io_uring: don't use 'fd' for openat/openat2/statx
[linux/fpc-iii.git] / fs / buffer.c
bloba50d928af641d514284d79580b4c05cb1a2480c4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
52 #include "internal.h"
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 inline void touch_buffer(struct buffer_head *bh)
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
65 EXPORT_SYMBOL(touch_buffer);
67 void __lock_buffer(struct buffer_head *bh)
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 EXPORT_SYMBOL(__lock_buffer);
73 void unlock_buffer(struct buffer_head *bh)
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
79 EXPORT_SYMBOL(unlock_buffer);
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
93 BUG_ON(!PageLocked(page));
95 if (!page_has_buffers(page))
96 return;
98 if (PageWriteback(page))
99 *writeback = true;
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
107 if (buffer_dirty(bh))
108 *dirty = true;
110 bh = bh->b_this_page;
111 } while (bh != head);
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
120 void __wait_on_buffer(struct buffer_head * bh)
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 EXPORT_SYMBOL(__wait_on_buffer);
126 static void
127 __clear_page_buffers(struct page *page)
129 ClearPagePrivate(page);
130 set_page_private(page, 0);
131 put_page(page);
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
136 if (!test_bit(BH_Quiet, &bh->b_state))
137 printk_ratelimited(KERN_ERR
138 "Buffer I/O error on dev %pg, logical block %llu%s\n",
139 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 * End-of-IO handler helper function which does not touch the bh after
144 * unlocking it.
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
148 * itself.
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 /* This happens, due to failed read-ahead attempts. */
156 clear_buffer_uptodate(bh);
158 unlock_buffer(bh);
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167 __end_buffer_read_notouch(bh, uptodate);
168 put_bh(bh);
170 EXPORT_SYMBOL(end_buffer_read_sync);
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174 if (uptodate) {
175 set_buffer_uptodate(bh);
176 } else {
177 buffer_io_error(bh, ", lost sync page write");
178 mark_buffer_write_io_error(bh);
179 clear_buffer_uptodate(bh);
181 unlock_buffer(bh);
182 put_bh(bh);
184 EXPORT_SYMBOL(end_buffer_write_sync);
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
190 * private_lock.
192 * Hack idea: for the blockdev mapping, private_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock.
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
199 struct inode *bd_inode = bdev->bd_inode;
200 struct address_space *bd_mapping = bd_inode->i_mapping;
201 struct buffer_head *ret = NULL;
202 pgoff_t index;
203 struct buffer_head *bh;
204 struct buffer_head *head;
205 struct page *page;
206 int all_mapped = 1;
207 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
209 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 if (!page)
212 goto out;
214 spin_lock(&bd_mapping->private_lock);
215 if (!page_has_buffers(page))
216 goto out_unlock;
217 head = page_buffers(page);
218 bh = head;
219 do {
220 if (!buffer_mapped(bh))
221 all_mapped = 0;
222 else if (bh->b_blocknr == block) {
223 ret = bh;
224 get_bh(bh);
225 goto out_unlock;
227 bh = bh->b_this_page;
228 } while (bh != head);
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
235 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236 if (all_mapped && __ratelimit(&last_warned)) {
237 printk("__find_get_block_slow() failed. block=%llu, "
238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 "device %pg blocksize: %d\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr,
242 bh->b_state, bh->b_size, bdev,
243 1 << bd_inode->i_blkbits);
245 out_unlock:
246 spin_unlock(&bd_mapping->private_lock);
247 put_page(page);
248 out:
249 return ret;
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
254 unsigned long flags;
255 struct buffer_head *first;
256 struct buffer_head *tmp;
257 struct page *page;
258 int page_uptodate = 1;
260 BUG_ON(!buffer_async_read(bh));
262 page = bh->b_page;
263 if (uptodate) {
264 set_buffer_uptodate(bh);
265 } else {
266 clear_buffer_uptodate(bh);
267 buffer_io_error(bh, ", async page read");
268 SetPageError(page);
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
276 first = page_buffers(page);
277 local_irq_save(flags);
278 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279 clear_buffer_async_read(bh);
280 unlock_buffer(bh);
281 tmp = bh;
282 do {
283 if (!buffer_uptodate(tmp))
284 page_uptodate = 0;
285 if (buffer_async_read(tmp)) {
286 BUG_ON(!buffer_locked(tmp));
287 goto still_busy;
289 tmp = tmp->b_this_page;
290 } while (tmp != bh);
291 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292 local_irq_restore(flags);
295 * If none of the buffers had errors and they are all
296 * uptodate then we can set the page uptodate.
298 if (page_uptodate && !PageError(page))
299 SetPageUptodate(page);
300 unlock_page(page);
301 return;
303 still_busy:
304 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305 local_irq_restore(flags);
306 return;
309 struct decrypt_bh_ctx {
310 struct work_struct work;
311 struct buffer_head *bh;
314 static void decrypt_bh(struct work_struct *work)
316 struct decrypt_bh_ctx *ctx =
317 container_of(work, struct decrypt_bh_ctx, work);
318 struct buffer_head *bh = ctx->bh;
319 int err;
321 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
322 bh_offset(bh));
323 end_buffer_async_read(bh, err == 0);
324 kfree(ctx);
328 * I/O completion handler for block_read_full_page() - pages
329 * which come unlocked at the end of I/O.
331 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
333 /* Decrypt if needed */
334 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
335 IS_ENCRYPTED(bh->b_page->mapping->host) &&
336 S_ISREG(bh->b_page->mapping->host->i_mode)) {
337 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
339 if (ctx) {
340 INIT_WORK(&ctx->work, decrypt_bh);
341 ctx->bh = bh;
342 fscrypt_enqueue_decrypt_work(&ctx->work);
343 return;
345 uptodate = 0;
347 end_buffer_async_read(bh, uptodate);
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
356 unsigned long flags;
357 struct buffer_head *first;
358 struct buffer_head *tmp;
359 struct page *page;
361 BUG_ON(!buffer_async_write(bh));
363 page = bh->b_page;
364 if (uptodate) {
365 set_buffer_uptodate(bh);
366 } else {
367 buffer_io_error(bh, ", lost async page write");
368 mark_buffer_write_io_error(bh);
369 clear_buffer_uptodate(bh);
370 SetPageError(page);
373 first = page_buffers(page);
374 local_irq_save(flags);
375 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
377 clear_buffer_async_write(bh);
378 unlock_buffer(bh);
379 tmp = bh->b_this_page;
380 while (tmp != bh) {
381 if (buffer_async_write(tmp)) {
382 BUG_ON(!buffer_locked(tmp));
383 goto still_busy;
385 tmp = tmp->b_this_page;
387 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
388 local_irq_restore(flags);
389 end_page_writeback(page);
390 return;
392 still_busy:
393 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
394 local_irq_restore(flags);
395 return;
397 EXPORT_SYMBOL(end_buffer_async_write);
400 * If a page's buffers are under async readin (end_buffer_async_read
401 * completion) then there is a possibility that another thread of
402 * control could lock one of the buffers after it has completed
403 * but while some of the other buffers have not completed. This
404 * locked buffer would confuse end_buffer_async_read() into not unlocking
405 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
406 * that this buffer is not under async I/O.
408 * The page comes unlocked when it has no locked buffer_async buffers
409 * left.
411 * PageLocked prevents anyone starting new async I/O reads any of
412 * the buffers.
414 * PageWriteback is used to prevent simultaneous writeout of the same
415 * page.
417 * PageLocked prevents anyone from starting writeback of a page which is
418 * under read I/O (PageWriteback is only ever set against a locked page).
420 static void mark_buffer_async_read(struct buffer_head *bh)
422 bh->b_end_io = end_buffer_async_read_io;
423 set_buffer_async_read(bh);
426 static void mark_buffer_async_write_endio(struct buffer_head *bh,
427 bh_end_io_t *handler)
429 bh->b_end_io = handler;
430 set_buffer_async_write(bh);
433 void mark_buffer_async_write(struct buffer_head *bh)
435 mark_buffer_async_write_endio(bh, end_buffer_async_write);
437 EXPORT_SYMBOL(mark_buffer_async_write);
441 * fs/buffer.c contains helper functions for buffer-backed address space's
442 * fsync functions. A common requirement for buffer-based filesystems is
443 * that certain data from the backing blockdev needs to be written out for
444 * a successful fsync(). For example, ext2 indirect blocks need to be
445 * written back and waited upon before fsync() returns.
447 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
448 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
449 * management of a list of dependent buffers at ->i_mapping->private_list.
451 * Locking is a little subtle: try_to_free_buffers() will remove buffers
452 * from their controlling inode's queue when they are being freed. But
453 * try_to_free_buffers() will be operating against the *blockdev* mapping
454 * at the time, not against the S_ISREG file which depends on those buffers.
