mm: make wait_on_page_writeback() wait for multiple pending writebacks
[linux/fpc-iii.git] / arch / s390 / include / asm / pgtable.h
blob794746a32806a391e4e81d971f6c0489140f1aa4
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 * Derived from "include/asm-i386/pgtable.h"
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 #include <asm/uv.h>
24 extern pgd_t swapper_pg_dir[];
25 extern void paging_init(void);
26 extern unsigned long s390_invalid_asce;
28 enum {
29 PG_DIRECT_MAP_4K = 0,
30 PG_DIRECT_MAP_1M,
31 PG_DIRECT_MAP_2G,
32 PG_DIRECT_MAP_MAX
35 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37 static inline void update_page_count(int level, long count)
39 if (IS_ENABLED(CONFIG_PROC_FS))
40 atomic_long_add(count, &direct_pages_count[level]);
43 struct seq_file;
44 void arch_report_meminfo(struct seq_file *m);
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
50 #define update_mmu_cache(vma, address, ptep) do { } while (0)
51 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
54 * ZERO_PAGE is a global shared page that is always zero; used
55 * for zero-mapped memory areas etc..
58 extern unsigned long empty_zero_page;
59 extern unsigned long zero_page_mask;
61 #define ZERO_PAGE(vaddr) \
62 (virt_to_page((void *)(empty_zero_page + \
63 (((unsigned long)(vaddr)) &zero_page_mask))))
64 #define __HAVE_COLOR_ZERO_PAGE
66 /* TODO: s390 cannot support io_remap_pfn_range... */
68 #define FIRST_USER_ADDRESS 0UL
70 #define pte_ERROR(e) \
71 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
72 #define pmd_ERROR(e) \
73 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
74 #define pud_ERROR(e) \
75 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
76 #define p4d_ERROR(e) \
77 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
78 #define pgd_ERROR(e) \
79 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
82 * The vmalloc and module area will always be on the topmost area of the
83 * kernel mapping. 512GB are reserved for vmalloc by default.
84 * At the top of the vmalloc area a 2GB area is reserved where modules
85 * will reside. That makes sure that inter module branches always
86 * happen without trampolines and in addition the placement within a
87 * 2GB frame is branch prediction unit friendly.
89 extern unsigned long VMALLOC_START;
90 extern unsigned long VMALLOC_END;
91 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
92 extern struct page *vmemmap;
93 extern unsigned long vmemmap_size;
95 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
97 extern unsigned long MODULES_VADDR;
98 extern unsigned long MODULES_END;
99 #define MODULES_VADDR MODULES_VADDR
100 #define MODULES_END MODULES_END
101 #define MODULES_LEN (1UL << 31)
103 static inline int is_module_addr(void *addr)
105 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
106 if (addr < (void *)MODULES_VADDR)
107 return 0;
108 if (addr > (void *)MODULES_END)
109 return 0;
110 return 1;
114 * A 64 bit pagetable entry of S390 has following format:
115 * | PFRA |0IPC| OS |
116 * 0000000000111111111122222222223333333333444444444455555555556666
117 * 0123456789012345678901234567890123456789012345678901234567890123
119 * I Page-Invalid Bit: Page is not available for address-translation
120 * P Page-Protection Bit: Store access not possible for page
121 * C Change-bit override: HW is not required to set change bit
123 * A 64 bit segmenttable entry of S390 has following format:
124 * | P-table origin | TT
125 * 0000000000111111111122222222223333333333444444444455555555556666
126 * 0123456789012345678901234567890123456789012345678901234567890123
128 * I Segment-Invalid Bit: Segment is not available for address-translation
129 * C Common-Segment Bit: Segment is not private (PoP 3-30)
130 * P Page-Protection Bit: Store access not possible for page
131 * TT Type 00
133 * A 64 bit region table entry of S390 has following format:
134 * | S-table origin | TF TTTL
135 * 0000000000111111111122222222223333333333444444444455555555556666
136 * 0123456789012345678901234567890123456789012345678901234567890123
138 * I Segment-Invalid Bit: Segment is not available for address-translation
139 * TT Type 01
140 * TF
141 * TL Table length
143 * The 64 bit regiontable origin of S390 has following format:
144 * | region table origon | DTTL
145 * 0000000000111111111122222222223333333333444444444455555555556666
146 * 0123456789012345678901234567890123456789012345678901234567890123
148 * X Space-Switch event:
149 * G Segment-Invalid Bit:
150 * P Private-Space Bit:
151 * S Storage-Alteration:
152 * R Real space
153 * TL Table-Length:
155 * A storage key has the following format:
156 * | ACC |F|R|C|0|
157 * 0 3 4 5 6 7
158 * ACC: access key
159 * F : fetch protection bit
160 * R : referenced bit
161 * C : changed bit
164 /* Hardware bits in the page table entry */
165 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
166 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
167 #define _PAGE_INVALID 0x400 /* HW invalid bit */
168 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
170 /* Software bits in the page table entry */
171 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
172 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
173 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
174 #define _PAGE_READ 0x010 /* SW pte read bit */
175 #define _PAGE_WRITE 0x020 /* SW pte write bit */
176 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
177 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
179 #ifdef CONFIG_MEM_SOFT_DIRTY
180 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
181 #else
182 #define _PAGE_SOFT_DIRTY 0x000
183 #endif
185 /* Set of bits not changed in pte_modify */
186 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
187 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
190 * handle_pte_fault uses pte_present and pte_none to find out the pte type
191 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
192 * distinguish present from not-present ptes. It is changed only with the page
193 * table lock held.
