1 /* SPDX-License-Identifier: GPL-2.0 */
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 * Derived from "include/asm-i386/pgtable.h"
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
24 extern pgd_t swapper_pg_dir
[];
25 extern void paging_init(void);
26 extern unsigned long s390_invalid_asce
;
35 extern atomic_long_t direct_pages_count
[PG_DIRECT_MAP_MAX
];
37 static inline void update_page_count(int level
, long count
)
39 if (IS_ENABLED(CONFIG_PROC_FS
))
40 atomic_long_add(count
, &direct_pages_count
[level
]);
44 void arch_report_meminfo(struct seq_file
*m
);
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
50 #define update_mmu_cache(vma, address, ptep) do { } while (0)
51 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
54 * ZERO_PAGE is a global shared page that is always zero; used
55 * for zero-mapped memory areas etc..
58 extern unsigned long empty_zero_page
;
59 extern unsigned long zero_page_mask
;
61 #define ZERO_PAGE(vaddr) \
62 (virt_to_page((void *)(empty_zero_page + \
63 (((unsigned long)(vaddr)) &zero_page_mask))))
64 #define __HAVE_COLOR_ZERO_PAGE
66 /* TODO: s390 cannot support io_remap_pfn_range... */
68 #define FIRST_USER_ADDRESS 0UL
70 #define pte_ERROR(e) \
71 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
72 #define pmd_ERROR(e) \
73 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
74 #define pud_ERROR(e) \
75 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
76 #define p4d_ERROR(e) \
77 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
78 #define pgd_ERROR(e) \
79 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
82 * The vmalloc and module area will always be on the topmost area of the
83 * kernel mapping. 512GB are reserved for vmalloc by default.
84 * At the top of the vmalloc area a 2GB area is reserved where modules
85 * will reside. That makes sure that inter module branches always
86 * happen without trampolines and in addition the placement within a
87 * 2GB frame is branch prediction unit friendly.
89 extern unsigned long VMALLOC_START
;
90 extern unsigned long VMALLOC_END
;
91 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
92 extern struct page
*vmemmap
;
93 extern unsigned long vmemmap_size
;
95 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
97 extern unsigned long MODULES_VADDR
;
98 extern unsigned long MODULES_END
;
99 #define MODULES_VADDR MODULES_VADDR
100 #define MODULES_END MODULES_END
101 #define MODULES_LEN (1UL << 31)
103 static inline int is_module_addr(void *addr
)
105 BUILD_BUG_ON(MODULES_LEN
> (1UL << 31));
106 if (addr
< (void *)MODULES_VADDR
)
108 if (addr
> (void *)MODULES_END
)
114 * A 64 bit pagetable entry of S390 has following format:
116 * 0000000000111111111122222222223333333333444444444455555555556666
117 * 0123456789012345678901234567890123456789012345678901234567890123
119 * I Page-Invalid Bit: Page is not available for address-translation
120 * P Page-Protection Bit: Store access not possible for page
121 * C Change-bit override: HW is not required to set change bit
123 * A 64 bit segmenttable entry of S390 has following format:
124 * | P-table origin | TT
125 * 0000000000111111111122222222223333333333444444444455555555556666
126 * 0123456789012345678901234567890123456789012345678901234567890123
128 * I Segment-Invalid Bit: Segment is not available for address-translation
129 * C Common-Segment Bit: Segment is not private (PoP 3-30)
130 * P Page-Protection Bit: Store access not possible for page
133 * A 64 bit region table entry of S390 has following format:
134 * | S-table origin | TF TTTL
135 * 0000000000111111111122222222223333333333444444444455555555556666
136 * 0123456789012345678901234567890123456789012345678901234567890123
138 * I Segment-Invalid Bit: Segment is not available for address-translation
143 * The 64 bit regiontable origin of S390 has following format:
144 * | region table origon | DTTL
145 * 0000000000111111111122222222223333333333444444444455555555556666
146 * 0123456789012345678901234567890123456789012345678901234567890123
148 * X Space-Switch event:
149 * G Segment-Invalid Bit:
150 * P Private-Space Bit:
151 * S Storage-Alteration:
155 * A storage key has the following format:
159 * F : fetch protection bit
164 /* Hardware bits in the page table entry */
165 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
166 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
167 #define _PAGE_INVALID 0x400 /* HW invalid bit */
168 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
170 /* Software bits in the page table entry */
171 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
172 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
173 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
174 #define _PAGE_READ 0x010 /* SW pte read bit */
175 #define _PAGE_WRITE 0x020 /* SW pte write bit */
176 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
177 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
179 #ifdef CONFIG_MEM_SOFT_DIRTY
180 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
182 #define _PAGE_SOFT_DIRTY 0x000
185 /* Set of bits not changed in pte_modify */
186 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
187 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
190 * handle_pte_fault uses pte_present and pte_none to find out the pte type
191 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
192 * distinguish present from not-present ptes. It is changed only with the page
195 * The following table gives the different possible bit combinations for
196 * the pte hardware and software bits in the last 12 bits of a pte
197 * (. unassigned bit, x don't care, t swap type):
205 * prot-none, clean, old .11.xx0000.1
206 * prot-none, clean, young .11.xx0001.1
207 * prot-none, dirty, old .11.xx0010.1
208 * prot-none, dirty, young .11.xx0011.1
209 * read-only, clean, old .11.xx0100.1
210 * read-only, clean, young .01.xx0101.1
211 * read-only, dirty, old .11.xx0110.1
212 * read-only, dirty, young .01.xx0111.1
213 * read-write, clean, old .11.xx1100.1
214 * read-write, clean, young .01.xx1101.1
215 * read-write, dirty, old .10.xx1110.1
216 * read-write, dirty, young .00.xx1111.1
217 * HW-bits: R read-only, I invalid
218 * SW-bits: p present, y young, d dirty, r read, w write, s special,
221 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
222 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
223 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
226 /* Bits in the segment/region table address-space-control-element */
227 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
228 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
229 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
230 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
231 #define _ASCE_REAL_SPACE 0x20 /* real space control */
232 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
233 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
234 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
235 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
236 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
237 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
239 /* Bits in the region table entry */
240 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
241 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
242 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
243 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
244 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
245 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
246 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
247 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
248 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
249 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
251 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