455 * So the locking for private_list is via the private_lock in the address_space
456 * which backs the buffers. Which is different from the address_space
457 * against which the buffers are listed. So for a particular address_space,
458 * mapping->private_lock does *not* protect mapping->private_list! In fact,
459 * mapping->private_list will always be protected by the backing blockdev's
460 * ->private_lock.
462 * Which introduces a requirement: all buffers on an address_space's
463 * ->private_list must be from the same address_space: the blockdev's.
465 * address_spaces which do not place buffers at ->private_list via these
466 * utility functions are free to use private_lock and private_list for
467 * whatever they want. The only requirement is that list_empty(private_list)
468 * be true at clear_inode() time.
470 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
471 * filesystems should do that. invalidate_inode_buffers() should just go
472 * BUG_ON(!list_empty).
474 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
475 * take an address_space, not an inode. And it should be called
476 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
477 * queued up.
479 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
480 * list if it is already on a list. Because if the buffer is on a list,
481 * it *must* already be on the right one. If not, the filesystem is being
482 * silly. This will save a ton of locking. But first we have to ensure
483 * that buffers are taken *off* the old inode's list when they are freed
484 * (presumably in truncate). That requires careful auditing of all
485 * filesystems (do it inside bforget()). It could also be done by bringing
486 * b_inode back.
490 * The buffer's backing address_space's private_lock must be held
492 static void __remove_assoc_queue(struct buffer_head *bh)
494 list_del_init(&bh->b_assoc_buffers);
495 WARN_ON(!bh->b_assoc_map);
496 bh->b_assoc_map = NULL;
499 int inode_has_buffers(struct inode *inode)
501 return !list_empty(&inode->i_data.private_list);
505 * osync is designed to support O_SYNC io. It waits synchronously for
506 * all already-submitted IO to complete, but does not queue any new
507 * writes to the disk.
509 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
510 * you dirty the buffers, and then use osync_inode_buffers to wait for
511 * completion. Any other dirty buffers which are not yet queued for
512 * write will not be flushed to disk by the osync.
514 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
516 struct buffer_head *bh;
517 struct list_head *p;
518 int err = 0;
520 spin_lock(lock);
521 repeat:
522 list_for_each_prev(p, list) {
523 bh = BH_ENTRY(p);
524 if (buffer_locked(bh)) {
525 get_bh(bh);
526 spin_unlock(lock);
527 wait_on_buffer(bh);
528 if (!buffer_uptodate(bh))
529 err = -EIO;
530 brelse(bh);
531 spin_lock(lock);
532 goto repeat;
535 spin_unlock(lock);
536 return err;
539 void emergency_thaw_bdev(struct super_block *sb)
541 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
542 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
550 * that I/O.
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
556 int sync_mapping_buffers(struct address_space *mapping)
558 struct address_space *buffer_mapping = mapping->private_data;
560 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 return 0;
563 return fsync_buffers_list(&buffer_mapping->private_lock,
564 &mapping->private_list);
566 EXPORT_SYMBOL(sync_mapping_buffers);
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
574 void write_boundary_block(struct block_device *bdev,
575 sector_t bblock, unsigned blocksize)
577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (bh) {
579 if (buffer_dirty(bh))
580 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
581 put_bh(bh);
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
587 struct address_space *mapping = inode->i_mapping;
588 struct address_space *buffer_mapping = bh->b_page->mapping;
590 mark_buffer_dirty(bh);
591 if (!mapping->private_data) {
592 mapping->private_data = buffer_mapping;
593 } else {
594 BUG_ON(mapping->private_data != buffer_mapping);
596 if (!bh->b_assoc_map) {
597 spin_lock(&buffer_mapping->private_lock);
598 list_move_tail(&bh->b_assoc_buffers,
599 &mapping->private_list);
600 bh->b_assoc_map = mapping;
601 spin_unlock(&buffer_mapping->private_lock);
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
607 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
608 * dirty.
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
613 * The caller must hold lock_page_memcg().
615 void __set_page_dirty(struct page *page, struct address_space *mapping,
616 int warn)
618 unsigned long flags;
620 xa_lock_irqsave(&mapping->i_pages, flags);
621 if (page->mapping) { /* Race with truncate? */
622 WARN_ON_ONCE(warn && !PageUptodate(page));
623 account_page_dirtied(page, mapping);
624 __xa_set_mark(&mapping->i_pages, page_index(page),
625 PAGECACHE_TAG_DIRTY);
627 xa_unlock_irqrestore(&mapping->i_pages, flags);
629 EXPORT_SYMBOL_GPL(__set_page_dirty);
632 * Add a page to the dirty page list.
634 * It is a sad fact of life that this function is called from several places
635 * deeply under spinlocking. It may not sleep.
637 * If the page has buffers, the uptodate buffers are set dirty, to preserve
638 * dirty-state coherency between the page and the buffers. It the page does
639 * not have buffers then when they are later attached they will all be set
640 * dirty.
642 * The buffers are dirtied before the page is dirtied. There's a small race
643 * window in which a writepage caller may see the page cleanness but not the
644 * buffer dirtiness. That's fine. If this code were to set the page dirty
645 * before the buffers, a concurrent writepage caller could clear the page dirty
646 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
647 * page on the dirty page list.
649 * We use private_lock to lock against try_to_free_buffers while using the
650 * page's buffer list. Also use this to protect against clean buffers being
651 * added to the page after it was set dirty.
653 * FIXME: may need to call ->reservepage here as well. That's rather up to the
654 * address_space though.
656 int __set_page_dirty_buffers(struct page *page)
658 int newly_dirty;
659 struct address_space *mapping = page_mapping(page);
661 if (unlikely(!mapping))
662 return !TestSetPageDirty(page);
664 spin_lock(&mapping->private_lock);
665 if (page_has_buffers(page)) {
666 struct buffer_head *head = page_buffers(page);
667 struct buffer_head *bh = head;
669 do {
670 set_buffer_dirty(bh);
671 bh = bh->b_this_page;
672 } while (bh != head);
675 * Lock out page->mem_cgroup migration to keep PageDirty
676 * synchronized with per-memcg dirty page counters.
678 lock_page_memcg(page);
679 newly_dirty = !TestSetPageDirty(page);
680 spin_unlock(&mapping->private_lock);
682 if (newly_dirty)
683 __set_page_dirty(page, mapping, 1);
685 unlock_page_memcg(page);
687 if (newly_dirty)
688 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
690 return newly_dirty;
692 EXPORT_SYMBOL(__set_page_dirty_buffers);
695 * Write out and wait upon a list of buffers.
697 * We have conflicting pressures: we want to make sure that all
698 * initially dirty buffers get waited on, but that any subsequently
699 * dirtied buffers don't. After all, we don't want fsync to last
700 * forever if somebody is actively writing to the file.
702 * Do this in two main stages: first we copy dirty buffers to a
703 * temporary inode list, queueing the writes as we go. Then we clean
704 * up, waiting for those writes to complete.
706 * During this second stage, any subsequent updates to the file may end
707 * up refiling the buffer on the original inode's dirty list again, so
708 * there is a chance we will end up with a buffer queued for write but
709 * not yet completed on that list. So, as a final cleanup we go through
710 * the osync code to catch these locked, dirty buffers without requeuing
711 * any newly dirty buffers for write.
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
715 struct buffer_head *bh;
716 struct list_head tmp;
717 struct address_space *mapping;
718 int err = 0, err2;
719 struct blk_plug plug;
721 INIT_LIST_HEAD(&tmp);
722 blk_start_plug(&plug);
724 spin_lock(lock);
725 while (!list_empty(list)) {
726 bh = BH_ENTRY(list->next);
727 mapping = bh->b_assoc_map;
728 __remove_assoc_queue(bh);
729 /* Avoid race with mark_buffer_dirty_inode() which does
730 * a lockless check and we rely on seeing the dirty bit */
731 smp_mb();
732 if (buffer_dirty(bh) || buffer_locked(bh)) {
733 list_add(&bh->b_assoc_buffers, &tmp);
734 bh->b_assoc_map = mapping;
735 if (buffer_dirty(bh)) {
736 get_bh(bh);
737 spin_unlock(lock);
739 * Ensure any pending I/O completes so that
740 * write_dirty_buffer() actually writes the
741 * current contents - it is a noop if I/O is
742 * still in flight on potentially older
743 * contents.
745 write_dirty_buffer(bh, REQ_SYNC);
748 * Kick off IO for the previous mapping. Note
749 * that we will not run the very last mapping,
750 * wait_on_buffer() will do that for us
751 * through sync_buffer().
