1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
21 #include "pcm_local.h"
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
33 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
34 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
);
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
45 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
47 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
48 snd_pcm_uframes_t frames
, ofs
, transfer
;
51 if (runtime
->silence_size
< runtime
->boundary
) {
52 snd_pcm_sframes_t noise_dist
, n
;
53 snd_pcm_uframes_t appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
54 if (runtime
->silence_start
!= appl_ptr
) {
55 n
= appl_ptr
- runtime
->silence_start
;
57 n
+= runtime
->boundary
;
58 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
59 runtime
->silence_filled
-= n
;
61 runtime
->silence_filled
= 0;
62 runtime
->silence_start
= appl_ptr
;
64 if (runtime
->silence_filled
>= runtime
->buffer_size
)
66 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
67 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
69 frames
= runtime
->silence_threshold
- noise_dist
;
70 if (frames
> runtime
->silence_size
)
71 frames
= runtime
->silence_size
;
73 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
74 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
75 if (avail
> runtime
->buffer_size
)
76 avail
= runtime
->buffer_size
;
77 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
78 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
79 runtime
->silence_filled
) %
82 ofs
= runtime
->status
->hw_ptr
;
83 frames
= new_hw_ptr
- ofs
;
84 if ((snd_pcm_sframes_t
)frames
< 0)
85 frames
+= runtime
->boundary
;
86 runtime
->silence_filled
-= frames
;
87 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
88 runtime
->silence_filled
= 0;
89 runtime
->silence_start
= new_hw_ptr
;
91 runtime
->silence_start
= ofs
;
94 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
96 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
100 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
102 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
103 err
= fill_silence_frames(substream
, ofs
, transfer
);
105 runtime
->silence_filled
+= transfer
;
111 #ifdef CONFIG_SND_DEBUG
112 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
113 char *name
, size_t len
)
115 snprintf(name
, len
, "pcmC%dD%d%c:%d",
116 substream
->pcm
->card
->number
,
117 substream
->pcm
->device
,
118 substream
->stream
? 'c' : 'p',
121 EXPORT_SYMBOL(snd_pcm_debug_name
);
124 #define XRUN_DEBUG_BASIC (1<<0)
125 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
130 #define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
133 #define xrun_debug(substream, mask) 0
136 #define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
141 /* call with stream lock held */
142 void __snd_pcm_xrun(struct snd_pcm_substream
*substream
)
144 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
146 trace_xrun(substream
);
147 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
148 struct timespec64 tstamp
;
150 snd_pcm_gettime(runtime
, &tstamp
);
151 runtime
->status
->tstamp
.tv_sec
= tstamp
.tv_sec
;
152 runtime
->status
->tstamp
.tv_nsec
= tstamp
.tv_nsec
;
154 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
155 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
157 snd_pcm_debug_name(substream
, name
, sizeof(name
));
158 pcm_warn(substream
->pcm
, "XRUN: %s\n", name
);
159 dump_stack_on_xrun(substream
);
163 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
164 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
166 trace_hw_ptr_error(substream, reason); \
167 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
168 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
169 (in_interrupt) ? 'Q' : 'P', ##args); \
170 dump_stack_on_xrun(substream); \
174 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
176 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
180 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
181 struct snd_pcm_runtime
*runtime
)
183 snd_pcm_uframes_t avail
;
185 avail
= snd_pcm_avail(substream
);
186 if (avail
> runtime
->avail_max
)
187 runtime
->avail_max
= avail
;
188 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
189 if (avail
>= runtime
->buffer_size
) {
190 snd_pcm_drain_done(substream
);
194 if (avail
>= runtime
->stop_threshold
) {
195 __snd_pcm_xrun(substream
);
199 if (runtime
->twake
) {
200 if (avail
>= runtime
->twake
)
201 wake_up(&runtime
->tsleep
);
202 } else if (avail
>= runtime
->control
->avail_min
)
203 wake_up(&runtime
->sleep
);
207 static void update_audio_tstamp(struct snd_pcm_substream
*substream
,
208 struct timespec64
*curr_tstamp
,
209 struct timespec64
*audio_tstamp
)
211 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
212 u64 audio_frames
, audio_nsecs
;
213 struct timespec64 driver_tstamp
;
215 if (runtime
->tstamp_mode
!= SNDRV_PCM_TSTAMP_ENABLE
)
218 if (!(substream
->ops
->get_time_info
) ||
219 (runtime
->audio_tstamp_report
.actual_type
==
220 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
223 * provide audio timestamp derived from pointer position
224 * add delay only if requested
227 audio_frames
= runtime
->hw_ptr_wrap
+ runtime
->status
->hw_ptr
;
229 if (runtime
->audio_tstamp_config
.report_delay
) {
230 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
231 audio_frames
-= runtime
->delay
;
233 audio_frames
+= runtime
->delay
;
235 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
237 *audio_tstamp
= ns_to_timespec64(audio_nsecs
);
240 if (runtime
->status
->audio_tstamp
.tv_sec
!= audio_tstamp
->tv_sec
||
241 runtime
->status
->audio_tstamp
.tv_nsec
!= audio_tstamp
->tv_nsec
) {
242 runtime
->status
->audio_tstamp
.tv_sec
= audio_tstamp
->tv_sec
;
243 runtime
->status
->audio_tstamp
.tv_nsec
= audio_tstamp
->tv_nsec
;
244 runtime
->status
->tstamp
.tv_sec
= curr_tstamp
->tv_sec
;
245 runtime
->status
->tstamp
.tv_nsec
= curr_tstamp
->tv_nsec
;
250 * re-take a driver timestamp to let apps detect if the reference tstamp
251 * read by low-level hardware was provided with a delay
253 snd_pcm_gettime(substream
->runtime
, &driver_tstamp
);
254 runtime
->driver_tstamp
= driver_tstamp
;
257 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
258 unsigned int in_interrupt
)
260 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
261 snd_pcm_uframes_t pos
;
262 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
263 snd_pcm_sframes_t hdelta
, delta
;
264 unsigned long jdelta
;
265 unsigned long curr_jiffies
;
266 struct timespec64 curr_tstamp
;
267 struct timespec64 audio_tstamp
;
268 int crossed_boundary
= 0;
270 old_hw_ptr
= runtime
->status
->hw_ptr
;
273 * group pointer, time and jiffies reads to allow for more
274 * accurate correlations/corrections.
