"wide
" sp!, {r0-r8,lr} \n\t"
464 "ldmia"wide
" sp!, {r0-r8,pc}"
468 static void __naked
benchmark_pushpop3(void)
470 __asm__
__volatile__ (
471 "stmdb"wide
" sp!, {r4,lr} \n\t"
472 "ldmia"wide
" sp!, {r4,pc}"
476 static void __naked
benchmark_pushpop4(void)
478 __asm__
__volatile__ (
479 "stmdb"wide
" sp!, {r0,lr} \n\t"
480 "ldmia"wide
" sp!, {r0,pc}"
485 #ifdef CONFIG_THUMB2_KERNEL
487 static void __naked
benchmark_pushpop_thumb(void)
489 __asm__
__volatile__ (
490 "push.n {r0-r7,lr} \n\t"
498 benchmark_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
503 static int benchmark(void(*fn
)(void))
505 unsigned n
, i
, t
, t0
;
507 for (n
= 1000; ; n
*= 2) {
509 for (i
= n
; i
> 0; --i
)
511 t
= sched_clock() - t0
;
513 break; /* Stop once we took more than 0.25 seconds */
515 return t
/ n
; /* Time for one iteration in nanoseconds */
518 static int kprobe_benchmark(void(*fn
)(void), unsigned offset
)
521 .addr
= (kprobe_opcode_t
*)((uintptr_t)fn
+ offset
),
522 .pre_handler
= benchmark_pre_handler
,
525 int ret
= register_kprobe(&k
);
527 pr_err("FAIL: register_kprobe failed with %d\n", ret
);
533 unregister_kprobe(&k
);
543 static int run_benchmarks(void)
546 struct benchmarks list
[] = {
547 {&benchmark_nop
, 0, "nop"},
549 * benchmark_pushpop{1,3} will have the optimised
550 * instruction emulation, whilst benchmark_pushpop{2,4} will
551 * be the equivalent unoptimised instructions.
553 {&benchmark_pushpop1
, 0, "stmdb sp!, {r3-r11,lr}"},
554 {&benchmark_pushpop1
, 4, "ldmia sp!, {r3-r11,pc}"},
555 {&benchmark_pushpop2
, 0, "stmdb sp!, {r0-r8,lr}"},
556 {&benchmark_pushpop2
, 4, "ldmia sp!, {r0-r8,pc}"},
557 {&benchmark_pushpop3
, 0, "stmdb sp!, {r4,lr}"},
558 {&benchmark_pushpop3
, 4, "ldmia sp!, {r4,pc}"},
559 {&benchmark_pushpop4
, 0, "stmdb sp!, {r0,lr}"},
560 {&benchmark_pushpop4
, 4, "ldmia sp!, {r0,pc}"},
561 #ifdef CONFIG_THUMB2_KERNEL
562 {&benchmark_pushpop_thumb
, 0, "push.n {r0-r7,lr}"},
563 {&benchmark_pushpop_thumb
, 2, "pop.n {r0-r7,pc}"},
568 struct benchmarks
*b
;
569 for (b
= list
; b
->fn
; ++b
) {
570 ret
= kprobe_benchmark(b
->fn
, b
->offset
);
573 pr_info(" %dns for kprobe %s\n", ret
, b
->title
);
580 #endif /* BENCHMARKING */
584 * Decoding table self-consistency tests
587 static const int decode_struct_sizes
[NUM_DECODE_TYPES
] = {
588 [DECODE_TYPE_TABLE
] = sizeof(struct decode_table
),
589 [DECODE_TYPE_CUSTOM
] = sizeof(struct decode_custom
),
590 [DECODE_TYPE_SIMULATE
] = sizeof(struct decode_simulate
),
591 [DECODE_TYPE_EMULATE
] = sizeof(struct decode_emulate
),
592 [DECODE_TYPE_OR
] = sizeof(struct decode_or
),
593 [DECODE_TYPE_REJECT
] = sizeof(struct decode_reject
)
596 static int table_iter(const union decode_item
*table
,
597 int (*fn
)(const struct decode_header
*, void *),
600 const struct decode_header
*h
= (struct decode_header
*)table
;
604 enum decode_type type
= h
->type_regs
.bits
& DECODE_TYPE_MASK
;
606 if (type
== DECODE_TYPE_END
)
609 result
= fn(h
, args
);
613 h
= (struct decode_header
*)
614 ((uintptr_t)h
+ decode_struct_sizes
[type
]);
619 static int table_test_fail(const struct decode_header
*h
, const char* message
)
622 pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
623 message
, h
->mask
.bits
, h
->value
.bits
);
627 struct table_test_args
{
628 const union decode_item
*root_table
;
633 static int table_test_fn(const struct decode_header
*h
, void *args
)
635 struct table_test_args
*a
= (struct table_test_args