195 * The following table gives the different possible bit combinations for
196 * the pte hardware and software bits in the last 12 bits of a pte
197 * (. unassigned bit, x don't care, t swap type):
199 * 842100000000
200 * 000084210000
201 * 000000008421
202 * .IR.uswrdy.p
203 * empty .10.00000000
204 * swap .11..ttttt.0
205 * prot-none, clean, old .11.xx0000.1
206 * prot-none, clean, young .11.xx0001.1
207 * prot-none, dirty, old .11.xx0010.1
208 * prot-none, dirty, young .11.xx0011.1
209 * read-only, clean, old .11.xx0100.1
210 * read-only, clean, young .01.xx0101.1
211 * read-only, dirty, old .11.xx0110.1
212 * read-only, dirty, young .01.xx0111.1
213 * read-write, clean, old .11.xx1100.1
214 * read-write, clean, young .01.xx1101.1
215 * read-write, dirty, old .10.xx1110.1
216 * read-write, dirty, young .00.xx1111.1
217 * HW-bits: R read-only, I invalid
218 * SW-bits: p present, y young, d dirty, r read, w write, s special,
219 * u unused, l large
221 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
222 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
223 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
226 /* Bits in the segment/region table address-space-control-element */
227 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
228 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
229 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
230 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
231 #define _ASCE_REAL_SPACE 0x20 /* real space control */
232 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
233 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
234 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
235 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
236 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
237 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
239 /* Bits in the region table entry */
240 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
241 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
242 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
243 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
244 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
245 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
246 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
247 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
248 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
249 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
251 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
252 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
253 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
254 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
255 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
256 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
258 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
259 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
260 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
261 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
262 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
263 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
265 #ifdef CONFIG_MEM_SOFT_DIRTY
266 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
267 #else
268 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
269 #endif
271 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
273 /* Bits in the segment table entry */
274 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
277 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
278 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
279 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
280 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
281 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
282 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
290 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
291 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295 #else
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297 #endif
299 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
300 #define _PAGE_ENTRIES 256 /* number of page table entries */
302 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
303 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
305 #define _REGION1_SHIFT 53
306 #define _REGION2_SHIFT 42
307 #define _REGION3_SHIFT 31
308 #define _SEGMENT_SHIFT 20
310 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
311 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
312 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
313 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
314 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
316 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
317 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
318 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
319 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
321 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
322 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
323 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
324 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
326 #define PMD_SHIFT _SEGMENT_SHIFT
327 #define PUD_SHIFT _REGION3_SHIFT
328 #define P4D_SHIFT _REGION2_SHIFT
329 #define PGDIR_SHIFT _REGION1_SHIFT
331 #define PMD_SIZE _SEGMENT_SIZE
332 #define PUD_SIZE _REGION3_SIZE
333 #define P4D_SIZE _REGION2_SIZE
334 #define PGDIR_SIZE _REGION1_SIZE
336 #define PMD_MASK _SEGMENT_MASK
337 #define PUD_MASK _REGION3_MASK
338 #define P4D_MASK _REGION2_MASK
339 #define PGDIR_MASK _REGION1_MASK
341 #define PTRS_PER_PTE _PAGE_ENTRIES
342 #define PTRS_PER_PMD _CRST_ENTRIES
343 #define PTRS_PER_PUD _CRST_ENTRIES
344 #define PTRS_PER_P4D _CRST_ENTRIES
345 #define PTRS_PER_PGD _CRST_ENTRIES
347 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
350 * Segment table and region3 table entry encoding
351 * (R = read-only, I = invalid, y = young bit):
352 * dy..R...I...wr
353 * prot-none, clean, old 00..1...1...00
354 * prot-none, clean, young 01..1...1...00
355 * prot-none, dirty, old 10..1...1...00
356 * prot-none, dirty, young 11..1...1...00
357 * read-only, clean, old 00..1...1...01
358 * read-only, clean, young 01..1...0...01
359 * read-only, dirty, old 10..1...1...01
360 * read-only, dirty, young 11..1...0...01
361 * read-write, clean, old 00..1...1...11
362 * read-write, clean, young 01..1...0...11
363 * read-write, dirty, old 10..0...1...11
364 * read-write, dirty, young 11..0...0...11
365 * The segment table origin is used to distinguish empty (origin==0) from
366 * read-write, old segment table entries (origin!=0)
367 * HW-bits: R read-only, I invalid
368 * SW-bits: y young, d dirty, r read, w write
371 /* Page status table bits for virtualization */
372 #define PGSTE_ACC_BITS 0xf000000000000000UL
373 #define PGSTE_FP_BIT 0x0800000000000000UL
374 #define PGSTE_PCL_BIT 0x0080000000000000UL
375 #define PGSTE_HR_BIT 0x0040000000000000UL
376 #define PGSTE_HC_BIT 0x0020000000000000UL
377 #define PGSTE_GR_BIT 0x0004000000000000UL
378 #define PGSTE_GC_BIT 0x0002000000000000UL
379 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
380 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
381 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
383 /* Guest Page State used for virtualization */
384 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
385 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
386 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
387 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
388 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
389 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
390 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
393 * A user page table pointer has the space-switch-event bit, the
394 * private-space-control bit and the storage-alteration-event-control
395 * bit set. A kernel page table pointer doesn't need them.