252 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
253 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
254 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
255 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
256 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
258 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
259 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
260 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
261 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
262 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
263 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
265 #ifdef CONFIG_MEM_SOFT_DIRTY
266 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
268 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
271 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
273 /* Bits in the segment table entry */
274 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
277 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
278 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
279 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
280 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
281 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
282 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
290 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
291 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
299 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
300 #define _PAGE_ENTRIES 256 /* number of page table entries */
302 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
303 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
305 #define _REGION1_SHIFT 53
306 #define _REGION2_SHIFT 42
307 #define _REGION3_SHIFT 31
308 #define _SEGMENT_SHIFT 20
310 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
311 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
312 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
313 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
314 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
316 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
317 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
318 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
319 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
321 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
322 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
323 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
324 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
326 #define PMD_SHIFT _SEGMENT_SHIFT
327 #define PUD_SHIFT _REGION3_SHIFT
328 #define P4D_SHIFT _REGION2_SHIFT
329 #define PGDIR_SHIFT _REGION1_SHIFT
331 #define PMD_SIZE _SEGMENT_SIZE
332 #define PUD_SIZE _REGION3_SIZE
333 #define P4D_SIZE _REGION2_SIZE
334 #define PGDIR_SIZE _REGION1_SIZE
336 #define PMD_MASK _SEGMENT_MASK
337 #define PUD_MASK _REGION3_MASK
338 #define P4D_MASK _REGION2_MASK
339 #define PGDIR_MASK _REGION1_MASK
341 #define PTRS_PER_PTE _PAGE_ENTRIES
342 #define PTRS_PER_PMD _CRST_ENTRIES
343 #define PTRS_PER_PUD _CRST_ENTRIES
344 #define PTRS_PER_P4D _CRST_ENTRIES
345 #define PTRS_PER_PGD _CRST_ENTRIES
347 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
350 * Segment table and region3 table entry encoding
351 * (R = read-only, I = invalid, y = young bit):
353 * prot-none, clean, old 00..1...1...00
354 * prot-none, clean, young 01..1...1...00
355 * prot-none, dirty, old 10..1...1...00
356 * prot-none, dirty, young 11..1...1...00
357 * read-only, clean, old 00..1...1...01
358 * read-only, clean, young 01..1...0...01
359 * read-only, dirty, old 10..1...1...01
360 * read-only, dirty, young 11..1...0...01
361 * read-write, clean, old 00..1...1...11
362 * read-write, clean, young 01..1...0...11
363 * read-write, dirty, old 10..0...1...11
364 * read-write, dirty, young 11..0...0...11
365 * The segment table origin is used to distinguish empty (origin==0) from
366 * read-write, old segment table entries (origin!=0)
367 * HW-bits: R read-only, I invalid
368 * SW-bits: y young, d dirty, r read, w write
371 /* Page status table bits for virtualization */
372 #define PGSTE_ACC_BITS 0xf000000000000000UL
373 #define PGSTE_FP_BIT 0x0800000000000000UL
374 #define PGSTE_PCL_BIT 0x0080000000000000UL
375 #define PGSTE_HR_BIT 0x0040000000000000UL
376 #define PGSTE_HC_BIT 0x0020000000000000UL
377 #define PGSTE_GR_BIT 0x0004000000000000UL
378 #define PGSTE_GC_BIT 0x0002000000000000UL
379 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
380 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
381 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
383 /* Guest Page State used for virtualization */
384 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
385 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
386 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
387 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
388 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
389 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
390 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
393 * A user page table pointer has the space-switch-event bit, the
394 * private-space-control bit and the storage-alteration-event-control
395 * bit set. A kernel page table pointer doesn't need them.
397 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
401 * Page protection definitions.
403 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
405 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
406 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
407 _PAGE_INVALID | _PAGE_PROTECT)
408 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
410 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_INVALID | _PAGE_PROTECT)
413 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
415 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
416 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
417 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
418 _PAGE_PROTECT | _PAGE_NOEXEC)
419 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
420 _PAGE_YOUNG | _PAGE_DIRTY)
423 * On s390 the page table entry has an invalid bit and a read-only bit.
424 * Read permission implies execute permission and write permission
425 * implies read permission.
428 #define __P000 PAGE_NONE
429 #define __P001 PAGE_RO
430 #define __P010 PAGE_RO
431 #define __P011 PAGE_RO
432 #define __P100 PAGE_RX
433 #define __P101 PAGE_RX
434 #define __P110 PAGE_RX
435 #define __P111 PAGE_RX
437 #define __S000 PAGE_NONE
438 #define __S001 PAGE_RO
439 #define __S010 PAGE_RW
440 #define __S011 PAGE_RW
441 #define __S100 PAGE_RX
442 #define __S101 PAGE_RX
443 #define __S110 PAGE_RWX
444 #define __S111 PAGE_RWX
447 * Segment entry (large page) protection definitions.
449 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
450 _SEGMENT_ENTRY_PROTECT)
451 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ | \
453 _SEGMENT_ENTRY_NOEXEC)
454 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
456 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE | \
458 _SEGMENT_ENTRY_NOEXEC)
459 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
460 _SEGMENT_ENTRY_WRITE)
461 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
462 _SEGMENT_ENTRY_LARGE | \
463 _SEGMENT_ENTRY_READ | \
464 _SEGMENT_ENTRY_WRITE | \
465 _SEGMENT_ENTRY_YOUNG | \
466 _SEGMENT_ENTRY_DIRTY | \
467 _SEGMENT_ENTRY_NOEXEC)
468 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
469 _SEGMENT_ENTRY_LARGE | \
470 _SEGMENT_ENTRY_READ | \
471 _SEGMENT_ENTRY_YOUNG | \
472 _SEGMENT_ENTRY_PROTECT | \
473 _SEGMENT_ENTRY_NOEXEC)
474 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
475 _SEGMENT_ENTRY_LARGE | \
476 _SEGMENT_ENTRY_READ | \
477 _SEGMENT_ENTRY_WRITE | \
478 _SEGMENT_ENTRY_YOUNG | \
479 _SEGMENT_ENTRY_DIRTY)
482 * Region3 entry (large page) protection definitions.