753 brelse(bh);
754 spin_lock(lock);
759 spin_unlock(lock);
760 blk_finish_plug(&plug);
761 spin_lock(lock);
763 while (!list_empty(&tmp)) {
764 bh = BH_ENTRY(tmp.prev);
765 get_bh(bh);
766 mapping = bh->b_assoc_map;
767 __remove_assoc_queue(bh);
768 /* Avoid race with mark_buffer_dirty_inode() which does
769 * a lockless check and we rely on seeing the dirty bit */
770 smp_mb();
771 if (buffer_dirty(bh)) {
772 list_add(&bh->b_assoc_buffers,
773 &mapping->private_list);
774 bh->b_assoc_map = mapping;
776 spin_unlock(lock);
777 wait_on_buffer(bh);
778 if (!buffer_uptodate(bh))
779 err = -EIO;
780 brelse(bh);
781 spin_lock(lock);
784 spin_unlock(lock);
785 err2 = osync_buffers_list(lock, list);
786 if (err)
787 return err;
788 else
789 return err2;
793 * Invalidate any and all dirty buffers on a given inode. We are
794 * probably unmounting the fs, but that doesn't mean we have already
795 * done a sync(). Just drop the buffers from the inode list.
797 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
798 * assumes that all the buffers are against the blockdev. Not true
799 * for reiserfs.
801 void invalidate_inode_buffers(struct inode *inode)
803 if (inode_has_buffers(inode)) {
804 struct address_space *mapping = &inode->i_data;
805 struct list_head *list = &mapping->private_list;
806 struct address_space *buffer_mapping = mapping->private_data;
808 spin_lock(&buffer_mapping->private_lock);
809 while (!list_empty(list))
810 __remove_assoc_queue(BH_ENTRY(list->next));
811 spin_unlock(&buffer_mapping->private_lock);
814 EXPORT_SYMBOL(invalidate_inode_buffers);
817 * Remove any clean buffers from the inode's buffer list. This is called
818 * when we're trying to free the inode itself. Those buffers can pin it.
820 * Returns true if all buffers were removed.
822 int remove_inode_buffers(struct inode *inode)
824 int ret = 1;
826 if (inode_has_buffers(inode)) {
827 struct address_space *mapping = &inode->i_data;
828 struct list_head *list = &mapping->private_list;
829 struct address_space *buffer_mapping = mapping->private_data;
831 spin_lock(&buffer_mapping->private_lock);
832 while (!list_empty(list)) {
833 struct buffer_head *bh = BH_ENTRY(list->next);
834 if (buffer_dirty(bh)) {
835 ret = 0;
836 break;
838 __remove_assoc_queue(bh);
840 spin_unlock(&buffer_mapping->private_lock);
842 return ret;
846 * Create the appropriate buffers when given a page for data area and
847 * the size of each buffer.. Use the bh->b_this_page linked list to
848 * follow the buffers created. Return NULL if unable to create more
849 * buffers.
851 * The retry flag is used to differentiate async IO (paging, swapping)
852 * which may not fail from ordinary buffer allocations.
854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
855 bool retry)
857 struct buffer_head *bh, *head;
858 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859 long offset;
860 struct mem_cgroup *memcg;
862 if (retry)
863 gfp |= __GFP_NOFAIL;
865 memcg = get_mem_cgroup_from_page(page);
866 memalloc_use_memcg(memcg);
868 head = NULL;
869 offset = PAGE_SIZE;
870 while ((offset -= size) >= 0) {
871 bh = alloc_buffer_head(gfp);
872 if (!bh)
873 goto no_grow;
875 bh->b_this_page = head;
876 bh->b_blocknr = -1;
877 head = bh;
879 bh->b_size = size;
881 /* Link the buffer to its page */
882 set_bh_page(bh, page, offset);
884 out:
885 memalloc_unuse_memcg();
886 mem_cgroup_put(memcg);
887 return head;
889 * In case anything failed, we just free everything we got.
891 no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
900 goto out;
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
907 struct buffer_head *bh, *tail;
909 bh = head;
910 do {
911 tail = bh;
912 bh = bh->b_this_page;
913 } while (bh);
914 tail->b_this_page = head;
915 attach_page_buffers(page, head);
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
920 sector_t retval = ~((sector_t)0);
921 loff_t sz = i_size_read(bdev->bd_inode);
923 if (sz) {
924 unsigned int sizebits = blksize_bits(size);
925 retval = (sz >> sizebits);
927 return retval;
931 * Initialise the state of a blockdev page's buffers.
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935 sector_t block, int size)
937 struct buffer_head *head = page_buffers(page);
938 struct buffer_head *bh = head;
939 int uptodate = PageUptodate(page);
940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
942 do {
943 if (!buffer_mapped(bh)) {
944 bh->b_end_io = NULL;
945 bh->b_private = NULL;
946 bh->b_bdev = bdev;
947 bh->b_blocknr = block;
948 if (uptodate)
949 set_buffer_uptodate(bh);
950 if (block < end_block)
951 set_buffer_mapped(bh);
953 block++;
954 bh = bh->b_this_page;
955 } while (bh != head);
958 * Caller needs to validate requested block against end of device.
960 return end_block;
964 * Create the page-cache page that contains the requested block.
966 * This is used purely for blockdev mappings.
968 static int
969 grow_dev_page(struct block_device *bdev, sector_t block,
970 pgoff_t index, int size, int sizebits, gfp_t gfp)
972 struct inode *inode = bdev->bd_inode;
973 struct page *page;
974 struct buffer_head *bh;
975 sector_t end_block;
976 int ret = 0; /* Will call free_more_memory() */
977 gfp_t gfp_mask;
979 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
982 * XXX: __getblk_slow() can not really deal with failure and
983 * will endlessly loop on improvised global reclaim. Prefer
984 * looping in the allocator rather than here, at least that
985 * code knows what it's doing.
987 gfp_mask |= __GFP_NOFAIL;
989 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
991 BUG_ON(!PageLocked(page));
993 if (page_has_buffers(page)) {
994 bh = page_buffers(page);
995 if (bh->b_size == size) {
996 end_block = init_page_buffers(page, bdev,
997 (sector_t)index << sizebits,
998 size);
999 goto done;
1001 if (!try_to_free_buffers(page))
1002 goto failed;
1006 * Allocate some buffers for this page
1008 bh = alloc_page_buffers(page, size, true);
1011 * Link the page to the buffers and initialise them. Take the
1012 * lock to be atomic wrt __find_get_block(), which does not
1013 * run under the page lock.
1015 spin_lock(&inode->i_mapping->private_lock);
1016 link_dev_buffers(page, bh);
1017 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018 size);
1019 spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021 ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023 unlock_page(page);
1024 put_page(page);
1025 return ret;
1029 * Create buffers for the specified block device block's page. If
1030 * that page was dirty, the buffers are set dirty also.
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1035 pgoff_t index;
1036 int sizebits;
1038 sizebits = -1;
1039 do {
1040 sizebits++;
1041 } while ((size << sizebits) < PAGE_SIZE);
1043 index = block >> sizebits;
1046 * Check for a block which wants to lie outside our maximum possible
1047 * pagecache index. (this comparison is done using sector_t types).
1049 if (unlikely(index != block >> sizebits)) {
1050 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1051 "device %pg\n",
1052 __func__, (unsigned long long)block,
1053 bdev);
1054 return -EIO;
1057 /* Create a page with the proper size buffers.. */
1058 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1061 static struct buffer_head *
1062 __getblk_slow(struct block_device *bdev, sector_t block,
1063 unsigned size, gfp_t gfp)
1065 /* Size must be multiple of hard sectorsize */
1066 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1067 (size < 512 || size > PAGE_SIZE))) {
1068 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1069 size);
1070 printk(KERN_ERR "logical block size: %d\n",
1071 bdev_logical_block_size(bdev));
1073 dump_stack();
1074 return NULL;
1077 for (;;) {
1078 struct buffer_head *bh;
1079 int ret;
1081 bh = __find_get_block(bdev, block, size);
1082 if (bh)
1083 return bh;
1085 ret = grow_buffers(bdev, block, size, gfp);
1086 if (ret < 0)
1087 return NULL;
1092 * The relationship between dirty buffers and dirty pages:
1094 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095 * the page is tagged dirty in the page cache.
1097 * At all times, the dirtiness of the buffers represents the dirtiness of
1098 * subsections of the page. If the page has buffers, the page dirty bit is
1099 * merely a hint about the true dirty state.
1101 * When a page is set dirty in its entirety, all its buffers are marked dirty
1102 * (if the page has buffers).
1104 * When a buffer is marked dirty, its page is dirtied, but the page's other
1105 * buffers are not.
1107 * Also. When blockdev buffers are explicitly read with bread(), they
1108 * individually become uptodate. But their backing page remains not
1109 * uptodate - even if all of its buffers are uptodate. A subsequent
1110 * block_read_full_page() against that page will discover all the uptodate
1111 * buffers, will set the page uptodate and will perform no I/O.