275 * The values are stored at the end of this routine after
276 * corrections for hw_ptr position
278 pos
= substream
->ops
->pointer(substream
);
279 curr_jiffies
= jiffies
;
280 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
281 if ((substream
->ops
->get_time_info
) &&
282 (runtime
->audio_tstamp_config
.type_requested
!= SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
283 substream
->ops
->get_time_info(substream
, &curr_tstamp
,
285 &runtime
->audio_tstamp_config
,
286 &runtime
->audio_tstamp_report
);
288 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
289 if (runtime
->audio_tstamp_report
.actual_type
== SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)
290 snd_pcm_gettime(runtime
, &curr_tstamp
);
292 snd_pcm_gettime(runtime
, &curr_tstamp
);
295 if (pos
== SNDRV_PCM_POS_XRUN
) {
296 __snd_pcm_xrun(substream
);
299 if (pos
>= runtime
->buffer_size
) {
300 if (printk_ratelimit()) {
302 snd_pcm_debug_name(substream
, name
, sizeof(name
));
303 pcm_err(substream
->pcm
,
304 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
305 name
, pos
, runtime
->buffer_size
,
306 runtime
->period_size
);
310 pos
-= pos
% runtime
->min_align
;
311 trace_hwptr(substream
, pos
, in_interrupt
);
312 hw_base
= runtime
->hw_ptr_base
;
313 new_hw_ptr
= hw_base
+ pos
;
315 /* we know that one period was processed */
316 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
317 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
318 if (delta
> new_hw_ptr
) {
319 /* check for double acknowledged interrupts */
320 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
321 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2 + 1) {
322 hw_base
+= runtime
->buffer_size
;
323 if (hw_base
>= runtime
->boundary
) {
327 new_hw_ptr
= hw_base
+ pos
;
332 /* new_hw_ptr might be lower than old_hw_ptr in case when */
333 /* pointer crosses the end of the ring buffer */
334 if (new_hw_ptr
< old_hw_ptr
) {
335 hw_base
+= runtime
->buffer_size
;
336 if (hw_base
>= runtime
->boundary
) {
340 new_hw_ptr
= hw_base
+ pos
;
343 delta
= new_hw_ptr
- old_hw_ptr
;
345 delta
+= runtime
->boundary
;
347 if (runtime
->no_period_wakeup
) {
348 snd_pcm_sframes_t xrun_threshold
;
350 * Without regular period interrupts, we have to check
351 * the elapsed time to detect xruns.
353 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
354 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
356 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
357 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
358 while (hdelta
> xrun_threshold
) {
359 delta
+= runtime
->buffer_size
;
360 hw_base
+= runtime
->buffer_size
;
361 if (hw_base
>= runtime
->boundary
) {
365 new_hw_ptr
= hw_base
+ pos
;
366 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
371 /* something must be really wrong */
372 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
373 hw_ptr_error(substream
, in_interrupt
, "Unexpected hw_ptr",
374 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
375 substream
->stream
, (long)pos
,
376 (long)new_hw_ptr
, (long)old_hw_ptr
);
380 /* Do jiffies check only in xrun_debug mode */
381 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
382 goto no_jiffies_check
;
384 /* Skip the jiffies check for hardwares with BATCH flag.
385 * Such hardware usually just increases the position at each IRQ,
386 * thus it can't give any strange position.
388 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
389 goto no_jiffies_check
;
391 if (hdelta
< runtime
->delay
)
392 goto no_jiffies_check
;
393 hdelta
-= runtime
->delay
;
394 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
395 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
397 (((runtime
->period_size
* HZ
) / runtime
->rate
)
399 /* move new_hw_ptr according jiffies not pos variable */
400 new_hw_ptr
= old_hw_ptr
;
402 /* use loop to avoid checks for delta overflows */
403 /* the delta value is small or zero in most cases */
405 new_hw_ptr
+= runtime
->period_size
;
406 if (new_hw_ptr
>= runtime
->boundary
) {
407 new_hw_ptr
-= runtime
->boundary
;
412 /* align hw_base to buffer_size */
413 hw_ptr_error(substream
, in_interrupt
, "hw_ptr skipping",
414 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
415 (long)pos
, (long)hdelta
,
416 (long)runtime
->period_size
, jdelta
,
417 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
418 (unsigned long)old_hw_ptr
,
419 (unsigned long)new_hw_ptr
);
420 /* reset values to proper state */
422 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
425 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
426 hw_ptr_error(substream
, in_interrupt
,
428 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
429 substream
->stream
, (long)delta
,
435 if (runtime
->status
->hw_ptr
== new_hw_ptr
) {
436 runtime
->hw_ptr_jiffies
= curr_jiffies
;
437 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
441 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
442 runtime
->silence_size
> 0)
443 snd_pcm_playback_silence(substream
, new_hw_ptr
);
446 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
448 delta
+= runtime
->boundary
;
449 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
450 runtime
->hw_ptr_interrupt
+= delta
;
451 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
452 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
454 runtime
->hw_ptr_base
= hw_base
;
455 runtime
->status
->hw_ptr
= new_hw_ptr
;
456 runtime
->hw_ptr_jiffies
= curr_jiffies
;
457 if (crossed_boundary
) {
458 snd_BUG_ON(crossed_boundary
!= 1);
459 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
462 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
464 return snd_pcm_update_state(substream
, runtime
);
467 /* CAUTION: call it with irq disabled */
468 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
470 return snd_pcm_update_hw_ptr0(substream
, 0);
474 * snd_pcm_set_ops - set the PCM operators
475 * @pcm: the pcm instance
476 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
477 * @ops: the operator table
479 * Sets the given PCM operators to the pcm instance.
481 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
482 const struct snd_pcm_ops
*ops
)
484 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
485 struct snd_pcm_substream
*substream
;
487 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
488 substream
->ops
= ops
;
490 EXPORT_SYMBOL(snd_pcm_set_ops
);
493 * snd_pcm_set_sync - set the PCM sync id
494 * @substream: the pcm substream
496 * Sets the PCM sync identifier for the card.
498 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
500 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
502 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
503 runtime
->sync
.id32
[1] = -1;
504 runtime
->sync
.id32
[2] = -1;
505 runtime
->sync
.id32
[3] = -1;
507 EXPORT_SYMBOL(snd_pcm_set_sync
);
510 * Standard ioctl routine
513 static inline unsigned int div32(unsigned int a
, unsigned int b
,
524 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
531 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
543 static inline unsigned int mul(unsigned int a
, unsigned int b
)
547 if (div_down(UINT_MAX
, a
) < b
)
552 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
553 unsigned int c
, unsigned int *r
)
555 u_int64_t n
= (u_int64_t
) a
* b
;
560 n
= div_u64_rem(n
, c
, r
);
569 * snd_interval_refine - refine the interval value of configurator
570 * @i: the interval value to refine
571 * @v: the interval value to refer to
573 * Refines the interval value with the reference value.
574 * The interval is changed to the range satisfying both intervals.
575 * The interval status (min, max, integer, etc.) are evaluated.
577 * Return: Positive if the value is changed, zero if it's not changed, or a
578 * negative error code.