485 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
486 _REGION3_ENTRY_LARGE | \
487 _REGION3_ENTRY_READ | \
488 _REGION3_ENTRY_WRITE | \
489 _REGION3_ENTRY_YOUNG | \
490 _REGION3_ENTRY_DIRTY | \
491 _REGION_ENTRY_NOEXEC)
492 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
493 _REGION3_ENTRY_LARGE | \
494 _REGION3_ENTRY_READ | \
495 _REGION3_ENTRY_YOUNG | \
496 _REGION_ENTRY_PROTECT | \
497 _REGION_ENTRY_NOEXEC)
499 static inline bool mm_p4d_folded(struct mm_struct
*mm
)
501 return mm
->context
.asce_limit
<= _REGION1_SIZE
;
503 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
505 static inline bool mm_pud_folded(struct mm_struct
*mm
)
507 return mm
->context
.asce_limit
<= _REGION2_SIZE
;
509 #define mm_pud_folded(mm) mm_pud_folded(mm)
511 static inline bool mm_pmd_folded(struct mm_struct
*mm
)
513 return mm
->context
.asce_limit
<= _REGION3_SIZE
;
515 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
517 static inline int mm_has_pgste(struct mm_struct
*mm
)
520 if (unlikely(mm
->context
.has_pgste
))
526 static inline int mm_is_protected(struct mm_struct
*mm
)
529 if (unlikely(atomic_read(&mm
->context
.is_protected
)))
535 static inline int mm_alloc_pgste(struct mm_struct
*mm
)
538 if (unlikely(mm
->context
.alloc_pgste
))
545 * In the case that a guest uses storage keys
546 * faults should no longer be backed by zero pages
548 #define mm_forbids_zeropage mm_has_pgste
549 static inline int mm_uses_skeys(struct mm_struct
*mm
)
552 if (mm
->context
.uses_skeys
)
558 static inline void csp(unsigned int *ptr
, unsigned int old
, unsigned int new)
560 register unsigned long reg2
asm("2") = old
;
561 register unsigned long reg3
asm("3") = new;
562 unsigned long address
= (unsigned long)ptr
| 1;
566 : "+d" (reg2
), "+m" (*ptr
)
567 : "d" (reg3
), "d" (address
)
571 static inline void cspg(unsigned long *ptr
, unsigned long old
, unsigned long new)
573 register unsigned long reg2
asm("2") = old
;
574 register unsigned long reg3
asm("3") = new;
575 unsigned long address
= (unsigned long)ptr
| 1;
578 " .insn rre,0xb98a0000,%0,%3"
579 : "+d" (reg2
), "+m" (*ptr
)
580 : "d" (reg3
), "d" (address
)
584 #define CRDTE_DTT_PAGE 0x00UL
585 #define CRDTE_DTT_SEGMENT 0x10UL
586 #define CRDTE_DTT_REGION3 0x14UL
587 #define CRDTE_DTT_REGION2 0x18UL
588 #define CRDTE_DTT_REGION1 0x1cUL
590 static inline void crdte(unsigned long old
, unsigned long new,
591 unsigned long table
, unsigned long dtt
,
592 unsigned long address
, unsigned long asce
)
594 register unsigned long reg2
asm("2") = old
;
595 register unsigned long reg3
asm("3") = new;
596 register unsigned long reg4
asm("4") = table
| dtt
;
597 register unsigned long reg5
asm("5") = address
;
599 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
601 : "d" (reg3
), "d" (reg4
), "d" (reg5
), "a" (asce
)
606 * pgd/p4d/pud/pmd/pte query functions
608 static inline int pgd_folded(pgd_t pgd
)
610 return (pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R1
;
613 static inline int pgd_present(pgd_t pgd
)
617 return (pgd_val(pgd
) & _REGION_ENTRY_ORIGIN
) != 0UL;
620 static inline int pgd_none(pgd_t pgd
)
624 return (pgd_val(pgd
) & _REGION_ENTRY_INVALID
) != 0UL;
627 static inline int pgd_bad(pgd_t pgd
)
629 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R1
)
631 return (pgd_val(pgd
) & ~_REGION_ENTRY_BITS
) != 0;
634 static inline unsigned long pgd_pfn(pgd_t pgd
)
636 unsigned long origin_mask
;
638 origin_mask
= _REGION_ENTRY_ORIGIN
;
639 return (pgd_val(pgd
) & origin_mask
) >> PAGE_SHIFT
;
642 static inline int p4d_folded(p4d_t p4d
)
644 return (p4d_val(p4d
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
;
647 static inline int p4d_present(p4d_t p4d
)
651 return (p4d_val(p4d
) & _REGION_ENTRY_ORIGIN
) != 0UL;
654 static inline int p4d_none(p4d_t p4d
)
658 return p4d_val(p4d
) == _REGION2_ENTRY_EMPTY
;
661 static inline unsigned long p4d_pfn(p4d_t p4d
)
663 unsigned long origin_mask
;
665 origin_mask
= _REGION_ENTRY_ORIGIN
;
666 return (p4d_val(p4d
) & origin_mask
) >> PAGE_SHIFT
;
669 static inline int pud_folded(pud_t pud
)
671 return (pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
;
674 static inline int pud_present(pud_t pud
)
678 return (pud_val(pud
) & _REGION_ENTRY_ORIGIN
) != 0UL;
681 static inline int pud_none(pud_t pud
)
685 return pud_val(pud
) == _REGION3_ENTRY_EMPTY
;
688 #define pud_leaf pud_large
689 static inline int pud_large(pud_t pud
)
691 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) != _REGION_ENTRY_TYPE_R3
)
693 return !!(pud_val(pud
) & _REGION3_ENTRY_LARGE
);
696 #define pmd_leaf pmd_large