1115 * mark_buffer_dirty - mark a buffer_head as needing writeout
1116 * @bh: the buffer_head to mark dirty
1118 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1119 * its backing page dirty, then tag the page as dirty in the page cache
1120 * and then attach the address_space's inode to its superblock's dirty
1121 * inode list.
1123 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1124 * i_pages lock and mapping->host->i_lock.
1126 void mark_buffer_dirty(struct buffer_head *bh)
1128 WARN_ON_ONCE(!buffer_uptodate(bh));
1130 trace_block_dirty_buffer(bh);
1133 * Very *carefully* optimize the it-is-already-dirty case.
1135 * Don't let the final "is it dirty" escape to before we
1136 * perhaps modified the buffer.
1138 if (buffer_dirty(bh)) {
1139 smp_mb();
1140 if (buffer_dirty(bh))
1141 return;
1144 if (!test_set_buffer_dirty(bh)) {
1145 struct page *page = bh->b_page;
1146 struct address_space *mapping = NULL;
1148 lock_page_memcg(page);
1149 if (!TestSetPageDirty(page)) {
1150 mapping = page_mapping(page);
1151 if (mapping)
1152 __set_page_dirty(page, mapping, 0);
1154 unlock_page_memcg(page);
1155 if (mapping)
1156 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1159 EXPORT_SYMBOL(mark_buffer_dirty);
1161 void mark_buffer_write_io_error(struct buffer_head *bh)
1163 set_buffer_write_io_error(bh);
1164 /* FIXME: do we need to set this in both places? */
1165 if (bh->b_page && bh->b_page->mapping)
1166 mapping_set_error(bh->b_page->mapping, -EIO);
1167 if (bh->b_assoc_map)
1168 mapping_set_error(bh->b_assoc_map, -EIO);
1170 EXPORT_SYMBOL(mark_buffer_write_io_error);
1173 * Decrement a buffer_head's reference count. If all buffers against a page
1174 * have zero reference count, are clean and unlocked, and if the page is clean
1175 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177 * a page but it ends up not being freed, and buffers may later be reattached).
1179 void __brelse(struct buffer_head * buf)
1181 if (atomic_read(&buf->b_count)) {
1182 put_bh(buf);
1183 return;
1185 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1187 EXPORT_SYMBOL(__brelse);
1190 * bforget() is like brelse(), except it discards any
1191 * potentially dirty data.
1193 void __bforget(struct buffer_head *bh)
1195 clear_buffer_dirty(bh);
1196 if (bh->b_assoc_map) {
1197 struct address_space *buffer_mapping = bh->b_page->mapping;
1199 spin_lock(&buffer_mapping->private_lock);
1200 list_del_init(&bh->b_assoc_buffers);
1201 bh->b_assoc_map = NULL;
1202 spin_unlock(&buffer_mapping->private_lock);
1204 __brelse(bh);
1206 EXPORT_SYMBOL(__bforget);
1208 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210 lock_buffer(bh);
1211 if (buffer_uptodate(bh)) {
1212 unlock_buffer(bh);
1213 return bh;
1214 } else {
1215 get_bh(bh);
1216 bh->b_end_io = end_buffer_read_sync;
1217 submit_bh(REQ_OP_READ, 0, bh);
1218 wait_on_buffer(bh);
1219 if (buffer_uptodate(bh))
1220 return bh;
1222 brelse(bh);
1223 return NULL;
1227 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1228 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1229 * refcount elevated by one when they're in an LRU. A buffer can only appear
1230 * once in a particular CPU's LRU. A single buffer can be present in multiple
1231 * CPU's LRUs at the same time.
1233 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1234 * sb_find_get_block().
1236 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1237 * a local interrupt disable for that.
1240 #define BH_LRU_SIZE 16
1242 struct bh_lru {
1243 struct buffer_head *bhs[BH_LRU_SIZE];
1246 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248 #ifdef CONFIG_SMP
1249 #define bh_lru_lock() local_irq_disable()
1250 #define bh_lru_unlock() local_irq_enable()
1251 #else
1252 #define bh_lru_lock() preempt_disable()
1253 #define bh_lru_unlock() preempt_enable()
1254 #endif
1256 static inline void check_irqs_on(void)
1258 #ifdef irqs_disabled
1259 BUG_ON(irqs_disabled());
1260 #endif
1264 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1265 * inserted at the front, and the buffer_head at the back if any is evicted.
1266 * Or, if already in the LRU it is moved to the front.
1268 static void bh_lru_install(struct buffer_head *bh)
1270 struct buffer_head *evictee = bh;
1271 struct bh_lru *b;
1272 int i;
1274 check_irqs_on();
1275 bh_lru_lock();
1277 b = this_cpu_ptr(&bh_lrus);
1278 for (i = 0; i < BH_LRU_SIZE; i++) {
1279 swap(evictee, b->bhs[i]);
1280 if (evictee == bh) {
1281 bh_lru_unlock();
1282 return;
1286 get_bh(bh);
1287 bh_lru_unlock();
1288 brelse(evictee);
1292 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1294 static struct buffer_head *
1295 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1297 struct buffer_head *ret = NULL;
1298 unsigned int i;
1300 check_irqs_on();
1301 bh_lru_lock();
1302 for (i = 0; i < BH_LRU_SIZE; i++) {
1303 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1305 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1306 bh->b_size == size) {
1307 if (i) {
1308 while (i) {
1309 __this_cpu_write(bh_lrus.bhs[i],
1310 __this_cpu_read(bh_lrus.bhs[i - 1]));
1311 i--;
1313 __this_cpu_write(bh_lrus.bhs[0], bh);
1315 get_bh(bh);
1316 ret = bh;
1317 break;
1320 bh_lru_unlock();
1321 return ret;
1325 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1326 * it in the LRU and mark it as accessed. If it is not present then return
1327 * NULL
1329 struct buffer_head *
1330 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1332 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334 if (bh == NULL) {
1335 /* __find_get_block_slow will mark the page accessed */
1336 bh = __find_get_block_slow(bdev, block);
1337 if (bh)
1338 bh_lru_install(bh);
1339 } else
1340 touch_buffer(bh);
1342 return bh;
1344 EXPORT_SYMBOL(__find_get_block);
1347 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1348 * which corresponds to the passed block_device, block and size. The
1349 * returned buffer has its reference count incremented.
1351 * __getblk_gfp() will lock up the machine if grow_dev_page's
1352 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1354 struct buffer_head *
1355 __getblk_gfp(struct block_device *bdev, sector_t block,
1356 unsigned size, gfp_t gfp)
1358 struct buffer_head *bh = __find_get_block(bdev, block, size);
1360 might_sleep();
1361 if (bh == NULL)
1362 bh = __getblk_slow(bdev, block, size, gfp);
1363 return bh;
1365 EXPORT_SYMBOL(__getblk_gfp);
1368 * Do async read-ahead on a buffer..
1370 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1372 struct buffer_head *bh = __getblk(bdev, block, size);
1373 if (likely(bh)) {
1374 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1375 brelse(bh);
1378 EXPORT_SYMBOL(__breadahead);
1380 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1381 gfp_t gfp)
1383 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1384 if (likely(bh)) {
1385 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1386 brelse(bh);
1389 EXPORT_SYMBOL(__breadahead_gfp);
1392 * __bread_gfp() - reads a specified block and returns the bh
1393 * @bdev: the block_device to read from
1394 * @block: number of block
1395 * @size: size (in bytes) to read
1396 * @gfp: page allocation flag
1398 * Reads a specified block, and returns buffer head that contains it.
1399 * The page cache can be allocated from non-movable area
1400 * not to prevent page migration if you set gfp to zero.
1401 * It returns NULL if the block was unreadable.
1403 struct buffer_head *
1404 __bread_gfp(struct block_device *bdev, sector_t block,
1405 unsigned size, gfp_t gfp)
1407 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1409 if (likely(bh) && !buffer_uptodate(bh))
1410 bh = __bread_slow(bh);
1411 return bh;
1413 EXPORT_SYMBOL(__bread_gfp);
1416 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1417 * This doesn't race because it runs in each cpu either in irq
1418 * or with preempt disabled.
1420 static void invalidate_bh_lru(void *arg)
1422 struct bh_lru *b = &get_cpu_var(bh_lrus);
1423 int i;
1425 for (i = 0; i < BH_LRU_SIZE; i++) {
1426 brelse(b->bhs[i]);
1427 b->bhs[i] = NULL;
1429 put_cpu_var(bh_lrus);
1432 static bool has_bh_in_lru(int cpu, void *dummy)
1434 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1435 int i;
1437 for (i = 0; i < BH_LRU_SIZE; i++) {
1438 if (b->bhs[i])
1439 return true;
1442 return false;
1445 void invalidate_bh_lrus(void)
1447 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1449 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1451 void set_bh_page(struct buffer_head *bh,
1452 struct page *page, unsigned long offset)
1454 bh->b_page = page;
1455 BUG_ON(offset >= PAGE_SIZE);
1456 if (PageHighMem(page))
1458 * This catches illegal uses and preserves the offset:
1460 bh->b_data = (char *)(0 + offset);
1461 else
1462 bh->b_data = page_address(page) + offset;
1464 EXPORT_SYMBOL(set_bh_page);
1467 * Called when truncating a buffer on a page completely.