397 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
398 _ASCE_ALT_EVENT)
401 * Page protection definitions.
403 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
405 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
406 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
407 _PAGE_INVALID | _PAGE_PROTECT)
408 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
410 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_INVALID | _PAGE_PROTECT)
413 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
415 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
416 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
417 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
418 _PAGE_PROTECT | _PAGE_NOEXEC)
419 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
420 _PAGE_YOUNG | _PAGE_DIRTY)
423 * On s390 the page table entry has an invalid bit and a read-only bit.
424 * Read permission implies execute permission and write permission
425 * implies read permission.
427 /*xwr*/
428 #define __P000 PAGE_NONE
429 #define __P001 PAGE_RO
430 #define __P010 PAGE_RO
431 #define __P011 PAGE_RO
432 #define __P100 PAGE_RX
433 #define __P101 PAGE_RX
434 #define __P110 PAGE_RX
435 #define __P111 PAGE_RX
437 #define __S000 PAGE_NONE
438 #define __S001 PAGE_RO
439 #define __S010 PAGE_RW
440 #define __S011 PAGE_RW
441 #define __S100 PAGE_RX
442 #define __S101 PAGE_RX
443 #define __S110 PAGE_RWX
444 #define __S111 PAGE_RWX
447 * Segment entry (large page) protection definitions.
449 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
450 _SEGMENT_ENTRY_PROTECT)
451 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ | \
453 _SEGMENT_ENTRY_NOEXEC)
454 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
455 _SEGMENT_ENTRY_READ)
456 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE | \
458 _SEGMENT_ENTRY_NOEXEC)
459 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
460 _SEGMENT_ENTRY_WRITE)
461 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
462 _SEGMENT_ENTRY_LARGE | \
463 _SEGMENT_ENTRY_READ | \
464 _SEGMENT_ENTRY_WRITE | \
465 _SEGMENT_ENTRY_YOUNG | \
466 _SEGMENT_ENTRY_DIRTY | \
467 _SEGMENT_ENTRY_NOEXEC)
468 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
469 _SEGMENT_ENTRY_LARGE | \
470 _SEGMENT_ENTRY_READ | \
471 _SEGMENT_ENTRY_YOUNG | \
472 _SEGMENT_ENTRY_PROTECT | \
473 _SEGMENT_ENTRY_NOEXEC)
474 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
475 _SEGMENT_ENTRY_LARGE | \
476 _SEGMENT_ENTRY_READ | \
477 _SEGMENT_ENTRY_WRITE | \
478 _SEGMENT_ENTRY_YOUNG | \
479 _SEGMENT_ENTRY_DIRTY)
482 * Region3 entry (large page) protection definitions.