*)args
;
636 enum decode_type type
= h
->type_regs
.bits
& DECODE_TYPE_MASK
;
638 if (h
->value
.bits
& ~h
->mask
.bits
)
639 return table_test_fail(h
, "Match value has bits not in mask");
641 if ((h
->mask
.bits
& a
->parent_mask
) != a
->parent_mask
)
642 return table_test_fail(h
, "Mask has bits not in parent mask");
644 if ((h
->value
.bits
^ a
->parent_value
) & a
->parent_mask
)
645 return table_test_fail(h
, "Value is inconsistent with parent");
647 if (type
== DECODE_TYPE_TABLE
) {
648 struct decode_table
*d
= (struct decode_table
*)h
;
649 struct table_test_args args2
= *a
;
650 args2
.parent_mask
= h
->mask
.bits
;
651 args2
.parent_value
= h
->value
.bits
;
652 return table_iter(d
->table
.table
, table_test_fn
, &args2
);
658 static int table_test(const union decode_item
*table
)
660 struct table_test_args args
= {
665 return table_iter(args
.root_table
, table_test_fn
, &args
);
670 * Decoding table test coverage analysis
672 * coverage_start() builds a coverage_table which contains a list of
673 * coverage_entry's to match each entry in the specified kprobes instruction
676 * When test cases are run, coverage_add() is called to process each case.
677 * This looks up the corresponding entry in the coverage_table and sets it as
678 * being matched, as well as clearing the regs flag appropriate for the test.
680 * After all test cases have been run, coverage_end() is called to check that
681 * all entries in coverage_table have been matched and that all regs flags are
682 * cleared. I.e. that all possible combinations of instructions described by
683 * the kprobes decoding tables have had a test case executed for them.
688 #define MAX_COVERAGE_ENTRIES 256
690 struct coverage_entry
{
691 const struct decode_header
*header
;
697 struct coverage_table
{
698 struct coverage_entry
*base
;
699 unsigned num_entries
;
703 struct coverage_table coverage
;
705 #define COVERAGE_ANY_REG (1<<0)
706 #define COVERAGE_SP (1<<1)
707 #define COVERAGE_PC (1<<2)
708 #define COVERAGE_PCWB (1<<3)
710 static const char coverage_register_lookup
[16] = {
711 [REG_TYPE_ANY
] = COVERAGE_ANY_REG
| COVERAGE_SP
| COVERAGE_PC
,
712 [REG_TYPE_SAMEAS16
] = COVERAGE_ANY_REG
,
713 [REG_TYPE_SP
] = COVERAGE_SP
,
714 [REG_TYPE_PC
] = COVERAGE_PC
,
715 [REG_TYPE_NOSP
] = COVERAGE_ANY_REG
| COVERAGE_SP
,
716 [REG_TYPE_NOSPPC
] = COVERAGE_ANY_REG
| COVERAGE_SP
| COVERAGE_PC
,
717 [REG_TYPE_NOPC
] = COVERAGE_ANY_REG
| COVERAGE_PC
,
718 [REG_TYPE_NOPCWB
] = COVERAGE_ANY_REG
| COVERAGE_PC
| COVERAGE_PCWB
,
719 [REG_TYPE_NOPCX
] = COVERAGE_ANY_REG
,
720 [REG_TYPE_NOSPPCX
] = COVERAGE_ANY_REG
| COVERAGE_SP
,
723 unsigned coverage_start_registers(const struct decode_header
*h
)
727 for (i
= 0; i
< 20; i
+= 4) {
728 int r
= (h
->type_regs
.bits
>> (DECODE_TYPE_BITS
+ i
)) & 0xf;
729 regs
|= coverage_register_lookup
[r
] << i
;
734 static int coverage_start_fn(const struct decode_header
*h
, void *args
)
736 struct coverage_table
*coverage
= (struct coverage_table
*)args
;
737 enum decode_type type
= h
->type_regs
.bits
& DECODE_TYPE_MASK
;
738 struct coverage_entry
*entry
= coverage
->base
+ coverage
->num_entries
;
740 if (coverage
->num_entries
== MAX_COVERAGE_ENTRIES
- 1) {
741 pr_err("FAIL: Out of space for test coverage data");
745 ++coverage
->num_entries
;
748 entry
->regs
= coverage_start_registers(h
);
749 entry
->nesting
= coverage
->nesting
;
750 entry
->matched
= false;
752 if (type
== DECODE_TYPE_TABLE