697 static inline int pmd_large(pmd_t pmd
)
699 return (pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
) != 0;
702 static inline int pmd_bad(pmd_t pmd
)
704 if ((pmd_val(pmd
) & _SEGMENT_ENTRY_TYPE_MASK
) > 0 || pmd_large(pmd
))
706 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS
) != 0;
709 static inline int pud_bad(pud_t pud
)
711 unsigned long type
= pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
;
713 if (type
> _REGION_ENTRY_TYPE_R3
|| pud_large(pud
))
715 if (type
< _REGION_ENTRY_TYPE_R3
)
717 return (pud_val(pud
) & ~_REGION_ENTRY_BITS
) != 0;
720 static inline int p4d_bad(p4d_t p4d
)
722 unsigned long type
= p4d_val(p4d
) & _REGION_ENTRY_TYPE_MASK
;
724 if (type
> _REGION_ENTRY_TYPE_R2
)
726 if (type
< _REGION_ENTRY_TYPE_R2
)
728 return (p4d_val(p4d
) & ~_REGION_ENTRY_BITS
) != 0;
731 static inline int pmd_present(pmd_t pmd
)
733 return pmd_val(pmd
) != _SEGMENT_ENTRY_EMPTY
;
736 static inline int pmd_none(pmd_t pmd
)
738 return pmd_val(pmd
) == _SEGMENT_ENTRY_EMPTY
;
741 #define pmd_write pmd_write
742 static inline int pmd_write(pmd_t pmd
)
744 return (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
) != 0;
747 #define pud_write pud_write
748 static inline int pud_write(pud_t pud
)
750 return (pud_val(pud
) & _REGION3_ENTRY_WRITE
) != 0;
753 static inline int pmd_dirty(pmd_t pmd
)
755 return (pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
) != 0;
758 static inline int pmd_young(pmd_t pmd
)
760 return (pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
) != 0;
763 static inline int pte_present(pte_t pte
)
765 /* Bit pattern: (pte & 0x001) == 0x001 */
766 return (pte_val(pte
) & _PAGE_PRESENT
) != 0;
769 static inline int pte_none(pte_t pte
)
771 /* Bit pattern: pte == 0x400 */
772 return pte_val(pte
) == _PAGE_INVALID
;
775 static inline int pte_swap(pte_t pte
)
777 /* Bit pattern: (pte & 0x201) == 0x200 */
778 return (pte_val(pte
) & (_PAGE_PROTECT
| _PAGE_PRESENT
))
782 static inline int pte_special(pte_t pte
)
784 return (pte_val(pte
) & _PAGE_SPECIAL
);
787 #define __HAVE_ARCH_PTE_SAME
788 static inline int pte_same(pte_t a
, pte_t b
)
790 return pte_val(a
) == pte_val(b
);
793 #ifdef CONFIG_NUMA_BALANCING
794 static inline int pte_protnone(pte_t pte
)
796 return pte_present(pte
) && !(pte_val(pte
) & _PAGE_READ
);
799 static inline int pmd_protnone(pmd_t pmd
)
801 /* pmd_large(pmd) implies pmd_present(pmd) */
802 return pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_READ
);
806 static inline int pte_soft_dirty(pte_t pte
)
808 return pte_val(pte
) & _PAGE_SOFT_DIRTY
;
810 #define pte_swp_soft_dirty pte_soft_dirty
812 static inline pte_t
pte_mksoft_dirty(pte_t pte
)
814 pte_val(pte
) |= _PAGE_SOFT_DIRTY
;
817 #define pte_swp_mksoft_dirty pte_mksoft_dirty
819 static inline pte_t
pte_clear_soft_dirty(pte_t pte
)
821 pte_val(pte
) &= ~_PAGE_SOFT_DIRTY
;
824 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
826 static inline int pmd_soft_dirty(pmd_t pmd
)
828 return pmd_val(pmd
) & _SEGMENT_ENTRY_SOFT_DIRTY
;
831 static inline pmd_t
pmd_mksoft_dirty(pmd_t pmd
)
833 pmd_val(pmd
) |= _SEGMENT_ENTRY_SOFT_DIRTY
;
837 static inline pmd_t
pmd_clear_soft_dirty(pmd_t pmd
)
839 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_SOFT_DIRTY
;
844 * query functions pte_write/pte_dirty/pte_young only work if
845 * pte_present() is true. Undefined behaviour if not..
847 static inline int pte_write(pte_t pte
)
849 return (pte_val(pte
) & _PAGE_WRITE
) != 0;
852 static inline int pte_dirty(pte_t pte
)
854 return (pte_val(pte
) & _PAGE_DIRTY
) != 0;
857 static inline int pte_young(pte_t pte
)
859 return (pte_val(pte
) & _PAGE_YOUNG
) != 0;
862 #define __HAVE_ARCH_PTE_UNUSED
863 static inline int pte_unused(pte_t pte
)
865 return pte_val(pte
) & _PAGE_UNUSED
;
869 * pgd/pmd/pte modification functions
872 static inline void pgd_clear(pgd_t
*pgd
)
874 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R1
)
875 pgd_val(*pgd
) = _REGION1_ENTRY_EMPTY
;
878 static inline void p4d_clear(p4d_t
*p4d
)
880 if ((p4d_val(*p4d
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
881 p4d_val(*p4d
) = _REGION2_ENTRY_EMPTY
;
884 static inline void pud_clear(pud_t
*pud
)
886 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
887 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
890 static inline void pmd_clear(pmd_t
*pmdp
)
892 pmd_val(*pmdp
) = _SEGMENT_ENTRY_EMPTY
;
895 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
897 pte_val(*ptep
) = _PAGE_INVALID
;
901 * The following pte modification functions only work if
902 * pte_present() is true. Undefined behaviour if not..