1470 /* Bits that are cleared during an invalidate */
1471 #define BUFFER_FLAGS_DISCARD \
1472 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1473 1 << BH_Delay | 1 << BH_Unwritten)
1475 static void discard_buffer(struct buffer_head * bh)
1477 unsigned long b_state, b_state_old;
1479 lock_buffer(bh);
1480 clear_buffer_dirty(bh);
1481 bh->b_bdev = NULL;
1482 b_state = bh->b_state;
1483 for (;;) {
1484 b_state_old = cmpxchg(&bh->b_state, b_state,
1485 (b_state & ~BUFFER_FLAGS_DISCARD));
1486 if (b_state_old == b_state)
1487 break;
1488 b_state = b_state_old;
1490 unlock_buffer(bh);
1494 * block_invalidatepage - invalidate part or all of a buffer-backed page
1496 * @page: the page which is affected
1497 * @offset: start of the range to invalidate
1498 * @length: length of the range to invalidate
1500 * block_invalidatepage() is called when all or part of the page has become
1501 * invalidated by a truncate operation.
1503 * block_invalidatepage() does not have to release all buffers, but it must
1504 * ensure that no dirty buffer is left outside @offset and that no I/O
1505 * is underway against any of the blocks which are outside the truncation
1506 * point. Because the caller is about to free (and possibly reuse) those
1507 * blocks on-disk.
1509 void block_invalidatepage(struct page *page, unsigned int offset,
1510 unsigned int length)
1512 struct buffer_head *head, *bh, *next;
1513 unsigned int curr_off = 0;
1514 unsigned int stop = length + offset;
1516 BUG_ON(!PageLocked(page));
1517 if (!page_has_buffers(page))
1518 goto out;
1521 * Check for overflow
1523 BUG_ON(stop > PAGE_SIZE || stop < length);
1525 head = page_buffers(page);
1526 bh = head;
1527 do {
1528 unsigned int next_off = curr_off + bh->b_size;
1529 next = bh->b_this_page;
1532 * Are we still fully in range ?
1534 if (next_off > stop)
1535 goto out;
1538 * is this block fully invalidated?
1540 if (offset <= curr_off)
1541 discard_buffer(bh);
1542 curr_off = next_off;
1543 bh = next;
1544 } while (bh != head);
1547 * We release buffers only if the entire page is being invalidated.
1548 * The get_block cached value has been unconditionally invalidated,
1549 * so real IO is not possible anymore.
1551 if (length == PAGE_SIZE)
1552 try_to_release_page(page, 0);
1553 out:
1554 return;
1556 EXPORT_SYMBOL(block_invalidatepage);
1560 * We attach and possibly dirty the buffers atomically wrt
1561 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1562 * is already excluded via the page lock.
1564 void create_empty_buffers(struct page *page,
1565 unsigned long blocksize, unsigned long b_state)
1567 struct buffer_head *bh, *head, *tail;
1569 head = alloc_page_buffers(page, blocksize, true);
1570 bh = head;
1571 do {
1572 bh->b_state |= b_state;
1573 tail = bh;
1574 bh = bh->b_this_page;
1575 } while (bh);
1576 tail->b_this_page = head;
1578 spin_lock(&page->mapping->private_lock);
1579 if (PageUptodate(page) || PageDirty(page)) {
1580 bh = head;
1581 do {
1582 if (PageDirty(page))
1583 set_buffer_dirty(bh);
1584 if (PageUptodate(page))
1585 set_buffer_uptodate(bh);
1586 bh = bh->b_this_page;
1587 } while (bh != head);
1589 attach_page_buffers(page, head);
1590 spin_unlock(&page->mapping->private_lock);
1592 EXPORT_SYMBOL(create_empty_buffers);
1595 * clean_bdev_aliases: clean a range of buffers in block device
1596 * @bdev: Block device to clean buffers in
1597 * @block: Start of a range of blocks to clean
1598 * @len: Number of blocks to clean
1600 * We are taking a range of blocks for data and we don't want writeback of any
1601 * buffer-cache aliases starting from return from this function and until the
1602 * moment when something will explicitly mark the buffer dirty (hopefully that
1603 * will not happen until we will free that block ;-) We don't even need to mark
1604 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1605 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1606 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1607 * would confuse anyone who might pick it with bread() afterwards...
1609 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1610 * writeout I/O going on against recently-freed buffers. We don't wait on that
1611 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1612 * need to. That happens here.
1614 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1616 struct inode *bd_inode = bdev->bd_inode;
1617 struct address_space *bd_mapping = bd_inode->i_mapping;
1618 struct pagevec pvec;
1619 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1620 pgoff_t end;
1621 int i, count;
1622 struct buffer_head *bh;
1623 struct buffer_head *head;
1625 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1626 pagevec_init(&pvec);
1627 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1628 count = pagevec_count(&pvec);
1629 for (i = 0; i < count; i++) {
1630 struct page *page = pvec.pages[i];
1632 if (!page_has_buffers(page))
1633 continue;
1635 * We use page lock instead of bd_mapping->private_lock
1636 * to pin buffers here since we can afford to sleep and
1637 * it scales better than a global spinlock lock.
1639 lock_page(page);
1640 /* Recheck when the page is locked which pins bhs */
1641 if (!page_has_buffers(page))
1642 goto unlock_page;
1643 head = page_buffers(page);
1644 bh = head;
1645 do {
1646 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1647 goto next;
1648 if (bh->b_blocknr >= block + len)
1649 break;
1650 clear_buffer_dirty(bh);
1651 wait_on_buffer(bh);
1652 clear_buffer_req(bh);
1653 next:
1654 bh = bh->b_this_page;
1655 } while (bh != head);
1656 unlock_page:
1657 unlock_page(page);
1659 pagevec_release(&pvec);
1660 cond_resched();
1661 /* End of range already reached? */
1662 if (index > end || !index)
1663 break;
1666 EXPORT_SYMBOL(clean_bdev_aliases);
1669 * Size is a power-of-two in the range 512..PAGE_SIZE,
1670 * and the case we care about most is PAGE_SIZE.
1672 * So this *could* possibly be written with those
1673 * constraints in mind (relevant mostly if some
1674 * architecture has a slow bit-scan instruction)
1676 static inline int block_size_bits(unsigned int blocksize)
1678 return ilog2(blocksize);
1681 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1683 BUG_ON(!PageLocked(page));
1685 if (!page_has_buffers(page))
1686 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1687 b_state);
1688 return page_buffers(page);
1692 * NOTE! All mapped/uptodate combinations are valid:
1694 * Mapped Uptodate Meaning
1696 * No No "unknown" - must do get_block()
1697 * No Yes "hole" - zero-filled
1698 * Yes No "allocated" - allocated on disk, not read in
1699 * Yes Yes "valid" - allocated and up-to-date in memory.
1701 * "Dirty" is valid only with the last case (mapped+uptodate).
1705 * While block_write_full_page is writing back the dirty buffers under
1706 * the page lock, whoever dirtied the buffers may decide to clean them
1707 * again at any time. We handle that by only looking at the buffer
1708 * state inside lock_buffer().
1710 * If block_write_full_page() is called for regular writeback
1711 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1712 * locked buffer. This only can happen if someone has written the buffer
1713 * directly, with submit_bh(). At the address_space level PageWriteback
1714 * prevents this contention from occurring.
1716 * If block_write_full_page() is called with wbc->sync_mode ==
1717 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1718 * causes the writes to be flagged as synchronous writes.
1720 int __block_write_full_page(struct inode *inode, struct page *page,
1721 get_block_t *get_block, struct writeback_control *wbc,
1722 bh_end_io_t *handler)
1724 int err;
1725 sector_t block;
1726 sector_t last_block;
1727 struct buffer_head *bh, *head;
1728 unsigned int blocksize, bbits;
1729 int nr_underway = 0;
1730 int write_flags = wbc_to_write_flags(wbc);
1732 head = create_page_buffers(page, inode,
1733 (1 << BH_Dirty)|(1 << BH_Uptodate));
1736 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1737 * here, and the (potentially unmapped) buffers may become dirty at
1738 * any time. If a buffer becomes dirty here after we've inspected it
1739 * then we just miss that fact, and the page stays dirty.
1741 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1742 * handle that here by just cleaning them.