) {
753 struct decode_table
*d
= (struct decode_table
*)h
;
756 ret
= table_iter(d
->table
.table
, coverage_start_fn
, coverage
);
764 static int coverage_start(const union decode_item
*table
)
766 coverage
.base
= kmalloc_array(MAX_COVERAGE_ENTRIES
,
767 sizeof(struct coverage_entry
),
769 coverage
.num_entries
= 0;
770 coverage
.nesting
= 0;
771 return table_iter(table
, coverage_start_fn
, &coverage
);
775 coverage_add_registers(struct coverage_entry
*entry
, kprobe_opcode_t insn
)
777 int regs
= entry
->header
->type_regs
.bits
>> DECODE_TYPE_BITS
;
779 for (i
= 0; i
< 20; i
+= 4) {
780 enum decode_reg_type reg_type
= (regs
>> i
) & 0xf;
781 int reg
= (insn
>> i
) & 0xf;
792 flag
= COVERAGE_ANY_REG
;
793 entry
->regs
&= ~(flag
<< i
);
799 case REG_TYPE_SAMEAS16
:
817 case REG_TYPE_NOSPPC
:
818 case REG_TYPE_NOSPPCX
:
819 if (reg
== 13 || reg
== 15)
823 case REG_TYPE_NOPCWB
:
824 if (!is_writeback(insn
))
827 entry
->regs
&= ~(COVERAGE_PCWB
<< i
);
842 static void coverage_add(kprobe_opcode_t insn
)
844 struct coverage_entry
*entry
= coverage
.base
;
845 struct coverage_entry
*end
= coverage
.base
+ coverage
.num_entries
;
846 bool matched
= false;
847 unsigned nesting
= 0;
849 for (; entry
< end
; ++entry
) {
850 const struct decode_header
*h
= entry
->header
;
851 enum decode_type type
= h
->type_regs
.bits
& DECODE_TYPE_MASK
;
853 if (entry
->nesting
> nesting
)
854 continue; /* Skip sub-table we didn't match */
856 if (entry
->nesting
< nesting
)
857 break; /* End of sub-table we were scanning */
860 if ((insn
& h
->mask
.bits
) != h
->value
.bits
)
862 entry
->matched
= true;
867 case DECODE_TYPE_TABLE
:
871 case DECODE_TYPE_CUSTOM
:
872 case DECODE_TYPE_SIMULATE
:
873 case DECODE_TYPE_EMULATE
:
874 coverage_add_registers(entry
, insn
);
881 case DECODE_TYPE_REJECT
:
889 static void coverage_end(void)
891 struct coverage_entry
*entry
= coverage
.base
;
892 struct coverage_entry
*end
= coverage
.base
+ coverage
.num_entries
;
894 for (; entry
< end
; ++entry
) {
895 u32 mask
= entry
->header
->mask
.bits
;
896 u32 value
= entry
->header
->value
.bits
;
899 pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
900 mask
, value
, entry
->regs
);
901 coverage_fail
= true;
903 if (!entry
->matched
) {
904 pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
906 coverage_fail
= true;
910 kfree(coverage
.base
);
915 * Framework for instruction set test cases
918 void __naked
__kprobes_test_case_start(void)
920 __asm__
__volatile__ (
922 "bic r3, r2, #7 \n\t"
924 "stmdb sp!, {r2-r11} \n\t"
925 "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE
)"\n\t"
926 "bic r0, lr, #1 @ r0 = inline data \n\t"
928 "bl kprobes_test_case_start \n\t"
933 #ifndef CONFIG_THUMB2_KERNEL
935 void __naked
__kprobes_test_case_end_32(void)
937 __asm__
__volatile__ (
939 "bl kprobes_test_case_end \n\t"
943 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE
)"\n\t"
944 "ldmia sp!, {r2-r11} \n\t"
950 #else /* CONFIG_THUMB2_KERNEL */
952 void __naked
__kprobes_test_case_end_16(void)
954 __asm__
__volatile__ (
956 "bl kprobes_test_case_end \n\t"
960 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE
)"\n\t"
961 "ldmia sp!, {r2-r11} \n\t"
967 void __naked
__kprobes_test_case_end_32(void)
969 __asm__
__volatile__ (
971 "orr lr, lr, #1 @ will return to Thumb code \n\t"
974 ".word __kprobes_test_case_end_16 \n\t"
981 int kprobe_test_flags
;
982 int kprobe_test_cc_position
;