485 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
486 _REGION3_ENTRY_LARGE | \
487 _REGION3_ENTRY_READ | \
488 _REGION3_ENTRY_WRITE | \
489 _REGION3_ENTRY_YOUNG | \
490 _REGION3_ENTRY_DIRTY | \
491 _REGION_ENTRY_NOEXEC)
492 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
493 _REGION3_ENTRY_LARGE | \
494 _REGION3_ENTRY_READ | \
495 _REGION3_ENTRY_YOUNG | \
496 _REGION_ENTRY_PROTECT | \
497 _REGION_ENTRY_NOEXEC)
499 static inline bool mm_p4d_folded(struct mm_struct *mm)
501 return mm->context.asce_limit <= _REGION1_SIZE;
503 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
505 static inline bool mm_pud_folded(struct mm_struct *mm)
507 return mm->context.asce_limit <= _REGION2_SIZE;
509 #define mm_pud_folded(mm) mm_pud_folded(mm)
511 static inline bool mm_pmd_folded(struct mm_struct *mm)
513 return mm->context.asce_limit <= _REGION3_SIZE;
515 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
517 static inline int mm_has_pgste(struct mm_struct *mm)
519 #ifdef CONFIG_PGSTE
520 if (unlikely(mm->context.has_pgste))
521 return 1;
522 #endif
523 return 0;
526 static inline int mm_is_protected(struct mm_struct *mm)
528 #ifdef CONFIG_PGSTE
529 if (unlikely(atomic_read(&mm->context.is_protected)))
530 return 1;
531 #endif
532 return 0;
535 static inline int mm_alloc_pgste(struct mm_struct *mm)
537 #ifdef CONFIG_PGSTE
538 if (unlikely(mm->context.alloc_pgste))
539 return 1;
540 #endif
541 return 0;
545 * In the case that a guest uses storage keys
546 * faults should no longer be backed by zero pages
548 #define mm_forbids_zeropage mm_has_pgste
549 static inline int mm_uses_skeys(struct mm_struct *mm)
551 #ifdef CONFIG_PGSTE
552 if (mm->context.uses_skeys)
553 return 1;
554 #endif
555 return 0;
558 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
560 register unsigned long reg2 asm("2") = old;
561 register unsigned long reg3 asm("3") = new;
562 unsigned long address = (unsigned long)ptr | 1;
564 asm volatile(
565 " csp %0,%3"
566 : "+d" (reg2), "+m" (*ptr)
567 : "d" (reg3), "d" (address)
568 : "cc");
571 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
573 register unsigned long reg2 asm("2") = old;
574 register unsigned long reg3 asm("3") = new;
575 unsigned long address = (unsigned long)ptr | 1;
577 asm volatile(
578 " .insn rre,0xb98a0000,%0,%3"
579 : "+d" (reg2), "+m" (*ptr)
580 : "d" (reg3), "d" (address)
581 : "cc");
584 #define CRDTE_DTT_PAGE 0x00UL
585 #define CRDTE_DTT_SEGMENT 0x10UL
586 #define CRDTE_DTT_REGION3 0x14UL
587 #define CRDTE_DTT_REGION2 0x18UL
588 #define CRDTE_DTT_REGION1 0x1cUL
590 static inline void crdte(unsigned long old, unsigned long new,
591 unsigned long table, unsigned long dtt,
592 unsigned long address, unsigned long asce)
594 register unsigned long reg2 asm("2") = old;
595 register unsigned long reg3 asm("3") = new;
596 register unsigned long reg4 asm("4") = table | dtt;
597 register unsigned long reg5 asm("5") = address;
599 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
600 : "+d" (reg2)
601 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
602 : "memory", "cc");
606 * pgd/p4d/pud/pmd/pte query functions
608 static inline int pgd_folded(pgd_t pgd)
610 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
613 static inline int pgd_present(pgd_t pgd)
615 if (pgd_folded(pgd))
616 return 1;
617 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
620 static inline int pgd_none(pgd_t pgd)
622 if (pgd_folded(pgd))
623 return 0;
624 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
627 static inline int pgd_bad(pgd_t pgd)
629 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
630 return 0;
631 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
634 static inline unsigned long pgd_pfn(pgd_t pgd)
636 unsigned long origin_mask;
638 origin_mask = _REGION_ENTRY_ORIGIN;
639 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
642 static inline int p4d_folded(p4d_t p4d)
644 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
647 static inline int p4d_present(p4d_t p4d)
649 if (p4d_folded(p4d))
650 return 1;
651 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
654 static inline int p4d_none(p4d_t p4d)
656 if (p4d_folded(p4d))
657 return 0;
658 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
661 static inline unsigned long p4d_pfn(p4d_t p4d)
663 unsigned long origin_mask;
665 origin_mask = _REGION_ENTRY_ORIGIN;
666 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
669 static inline int pud_folded(pud_t pud)
671 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
674 static inline int pud_present(pud_t pud)
676 if (pud_folded(pud))
677 return 1;
678 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
681 static inline int pud_none(pud_t pud)
683 if (pud_folded(pud))
684 return 0;
685 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
688 #define pud_leaf pud_large
689 static inline int pud_large(pud_t pud)
691 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
692 return 0;
693 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
696 #define pmd_leaf pmd_large
697 static inline int pmd_large(pmd_t pmd)
699 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
702 static inline int pmd_bad(pmd_t pmd)
704 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
705 return 1;
706 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
709 static inline int pud_bad(pud_t pud)
711 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
713 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
714 return 1;
715 if (type < _REGION_ENTRY_TYPE_R3)
716 return 0;
717 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
720 static inline int p4d_bad(p4d_t p4d)
722 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
724 if (type > _REGION_ENTRY_TYPE_R2)
725 return 1;
726 if (type < _REGION_ENTRY_TYPE_R2)
727 return 0;
728 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
731 static inline int pmd_present(pmd_t pmd)
733 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
736 static inline int pmd_none(pmd_t pmd)
738 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
741 #define pmd_write pmd_write
742 static inline int pmd_write(pmd_t pmd)