580 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
583 if (snd_BUG_ON(snd_interval_empty(i
)))
585 if (i
->min
< v
->min
) {
587 i
->openmin
= v
->openmin
;
589 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
593 if (i
->max
> v
->max
) {
595 i
->openmax
= v
->openmax
;
597 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
601 if (!i
->integer
&& v
->integer
) {
614 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
616 if (snd_interval_checkempty(i
)) {
617 snd_interval_none(i
);
622 EXPORT_SYMBOL(snd_interval_refine
);
624 static int snd_interval_refine_first(struct snd_interval
*i
)
626 const unsigned int last_max
= i
->max
;
628 if (snd_BUG_ON(snd_interval_empty(i
)))
630 if (snd_interval_single(i
))
635 /* only exclude max value if also excluded before refine */
636 i
->openmax
= (i
->openmax
&& i
->max
>= last_max
);
640 static int snd_interval_refine_last(struct snd_interval
*i
)
642 const unsigned int last_min
= i
->min
;
644 if (snd_BUG_ON(snd_interval_empty(i
)))
646 if (snd_interval_single(i
))
651 /* only exclude min value if also excluded before refine */
652 i
->openmin
= (i
->openmin
&& i
->min
<= last_min
);
656 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
658 if (a
->empty
|| b
->empty
) {
659 snd_interval_none(c
);
663 c
->min
= mul(a
->min
, b
->min
);
664 c
->openmin
= (a
->openmin
|| b
->openmin
);
665 c
->max
= mul(a
->max
, b
->max
);
666 c
->openmax
= (a
->openmax
|| b
->openmax
);
667 c
->integer
= (a
->integer
&& b
->integer
);
671 * snd_interval_div - refine the interval value with division
678 * Returns non-zero if the value is changed, zero if not changed.
680 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
683 if (a
->empty
|| b
->empty
) {
684 snd_interval_none(c
);
688 c
->min
= div32(a
->min
, b
->max
, &r
);
689 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
691 c
->max
= div32(a
->max
, b
->min
, &r
);
696 c
->openmax
= (a
->openmax
|| b
->openmin
);
705 * snd_interval_muldivk - refine the interval value
708 * @k: divisor (as integer)
713 * Returns non-zero if the value is changed, zero if not changed.
715 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
716 unsigned int k
, struct snd_interval
*c
)
719 if (a
->empty
|| b
->empty
) {
720 snd_interval_none(c
);
724 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
725 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
726 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
731 c
->openmax
= (a
->openmax
|| b
->openmax
);
736 * snd_interval_mulkdiv - refine the interval value
738 * @k: dividend 2 (as integer)
744 * Returns non-zero if the value is changed, zero if not changed.
746 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
747 const struct snd_interval
*b
, struct snd_interval
*c
)
750 if (a
->empty
|| b
->empty
) {
751 snd_interval_none(c
);
755 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
756 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
758 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
763 c
->openmax
= (a
->openmax
|| b
->openmin
);
775 * snd_interval_ratnum - refine the interval value
776 * @i: interval to refine
777 * @rats_count: number of ratnum_t
778 * @rats: ratnum_t array
779 * @nump: pointer to store the resultant numerator
780 * @denp: pointer to store the resultant denominator
782 * Return: Positive if the value is changed, zero if it's not changed, or a
783 * negative error code.
785 int snd_interval_ratnum(struct snd_interval
*i
,
786 unsigned int rats_count
, const struct snd_ratnum
*rats
,
787 unsigned int *nump
, unsigned int *denp
)
789 unsigned int best_num
, best_den
;
792 struct snd_interval t
;
794 unsigned int result_num
, result_den
;
797 best_num
= best_den
= best_diff
= 0;
798 for (k
= 0; k
< rats_count
; ++k
) {
799 unsigned int num
= rats
[k
].num
;
801 unsigned int q
= i
->min
;
805 den
= div_up(num
, q
);
806 if (den
< rats
[k
].den_min
)
808 if (den
> rats
[k
].den_max
)
809 den
= rats
[k
].den_max
;
812 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
816 diff
= num
- q
* den
;
820 diff
* best_den
< best_diff
* den
) {
830 t
.min
= div_down(best_num
, best_den
);
831 t
.openmin
= !!(best_num
% best_den
);
833 result_num
= best_num
;
834 result_diff
= best_diff
;
835 result_den
= best_den
;
836 best_num
= best_den
= best_diff
= 0;
837 for (k
= 0; k
< rats_count
; ++k
) {
838 unsigned int num
= rats
[k
].num
;
840 unsigned int q
= i
->max
;
846 den
= div_down(num
, q
);
847 if (den
> rats
[k
].den_max
)
849 if (den
< rats
[k
].den_min
)
850 den
= rats
[k
].den_min
;
853 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
855 den
+= rats
[k
].den_step
- r
;
857 diff
= q
* den
- num
;
861 diff
* best_den
< best_diff
* den
) {
871 t
.max
= div_up(best_num
, best_den
);
872 t
.openmax
= !!(best_num
% best_den
);
874 err
= snd_interval_refine(i
, &t
);
878 if (snd_interval_single(i
)) {
879 if (best_diff
* result_den
< result_diff
* best_den
) {
880 result_num
= best_num
;
881 result_den
= best_den
;
890 EXPORT_SYMBOL(snd_interval_ratnum
);
893 * snd_interval_ratden - refine the interval value
894 * @i: interval to refine
895 * @rats_count: number of struct ratden
896 * @rats: struct ratden array
897 * @nump: pointer to store the resultant numerator
898 * @denp: pointer to store the resultant denominator
900 * Return: Positive if the value is changed, zero if it's not changed, or a
901 * negative error code.
903 static int snd_interval_ratden(struct snd_interval
*i
,
904 unsigned int rats_count
,
905 const struct snd_ratden
*rats
,
906 unsigned int *nump
, unsigned int *denp
)
908 unsigned int best_num
, best_diff
, best_den
;
910 struct snd_interval t
;
913 best_num
= best_den
= best_diff
= 0;
914 for (k
= 0; k
< rats_count
; ++k
) {
916 unsigned int den
= rats
[k
].den
;
917 unsigned int q
= i
->min
;
920 if (num
> rats
[k
].num_max
)
922 if (num
< rats
[k
].num_min
)
923 num
= rats
[k
].num_max
;
926 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
928 num
+= rats
[k
].num_step
- r
;
930 diff
= num
- q
* den
;
932 diff
* best_den
< best_diff
* den
) {
942 t
.min
= div_down(best_num
, best_den
);
943 t
.openmin
= !!(best_num
% best_den
);
945 best_num
= best_den
= best_diff
= 0;
946 for (k
= 0; k
< rats_count
; ++k
) {
948 unsigned int den
= rats
[k
].den
;
949 unsigned int q
= i
->max
;
952 if (num
< rats
[k
].num_min
)
954 if (num
> rats
[k
].num_max
)
955 num
= rats
[k
].num_max
;
958 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
962 diff
= q
* den
- num
;
964 diff
* best_den
< best_diff
* den
) {
974 t
.max
= div_up(best_num
, best_den
);
975 t
.openmax
= !!(best_num
% best_den
);
977 err
= snd_interval_refine(i
, &t
);
981 if (snd_interval_single(i
)) {
991 * snd_interval_list - refine the interval value from the list
992 * @i: the interval value to refine
993 * @count: the number of elements in the list
994 * @list: the value list
995 * @mask: the bit-mask to evaluate
997 * Refines the interval value from the list.