904 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
906 pte_val(pte
) &= _PAGE_CHG_MASK
;
907 pte_val(pte
) |= pgprot_val(newprot
);
909 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
910 * has the invalid bit set, clear it again for readable, young pages
912 if ((pte_val(pte
) & _PAGE_YOUNG
) && (pte_val(pte
) & _PAGE_READ
))
913 pte_val(pte
) &= ~_PAGE_INVALID
;
915 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
916 * protection bit set, clear it again for writable, dirty pages
918 if ((pte_val(pte
) & _PAGE_DIRTY
) && (pte_val(pte
) & _PAGE_WRITE
))
919 pte_val(pte
) &= ~_PAGE_PROTECT
;
923 static inline pte_t
pte_wrprotect(pte_t pte
)
925 pte_val(pte
) &= ~_PAGE_WRITE
;
926 pte_val(pte
) |= _PAGE_PROTECT
;
930 static inline pte_t
pte_mkwrite(pte_t pte
)
932 pte_val(pte
) |= _PAGE_WRITE
;
933 if (pte_val(pte
) & _PAGE_DIRTY
)
934 pte_val(pte
) &= ~_PAGE_PROTECT
;
938 static inline pte_t
pte_mkclean(pte_t pte
)
940 pte_val(pte
) &= ~_PAGE_DIRTY
;
941 pte_val(pte
) |= _PAGE_PROTECT
;
945 static inline pte_t
pte_mkdirty(pte_t pte
)
947 pte_val(pte
) |= _PAGE_DIRTY
| _PAGE_SOFT_DIRTY
;
948 if (pte_val(pte
) & _PAGE_WRITE
)
949 pte_val(pte
) &= ~_PAGE_PROTECT
;
953 static inline pte_t
pte_mkold(pte_t pte
)
955 pte_val(pte
) &= ~_PAGE_YOUNG
;
956 pte_val(pte
) |= _PAGE_INVALID
;
960 static inline pte_t
pte_mkyoung(pte_t pte
)
962 pte_val(pte
) |= _PAGE_YOUNG
;
963 if (pte_val(pte
) & _PAGE_READ
)
964 pte_val(pte
) &= ~_PAGE_INVALID
;
968 static inline pte_t
pte_mkspecial(pte_t pte
)
970 pte_val(pte
) |= _PAGE_SPECIAL
;
974 #ifdef CONFIG_HUGETLB_PAGE
975 static inline pte_t
pte_mkhuge(pte_t pte
)
977 pte_val(pte
) |= _PAGE_LARGE
;
982 #define IPTE_GLOBAL 0
985 #define IPTE_NODAT 0x400
986 #define IPTE_GUEST_ASCE 0x800
988 static __always_inline
void __ptep_ipte(unsigned long address
, pte_t
*ptep
,
989 unsigned long opt
, unsigned long asce
,
992 unsigned long pto
= (unsigned long) ptep
;
994 if (__builtin_constant_p(opt
) && opt
== 0) {
995 /* Invalidation + TLB flush for the pte */
997 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
998 : "+m" (*ptep
) : [r1
] "a" (pto
), [r2
] "a" (address
),
1003 /* Invalidate ptes with options + TLB flush of the ptes */
1004 opt
= opt
| (asce
& _ASCE_ORIGIN
);
1006 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1007 : [r2
] "+a" (address
), [r3
] "+a" (opt
)
1008 : [r1
] "a" (pto
), [m4
] "i" (local
) : "memory");
1011 static __always_inline
void __ptep_ipte_range(unsigned long address
, int nr
,
1012 pte_t
*ptep
, int local
)
1014 unsigned long pto
= (unsigned long) ptep
;
1016 /* Invalidate a range of ptes + TLB flush of the ptes */
1019 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1020 : [r2
] "+a" (address
), [r3
] "+a" (nr
)
1021 : [r1
] "a" (pto
), [m4
] "i" (local
) : "memory");
1022 } while (nr
!= 255);
1026 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1027 * both clear the TLB for the unmapped pte. The reason is that
1028 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1029 * to modify an active pte. The sequence is
1030 * 1) ptep_get_and_clear
1032 * 3) flush_tlb_range
1033 * On s390 the tlb needs to get flushed with the modification of the pte
1034 * if the pte is active. The only way how this can be implemented is to
1035 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1038 pte_t
ptep_xchg_direct(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
1039 pte_t
ptep_xchg_lazy(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
1041 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1042 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
1043 unsigned long addr
, pte_t
*ptep
)
1047 pte
= ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, pte_mkold(pte
));
1048 return pte_young(pte
);
1051 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1052 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
1053 unsigned long address
, pte_t
*ptep
)
1055 return ptep_test_and_clear_young(vma
, address
, ptep
);
1058 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1059 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
1060 unsigned long addr
, pte_t
*ptep
)
1064 res
= ptep_xchg_lazy(mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
1065 if (mm_is_protected(mm
) && pte_present(res
))
1066 uv_convert_from_secure(pte_val(res
) & PAGE_MASK
);
1070 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1071 pte_t
ptep_modify_prot_start(struct vm_area_struct
*, unsigned long, pte_t
*);
1072 void ptep_modify_prot_commit(struct vm_area_struct
*, unsigned long,
1073 pte_t
*, pte_t
, pte_t
);
1075 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1076 static inline pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
1077 unsigned long addr
, pte_t
*ptep
)
1081 res
= ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
1082 if (mm_is_protected(vma
->vm_mm
) && pte_present(res
))
1083 uv_convert_from_secure(pte_val(res
) & PAGE_MASK
);
1088 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1089 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1090 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1091 * cannot be accessed while the batched unmap is running. In this case
1092 * full==1 and a simple pte_clear is enough. See tlb.h.