744 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
747 #define pud_write pud_write
748 static inline int pud_write(pud_t pud)
750 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
753 static inline int pmd_dirty(pmd_t pmd)
755 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
758 static inline int pmd_young(pmd_t pmd)
760 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
763 static inline int pte_present(pte_t pte)
765 /* Bit pattern: (pte & 0x001) == 0x001 */
766 return (pte_val(pte) & _PAGE_PRESENT) != 0;
769 static inline int pte_none(pte_t pte)
771 /* Bit pattern: pte == 0x400 */
772 return pte_val(pte) == _PAGE_INVALID;
775 static inline int pte_swap(pte_t pte)
777 /* Bit pattern: (pte & 0x201) == 0x200 */
778 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
779 == _PAGE_PROTECT;
782 static inline int pte_special(pte_t pte)
784 return (pte_val(pte) & _PAGE_SPECIAL);
787 #define __HAVE_ARCH_PTE_SAME
788 static inline int pte_same(pte_t a, pte_t b)
790 return pte_val(a) == pte_val(b);
793 #ifdef CONFIG_NUMA_BALANCING
794 static inline int pte_protnone(pte_t pte)
796 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
799 static inline int pmd_protnone(pmd_t pmd)
801 /* pmd_large(pmd) implies pmd_present(pmd) */
802 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
804 #endif
806 static inline int pte_soft_dirty(pte_t pte)
808 return pte_val(pte) & _PAGE_SOFT_DIRTY;
810 #define pte_swp_soft_dirty pte_soft_dirty
812 static inline pte_t pte_mksoft_dirty(pte_t pte)
814 pte_val(pte) |= _PAGE_SOFT_DIRTY;
815 return pte;
817 #define pte_swp_mksoft_dirty pte_mksoft_dirty
819 static inline pte_t pte_clear_soft_dirty(pte_t pte)
821 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
822 return pte;
824 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
826 static inline int pmd_soft_dirty(pmd_t pmd)
828 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
831 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
833 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
834 return pmd;
837 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
839 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
840 return pmd;
844 * query functions pte_write/pte_dirty/pte_young only work if
845 * pte_present() is true. Undefined behaviour if not..
847 static inline int pte_write(pte_t pte)
849 return (pte_val(pte) & _PAGE_WRITE) != 0;
852 static inline int pte_dirty(pte_t pte)
854 return (pte_val(pte) & _PAGE_DIRTY) != 0;
857 static inline int pte_young(pte_t pte)
859 return (pte_val(pte) & _PAGE_YOUNG) != 0;
862 #define __HAVE_ARCH_PTE_UNUSED
863 static inline int pte_unused(pte_t pte)
865 return pte_val(pte) & _PAGE_UNUSED;
869 * pgd/pmd/pte modification functions
872 static inline void pgd_clear(pgd_t *pgd)
874 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
875 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
878 static inline void p4d_clear(p4d_t *p4d)
880 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
881 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
884 static inline void pud_clear(pud_t *pud)
886 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
887 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
890 static inline void pmd_clear(pmd_t *pmdp)
892 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
895 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
897 pte_val(*ptep) = _PAGE_INVALID;
901 * The following pte modification functions only work if
902 * pte_present() is true. Undefined behaviour if not..
904 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
906 pte_val(pte) &= _PAGE_CHG_MASK;
907 pte_val(pte) |= pgprot_val(newprot);
909 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
910 * has the invalid bit set, clear it again for readable, young pages
912 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
913 pte_val(pte) &= ~_PAGE_INVALID;
915 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
916 * protection bit set, clear it again for writable, dirty pages
918 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
919 pte_val(pte) &= ~_PAGE_PROTECT;
920 return pte;
923 static inline pte_t pte_wrprotect(pte_t pte)
925 pte_val(pte) &= ~_PAGE_WRITE;
926 pte_val(pte) |= _PAGE_PROTECT;
927 return pte;
930 static inline pte_t pte_mkwrite(pte_t pte)
932 pte_val(pte) |= _PAGE_WRITE;
933 if (pte_val(pte) & _PAGE_DIRTY)
934 pte_val(pte) &= ~_PAGE_PROTECT;
935 return pte;
938 static inline pte_t pte_mkclean(pte_t pte)
940 pte_val(pte) &= ~_PAGE_DIRTY;
941 pte_val(pte) |= _PAGE_PROTECT;
942 return pte;
945 static inline pte_t pte_mkdirty(pte_t pte)
947 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
948 if (pte_val(pte) & _PAGE_WRITE)
949 pte_val(pte) &= ~_PAGE_PROTECT;
950 return pte;
953 static inline pte_t pte_mkold(pte_t pte)
955 pte_val(pte) &= ~_PAGE_YOUNG;
956 pte_val(pte) |= _PAGE_INVALID;
957 return pte;
960 static inline pte_t pte_mkyoung(pte_t pte)
962 pte_val(pte) |= _PAGE_YOUNG;
963 if (pte_val(pte) & _PAGE_READ)
964 pte_val(pte) &= ~_PAGE_INVALID;
965 return pte;
968 static inline pte_t pte_mkspecial(pte_t pte)
970 pte_val(pte) |= _PAGE_SPECIAL;
971 return pte;
974 #ifdef CONFIG_HUGETLB_PAGE
975 static inline pte_t pte_mkhuge(pte_t pte)
977 pte_val(pte) |= _PAGE_LARGE;
978 return pte;
980 #endif
982 #define IPTE_GLOBAL 0
983 #define IPTE_LOCAL 1
985 #define IPTE_NODAT 0x400
986 #define IPTE_GUEST_ASCE 0x800
988 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
989 unsigned long opt, unsigned long asce,
990 int local)
992 unsigned long pto = (unsigned long) ptep;
994 if (__builtin_constant_p(opt) && opt == 0) {
995 /* Invalidation + TLB flush for the pte */
996 asm volatile(
997 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
998 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
999 [m4] "i" (local));
1000 return;
1003 /* Invalidate ptes with options + TLB flush of the ptes */
1004 opt = opt | (asce & _ASCE_ORIGIN);
1005 asm volatile(
1006 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1007 : [r2] "+a" (address), [r3] "+a" (opt)
1008 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1011 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1012 pte_t *ptep, int local)