998 * When mask is non-zero, only the elements corresponding to bit 1 are
1001 * Return: Positive if the value is changed, zero if it's not changed, or a
1002 * negative error code.
1004 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1005 const unsigned int *list
, unsigned int mask
)
1008 struct snd_interval list_range
;
1014 snd_interval_any(&list_range
);
1015 list_range
.min
= UINT_MAX
;
1017 for (k
= 0; k
< count
; k
++) {
1018 if (mask
&& !(mask
& (1 << k
)))
1020 if (!snd_interval_test(i
, list
[k
]))
1022 list_range
.min
= min(list_range
.min
, list
[k
]);
1023 list_range
.max
= max(list_range
.max
, list
[k
]);
1025 return snd_interval_refine(i
, &list_range
);
1027 EXPORT_SYMBOL(snd_interval_list
);
1030 * snd_interval_ranges - refine the interval value from the list of ranges
1031 * @i: the interval value to refine
1032 * @count: the number of elements in the list of ranges
1033 * @ranges: the ranges list
1034 * @mask: the bit-mask to evaluate
1036 * Refines the interval value from the list of ranges.
1037 * When mask is non-zero, only the elements corresponding to bit 1 are
1040 * Return: Positive if the value is changed, zero if it's not changed, or a
1041 * negative error code.
1043 int snd_interval_ranges(struct snd_interval
*i
, unsigned int count
,
1044 const struct snd_interval
*ranges
, unsigned int mask
)
1047 struct snd_interval range_union
;
1048 struct snd_interval range
;
1051 snd_interval_none(i
);
1054 snd_interval_any(&range_union
);
1055 range_union
.min
= UINT_MAX
;
1056 range_union
.max
= 0;
1057 for (k
= 0; k
< count
; k
++) {
1058 if (mask
&& !(mask
& (1 << k
)))
1060 snd_interval_copy(&range
, &ranges
[k
]);
1061 if (snd_interval_refine(&range
, i
) < 0)
1063 if (snd_interval_empty(&range
))
1066 if (range
.min
< range_union
.min
) {
1067 range_union
.min
= range
.min
;
1068 range_union
.openmin
= 1;
1070 if (range
.min
== range_union
.min
&& !range
.openmin
)
1071 range_union
.openmin
= 0;
1072 if (range
.max
> range_union
.max
) {
1073 range_union
.max
= range
.max
;
1074 range_union
.openmax
= 1;
1076 if (range
.max
== range_union
.max
&& !range
.openmax
)
1077 range_union
.openmax
= 0;
1079 return snd_interval_refine(i
, &range_union
);
1081 EXPORT_SYMBOL(snd_interval_ranges
);
1083 static int snd_interval_step(struct snd_interval
*i
, unsigned int step
)
1088 if (n
!= 0 || i
->openmin
) {
1094 if (n
!= 0 || i
->openmax
) {
1099 if (snd_interval_checkempty(i
)) {
1106 /* Info constraints helpers */
1109 * snd_pcm_hw_rule_add - add the hw-constraint rule
1110 * @runtime: the pcm runtime instance
1111 * @cond: condition bits
1112 * @var: the variable to evaluate
1113 * @func: the evaluation function
1114 * @private: the private data pointer passed to function
1115 * @dep: the dependent variables
1117 * Return: Zero if successful, or a negative error code on failure.
1119 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1121 snd_pcm_hw_rule_func_t func
, void *private,
1124 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1125 struct snd_pcm_hw_rule
*c
;
1128 va_start(args
, dep
);
1129 if (constrs
->rules_num
>= constrs
->rules_all
) {
1130 struct snd_pcm_hw_rule
*new;
1131 unsigned int new_rules
= constrs
->rules_all
+ 16;
1132 new = krealloc_array(constrs
->rules
, new_rules
,
1133 sizeof(*c
), GFP_KERNEL
);
1138 constrs
->rules
= new;
1139 constrs
->rules_all
= new_rules
;
1141 c
= &constrs
->rules
[constrs
->rules_num
];
1145 c
->private = private;
1148 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1155 dep
= va_arg(args
, int);
1157 constrs
->rules_num
++;
1161 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1164 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1165 * @runtime: PCM runtime instance
1166 * @var: hw_params variable to apply the mask
1167 * @mask: the bitmap mask
1169 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171 * Return: Zero if successful, or a negative error code on failure.
1173 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1176 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1177 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1178 *maskp
->bits
&= mask
;
1179 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1180 if (*maskp
->bits
== 0)
1186 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1187 * @runtime: PCM runtime instance
1188 * @var: hw_params variable to apply the mask
1189 * @mask: the 64bit bitmap mask
1191 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193 * Return: Zero if successful, or a negative error code on failure.
1195 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1198 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1199 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1200 maskp
->bits
[0] &= (u_int32_t
)mask
;
1201 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1202 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1203 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1207 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64
);
1210 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the integer constraint
1214 * Apply the constraint of integer to an interval parameter.
1216 * Return: Positive if the value is changed, zero if it's not changed, or a
1217 * negative error code.
1219 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1221 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1222 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1224 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1227 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1228 * @runtime: PCM runtime instance
1229 * @var: hw_params variable to apply the range
1230 * @min: the minimal value
1231 * @max: the maximal value
1233 * Apply the min/max range constraint to an interval parameter.
1235 * Return: Positive if the value is changed, zero if it's not changed, or a
1236 * negative error code.
1238 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1239 unsigned int min
, unsigned int max
)
1241 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1242 struct snd_interval t
;
1245 t
.openmin
= t
.openmax
= 0;
1247 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1249 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1251 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1252 struct snd_pcm_hw_rule
*rule
)
1254 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1255 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1260 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1261 * @runtime: PCM runtime instance
1262 * @cond: condition bits
1263 * @var: hw_params variable to apply the list constraint
1266 * Apply the list of constraints to an interval parameter.
1268 * Return: Zero if successful, or a negative error code on failure.
1270 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1272 snd_pcm_hw_param_t var
,
1273 const struct snd_pcm_hw_constraint_list
*l
)
1275 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1276 snd_pcm_hw_rule_list
, (void *)l
,
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1281 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params
*params
,
1282 struct snd_pcm_hw_rule
*rule
)
1284 struct snd_pcm_hw_constraint_ranges
*r
= rule
->private;
1285 return snd_interval_ranges(hw_param_interval(params
, rule
->var
),
1286 r
->count
, r
->ranges
, r
->mask
);
1291 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1292 * @runtime: PCM runtime instance
1293 * @cond: condition bits
1294 * @var: hw_params variable to apply the list of range constraints
1297 * Apply the list of range constraints to an interval parameter.