1094 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1095 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
1097 pte_t
*ptep
, int full
)
1103 *ptep
= __pte(_PAGE_INVALID
);
1105 res
= ptep_xchg_lazy(mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
1107 if (mm_is_protected(mm
) && pte_present(res
))
1108 uv_convert_from_secure(pte_val(res
) & PAGE_MASK
);
1112 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1113 static inline void ptep_set_wrprotect(struct mm_struct
*mm
,
1114 unsigned long addr
, pte_t
*ptep
)
1119 ptep_xchg_lazy(mm
, addr
, ptep
, pte_wrprotect(pte
));
1122 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1123 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
1124 unsigned long addr
, pte_t
*ptep
,
1125 pte_t entry
, int dirty
)
1127 if (pte_same(*ptep
, entry
))
1129 ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, entry
);
1134 * Additional functions to handle KVM guest page tables
1136 void ptep_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
1137 pte_t
*ptep
, pte_t entry
);
1138 void ptep_set_notify(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
);
1139 void ptep_notify(struct mm_struct
*mm
, unsigned long addr
,
1140 pte_t
*ptep
, unsigned long bits
);
1141 int ptep_force_prot(struct mm_struct
*mm
, unsigned long gaddr
,
1142 pte_t
*ptep
, int prot
, unsigned long bit
);
1143 void ptep_zap_unused(struct mm_struct
*mm
, unsigned long addr
,
1144 pte_t
*ptep
, int reset
);
1145 void ptep_zap_key(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
);
1146 int ptep_shadow_pte(struct mm_struct
*mm
, unsigned long saddr
,
1147 pte_t
*sptep
, pte_t
*tptep
, pte_t pte
);
1148 void ptep_unshadow_pte(struct mm_struct
*mm
, unsigned long saddr
, pte_t
*ptep
);
1150 bool ptep_test_and_clear_uc(struct mm_struct
*mm
, unsigned long address
,
1152 int set_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
,
1153 unsigned char key
, bool nq
);
1154 int cond_set_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
,
1155 unsigned char key
, unsigned char *oldkey
,
1156 bool nq
, bool mr
, bool mc
);
1157 int reset_guest_reference_bit(struct mm_struct
*mm
, unsigned long addr
);
1158 int get_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
,
1159 unsigned char *key
);
1161 int set_pgste_bits(struct mm_struct
*mm
, unsigned long addr
,
1162 unsigned long bits
, unsigned long value
);
1163 int get_pgste(struct mm_struct
*mm
, unsigned long hva
, unsigned long *pgstep
);
1164 int pgste_perform_essa(struct mm_struct
*mm
, unsigned long hva
, int orc
,
1165 unsigned long *oldpte
, unsigned long *oldpgste
);
1166 void gmap_pmdp_csp(struct mm_struct
*mm
, unsigned long vmaddr
);
1167 void gmap_pmdp_invalidate(struct mm_struct
*mm
, unsigned long vmaddr
);
1168 void gmap_pmdp_idte_local(struct mm_struct
*mm
, unsigned long vmaddr
);
1169 void gmap_pmdp_idte_global(struct mm_struct
*mm
, unsigned long vmaddr
);
1171 #define pgprot_writecombine pgprot_writecombine
1172 pgprot_t
pgprot_writecombine(pgprot_t prot
);
1174 #define pgprot_writethrough pgprot_writethrough
1175 pgprot_t
pgprot_writethrough(pgprot_t prot
);
1178 * Certain architectures need to do special things when PTEs
1179 * within a page table are directly modified. Thus, the following
1180 * hook is made available.
1182 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
1183 pte_t
*ptep
, pte_t entry
)
1185 if (pte_present(entry
))
1186 pte_val(entry
) &= ~_PAGE_UNUSED
;
1187 if (mm_has_pgste(mm
))
1188 ptep_set_pte_at(mm
, addr
, ptep
, entry
);
1194 * Conversion functions: convert a page and protection to a page entry,
1195 * and a page entry and page directory to the page they refer to.
1197 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
1201 pte_val(__pte
) = physpage
| pgprot_val(pgprot
);
1202 if (!MACHINE_HAS_NX
)
1203 pte_val(__pte
) &= ~_PAGE_NOEXEC
;
1204 return pte_mkyoung(__pte
);
1207 static inline pte_t
mk_pte(struct page
*page
, pgprot_t pgprot
)
1209 unsigned long physpage
= page_to_phys(page
);
1210 pte_t __pte
= mk_pte_phys(physpage
, pgprot
);
1212 if (pte_write(__pte
) && PageDirty(page
))
1213 __pte
= pte_mkdirty(__pte
);
1217 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1218 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1219 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1220 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1222 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1223 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1225 static inline unsigned long pmd_deref(pmd_t pmd
)
1227 unsigned long origin_mask
;
1229 origin_mask
= _SEGMENT_ENTRY_ORIGIN
;
1231 origin_mask
= _SEGMENT_ENTRY_ORIGIN_LARGE
;
1232 return pmd_val(pmd
) & origin_mask
;
1235 static inline unsigned long pmd_pfn(pmd_t pmd
)
1237 return pmd_deref(pmd
) >> PAGE_SHIFT
;
1240 static inline unsigned long pud_deref(pud_t pud
)
1242 unsigned long origin_mask
;
1244 origin_mask
= _REGION_ENTRY_ORIGIN
;
1246 origin_mask
= _REGION3_ENTRY_ORIGIN_LARGE
;
1247 return pud_val(pud
) & origin_mask
;
1250 static inline unsigned long pud_pfn(pud_t pud
)
1252 return pud_deref(pud
) >> PAGE_SHIFT
;
1256 * The pgd_offset function *always* adds the index for the top-level
1257 * region/segment table. This is done to get a sequence like the
1258 * following to work:
1259 * pgdp = pgd_offset(current->mm, addr);
1260 * pgd = READ_ONCE(*pgdp);
1261 * p4dp = p4d_offset(&pgd, addr);
1263 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1264 * only add an index if they dereferenced the pointer.