1014 unsigned long pto = (unsigned long) ptep;
1016 /* Invalidate a range of ptes + TLB flush of the ptes */
1017 do {
1018 asm volatile(
1019 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1020 : [r2] "+a" (address), [r3] "+a" (nr)
1021 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1022 } while (nr != 255);
1026 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1027 * both clear the TLB for the unmapped pte. The reason is that
1028 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1029 * to modify an active pte. The sequence is
1030 * 1) ptep_get_and_clear
1031 * 2) set_pte_at
1032 * 3) flush_tlb_range
1033 * On s390 the tlb needs to get flushed with the modification of the pte
1034 * if the pte is active. The only way how this can be implemented is to
1035 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1036 * is a nop.
1038 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1039 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1041 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1042 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1043 unsigned long addr, pte_t *ptep)
1045 pte_t pte = *ptep;
1047 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1048 return pte_young(pte);
1051 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1052 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1053 unsigned long address, pte_t *ptep)
1055 return ptep_test_and_clear_young(vma, address, ptep);
1058 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1059 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1060 unsigned long addr, pte_t *ptep)
1062 pte_t res;
1064 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1065 if (mm_is_protected(mm) && pte_present(res))
1066 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1067 return res;
1070 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1071 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1072 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1073 pte_t *, pte_t, pte_t);
1075 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1076 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1077 unsigned long addr, pte_t *ptep)
1079 pte_t res;
1081 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1082 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1083 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1084 return res;
1088 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1089 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1090 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1091 * cannot be accessed while the batched unmap is running. In this case
1092 * full==1 and a simple pte_clear is enough. See tlb.h.
1094 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1095 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1096 unsigned long addr,
1097 pte_t *ptep, int full)
1099 pte_t res;
1101 if (full) {
1102 res = *ptep;
1103 *ptep = __pte(_PAGE_INVALID);
1104 } else {
1105 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1107 if (mm_is_protected(mm) && pte_present(res))
1108 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1109 return res;
1112 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1113 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1114 unsigned long addr, pte_t *ptep)
1116 pte_t pte = *ptep;
1118 if (pte_write(pte))
1119 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1122 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1123 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1124 unsigned long addr, pte_t *ptep,
1125 pte_t entry, int dirty)
1127 if (pte_same(*ptep, entry))
1128 return 0;
1129 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1130 return 1;
1134 * Additional functions to handle KVM guest page tables
1136 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1137 pte_t *ptep, pte_t entry);
1138 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1139 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1140 pte_t *ptep, unsigned long bits);
1141 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1142 pte_t *ptep, int prot, unsigned long bit);
1143 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1144 pte_t *ptep , int reset);
1145 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1146 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1147 pte_t *sptep, pte_t *tptep, pte_t pte);
1148 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1150 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1151 pte_t *ptep);
1152 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1153 unsigned char key, bool nq);
1154 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1155 unsigned char key, unsigned char *oldkey,
1156 bool nq, bool mr, bool mc);
1157 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1158 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1159 unsigned char *key);
1161 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1162 unsigned long bits, unsigned long value);
1163 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1164 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1165 unsigned long *oldpte, unsigned long *oldpgste);
1166 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1167 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1168 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1169 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1171 #define pgprot_writecombine pgprot_writecombine
1172 pgprot_t pgprot_writecombine(pgprot_t prot);
1174 #define pgprot_writethrough pgprot_writethrough
1175 pgprot_t pgprot_writethrough(pgprot_t prot);
1178 * Certain architectures need to do special things when PTEs
1179 * within a page table are directly modified. Thus, the following
1180 * hook is made available.
1182 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1183 pte_t *ptep, pte_t entry)
1185 if (pte_present(entry))
1186 pte_val(entry) &= ~_PAGE_UNUSED;
1187 if (mm_has_pgste(mm))
1188 ptep_set_pte_at(mm, addr, ptep, entry);
1189 else
1190 *ptep = entry;
1194 * Conversion functions: convert a page and protection to a page entry,
1195 * and a page entry and page directory to the page they refer to.