1299 * Return: Zero if successful, or a negative error code on failure.
1301 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
*runtime
,
1303 snd_pcm_hw_param_t var
,
1304 const struct snd_pcm_hw_constraint_ranges
*r
)
1306 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1307 snd_pcm_hw_rule_ranges
, (void *)r
,
1310 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges
);
1312 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1313 struct snd_pcm_hw_rule
*rule
)
1315 const struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1316 unsigned int num
= 0, den
= 0;
1318 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1319 r
->nrats
, r
->rats
, &num
, &den
);
1320 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1321 params
->rate_num
= num
;
1322 params
->rate_den
= den
;
1328 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1329 * @runtime: PCM runtime instance
1330 * @cond: condition bits
1331 * @var: hw_params variable to apply the ratnums constraint
1332 * @r: struct snd_ratnums constriants
1334 * Return: Zero if successful, or a negative error code on failure.
1336 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1338 snd_pcm_hw_param_t var
,
1339 const struct snd_pcm_hw_constraint_ratnums
*r
)
1341 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1342 snd_pcm_hw_rule_ratnums
, (void *)r
,
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1347 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1348 struct snd_pcm_hw_rule
*rule
)
1350 const struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1351 unsigned int num
= 0, den
= 0;
1352 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1353 r
->nrats
, r
->rats
, &num
, &den
);
1354 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1355 params
->rate_num
= num
;
1356 params
->rate_den
= den
;
1362 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1363 * @runtime: PCM runtime instance
1364 * @cond: condition bits
1365 * @var: hw_params variable to apply the ratdens constraint
1366 * @r: struct snd_ratdens constriants
1368 * Return: Zero if successful, or a negative error code on failure.
1370 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1372 snd_pcm_hw_param_t var
,
1373 const struct snd_pcm_hw_constraint_ratdens
*r
)
1375 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1376 snd_pcm_hw_rule_ratdens
, (void *)r
,
1379 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1381 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1382 struct snd_pcm_hw_rule
*rule
)
1384 unsigned int l
= (unsigned long) rule
->private;
1385 int width
= l
& 0xffff;
1386 unsigned int msbits
= l
>> 16;
1387 const struct snd_interval
*i
=
1388 hw_param_interval_c(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1390 if (!snd_interval_single(i
))
1393 if ((snd_interval_value(i
) == width
) ||
1394 (width
== 0 && snd_interval_value(i
) > msbits
))
1395 params
->msbits
= min_not_zero(params
->msbits
, msbits
);
1401 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @width: sample bits width
1405 * @msbits: msbits width
1407 * This constraint will set the number of most significant bits (msbits) if a
1408 * sample format with the specified width has been select. If width is set to 0
1409 * the msbits will be set for any sample format with a width larger than the
1412 * Return: Zero if successful, or a negative error code on failure.
1414 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1417 unsigned int msbits
)
1419 unsigned long l
= (msbits
<< 16) | width
;
1420 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1421 snd_pcm_hw_rule_msbits
,
1423 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1427 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1428 struct snd_pcm_hw_rule
*rule
)
1430 unsigned long step
= (unsigned long) rule
->private;
1431 return snd_interval_step(hw_param_interval(params
, rule
->var
), step
);
1435 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436 * @runtime: PCM runtime instance
1437 * @cond: condition bits
1438 * @var: hw_params variable to apply the step constraint
1441 * Return: Zero if successful, or a negative error code on failure.
1443 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1445 snd_pcm_hw_param_t var
,
1448 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1449 snd_pcm_hw_rule_step
, (void *) step
,
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1456 static const unsigned int pow2_sizes
[] = {
1457 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1463 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1472 * Return: Zero if successful, or a negative error code on failure.
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1476 snd_pcm_hw_param_t var
)
1478 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1479 snd_pcm_hw_rule_pow2
, NULL
,
1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1484 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1485 struct snd_pcm_hw_rule
*rule
)
1487 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1488 struct snd_interval
*rate
;
1490 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1491 return snd_interval_list(rate
, 1, &base_rate
, 0);
1495 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1496 * @runtime: PCM runtime instance
1497 * @base_rate: the rate at which the hardware does not resample
1499 * Return: Zero if successful, or a negative error code on failure.
1501 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1502 unsigned int base_rate
)
1504 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1505 SNDRV_PCM_HW_PARAM_RATE
,
1506 snd_pcm_hw_rule_noresample_func
,
1507 (void *)(uintptr_t)base_rate
,
1508 SNDRV_PCM_HW_PARAM_RATE
, -1);
1510 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1512 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1513 snd_pcm_hw_param_t var
)
1515 if (hw_is_mask(var
)) {
1516 snd_mask_any(hw_param_mask(params
, var
));
1517 params
->cmask
|= 1 << var
;
1518 params
->rmask
|= 1 << var
;
1521 if (hw_is_interval(var
)) {
1522 snd_interval_any(hw_param_interval(params
, var
));
1523 params
->cmask
|= 1 << var
;
1524 params
->rmask
|= 1 << var
;
1530 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1533 memset(params
, 0, sizeof(*params
));
1534 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1535 _snd_pcm_hw_param_any(params
, k
);
1536 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1537 _snd_pcm_hw_param_any(params
, k
);
1540 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1543 * snd_pcm_hw_param_value - return @params field @var value
1544 * @params: the hw_params instance
1545 * @var: parameter to retrieve
1546 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 * Return: The value for field @var if it's fixed in configuration space
1549 * defined by @params. -%EINVAL otherwise.
1551 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1552 snd_pcm_hw_param_t var
, int *dir
)
1554 if (hw_is_mask(var
)) {
1555 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1556 if (!snd_mask_single(mask
))
1560 return snd_mask_value(mask
);
1562 if (hw_is_interval(var
)) {
1563 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1564 if (!snd_interval_single(i
))
1568 return snd_interval_value(i
);
1572 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1574 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1575 snd_pcm_hw_param_t var
)
1577 if (hw_is_mask(var
)) {
1578 snd_mask_none(hw_param_mask(params
, var
));
1579 params
->cmask
|= 1 << var
;
1580 params
->rmask
|= 1 << var
;
1581 } else if (hw_is_interval(var
)) {
1582 snd_interval_none(hw_param_interval(params
, var
));
1583 params
->cmask
|= 1 << var
;
1584 params
->rmask
|= 1 << var
;
1589 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1591 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1592 snd_pcm_hw_param_t var
)
1595 if (hw_is_mask(var
))
1596 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1597 else if (hw_is_interval(var
))
1598 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1602 params
->cmask
|= 1 << var
;
1603 params
->rmask
|= 1 << var
;
1610 * snd_pcm_hw_param_first - refine config space and return minimum value
1611 * @pcm: PCM instance
1612 * @params: the hw_params instance
1613 * @var: parameter to retrieve
1614 * @dir: pointer to the direction (-1,0,1) or %NULL
1616 * Inside configuration space defined by @params remove from @var all
1617 * values > minimum. Reduce configuration space accordingly.