984 static int test_try_count
;
985 static int test_pass_count
;
986 static int test_fail_count
;
988 static struct pt_regs initial_regs
;
989 static struct pt_regs expected_regs
;
990 static struct pt_regs result_regs
;
992 static u32 expected_memory
[TEST_MEMORY_SIZE
/sizeof(u32
)];
994 static const char *current_title
;
995 static struct test_arg
*current_args
;
996 static u32
*current_stack
;
997 static uintptr_t current_branch_target
;
999 static uintptr_t current_code_start
;
1000 static kprobe_opcode_t current_instruction
;
1003 #define TEST_CASE_PASSED -1
1004 #define TEST_CASE_FAILED -2
1006 static int test_case_run_count
;
1007 static bool test_case_is_thumb
;
1008 static int test_instance
;
1010 static unsigned long test_check_cc(int cc
, unsigned long cpsr
)
1012 int ret
= arm_check_condition(cc
<< 28, cpsr
);
1014 return (ret
!= ARM_OPCODE_CONDTEST_FAIL
);
1017 static int is_last_scenario
;
1018 static int probe_should_run
; /* 0 = no, 1 = yes, -1 = unknown */
1019 static int memory_needs_checking
;
1021 static unsigned long test_context_cpsr(int scenario
)
1025 probe_should_run
= 1;
1027 /* Default case is that we cycle through 16 combinations of flags */
1028 cpsr
= (scenario
& 0xf) << 28; /* N,Z,C,V flags */
1029 cpsr
|= (scenario
& 0xf) << 16; /* GE flags */
1030 cpsr
|= (scenario
& 0x1) << 27; /* Toggle Q flag */
1032 if (!test_case_is_thumb
) {
1033 /* Testing ARM code */
1034 int cc
= current_instruction
>> 28;
1036 probe_should_run
= test_check_cc(cc
, cpsr
) != 0;
1038 is_last_scenario
= true;
1040 } else if (kprobe_test_flags
& TEST_FLAG_NO_ITBLOCK
) {
1041 /* Testing Thumb code without setting ITSTATE */
1042 if (kprobe_test_cc_position
) {
1043 int cc
= (current_instruction
>> kprobe_test_cc_position
) & 0xf;
1044 probe_should_run
= test_check_cc(cc
, cpsr
) != 0;
1048 is_last_scenario
= true;
1050 } else if (kprobe_test_flags
& TEST_FLAG_FULL_ITBLOCK
) {
1051 /* Testing Thumb code with all combinations of ITSTATE */
1052 unsigned x
= (scenario
>> 4);
1053 unsigned cond_base
= x
% 7; /* ITSTATE<7:5> */
1054 unsigned mask
= x
/ 7 + 2; /* ITSTATE<4:0>, bits reversed */
1057 /* Finish by testing state from instruction 'itt al' */
1060 if ((scenario
& 0xf) == 0xf)
1061 is_last_scenario
= true;
1064 cpsr
|= cond_base
<< 13; /* ITSTATE<7:5> */
1065 cpsr
|= (mask
& 0x1) << 12; /* ITSTATE<4> */
1066 cpsr
|= (mask
& 0x2) << 10; /* ITSTATE<3> */
1067 cpsr
|= (mask
& 0x4) << 8; /* ITSTATE<2> */
1068 cpsr
|= (mask
& 0x8) << 23; /* ITSTATE<1> */
1069 cpsr
|= (mask
& 0x10) << 21; /* ITSTATE<0> */
1071 probe_should_run
= test_check_cc((cpsr
>> 12) & 0xf, cpsr
) != 0;
1074 /* Testing Thumb code with several combinations of ITSTATE */
1076 case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1078 probe_should_run
= 0;
1080 case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1082 probe_should_run
= 0;
1084 case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1087 case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1089 is_last_scenario
= true;
1097 static void setup_test_context(struct pt_regs
*regs
)
1099 int scenario
= test_case_run_count
>>1;
1101 struct test_arg
*args
;
1104 is_last_scenario
= false;
1105 memory_needs_checking
= false;
1107 /* Initialise test memory on stack */
1108 val
= (scenario
& 1) ? VALM
: ~VALM
;
1109 for (i
= 0; i
< TEST_MEMORY_SIZE
/ sizeof(current_stack
[0]); ++i
)
1110 current_stack
[i
] = val
+ (i
<< 8);