1197 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1199 pte_t __pte;
1201 pte_val(__pte) = physpage | pgprot_val(pgprot);
1202 if (!MACHINE_HAS_NX)
1203 pte_val(__pte) &= ~_PAGE_NOEXEC;
1204 return pte_mkyoung(__pte);
1207 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1209 unsigned long physpage = page_to_phys(page);
1210 pte_t __pte = mk_pte_phys(physpage, pgprot);
1212 if (pte_write(__pte) && PageDirty(page))
1213 __pte = pte_mkdirty(__pte);
1214 return __pte;
1217 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1218 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1219 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1220 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1222 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1223 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1225 static inline unsigned long pmd_deref(pmd_t pmd)
1227 unsigned long origin_mask;
1229 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1230 if (pmd_large(pmd))
1231 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1232 return pmd_val(pmd) & origin_mask;
1235 static inline unsigned long pmd_pfn(pmd_t pmd)
1237 return pmd_deref(pmd) >> PAGE_SHIFT;
1240 static inline unsigned long pud_deref(pud_t pud)
1242 unsigned long origin_mask;
1244 origin_mask = _REGION_ENTRY_ORIGIN;
1245 if (pud_large(pud))
1246 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1247 return pud_val(pud) & origin_mask;
1250 static inline unsigned long pud_pfn(pud_t pud)
1252 return pud_deref(pud) >> PAGE_SHIFT;
1256 * The pgd_offset function *always* adds the index for the top-level
1257 * region/segment table. This is done to get a sequence like the
1258 * following to work:
1259 * pgdp = pgd_offset(current->mm, addr);
1260 * pgd = READ_ONCE(*pgdp);
1261 * p4dp = p4d_offset(&pgd, addr);
1262 * ...
1263 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1264 * only add an index if they dereferenced the pointer.
1266 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1268 unsigned long rste;
1269 unsigned int shift;
1271 /* Get the first entry of the top level table */
1272 rste = pgd_val(*pgd);
1273 /* Pick up the shift from the table type of the first entry */
1274 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1275 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1278 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1280 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1282 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1283 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1284 return (p4d_t *) pgdp;
1286 #define p4d_offset_lockless p4d_offset_lockless
1288 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1290 return p4d_offset_lockless(pgdp, *pgdp, address);
1293 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1295 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1296 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1297 return (pud_t *) p4dp;
1299 #define pud_offset_lockless pud_offset_lockless
1301 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1303 return pud_offset_lockless(p4dp, *p4dp, address);
1305 #define pud_offset pud_offset
1307 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1309 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1310 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1311 return (pmd_t *) pudp;
1313 #define pmd_offset_lockless pmd_offset_lockless
1315 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1317 return pmd_offset_lockless(pudp, *pudp, address);
1319 #define pmd_offset pmd_offset
1321 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1323 return (unsigned long) pmd_deref(pmd);
1326 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1328 return end <= current->mm->context.asce_limit;
1330 #define gup_fast_permitted gup_fast_permitted
1332 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1333 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1334 #define pte_page(x) pfn_to_page(pte_pfn(x))
1336 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1337 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1338 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1339 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1341 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1343 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1344 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1345 return pmd;
1348 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1350 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1351 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1352 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1353 return pmd;
1356 static inline pmd_t pmd_mkclean(pmd_t pmd)
1358 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1359 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1360 return pmd;
1363 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1365 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1366 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1367 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1368 return pmd;
1371 static inline pud_t pud_wrprotect(pud_t pud)
1373 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1374 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1375 return pud;
1378 static inline pud_t pud_mkwrite(pud_t pud)
1380 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1381 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1382 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1383 return pud;
1386 static inline pud_t pud_mkclean(pud_t pud)
1388 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1389 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1390 return pud;
1393 static inline pud_t pud_mkdirty(pud_t pud)
1395 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1396 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1397 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1398 return pud;
1401 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1402 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1405 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1406 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1408 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1409 return pgprot_val(SEGMENT_NONE);
1410 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1411 return pgprot_val(SEGMENT_RO);
1412 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1413 return pgprot_val(SEGMENT_RX);
1414 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1415 return pgprot_val(SEGMENT_RW);
1416 return pgprot_val(SEGMENT_RWX);
1419 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1421 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1422 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1423 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1424 return pmd;
1427 static inline pmd_t pmd_mkold(pmd_t pmd)
1429 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1430 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1431 return pmd;
1434 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1436 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1437 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1438 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1439 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1440 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1441 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1442 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1443 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1444 return pmd;
1447 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1449 pmd_t __pmd;
1450 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1451 return __pmd;