1266 static inline pgd_t
*pgd_offset_raw(pgd_t
*pgd
, unsigned long address
)
1271 /* Get the first entry of the top level table */
1272 rste
= pgd_val(*pgd
);
1273 /* Pick up the shift from the table type of the first entry */
1274 shift
= ((rste
& _REGION_ENTRY_TYPE_MASK
) >> 2) * 11 + 20;
1275 return pgd
+ ((address
>> shift
) & (PTRS_PER_PGD
- 1));
1278 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1280 static inline p4d_t
*p4d_offset_lockless(pgd_t
*pgdp
, pgd_t pgd
, unsigned long address
)
1282 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) >= _REGION_ENTRY_TYPE_R1
)
1283 return (p4d_t
*) pgd_deref(pgd
) + p4d_index(address
);
1284 return (p4d_t
*) pgdp
;
1286 #define p4d_offset_lockless p4d_offset_lockless
1288 static inline p4d_t
*p4d_offset(pgd_t
*pgdp
, unsigned long address
)
1290 return p4d_offset_lockless(pgdp
, *pgdp
, address
);
1293 static inline pud_t
*pud_offset_lockless(p4d_t
*p4dp
, p4d_t p4d
, unsigned long address
)
1295 if ((p4d_val(p4d
) & _REGION_ENTRY_TYPE_MASK
) >= _REGION_ENTRY_TYPE_R2
)
1296 return (pud_t
*) p4d_deref(p4d
) + pud_index(address
);
1297 return (pud_t
*) p4dp
;
1299 #define pud_offset_lockless pud_offset_lockless
1301 static inline pud_t
*pud_offset(p4d_t
*p4dp
, unsigned long address
)
1303 return pud_offset_lockless(p4dp
, *p4dp
, address
);
1305 #define pud_offset pud_offset
1307 static inline pmd_t
*pmd_offset_lockless(pud_t
*pudp
, pud_t pud
, unsigned long address
)
1309 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) >= _REGION_ENTRY_TYPE_R3
)
1310 return (pmd_t
*) pud_deref(pud
) + pmd_index(address
);
1311 return (pmd_t
*) pudp
;
1313 #define pmd_offset_lockless pmd_offset_lockless
1315 static inline pmd_t
*pmd_offset(pud_t
*pudp
, unsigned long address
)
1317 return pmd_offset_lockless(pudp
, *pudp
, address
);
1319 #define pmd_offset pmd_offset
1321 static inline unsigned long pmd_page_vaddr(pmd_t pmd
)
1323 return (unsigned long) pmd_deref(pmd
);
1326 static inline bool gup_fast_permitted(unsigned long start
, unsigned long end
)
1328 return end
<= current
->mm
->context
.asce_limit
;
1330 #define gup_fast_permitted gup_fast_permitted
1332 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1333 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1334 #define pte_page(x) pfn_to_page(pte_pfn(x))
1336 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1337 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1338 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1339 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1341 static inline pmd_t
pmd_wrprotect(pmd_t pmd
)
1343 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_WRITE
;
1344 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1348 static inline pmd_t
pmd_mkwrite(pmd_t pmd
)
1350 pmd_val(pmd
) |= _SEGMENT_ENTRY_WRITE
;
1351 if (pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
)
1352 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1356 static inline pmd_t
pmd_mkclean(pmd_t pmd
)
1358 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_DIRTY
;
1359 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1363 static inline pmd_t
pmd_mkdirty(pmd_t pmd
)
1365 pmd_val(pmd
) |= _SEGMENT_ENTRY_DIRTY
| _SEGMENT_ENTRY_SOFT_DIRTY
;
1366 if (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
)
1367 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1371 static inline pud_t
pud_wrprotect(pud_t pud
)
1373 pud_val(pud
) &= ~_REGION3_ENTRY_WRITE
;
1374 pud_val(pud
) |= _REGION_ENTRY_PROTECT
;
1378 static inline pud_t
pud_mkwrite(pud_t pud
)
1380 pud_val(pud
) |= _REGION3_ENTRY_WRITE
;
1381 if (pud_val(pud
) & _REGION3_ENTRY_DIRTY
)
1382 pud_val(pud
) &= ~_REGION_ENTRY_PROTECT
;
1386 static inline pud_t
pud_mkclean(pud_t pud
)
1388 pud_val(pud
) &= ~_REGION3_ENTRY_DIRTY
;
1389 pud_val(pud
) |= _REGION_ENTRY_PROTECT
;
1393 static inline pud_t
pud_mkdirty(pud_t pud
)
1395 pud_val(pud
) |= _REGION3_ENTRY_DIRTY
| _REGION3_ENTRY_SOFT_DIRTY
;
1396 if (pud_val(pud
) & _REGION3_ENTRY_WRITE
)
1397 pud_val(pud
) &= ~_REGION_ENTRY_PROTECT
;
1401 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1402 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot
)
1405 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1406 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1408 if (pgprot_val(pgprot
) == pgprot_val(PAGE_NONE
))
1409 return pgprot_val(SEGMENT_NONE
);
1410 if (pgprot_val(pgprot
) == pgprot_val(PAGE_RO
))
1411 return pgprot_val(SEGMENT_RO
);
1412 if (pgprot_val(pgprot
) == pgprot_val(PAGE_RX
))
1413 return pgprot_val(SEGMENT_RX
);
1414 if (pgprot_val(pgprot
) == pgprot_val(PAGE_RW
))
1415 return pgprot_val(SEGMENT_RW
);
1416 return pgprot_val(SEGMENT_RWX
);
1419 static inline pmd_t
pmd_mkyoung(pmd_t pmd
)
1421 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1422 if (pmd_val(pmd
) & _SEGMENT_ENTRY_READ
)
1423 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_INVALID
;
1427 static inline pmd_t
pmd_mkold(pmd_t pmd
)
1429 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_YOUNG
;
1430 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1434 static inline pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
1436 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN_LARGE
|
1437 _SEGMENT_ENTRY_DIRTY
| _SEGMENT_ENTRY_YOUNG
|
1438 _SEGMENT_ENTRY_LARGE
| _SEGMENT_ENTRY_SOFT_DIRTY
;
1439 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1440 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1441 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1442 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
))
1443 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1447 static inline pmd_t
mk_pmd_phys(unsigned long physpage
, pgprot_t pgprot
)
1450 pmd_val(__pmd
) = physpage
+ massage_pgprot_pmd(pgprot
);
1454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1456 static inline void __pmdp_csp(pmd_t
*pmdp
)
1458 csp((unsigned int *)pmdp
+ 1, pmd_val(*pmdp
),
1459 pmd_val(*pmdp
) | _SEGMENT_ENTRY_INVALID
);
1462 #define IDTE_GLOBAL 0
1463 #define IDTE_LOCAL 1
1465 #define IDTE_PTOA 0x0800
1466 #define IDTE_NODAT 0x1000
1467 #define IDTE_GUEST_ASCE 0x2000
1469 static __always_inline
void __pmdp_idte(unsigned long addr
, pmd_t
*pmdp
,
1470 unsigned long opt
, unsigned long asce
,
1475 sto
= (unsigned long) pmdp
- pmd_index(addr
) * sizeof(pmd_t
);
1476 if (__builtin_constant_p(opt
) && opt
== 0) {
1477 /* flush without guest asce */
1479 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1481 : [r1
] "a" (sto
), [r2
] "a" ((addr
& HPAGE_MASK
)),
1485 /* flush with guest asce */
1487 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1489 : [r1
] "a" (sto
), [r2
] "a" ((addr
& HPAGE_MASK
) | opt
),
1490 [r3
] "a" (asce