1745 bh = head;
1746 blocksize = bh->b_size;
1747 bbits = block_size_bits(blocksize);
1749 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1750 last_block = (i_size_read(inode) - 1) >> bbits;
1753 * Get all the dirty buffers mapped to disk addresses and
1754 * handle any aliases from the underlying blockdev's mapping.
1756 do {
1757 if (block > last_block) {
1759 * mapped buffers outside i_size will occur, because
1760 * this page can be outside i_size when there is a
1761 * truncate in progress.
1764 * The buffer was zeroed by block_write_full_page()
1766 clear_buffer_dirty(bh);
1767 set_buffer_uptodate(bh);
1768 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1769 buffer_dirty(bh)) {
1770 WARN_ON(bh->b_size != blocksize);
1771 err = get_block(inode, block, bh, 1);
1772 if (err)
1773 goto recover;
1774 clear_buffer_delay(bh);
1775 if (buffer_new(bh)) {
1776 /* blockdev mappings never come here */
1777 clear_buffer_new(bh);
1778 clean_bdev_bh_alias(bh);
1781 bh = bh->b_this_page;
1782 block++;
1783 } while (bh != head);
1785 do {
1786 if (!buffer_mapped(bh))
1787 continue;
1789 * If it's a fully non-blocking write attempt and we cannot
1790 * lock the buffer then redirty the page. Note that this can
1791 * potentially cause a busy-wait loop from writeback threads
1792 * and kswapd activity, but those code paths have their own
1793 * higher-level throttling.
1795 if (wbc->sync_mode != WB_SYNC_NONE) {
1796 lock_buffer(bh);
1797 } else if (!trylock_buffer(bh)) {
1798 redirty_page_for_writepage(wbc, page);
1799 continue;
1801 if (test_clear_buffer_dirty(bh)) {
1802 mark_buffer_async_write_endio(bh, handler);
1803 } else {
1804 unlock_buffer(bh);
1806 } while ((bh = bh->b_this_page) != head);
1809 * The page and its buffers are protected by PageWriteback(), so we can
1810 * drop the bh refcounts early.
1812 BUG_ON(PageWriteback(page));
1813 set_page_writeback(page);
1815 do {
1816 struct buffer_head *next = bh->b_this_page;
1817 if (buffer_async_write(bh)) {
1818 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1819 inode->i_write_hint, wbc);
1820 nr_underway++;
1822 bh = next;
1823 } while (bh != head);
1824 unlock_page(page);
1826 err = 0;
1827 done:
1828 if (nr_underway == 0) {
1830 * The page was marked dirty, but the buffers were
1831 * clean. Someone wrote them back by hand with
1832 * ll_rw_block/submit_bh. A rare case.
1834 end_page_writeback(page);
1837 * The page and buffer_heads can be released at any time from
1838 * here on.
1841 return err;
1843 recover:
1845 * ENOSPC, or some other error. We may already have added some
1846 * blocks to the file, so we need to write these out to avoid
1847 * exposing stale data.
1848 * The page is currently locked and not marked for writeback
1850 bh = head;
1851 /* Recovery: lock and submit the mapped buffers */
1852 do {
1853 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1854 !buffer_delay(bh)) {
1855 lock_buffer(bh);
1856 mark_buffer_async_write_endio(bh, handler);
1857 } else {
1859 * The buffer may have been set dirty during
1860 * attachment to a dirty page.
1862 clear_buffer_dirty(bh);
1864 } while ((bh = bh->b_this_page) != head);
1865 SetPageError(page);
1866 BUG_ON(PageWriteback(page));
1867 mapping_set_error(page->mapping, err);
1868 set_page_writeback(page);
1869 do {
1870 struct buffer_head *next = bh->b_this_page;
1871 if (buffer_async_write(bh)) {
1872 clear_buffer_dirty(bh);
1873 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1874 inode->i_write_hint, wbc);
1875 nr_underway++;
1877 bh = next;
1878 } while (bh != head);
1879 unlock_page(page);
1880 goto done;
1882 EXPORT_SYMBOL(__block_write_full_page);
1885 * If a page has any new buffers, zero them out here, and mark them uptodate
1886 * and dirty so they'll be written out (in order to prevent uninitialised
1887 * block data from leaking). And clear the new bit.
1889 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1891 unsigned int block_start, block_end;
1892 struct buffer_head *head, *bh;
1894 BUG_ON(!PageLocked(page));
1895 if (!page_has_buffers(page))
1896 return;
1898 bh = head = page_buffers(page);
1899 block_start = 0;
1900 do {
1901 block_end = block_start + bh->b_size;
1903 if (buffer_new(bh)) {
1904 if (block_end > from && block_start < to) {
1905 if (!PageUptodate(page)) {
1906 unsigned start, size;
1908 start = max(from, block_start);
1909 size = min(to, block_end) - start;
1911 zero_user(page, start, size);
1912 set_buffer_uptodate(bh);
1915 clear_buffer_new(bh);
1916 mark_buffer_dirty(bh);
1920 block_start = block_end;
1921 bh = bh->b_this_page;
1922 } while (bh != head);
1924 EXPORT_SYMBOL(page_zero_new_buffers);
1926 static void
1927 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1928 struct iomap *iomap)
1930 loff_t offset = block << inode->i_blkbits;
1932 bh->b_bdev = iomap->bdev;
1935 * Block points to offset in file we need to map, iomap contains
1936 * the offset at which the map starts. If the map ends before the
1937 * current block, then do not map the buffer and let the caller
1938 * handle it.
1940 BUG_ON(offset >= iomap->offset + iomap->length);
1942 switch (iomap->type) {
1943 case IOMAP_HOLE:
1945 * If the buffer is not up to date or beyond the current EOF,
1946 * we need to mark it as new to ensure sub-block zeroing is
1947 * executed if necessary.
1949 if (!buffer_uptodate(bh) ||
1950 (offset >= i_size_read(inode)))
1951 set_buffer_new(bh);
1952 break;
1953 case IOMAP_DELALLOC:
1954 if (!buffer_uptodate(bh) ||
1955 (offset >= i_size_read(inode)))
1956 set_buffer_new(bh);
1957 set_buffer_uptodate(bh);
1958 set_buffer_mapped(bh);
1959 set_buffer_delay(bh);
1960 break;
1961 case IOMAP_UNWRITTEN:
1963 * For unwritten regions, we always need to ensure that regions
1964 * in the block we are not writing to are zeroed. Mark the
1965 * buffer as new to ensure this.
1967 set_buffer_new(bh);
1968 set_buffer_unwritten(bh);
1969 /* FALLTHRU */
1970 case IOMAP_MAPPED:
1971 if ((iomap->flags & IOMAP_F_NEW) ||
1972 offset >= i_size_read(inode))
1973 set_buffer_new(bh);
1974 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1975 inode->i_blkbits;
1976 set_buffer_mapped(bh);
1977 break;
1981 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1982 get_block_t *get_block, struct iomap *iomap)
1984 unsigned from = pos & (PAGE_SIZE - 1);
1985 unsigned to = from + len;
1986 struct inode *inode = page->mapping->host;
1987 unsigned block_start, block_end;
1988 sector_t block;
1989 int err = 0;
1990 unsigned blocksize, bbits;
1991 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1993 BUG_ON(!PageLocked(page));
1994 BUG_ON(from > PAGE_SIZE);
1995 BUG_ON(to > PAGE_SIZE);
1996 BUG_ON(from > to);
1998 head = create_page_buffers(page, inode, 0);
1999 blocksize = head->b_size;
2000 bbits = block_size_bits(blocksize);
2002 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2004 for(bh = head, block_start = 0; bh != head || !block_start;
2005 block++, block_start=block_end, bh = bh->b_this_page) {
2006 block_end = block_start + blocksize;
2007 if (block_end <= from || block_start >= to) {
2008 if (PageUptodate(page)) {
2009 if (!buffer_uptodate(bh))
2010 set_buffer_uptodate(bh);
2012 continue;
2014 if (buffer_new(bh))
2015 clear_buffer_new(bh);
2016 if (!buffer_mapped(bh)) {
2017 WARN_ON(bh->b_size != blocksize);
2018 if (get_block) {
2019 err = get_block(inode, block, bh, 1);
2020 if (err)
2021 break;
2022 } else {
2023 iomap_to_bh(inode, block, bh, iomap);
2026 if (buffer_new(bh)) {
2027 clean_bdev_bh_alias(bh);
2028 if (PageUptodate(page)) {
2029 clear_buffer_new(bh);
2030 set_buffer_uptodate(bh);
2031 mark_buffer_dirty(bh);
2032 continue;
2034 if (block_end > to || block_start < from)
2035 zero_user_segments(page,
2036 to, block_end,
2037 block_start, from);
2038 continue;
2041 if (PageUptodate(page)) {
2042 if (!buffer_uptodate(bh))
2043 set_buffer_uptodate(bh);
2044 continue;
2046 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2047 !buffer_unwritten(bh) &&
2048 (block_start < from || block_end > to)) {
2049 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2050 *wait_bh++=bh;
2054 * If we issued read requests - let them complete.