1619 * Return: The minimum, or a negative error code on failure.
1621 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1622 struct snd_pcm_hw_params
*params
,
1623 snd_pcm_hw_param_t var
, int *dir
)
1625 int changed
= _snd_pcm_hw_param_first(params
, var
);
1628 if (params
->rmask
) {
1629 int err
= snd_pcm_hw_refine(pcm
, params
);
1633 return snd_pcm_hw_param_value(params
, var
, dir
);
1635 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1637 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1638 snd_pcm_hw_param_t var
)
1641 if (hw_is_mask(var
))
1642 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1643 else if (hw_is_interval(var
))
1644 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1648 params
->cmask
|= 1 << var
;
1649 params
->rmask
|= 1 << var
;
1656 * snd_pcm_hw_param_last - refine config space and return maximum value
1657 * @pcm: PCM instance
1658 * @params: the hw_params instance
1659 * @var: parameter to retrieve
1660 * @dir: pointer to the direction (-1,0,1) or %NULL
1662 * Inside configuration space defined by @params remove from @var all
1663 * values < maximum. Reduce configuration space accordingly.
1665 * Return: The maximum, or a negative error code on failure.
1667 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1668 struct snd_pcm_hw_params
*params
,
1669 snd_pcm_hw_param_t var
, int *dir
)
1671 int changed
= _snd_pcm_hw_param_last(params
, var
);
1674 if (params
->rmask
) {
1675 int err
= snd_pcm_hw_refine(pcm
, params
);
1679 return snd_pcm_hw_param_value(params
, var
, dir
);
1681 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1683 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1686 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1687 unsigned long flags
;
1688 snd_pcm_stream_lock_irqsave(substream
, flags
);
1689 if (snd_pcm_running(substream
) &&
1690 snd_pcm_update_hw_ptr(substream
) >= 0)
1691 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1693 runtime
->status
->hw_ptr
= 0;
1694 runtime
->hw_ptr_wrap
= 0;
1696 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1700 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1703 struct snd_pcm_channel_info
*info
= arg
;
1704 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1706 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1710 width
= snd_pcm_format_physical_width(runtime
->format
);
1714 switch (runtime
->access
) {
1715 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1716 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1717 info
->first
= info
->channel
* width
;
1718 info
->step
= runtime
->channels
* width
;
1720 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1721 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1723 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1724 info
->first
= info
->channel
* size
* 8;
1735 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1738 struct snd_pcm_hw_params
*params
= arg
;
1739 snd_pcm_format_t format
;
1743 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1744 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1745 format
= params_format(params
);
1746 channels
= params_channels(params
);
1747 frame_size
= snd_pcm_format_size(format
, channels
);
1749 params
->fifo_size
/= (unsigned)frame_size
;
1755 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1756 * @substream: the pcm substream instance
1757 * @cmd: ioctl command
1758 * @arg: ioctl argument
1760 * Processes the generic ioctl commands for PCM.
1761 * Can be passed as the ioctl callback for PCM ops.
1763 * Return: Zero if successful, or a negative error code on failure.
1765 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1766 unsigned int cmd
, void *arg
)
1769 case SNDRV_PCM_IOCTL1_RESET
:
1770 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1771 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1772 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1773 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1774 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1778 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1781 * snd_pcm_period_elapsed - update the pcm status for the next period
1782 * @substream: the pcm substream instance
1784 * This function is called from the interrupt handler when the
1785 * PCM has processed the period size. It will update the current
1786 * pointer, wake up sleepers, etc.
1788 * Even if more than one periods have elapsed since the last call, you
1789 * have to call this only once.
1791 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1793 struct snd_pcm_runtime
*runtime
;
1794 unsigned long flags
;
1796 if (snd_BUG_ON(!substream
))
1799 snd_pcm_stream_lock_irqsave(substream
, flags
);
1800 if (PCM_RUNTIME_CHECK(substream
))
1802 runtime
= substream
->runtime
;
1804 if (!snd_pcm_running(substream
) ||
1805 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1808 #ifdef CONFIG_SND_PCM_TIMER
1809 if (substream
->timer_running
)
1810 snd_timer_interrupt(substream
->timer
, 1);
1813 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1815 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1817 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1820 * Wait until avail_min data becomes available
1821 * Returns a negative error code if any error occurs during operation.
1822 * The available space is stored on availp. When err = 0 and avail = 0
1823 * on the capture stream, it indicates the stream is in DRAINING state.
1825 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1826 snd_pcm_uframes_t
*availp
)
1828 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1829 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1830 wait_queue_entry_t wait
;
1832 snd_pcm_uframes_t avail
= 0;
1833 long wait_time
, tout
;
1835 init_waitqueue_entry(&wait
, current
);
1836 set_current_state(TASK_INTERRUPTIBLE
);
1837 add_wait_queue(&runtime
->tsleep
, &wait
);
1839 if (runtime
->no_period_wakeup
)
1840 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1842 /* use wait time from substream if available */
1843 if (substream
->wait_time
) {
1844 wait_time
= substream
->wait_time
;
1848 if (runtime
->rate
) {
1849 long t
= runtime
->period_size
* 2 /
1851 wait_time
= max(t
, wait_time
);
1853 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1858 if (signal_pending(current
)) {
1864 * We need to check if space became available already
1865 * (and thus the wakeup happened already) first to close
1866 * the race of space already having become available.
1867 * This check must happen after been added to the waitqueue
1868 * and having current state be INTERRUPTIBLE.