1111 /* Put target of branch on stack for tests which load PC from memory */
1112 if (current_branch_target
)
1113 current_stack
[15] = current_branch_target
;
1114 /* Put a value for SP on stack for tests which load SP from memory */
1115 current_stack
[13] = (u32
)current_stack
+ 120;
1117 /* Initialise register values to their default state */
1118 val
= (scenario
& 2) ? VALR
: ~VALR
;
1119 for (i
= 0; i
< 13; ++i
)
1120 regs
->uregs
[i
] = val
^ (i
<< 8);
1121 regs
->ARM_lr
= val
^ (14 << 8);
1122 regs
->ARM_cpsr
&= ~(APSR_MASK
| PSR_IT_MASK
);
1123 regs
->ARM_cpsr
|= test_context_cpsr(scenario
);
1125 /* Perform testcase specific register setup */
1126 args
= current_args
;
1127 for (; args
[0].type
!= ARG_TYPE_END
; ++args
)
1128 switch (args
[0].type
) {
1129 case ARG_TYPE_REG
: {
1130 struct test_arg_regptr
*arg
=
1131 (struct test_arg_regptr
*)args
;
1132 regs
->uregs
[arg
->reg
] = arg
->val
;
1135 case ARG_TYPE_PTR
: {
1136 struct test_arg_regptr
*arg
=
1137 (struct test_arg_regptr
*)args
;
1138 regs
->uregs
[arg
->reg
] =
1139 (unsigned long)current_stack
+ arg
->val
;
1140 memory_needs_checking
= true;
1142 * Test memory at an address below SP is in danger of
1143 * being altered by an interrupt occurring and pushing
1144 * data onto the stack. Disable interrupts to stop this.
1147 regs
->ARM_cpsr
|= PSR_I_BIT
;
1150 case ARG_TYPE_MEM
: {
1151 struct test_arg_mem
*arg
= (struct test_arg_mem
*)args
;
1152 current_stack
[arg
->index
] = arg
->val
;
1161 struct kprobe kprobe
;
1166 static void unregister_test_probe(struct test_probe
*probe
)
1168 if (probe
->registered
) {
1169 unregister_kprobe(&probe
->kprobe
);
1170 probe
->kprobe
.flags
= 0; /* Clear disable flag to allow reuse */
1172 probe
->registered
= false;
1175 static int register_test_probe(struct test_probe
*probe
)
1179 if (probe
->registered
)
1182 ret
= register_kprobe(&probe
->kprobe
);
1184 probe
->registered
= true;
1190 static int __kprobes
1191 test_before_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1193 container_of(p
, struct test_probe
, kprobe
)->hit
= test_instance
;
1197 static void __kprobes
1198 test_before_post_handler(struct kprobe
*p
, struct pt_regs
*regs
,
1199 unsigned long flags
)
1201 setup_test_context(regs
);
1202 initial_regs
= *regs
;
1203 initial_regs
.ARM_cpsr
&= ~PSR_IGNORE_BITS
;
1206 static int __kprobes
1207 test_case_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1209 container_of(p
, struct test_probe
, kprobe
)->hit
= test_instance
;
1213 static int __kprobes
1214 test_after_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1216 struct test_arg
*args
;
1218 if (container_of(p
, struct test_probe
, kprobe
)->hit
== test_instance
)
1219 return 0; /* Already run for this test instance */
1221 result_regs
= *regs
;
1223 /* Mask out results which are indeterminate */
1224 result_regs
.ARM_cpsr
&= ~PSR_IGNORE_BITS
;
1225 for (args
= current_args
; args
[0].type
!= ARG_TYPE_END
; ++args
)
1226 if (args
[0].type
== ARG_TYPE_REG_MASKED
) {
1227 struct test_arg_regptr
*arg
=
1228 (struct test_arg_regptr
*)args
;
1229 result_regs
.uregs
[arg
->reg
] &= arg
->val
;
1232 /* Undo any changes done to SP by the test case */
1233 regs
->ARM_sp
= (unsigned long)current_stack
;
1234 /* Enable interrupts in case setup_test_context disabled them */
1235 regs
->ARM_cpsr
&= ~PSR_I_BIT
;
1237 container_of(p
, struct test_probe
, kprobe
)->hit
= test_instance
;
1241 static struct test_probe test_before_probe