2056 while(wait_bh > wait) {
2057 wait_on_buffer(*--wait_bh);
2058 if (!buffer_uptodate(*wait_bh))
2059 err = -EIO;
2061 if (unlikely(err))
2062 page_zero_new_buffers(page, from, to);
2063 return err;
2066 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2067 get_block_t *get_block)
2069 return __block_write_begin_int(page, pos, len, get_block, NULL);
2071 EXPORT_SYMBOL(__block_write_begin);
2073 static int __block_commit_write(struct inode *inode, struct page *page,
2074 unsigned from, unsigned to)
2076 unsigned block_start, block_end;
2077 int partial = 0;
2078 unsigned blocksize;
2079 struct buffer_head *bh, *head;
2081 bh = head = page_buffers(page);
2082 blocksize = bh->b_size;
2084 block_start = 0;
2085 do {
2086 block_end = block_start + blocksize;
2087 if (block_end <= from || block_start >= to) {
2088 if (!buffer_uptodate(bh))
2089 partial = 1;
2090 } else {
2091 set_buffer_uptodate(bh);
2092 mark_buffer_dirty(bh);
2094 clear_buffer_new(bh);
2096 block_start = block_end;
2097 bh = bh->b_this_page;
2098 } while (bh != head);
2101 * If this is a partial write which happened to make all buffers
2102 * uptodate then we can optimize away a bogus readpage() for
2103 * the next read(). Here we 'discover' whether the page went
2104 * uptodate as a result of this (potentially partial) write.
2106 if (!partial)
2107 SetPageUptodate(page);
2108 return 0;
2112 * block_write_begin takes care of the basic task of block allocation and
2113 * bringing partial write blocks uptodate first.
2115 * The filesystem needs to handle block truncation upon failure.
2117 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2118 unsigned flags, struct page **pagep, get_block_t *get_block)
2120 pgoff_t index = pos >> PAGE_SHIFT;
2121 struct page *page;
2122 int status;
2124 page = grab_cache_page_write_begin(mapping, index, flags);
2125 if (!page)
2126 return -ENOMEM;
2128 status = __block_write_begin(page, pos, len, get_block);
2129 if (unlikely(status)) {
2130 unlock_page(page);
2131 put_page(page);
2132 page = NULL;
2135 *pagep = page;
2136 return status;
2138 EXPORT_SYMBOL(block_write_begin);
2140 int block_write_end(struct file *file, struct address_space *mapping,
2141 loff_t pos, unsigned len, unsigned copied,
2142 struct page *page, void *fsdata)
2144 struct inode *inode = mapping->host;
2145 unsigned start;
2147 start = pos & (PAGE_SIZE - 1);
2149 if (unlikely(copied < len)) {
2151 * The buffers that were written will now be uptodate, so we
2152 * don't have to worry about a readpage reading them and
2153 * overwriting a partial write. However if we have encountered
2154 * a short write and only partially written into a buffer, it
2155 * will not be marked uptodate, so a readpage might come in and
2156 * destroy our partial write.
2158 * Do the simplest thing, and just treat any short write to a
2159 * non uptodate page as a zero-length write, and force the
2160 * caller to redo the whole thing.
2162 if (!PageUptodate(page))
2163 copied = 0;
2165 page_zero_new_buffers(page, start+copied, start+len);
2167 flush_dcache_page(page);
2169 /* This could be a short (even 0-length) commit */
2170 __block_commit_write(inode, page, start, start+copied);
2172 return copied;
2174 EXPORT_SYMBOL(block_write_end);
2176 int generic_write_end(struct file *file, struct address_space *mapping,
2177 loff_t pos, unsigned len, unsigned copied,
2178 struct page *page, void *fsdata)
2180 struct inode *inode = mapping->host;
2181 loff_t old_size = inode->i_size;
2182 bool i_size_changed = false;
2184 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2187 * No need to use i_size_read() here, the i_size cannot change under us
2188 * because we hold i_rwsem.
2190 * But it's important to update i_size while still holding page lock:
2191 * page writeout could otherwise come in and zero beyond i_size.
2193 if (pos + copied > inode->i_size) {
2194 i_size_write(inode, pos + copied);
2195 i_size_changed = true;
2198 unlock_page(page);
2199 put_page(page);
2201 if (old_size < pos)
2202 pagecache_isize_extended(inode, old_size, pos);
2204 * Don't mark the inode dirty under page lock. First, it unnecessarily
2205 * makes the holding time of page lock longer. Second, it forces lock
2206 * ordering of page lock and transaction start for journaling
2207 * filesystems.
2209 if (i_size_changed)
2210 mark_inode_dirty(inode);
2211 return copied;
2213 EXPORT_SYMBOL(generic_write_end);
2216 * block_is_partially_uptodate checks whether buffers within a page are
2217 * uptodate or not.
2219 * Returns true if all buffers which correspond to a file portion
2220 * we want to read are uptodate.
2222 int block_is_partially_uptodate(struct page *page, unsigned long from,
2223 unsigned long count)
2225 unsigned block_start, block_end, blocksize;
2226 unsigned to;
2227 struct buffer_head *bh, *head;
2228 int ret = 1;
2230 if (!page_has_buffers(page))
2231 return 0;
2233 head = page_buffers(page);
2234 blocksize = head->b_size;
2235 to = min_t(unsigned, PAGE_SIZE - from, count);
2236 to = from + to;
2237 if (from < blocksize && to > PAGE_SIZE - blocksize)
2238 return 0;
2240 bh = head;
2241 block_start = 0;
2242 do {
2243 block_end = block_start + blocksize;
2244 if (block_end > from && block_start < to) {
2245 if (!buffer_uptodate(bh)) {
2246 ret = 0;
2247 break;
2249 if (block_end >= to)
2250 break;
2252 block_start = block_end;
2253 bh = bh->b_this_page;
2254 } while (bh != head);
2256 return ret;
2258 EXPORT_SYMBOL(block_is_partially_uptodate);
2261 * Generic "read page" function for block devices that have the normal
2262 * get_block functionality. This is most of the block device filesystems.
2263 * Reads the page asynchronously --- the unlock_buffer() and
2264 * set/clear_buffer_uptodate() functions propagate buffer state into the
2265 * page struct once IO has completed.
2267 int block_read_full_page(struct page *page, get_block_t *get_block)
2269 struct inode *inode = page->mapping->host;
2270 sector_t iblock, lblock;
2271 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2272 unsigned int blocksize, bbits;
2273 int nr, i;
2274 int fully_mapped = 1;
2276 head = create_page_buffers(page, inode, 0);
2277 blocksize = head->b_size;
2278 bbits = block_size_bits(blocksize);
2280 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2281 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2282 bh = head;
2283 nr = 0;
2284 i = 0;
2286 do {
2287 if (buffer_uptodate(bh))
2288 continue;
2290 if (!buffer_mapped(bh)) {
2291 int err = 0;
2293 fully_mapped = 0;
2294 if (iblock < lblock) {
2295 WARN_ON(bh->b_size != blocksize);
2296 err = get_block(inode, iblock, bh, 0);
2297 if (err)
2298 SetPageError(page);
2300 if (!buffer_mapped(bh)) {
2301 zero_user(page, i * blocksize, blocksize);
2302 if (!err)
2303 set_buffer_uptodate(bh);
2304 continue;
2307 * get_block() might have updated the buffer
2308 * synchronously
2310 if (buffer_uptodate(bh))
2311 continue;
2313 arr[nr++] = bh;
2314 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2316 if (fully_mapped)
2317 SetPageMappedToDisk(page);
2319 if (!nr) {
2321 * All buffers are uptodate - we can set the page uptodate
2322 * as well. But not if get_block() returned an error.
2324 if (!PageError(page))
2325 SetPageUptodate(page);
2326 unlock_page(page);
2327 return 0;
2330 /* Stage two: lock the buffers */
2331 for (i = 0; i < nr; i++) {
2332 bh = arr[i];
2333 lock_buffer(bh);
2334 mark_buffer_async_read(bh);
2338 * Stage 3: start the IO. Check for uptodateness
2339 * inside the buffer lock in case another process reading
2340 * the underlying blockdev brought it uptodate (the sct fix).
2342 for (i = 0; i < nr; i++) {
2343 bh = arr[i];
2344 if (buffer_uptodate(bh))
2345 end_buffer_async_read(bh, 1);
2346 else
2347 submit_bh(REQ_OP_READ, 0, bh);
2349 return 0;
2351 EXPORT_SYMBOL(block_read_full_page);
2353 /* utility function for filesystems that need to do work on expanding
2354 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2355 * deal with the hole.