1870 avail
= snd_pcm_avail(substream
);
1871 if (avail
>= runtime
->twake
)
1873 snd_pcm_stream_unlock_irq(substream
);
1875 tout
= schedule_timeout(wait_time
);
1877 snd_pcm_stream_lock_irq(substream
);
1878 set_current_state(TASK_INTERRUPTIBLE
);
1879 switch (runtime
->status
->state
) {
1880 case SNDRV_PCM_STATE_SUSPENDED
:
1883 case SNDRV_PCM_STATE_XRUN
:
1886 case SNDRV_PCM_STATE_DRAINING
:
1890 avail
= 0; /* indicate draining */
1892 case SNDRV_PCM_STATE_OPEN
:
1893 case SNDRV_PCM_STATE_SETUP
:
1894 case SNDRV_PCM_STATE_DISCONNECTED
:
1897 case SNDRV_PCM_STATE_PAUSED
:
1901 pcm_dbg(substream
->pcm
,
1902 "%s write error (DMA or IRQ trouble?)\n",
1903 is_playback
? "playback" : "capture");
1909 set_current_state(TASK_RUNNING
);
1910 remove_wait_queue(&runtime
->tsleep
, &wait
);
1915 typedef int (*pcm_transfer_f
)(struct snd_pcm_substream
*substream
,
1916 int channel
, unsigned long hwoff
,
1917 void *buf
, unsigned long bytes
);
1919 typedef int (*pcm_copy_f
)(struct snd_pcm_substream
*, snd_pcm_uframes_t
, void *,
1920 snd_pcm_uframes_t
, snd_pcm_uframes_t
, pcm_transfer_f
);
1922 /* calculate the target DMA-buffer position to be written/read */
1923 static void *get_dma_ptr(struct snd_pcm_runtime
*runtime
,
1924 int channel
, unsigned long hwoff
)
1926 return runtime
->dma_area
+ hwoff
+
1927 channel
* (runtime
->dma_bytes
/ runtime
->channels
);
1930 /* default copy_user ops for write; used for both interleaved and non- modes */
1931 static int default_write_copy(struct snd_pcm_substream
*substream
,
1932 int channel
, unsigned long hwoff
,
1933 void *buf
, unsigned long bytes
)
1935 if (copy_from_user(get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1936 (void __user
*)buf
, bytes
))
1941 /* default copy_kernel ops for write */
1942 static int default_write_copy_kernel(struct snd_pcm_substream
*substream
,
1943 int channel
, unsigned long hwoff
,
1944 void *buf
, unsigned long bytes
)
1946 memcpy(get_dma_ptr(substream
->runtime
, channel
, hwoff
), buf
, bytes
);
1950 /* fill silence instead of copy data; called as a transfer helper
1951 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1952 * a NULL buffer is passed
1954 static int fill_silence(struct snd_pcm_substream
*substream
, int channel
,
1955 unsigned long hwoff
, void *buf
, unsigned long bytes
)
1957 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1959 if (substream
->stream
!= SNDRV_PCM_STREAM_PLAYBACK
)
1961 if (substream
->ops
->fill_silence
)
1962 return substream
->ops
->fill_silence(substream
, channel
,
1965 snd_pcm_format_set_silence(runtime
->format
,
1966 get_dma_ptr(runtime
, channel
, hwoff
),
1967 bytes_to_samples(runtime
, bytes
));
1971 /* default copy_user ops for read; used for both interleaved and non- modes */
1972 static int default_read_copy(struct snd_pcm_substream
*substream
,
1973 int channel
, unsigned long hwoff
,
1974 void *buf
, unsigned long bytes
)
1976 if (copy_to_user((void __user
*)buf
,
1977 get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1983 /* default copy_kernel ops for read */
1984 static int default_read_copy_kernel(struct snd_pcm_substream
*substream
,
1985 int channel
, unsigned long hwoff
,
1986 void *buf
, unsigned long bytes
)
1988 memcpy(buf
, get_dma_ptr(substream
->runtime
, channel
, hwoff
), bytes
);
1992 /* call transfer function with the converted pointers and sizes;
1993 * for interleaved mode, it's one shot for all samples
1995 static int interleaved_copy(struct snd_pcm_substream
*substream
,
1996 snd_pcm_uframes_t hwoff
, void *data
,
1997 snd_pcm_uframes_t off
,
1998 snd_pcm_uframes_t frames
,
1999 pcm_transfer_f transfer
)
2001 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2003 /* convert to bytes */
2004 hwoff
= frames_to_bytes(runtime
, hwoff
);
2005 off
= frames_to_bytes(runtime
, off
);
2006 frames
= frames_to_bytes(runtime
, frames
);
2007 return transfer(substream
, 0, hwoff
, data
+ off
, frames
);
2010 /* call transfer function with the converted pointers and sizes for each
2011 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2013 static int noninterleaved_copy(struct snd_pcm_substream
*substream
,
2014 snd_pcm_uframes_t hwoff
, void *data
,
2015 snd_pcm_uframes_t off
,
2016 snd_pcm_uframes_t frames
,
2017 pcm_transfer_f transfer
)
2019 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2020 int channels
= runtime
->channels
;
2024 /* convert to bytes; note that it's not frames_to_bytes() here.
2025 * in non-interleaved mode, we copy for each channel, thus
2026 * each copy is n_samples bytes x channels = whole frames.
2028 off
= samples_to_bytes(runtime
, off
);
2029 frames
= samples_to_bytes(runtime
, frames
);
2030 hwoff
= samples_to_bytes(runtime
, hwoff
);
2031 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2032 if (!data
|| !*bufs
)
2033 err
= fill_silence(substream
, c
, hwoff
, NULL
, frames
);
2035 err
= transfer(substream
, c
, hwoff
, *bufs
+ off
,
2043 /* fill silence on the given buffer position;
2044 * called from snd_pcm_playback_silence()
2046 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
2047 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
)
2049 if (substream
->runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
2050 substream
->runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
)
2051 return interleaved_copy(substream
, off
, NULL
, 0, frames
,
2054 return noninterleaved_copy(substream
, off
, NULL
, 0, frames
,
2058 /* sanity-check for read/write methods */
2059 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2061 struct snd_pcm_runtime
*runtime
;
2062 if (PCM_RUNTIME_CHECK(substream
))
2064 runtime
= substream
->runtime
;
2065 if (snd_BUG_ON(!substream
->ops
->copy_user
&& !runtime
->dma_area
))
2067 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2072 static int pcm_accessible_state(struct snd_pcm_runtime
*runtime
)
2074 switch (runtime
->status
->state
) {
2075 case SNDRV_PCM_STATE_PREPARED
:
2076 case SNDRV_PCM_STATE_RUNNING
:
2077 case SNDRV_PCM_STATE_PAUSED
:
2079 case SNDRV_PCM_STATE_XRUN
:
2081 case SNDRV_PCM_STATE_SUSPENDED
:
2088 /* update to the given appl_ptr and call ack callback if needed;
2089 * when an error is returned, take back to the original value
2091 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream
*substream
,
2092 snd_pcm_uframes_t appl_ptr
)
2094 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2095 snd_pcm_uframes_t old_appl_ptr
= runtime
->control
->appl_ptr
;
2098 if (old_appl_ptr
== appl_ptr
)
2101 runtime
->control
->appl_ptr
= appl_ptr
;
2102 if (substream
->ops
->ack
) {
2103 ret
= substream
->ops
->ack(substream
);
2105 runtime
->control
->appl_ptr
= old_appl_ptr
;
2110 trace_applptr(substream
, old_appl_ptr
, appl_ptr
);
2115 /* the common loop for read/write data */
2116 snd_pcm_sframes_t
__snd_pcm_lib_xfer(struct snd_pcm_substream
*substream
,
2117 void *data
, bool interleaved
,
2118 snd_pcm_uframes_t size
, bool in_kernel
)
2120 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2121 snd_pcm_uframes_t xfer
= 0;
2122 snd_pcm_uframes_t offset
= 0;
2123 snd_pcm_uframes_t avail
;
2125 pcm_transfer_f transfer
;
2130 err
= pcm_sanity_check(substream
);
2134 is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
2136 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2137 runtime
->channels
> 1)
2139 writer
= interleaved_copy
;
2141 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2143 writer
= noninterleaved_copy
;
2148 transfer
= fill_silence
;
2151 } else if (in_kernel
) {
2152 if (substream
->ops
->copy_kernel
)
2153 transfer
= substream
->ops
->copy_kernel
;
2155 transfer
= is_playback
?