1454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1456 static inline void __pmdp_csp(pmd_t *pmdp)
1458 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1459 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1462 #define IDTE_GLOBAL 0
1463 #define IDTE_LOCAL 1
1465 #define IDTE_PTOA 0x0800
1466 #define IDTE_NODAT 0x1000
1467 #define IDTE_GUEST_ASCE 0x2000
1469 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1470 unsigned long opt, unsigned long asce,
1471 int local)
1473 unsigned long sto;
1475 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1476 if (__builtin_constant_p(opt) && opt == 0) {
1477 /* flush without guest asce */
1478 asm volatile(
1479 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1480 : "+m" (*pmdp)
1481 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1482 [m4] "i" (local)
1483 : "cc" );
1484 } else {
1485 /* flush with guest asce */
1486 asm volatile(
1487 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1488 : "+m" (*pmdp)
1489 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1490 [r3] "a" (asce), [m4] "i" (local)
1491 : "cc" );
1495 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1496 unsigned long opt, unsigned long asce,
1497 int local)
1499 unsigned long r3o;
1501 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1502 r3o |= _ASCE_TYPE_REGION3;
1503 if (__builtin_constant_p(opt) && opt == 0) {
1504 /* flush without guest asce */
1505 asm volatile(
1506 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1507 : "+m" (*pudp)
1508 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1509 [m4] "i" (local)
1510 : "cc");
1511 } else {
1512 /* flush with guest asce */
1513 asm volatile(
1514 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1515 : "+m" (*pudp)
1516 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1517 [r3] "a" (asce), [m4] "i" (local)
1518 : "cc" );
1522 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1523 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1524 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1529 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1530 pgtable_t pgtable);
1532 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1533 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1535 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1536 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1537 unsigned long addr, pmd_t *pmdp,
1538 pmd_t entry, int dirty)
1540 VM_BUG_ON(addr & ~HPAGE_MASK);
1542 entry = pmd_mkyoung(entry);
1543 if (dirty)
1544 entry = pmd_mkdirty(entry);
1545 if (pmd_val(*pmdp) == pmd_val(entry))
1546 return 0;
1547 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1548 return 1;
1551 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1552 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1553 unsigned long addr, pmd_t *pmdp)
1555 pmd_t pmd = *pmdp;
1557 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1558 return pmd_young(pmd);
1561 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1562 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1563 unsigned long addr, pmd_t *pmdp)
1565 VM_BUG_ON(addr & ~HPAGE_MASK);
1566 return pmdp_test_and_clear_young(vma, addr, pmdp);
1569 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1570 pmd_t *pmdp, pmd_t entry)
1572 if (!MACHINE_HAS_NX)
1573 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1574 *pmdp = entry;
1577 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1579 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1580 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1581 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1582 return pmd;
1585 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1586 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1587 unsigned long addr, pmd_t *pmdp)
1589 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1592 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1593 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1594 unsigned long addr,
1595 pmd_t *pmdp, int full)
1597 if (full) {
1598 pmd_t pmd = *pmdp;
1599 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1600 return pmd;
1602 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1605 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1606 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1607 unsigned long addr, pmd_t *pmdp)
1609 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1612 #define __HAVE_ARCH_PMDP_INVALIDATE
1613 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1614 unsigned long addr, pmd_t *pmdp)
1616 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1618 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1621 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1622 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1623 unsigned long addr, pmd_t *pmdp)
1625 pmd_t pmd = *pmdp;
1627 if (pmd_write(pmd))
1628 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1631 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1632 unsigned long address,
1633 pmd_t *pmdp)
1635 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1637 #define pmdp_collapse_flush pmdp_collapse_flush
1639 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1640 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1642 static inline int pmd_trans_huge(pmd_t pmd)
1644 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1647 #define has_transparent_hugepage has_transparent_hugepage
1648 static inline int has_transparent_hugepage(void)
1650 return MACHINE_HAS_EDAT1 ? 1 : 0;
1652 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1655 * 64 bit swap entry format:
1656 * A page-table entry has some bits we have to treat in a special way.
1657 * Bits 52 and bit 55 have to be zero, otherwise a specification
1658 * exception will occur instead of a page translation exception. The
1659 * specification exception has the bad habit not to store necessary
1660 * information in the lowcore.
1661 * Bits 54 and 63 are used to indicate the page type.
1662 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1663 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1664 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1665 * for the offset.
1666 * | offset |01100|type |00|
1667 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1668 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1671 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1672 #define __SWP_OFFSET_SHIFT 12
1673 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1674 #define __SWP_TYPE_SHIFT 2
1676 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1678 pte_t pte;
1680 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1681 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1682 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1683 return pte;
1686 static inline unsigned long __swp_type(swp_entry_t entry)
1688 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1691 static inline unsigned long __swp_offset(swp_entry_t entry)
1693 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1696 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1698 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1701 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1702 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1704 #define kern_addr_valid(addr) (1)
1706 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1707 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1708 extern int s390_enable_sie(void);
1709 extern int s390_enable_skey(void);
1710 extern void s390_reset_cmma(struct mm_struct *mm);
1712 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1713 #define HAVE_ARCH_UNMAPPED_AREA
1714 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1716 #endif /* _S390_PAGE_H */