= {
1242 .kprobe
.pre_handler
= test_before_pre_handler
,
1243 .kprobe
.post_handler
= test_before_post_handler
,
1246 static struct test_probe test_case_probe
= {
1247 .kprobe
.pre_handler
= test_case_pre_handler
,
1250 static struct test_probe test_after_probe
= {
1251 .kprobe
.pre_handler
= test_after_pre_handler
,
1254 static struct test_probe test_after2_probe
= {
1255 .kprobe
.pre_handler
= test_after_pre_handler
,
1258 static void test_case_cleanup(void)
1260 unregister_test_probe(&test_before_probe
);
1261 unregister_test_probe(&test_case_probe
);
1262 unregister_test_probe(&test_after_probe
);
1263 unregister_test_probe(&test_after2_probe
);
1266 static void print_registers(struct pt_regs
*regs
)
1268 pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
1269 regs
->ARM_r0
, regs
->ARM_r1
, regs
->ARM_r2
, regs
->ARM_r3
);
1270 pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
1271 regs
->ARM_r4
, regs
->ARM_r5
, regs
->ARM_r6
, regs
->ARM_r7
);
1272 pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
1273 regs
->ARM_r8
, regs
->ARM_r9
, regs
->ARM_r10
, regs
->ARM_fp
);
1274 pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
1275 regs
->ARM_ip
, regs
->ARM_sp
, regs
->ARM_lr
, regs
->ARM_pc
);
1276 pr_err("cpsr %08lx\n", regs
->ARM_cpsr
);
1279 static void print_memory(u32
*mem
, size_t size
)
1282 for (i
= 0; i
< size
/ sizeof(u32
); i
+= 4)
1283 pr_err("%08x %08x %08x %08x\n", mem
[i
], mem
[i
+1],
1284 mem
[i
+2], mem
[i
+3]);
1287 static size_t expected_memory_size(u32
*sp
)
1289 size_t size
= sizeof(expected_memory
);
1290 int offset
= (uintptr_t)sp
- (uintptr_t)current_stack
;
1296 static void test_case_failed(const char *message
)
1298 test_case_cleanup();
1300 pr_err("FAIL: %s\n", message
);
1301 pr_err("FAIL: Test %s\n", current_title
);
1302 pr_err("FAIL: Scenario %d\n", test_case_run_count
>> 1);
1305 static unsigned long next_instruction(unsigned long pc
)
1307 #ifdef CONFIG_THUMB2_KERNEL
1309 !is_wide_instruction(__mem_to_opcode_thumb16(*(u16
*)(pc
- 1))))
1316 static uintptr_t __used
kprobes_test_case_start(const char **title
, void *stack
)
1318 struct test_arg
*args
;
1319 struct test_arg_end
*end_arg
;
1320 unsigned long test_code
;
1322 current_title
= *title
++;
1323 args
= (struct test_arg
*)title
;
1324 current_args
= args
;
1325 current_stack
= stack
;
1329 while (args
->type
!= ARG_TYPE_END
)
1331 end_arg
= (struct test_arg_end
*)args
;
1333 test_code
= (unsigned long)(args
+ 1); /* Code starts after args */
1335 test_case_is_thumb
= end_arg
->flags
& ARG_FLAG_THUMB
;
1336 if (test_case_is_thumb
)
1339 current_code_start
= test_code
;
1341 current_branch_target
= 0;
1342 if (end_arg
->branch_offset
!= end_arg
->end_offset
)
1343 current_branch_target
= test_code
+ end_arg
->branch_offset
;
1345 test_code
+= end_arg
->code_offset
;
1346 test_before_probe
.kprobe
.addr
= (kprobe_opcode_t
*)test_code
;
1348 test_code
= next_instruction(test_code
);
1349 test_case_probe
.kprobe
.addr
= (kprobe_opcode_t
*)test_code
;
1351 if (test_case_is_thumb
) {
1352 u16
*p
= (u16
*)(test_code
& ~1);
1353 current_instruction
= __mem_to_opcode_thumb16(p
[0]);
1354 if (is_wide_instruction(current_instruction
)) {
1355 u16 instr2
= __mem_to_opcode_thumb16(p
[1]);
1356 current_instruction
= __opcode_thumb32_compose(current_instruction
, instr2
);
1359 current_instruction
= __mem_to_opcode_arm(*(u32
*)test_code
);
1362 if (current_title
[0] == '.')