2156 default_write_copy_kernel
: default_read_copy_kernel
;
2158 if (substream
->ops
->copy_user
)
2159 transfer
= (pcm_transfer_f
)substream
->ops
->copy_user
;
2161 transfer
= is_playback
?
2162 default_write_copy
: default_read_copy
;
2168 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2170 snd_pcm_stream_lock_irq(substream
);
2171 err
= pcm_accessible_state(runtime
);
2175 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2176 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2177 snd_pcm_update_hw_ptr(substream
);
2180 * If size < start_threshold, wait indefinitely. Another
2181 * thread may start capture
2184 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2185 size
>= runtime
->start_threshold
) {
2186 err
= snd_pcm_start(substream
);
2191 avail
= snd_pcm_avail(substream
);
2194 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2195 snd_pcm_uframes_t cont
;
2198 runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
2199 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2206 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2207 runtime
->control
->avail_min
? : 1);
2208 err
= wait_for_avail(substream
, &avail
);
2212 continue; /* draining */
2214 frames
= size
> avail
? avail
: size
;
2215 appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
2216 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2217 cont
= runtime
->buffer_size
- appl_ofs
;
2220 if (snd_BUG_ON(!frames
)) {
2224 snd_pcm_stream_unlock_irq(substream
);
2225 err
= writer(substream
, appl_ofs
, data
, offset
, frames
,
2227 snd_pcm_stream_lock_irq(substream
);
2230 err
= pcm_accessible_state(runtime
);
2234 if (appl_ptr
>= runtime
->boundary
)
2235 appl_ptr
-= runtime
->boundary
;
2236 err
= pcm_lib_apply_appl_ptr(substream
, appl_ptr
);
2245 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2246 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2247 err
= snd_pcm_start(substream
);
2254 if (xfer
> 0 && err
>= 0)
2255 snd_pcm_update_state(substream
, runtime
);
2256 snd_pcm_stream_unlock_irq(substream
);
2257 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2259 EXPORT_SYMBOL(__snd_pcm_lib_xfer
);
2262 * standard channel mapping helpers
2265 /* default channel maps for multi-channel playbacks, up to 8 channels */
2266 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2268 .map
= { SNDRV_CHMAP_MONO
} },
2270 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2272 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2273 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2275 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2276 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2277 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2279 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2280 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2281 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2282 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2285 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2287 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2288 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2290 .map
= { SNDRV_CHMAP_MONO
} },
2292 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2294 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2295 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2297 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2298 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2299 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2301 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2302 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2303 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2304 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2307 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2309 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2311 if (ch
> info
->max_channels
)
2313 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2316 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2317 struct snd_ctl_elem_info
*uinfo
)
2319 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2321 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2322 uinfo
->count
= info
->max_channels
;
2323 uinfo
->value
.integer
.min
= 0;
2324 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2328 /* get callback for channel map ctl element
2329 * stores the channel position firstly matching with the current channels
2331 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2332 struct snd_ctl_elem_value
*ucontrol
)
2334 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2335 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2336 struct snd_pcm_substream
*substream
;
2337 const struct snd_pcm_chmap_elem
*map
;
2341 substream
= snd_pcm_chmap_substream(info
, idx
);
2344 memset(ucontrol
->value
.integer
.value
, 0,
2345 sizeof(long) * info
->max_channels
);
2346 if (!substream
->runtime
)
2347 return 0; /* no channels set */
2348 for (map
= info
->chmap
; map
->channels
; map
++) {
2350 if (map
->channels
== substream
->runtime
->channels
&&
2351 valid_chmap_channels(info
, map
->channels
)) {
2352 for (i
= 0; i
< map
->channels
; i
++)
2353 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2360 /* tlv callback for channel map ctl element
2361 * expands the pre-defined channel maps in a form of TLV
2363 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2364 unsigned int size
, unsigned int __user
*tlv
)
2366 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2367 const struct snd_pcm_chmap_elem
*map
;
2368 unsigned int __user
*dst
;
2375 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2379 for (map
= info
->chmap
; map
->channels
; map
++) {
2380 int chs_bytes
= map
->channels
* 4;
2381 if (!valid_chmap_channels(info
, map
->channels
))
2385 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2386 put_user(chs_bytes
, dst
+ 1))
2391 if (size
< chs_bytes
)
2395 for (c
= 0; c
< map
->channels
; c
++) {
2396 if (put_user(map
->map
[c
], dst
))
2401 if (put_user(count
, tlv
+ 1))
2406 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2408 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2409 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2414 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2415 * @pcm: the assigned PCM instance
2416 * @stream: stream direction
2417 * @chmap: channel map elements (for query)
2418 * @max_channels: the max number of channels for the stream
2419 * @private_value: the value passed to each kcontrol's private_value field
2420 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2422 * Create channel-mapping control elements assigned to the given PCM stream(s).
2423 * Return: Zero if successful, or a negative error value.
2425 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2426 const struct snd_pcm_chmap_elem
*chmap
,
2428 unsigned long private_value
,
2429 struct snd_pcm_chmap
**info_ret
)
2431 struct snd_pcm_chmap
*info
;
2432 struct snd_kcontrol_new knew
= {
2433 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2434 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2435 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2436 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2437 .info
= pcm_chmap_ctl_info
,
2438 .get
= pcm_chmap_ctl_get
,
2439 .tlv
.c
= pcm_chmap_ctl_tlv
,
2443 if (WARN_ON(pcm
->streams
[stream
].chmap_kctl
))
2445 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2449 info
->stream
= stream
;
2450 info
->chmap
= chmap
;
2451 info
->max_channels
= max_channels
;
2452 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2453 knew
.name
= "Playback Channel Map";
2455 knew
.name
= "Capture Channel Map";
2456 knew
.device
= pcm
->device
;
2457 knew
.count
= pcm
->streams
[stream
].substream_count
;
2458 knew
.private_value
= private_value
;
2459 info
->kctl
= snd_ctl_new1(&knew
, info
);
2464 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2465 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2468 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2473 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);