), [m4
] "i" (local
)
1495 static __always_inline
void __pudp_idte(unsigned long addr
, pud_t
*pudp
,
1496 unsigned long opt
, unsigned long asce
,
1501 r3o
= (unsigned long) pudp
- pud_index(addr
) * sizeof(pud_t
);
1502 r3o
|= _ASCE_TYPE_REGION3
;
1503 if (__builtin_constant_p(opt
) && opt
== 0) {
1504 /* flush without guest asce */
1506 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1508 : [r1
] "a" (r3o
), [r2
] "a" ((addr
& PUD_MASK
)),
1512 /* flush with guest asce */
1514 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1516 : [r1
] "a" (r3o
), [r2
] "a" ((addr
& PUD_MASK
) | opt
),
1517 [r3
] "a" (asce
), [m4
] "i" (local
)
1522 pmd_t
pmdp_xchg_direct(struct mm_struct
*, unsigned long, pmd_t
*, pmd_t
);
1523 pmd_t
pmdp_xchg_lazy(struct mm_struct
*, unsigned long, pmd_t
*, pmd_t
);
1524 pud_t
pudp_xchg_direct(struct mm_struct
*, unsigned long, pud_t
*, pud_t
);
1526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1529 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
1532 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1533 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
1535 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1536 static inline int pmdp_set_access_flags(struct vm_area_struct
*vma
,
1537 unsigned long addr
, pmd_t
*pmdp
,
1538 pmd_t entry
, int dirty
)
1540 VM_BUG_ON(addr
& ~HPAGE_MASK
);
1542 entry
= pmd_mkyoung(entry
);
1544 entry
= pmd_mkdirty(entry
);
1545 if (pmd_val(*pmdp
) == pmd_val(entry
))
1547 pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, entry
);
1551 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1552 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
1553 unsigned long addr
, pmd_t
*pmdp
)
1557 pmd
= pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, pmd_mkold(pmd
));
1558 return pmd_young(pmd
);
1561 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1562 static inline int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
1563 unsigned long addr
, pmd_t
*pmdp
)
1565 VM_BUG_ON(addr
& ~HPAGE_MASK
);
1566 return pmdp_test_and_clear_young(vma
, addr
, pmdp
);
1569 static inline void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
1570 pmd_t
*pmdp
, pmd_t entry
)
1572 if (!MACHINE_HAS_NX
)
1573 pmd_val(entry
) &= ~_SEGMENT_ENTRY_NOEXEC
;
1577 static inline pmd_t
pmd_mkhuge(pmd_t pmd
)
1579 pmd_val(pmd
) |= _SEGMENT_ENTRY_LARGE
;
1580 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1581 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1585 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1586 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
1587 unsigned long addr
, pmd_t
*pmdp
)
1589 return pmdp_xchg_direct(mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_EMPTY
));
1592 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1593 static inline pmd_t
pmdp_huge_get_and_clear_full(struct vm_area_struct
*vma
,
1595 pmd_t
*pmdp
, int full
)
1599 *pmdp
= __pmd(_SEGMENT_ENTRY_EMPTY
);
1602 return pmdp_xchg_lazy(vma
->vm_mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_EMPTY
));
1605 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1606 static inline pmd_t
pmdp_huge_clear_flush(struct vm_area_struct
*vma
,
1607 unsigned long addr
, pmd_t
*pmdp
)
1609 return pmdp_huge_get_and_clear(vma
->vm_mm
, addr
, pmdp
);
1612 #define __HAVE_ARCH_PMDP_INVALIDATE
1613 static inline pmd_t
pmdp_invalidate(struct vm_area_struct
*vma
,
1614 unsigned long addr
, pmd_t
*pmdp
)
1616 pmd_t pmd
= __pmd(pmd_val(*pmdp
) | _SEGMENT_ENTRY_INVALID
);
1618 return pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, pmd
);
1621 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1622 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
1623 unsigned long addr
, pmd_t
*pmdp
)
1628 pmd
= pmdp_xchg_lazy(mm
, addr
, pmdp
, pmd_wrprotect(pmd
));
1631 static inline pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
1632 unsigned long address
,
1635 return pmdp_huge_get_and_clear(vma
->vm_mm
, address
, pmdp
);
1637 #define pmdp_collapse_flush pmdp_collapse_flush
1639 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1640 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1642 static inline int pmd_trans_huge(pmd_t pmd
)
1644 return pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
;
1647 #define has_transparent_hugepage has_transparent_hugepage
1648 static inline int has_transparent_hugepage(void)
1650 return MACHINE_HAS_EDAT1
? 1 : 0;
1652 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1655 * 64 bit swap entry format:
1656 * A page-table entry has some bits we have to treat in a special way.
1657 * Bits 52 and bit 55 have to be zero, otherwise a specification
1658 * exception will occur instead of a page translation exception. The
1659 * specification exception has the bad habit not to store necessary
1660 * information in the lowcore.
1661 * Bits 54 and 63 are used to indicate the page type.
1662 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1663 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1664 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1666 * | offset |01100|type |00|
1667 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1668 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1671 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1672 #define __SWP_OFFSET_SHIFT 12
1673 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1674 #define __SWP_TYPE_SHIFT 2
1676 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
1680 pte_val(pte
) = _PAGE_INVALID
| _PAGE_PROTECT
;
1681 pte_val(pte
) |= (offset
& __SWP_OFFSET_MASK
) << __SWP_OFFSET_SHIFT
;
1682 pte_val(pte
) |= (type
& __SWP_TYPE_MASK
) << __SWP_TYPE_SHIFT
;
1686 static inline unsigned long __swp_type(swp_entry_t entry
)
1688 return (entry
.val
>> __SWP_TYPE_SHIFT
) & __SWP_TYPE_MASK
;
1691 static inline unsigned long __swp_offset(swp_entry_t entry
)
1693 return (entry
.val
>> __SWP_OFFSET_SHIFT
) & __SWP_OFFSET_MASK
;
1696 static inline swp_entry_t
__swp_entry(unsigned long type
, unsigned long offset
)
1698 return (swp_entry_t
) { pte_val(mk_swap_pte(type
, offset
)) };
1701 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1702 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1704 #define kern_addr_valid(addr) (1)
1706 extern int vmem_add_mapping(unsigned long start
, unsigned long size
);
1707 extern void vmem_remove_mapping(unsigned long start
, unsigned long size
);
1708 extern int s390_enable_sie(void);
1709 extern int s390_enable_skey(void);
1710 extern void s390_reset_cmma(struct mm_struct
*mm
);
1712 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1713 #define HAVE_ARCH_UNMAPPED_AREA
1714 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1716 #endif /* _S390_PAGE_H */