1363 verbose("%s\n", current_title
);
1365 verbose("%s\t@ %0*x\n", current_title
,
1366 test_case_is_thumb
? 4 : 8,
1367 current_instruction
);
1369 test_code
= next_instruction(test_code
);
1370 test_after_probe
.kprobe
.addr
= (kprobe_opcode_t
*)test_code
;
1372 if (kprobe_test_flags
& TEST_FLAG_NARROW_INSTR
) {
1373 if (!test_case_is_thumb
||
1374 is_wide_instruction(current_instruction
)) {
1375 test_case_failed("expected 16-bit instruction");
1379 if (test_case_is_thumb
&&
1380 !is_wide_instruction(current_instruction
)) {
1381 test_case_failed("expected 32-bit instruction");
1386 coverage_add(current_instruction
);
1388 if (end_arg
->flags
& ARG_FLAG_UNSUPPORTED
) {
1389 if (register_test_probe(&test_case_probe
) < 0)
1391 test_case_failed("registered probe for unsupported instruction");
1395 if (end_arg
->flags
& ARG_FLAG_SUPPORTED
) {
1396 if (register_test_probe(&test_case_probe
) >= 0)
1398 test_case_failed("couldn't register probe for supported instruction");
1402 if (register_test_probe(&test_before_probe
) < 0) {
1403 test_case_failed("register test_before_probe failed");
1406 if (register_test_probe(&test_after_probe
) < 0) {
1407 test_case_failed("register test_after_probe failed");
1410 if (current_branch_target
) {
1411 test_after2_probe
.kprobe
.addr
=
1412 (kprobe_opcode_t
*)current_branch_target
;
1413 if (register_test_probe(&test_after2_probe
) < 0) {
1414 test_case_failed("register test_after2_probe failed");
1419 /* Start first run of test case */
1420 test_case_run_count
= 0;
1422 return current_code_start
;
1424 test_case_run_count
= TEST_CASE_PASSED
;
1425 return (uintptr_t)test_after_probe
.kprobe
.addr
;
1427 test_case_run_count
= TEST_CASE_FAILED
;
1428 return (uintptr_t)test_after_probe
.kprobe
.addr
;
1431 static bool check_test_results(void)
1433 size_t mem_size
= 0;
1436 if (memcmp(&expected_regs
, &result_regs
, sizeof(expected_regs
))) {
1437 test_case_failed("registers differ");
1441 if (memory_needs_checking
) {
1442 mem
= (u32
*)result_regs
.ARM_sp
;
1443 mem_size
= expected_memory_size(mem
);
1444 if (memcmp(expected_memory
, mem
, mem_size
)) {
1445 test_case_failed("test memory differs");
1453 pr_err("initial_regs:\n");
1454 print_registers(&initial_regs
);
1455 pr_err("expected_regs:\n");
1456 print_registers(&expected_regs
);
1457 pr_err("result_regs:\n");
1458 print_registers(&result_regs
);
1461 pr_err("expected_memory:\n");
1462 print_memory(expected_memory
, mem_size
);
1463 pr_err("result_memory:\n");
1464 print_memory(mem
, mem_size
);
1470 static uintptr_t __used
kprobes_test_case_end(void)
1472 if (test_case_run_count
< 0) {
1473 if (test_case_run_count
== TEST_CASE_PASSED
)
1474 /* kprobes_test_case_start did all the needed testing */
1477 /* kprobes_test_case_start failed */
1481 if (test_before_probe
.hit
!= test_instance
) {
1482 test_case_failed("test_before_handler not run");
1486 if (test_after_probe
.hit
!= test_instance
&&
1487 test_after2_probe
.hit
!= test_instance
) {
1488 test_case_failed("test_after_handler not run");
1493 * Even numbered test runs ran without a probe on the test case so
1494 * we can gather reference results. The subsequent odd numbered run
1495 * will have the probe inserted.
1497 if ((test_case_run_count
& 1) == 0) {
1498 /* Save results from run without probe */
1499 u32
*mem
= (u32
*)result_regs
.ARM_sp
;
1500 expected_regs
= result_regs
;
1501 memcpy(expected_memory
, mem
, expected_memory_size(mem
));
1503 /* Insert probe onto test case instruction */
1504 if (register_test_probe(&test_case_probe
) < 0) {
1505 test_case_failed("register test_case_probe failed");
1509 /* Check probe ran as expected */
1510 if (probe_should_run
== 1) {
1511 if (test_case_probe
.hit
!= test_instance
) {
1512 test_case_failed("test_case_handler not run");
1515 } else if (probe_should_run
== 0) {
1516 if (test_case_probe
.hit
== test_instance
) {
1517 test_case_failed("test_case_handler ran");
1522 /* Remove probe for any subsequent reference run */
1523 unregister_test_probe(&test_case_probe
);
1525 if (!check_test_results())
1528 if (is_last_scenario
)
1532 /* Do next test run */
1533 ++test_case_run_count
;
1535 return current_code_start
;
1542 test_case_cleanup();
1548 * Top level test functions
1551 static int run_test_cases(void (*tests
)(void), const union decode_item
*table
)
1555 pr_info(" Check decoding tables\n");
1556 ret
= table_test(table
);
1560 pr_info(" Run test cases\n");
1561 ret
= coverage_start(table
);
1572 static int __init
run_all_tests(void)
1576 pr_info("Beginning kprobe tests...\n");
1578 #ifndef CONFIG_THUMB2_KERNEL
1580 pr_info("Probe ARM code\n");
1581 ret
= run_api_tests(arm_func
);
1585 pr_info("ARM instruction simulation\n");
1586 ret
= run_test_cases(kprobe_arm_test_cases
, probes_decode_arm_table
);
1590 #else /* CONFIG_THUMB2_KERNEL */
1592 pr_info("Probe 16-bit Thumb code\n");
1593 ret
= run_api_tests(thumb16_func
);
1597 pr_info("Probe 32-bit Thumb code, even halfword\n");
1598 ret
= run_api_tests(thumb32even_func
);
1602 pr_info("Probe 32-bit Thumb code, odd halfword\n");
1603 ret
= run_api_tests(thumb32odd_func
);
1607 pr_info("16-bit Thumb instruction simulation\n");
1608 ret
= run_test_cases(kprobe_thumb16_test_cases
,
1609 probes_decode_thumb16_table
);
1613 pr_info("32-bit Thumb instruction simulation\n");
1614 ret
= run_test_cases(kprobe_thumb32_test_cases
,
1615 probes_decode_thumb32_table
);
1620 pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1621 test_try_count
, test_pass_count
, test_fail_count
);
1622 if (test_fail_count
) {
1628 pr_info("Benchmarks\n");
1629 ret
= run_benchmarks();
1634 #if __LINUX_ARM_ARCH__ >= 7
1635 /* We are able to run all test cases so coverage should be complete */
1636 if (coverage_fail
) {
1637 pr_err("FAIL: Test coverage checks failed\n");
1647 pr_info("Finished kprobe tests OK\n");
1649 pr_err("kprobe tests failed\n");
1661 static void __exit
kprobe_test_exit(void)
1665 module_init(run_all_tests
)
1666 module_exit(kprobe_test_exit
)
1667 MODULE_LICENSE("GPL");
1671 late_initcall(run_all_tests
);