2357 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2359 struct address_space *mapping = inode->i_mapping;
2360 struct page *page;
2361 void *fsdata;
2362 int err;
2364 err = inode_newsize_ok(inode, size);
2365 if (err)
2366 goto out;
2368 err = pagecache_write_begin(NULL, mapping, size, 0,
2369 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2370 if (err)
2371 goto out;
2373 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2374 BUG_ON(err > 0);
2376 out:
2377 return err;
2379 EXPORT_SYMBOL(generic_cont_expand_simple);
2381 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2382 loff_t pos, loff_t *bytes)
2384 struct inode *inode = mapping->host;
2385 unsigned int blocksize = i_blocksize(inode);
2386 struct page *page;
2387 void *fsdata;
2388 pgoff_t index, curidx;
2389 loff_t curpos;
2390 unsigned zerofrom, offset, len;
2391 int err = 0;
2393 index = pos >> PAGE_SHIFT;
2394 offset = pos & ~PAGE_MASK;
2396 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2397 zerofrom = curpos & ~PAGE_MASK;
2398 if (zerofrom & (blocksize-1)) {
2399 *bytes |= (blocksize-1);
2400 (*bytes)++;
2402 len = PAGE_SIZE - zerofrom;
2404 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2405 &page, &fsdata);
2406 if (err)
2407 goto out;
2408 zero_user(page, zerofrom, len);
2409 err = pagecache_write_end(file, mapping, curpos, len, len,
2410 page, fsdata);
2411 if (err < 0)
2412 goto out;
2413 BUG_ON(err != len);
2414 err = 0;
2416 balance_dirty_pages_ratelimited(mapping);
2418 if (fatal_signal_pending(current)) {
2419 err = -EINTR;
2420 goto out;
2424 /* page covers the boundary, find the boundary offset */
2425 if (index == curidx) {
2426 zerofrom = curpos & ~PAGE_MASK;
2427 /* if we will expand the thing last block will be filled */
2428 if (offset <= zerofrom) {
2429 goto out;
2431 if (zerofrom & (blocksize-1)) {
2432 *bytes |= (blocksize-1);
2433 (*bytes)++;
2435 len = offset - zerofrom;
2437 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2438 &page, &fsdata);
2439 if (err)
2440 goto out;
2441 zero_user(page, zerofrom, len);
2442 err = pagecache_write_end(file, mapping, curpos, len, len,
2443 page, fsdata);
2444 if (err < 0)
2445 goto out;
2446 BUG_ON(err != len);
2447 err = 0;
2449 out:
2450 return err;
2454 * For moronic filesystems that do not allow holes in file.
2455 * We may have to extend the file.
2457 int cont_write_begin(struct file *file, struct address_space *mapping,
2458 loff_t pos, unsigned len, unsigned flags,
2459 struct page **pagep, void **fsdata,
2460 get_block_t *get_block, loff_t *bytes)
2462 struct inode *inode = mapping->host;
2463 unsigned int blocksize = i_blocksize(inode);
2464 unsigned int zerofrom;
2465 int err;
2467 err = cont_expand_zero(file, mapping, pos, bytes);
2468 if (err)
2469 return err;
2471 zerofrom = *bytes & ~PAGE_MASK;
2472 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2473 *bytes |= (blocksize-1);
2474 (*bytes)++;
2477 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2479 EXPORT_SYMBOL(cont_write_begin);
2481 int block_commit_write(struct page *page, unsigned from, unsigned to)
2483 struct inode *inode = page->mapping->host;
2484 __block_commit_write(inode,page,from,to);
2485 return 0;
2487 EXPORT_SYMBOL(block_commit_write);
2490 * block_page_mkwrite() is not allowed to change the file size as it gets
2491 * called from a page fault handler when a page is first dirtied. Hence we must
2492 * be careful to check for EOF conditions here. We set the page up correctly
2493 * for a written page which means we get ENOSPC checking when writing into
2494 * holes and correct delalloc and unwritten extent mapping on filesystems that
2495 * support these features.
2497 * We are not allowed to take the i_mutex here so we have to play games to
2498 * protect against truncate races as the page could now be beyond EOF. Because
2499 * truncate writes the inode size before removing pages, once we have the
2500 * page lock we can determine safely if the page is beyond EOF. If it is not
2501 * beyond EOF, then the page is guaranteed safe against truncation until we
2502 * unlock the page.
2504 * Direct callers of this function should protect against filesystem freezing
2505 * using sb_start_pagefault() - sb_end_pagefault() functions.
2507 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2508 get_block_t get_block)
2510 struct page *page = vmf->page;
2511 struct inode *inode = file_inode(vma->vm_file);
2512 unsigned long end;
2513 loff_t size;
2514 int ret;
2516 lock_page(page);
2517 size = i_size_read(inode);
2518 if ((page->mapping != inode->i_mapping) ||
2519 (page_offset(page) > size)) {
2520 /* We overload EFAULT to mean page got truncated */
2521 ret = -EFAULT;
2522 goto out_unlock;
2525 /* page is wholly or partially inside EOF */
2526 if (((page->index + 1) << PAGE_SHIFT) > size)
2527 end = size & ~PAGE_MASK;
2528 else
2529 end = PAGE_SIZE;
2531 ret = __block_write_begin(page, 0, end, get_block);
2532 if (!ret)
2533 ret = block_commit_write(page, 0, end);
2535 if (unlikely(ret < 0))
2536 goto out_unlock;
2537 set_page_dirty(page);
2538 wait_for_stable_page(page);
2539 return 0;
2540 out_unlock:
2541 unlock_page(page);
2542 return ret;
2544 EXPORT_SYMBOL(block_page_mkwrite);
2547 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2548 * immediately, while under the page lock. So it needs a special end_io
2549 * handler which does not touch the bh after unlocking it.
2551 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2553 __end_buffer_read_notouch(bh, uptodate);
2557 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2558 * the page (converting it to circular linked list and taking care of page
2559 * dirty races).
2561 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2563 struct buffer_head *bh;
2565 BUG_ON(!PageLocked(page));
2567 spin_lock(&page->mapping->private_lock);
2568 bh = head;
2569 do {
2570 if (PageDirty(page))
2571 set_buffer_dirty(bh);
2572 if (!bh->b_this_page)
2573 bh->b_this_page = head;
2574 bh = bh->b_this_page;
2575 } while (bh != head);
2576 attach_page_buffers(page, head);
2577 spin_unlock(&page->mapping->private_lock);
2581 * On entry, the page is fully not uptodate.
2582 * On exit the page is fully uptodate in the areas outside (from,to)
2583 * The filesystem needs to handle block truncation upon failure.
2585 int nobh_write_begin(struct address_space *mapping,
2586 loff_t pos, unsigned len, unsigned flags,
2587 struct page **pagep, void **fsdata,
2588 get_block_t *get_block)
2590 struct inode *inode = mapping->host;
2591 const unsigned blkbits = inode->i_blkbits;
2592 const unsigned blocksize = 1 << blkbits;
2593 struct buffer_head *head, *bh;
2594 struct page *page;
2595 pgoff_t index;
2596 unsigned from, to;
2597 unsigned block_in_page;
2598 unsigned block_start, block_end;
2599 sector_t block_in_file;
2600 int nr_reads = 0;
2601 int ret = 0;
2602 int is_mapped_to_disk = 1;
2604 index = pos >> PAGE_SHIFT;
2605 from = pos & (PAGE_SIZE - 1);
2606 to = from + len;
2608 page = grab_cache_page_write_begin(mapping, index, flags);
2609 if (!page)
2610 return -ENOMEM;
2611 *pagep = page;
2612 *fsdata = NULL;
2614 if (page_has_buffers(page)) {
2615 ret = __block_write_begin(page, pos, len, get_block);
2616 if (unlikely(ret))
2617 goto out_release;
2618 return ret;
2621 if (PageMappedToDisk(page))
2622 return 0;
2625 * Allocate buffers so that we can keep track of state, and potentially
2626 * attach them to the page if an error occurs. In the common case of
2627 * no error, they will just be freed again without ever being attached
2628 * to the page (which is all OK, because we're under the page lock).
2630 * Be careful: the buffer linked list is a NULL terminated one, rather
2631 * than the circular one we're used to.
2633 head = alloc_page_buffers(page, blocksize, false);
2634 if (!head) {
2635 ret = -ENOMEM;
2636 goto out_release;
2639 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2642 * We loop across all blocks in the page, whether or not they are
2643 * part of the affected region. This is so we can discover if the
2644 * page is fully mapped-to-disk.
2646 for (block_start = 0, block_in_page = 0, bh = head;
2647 block_start < PAGE_SIZE;
2648 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2649 int create;
2651 block_end = block_start + blocksize;
2652 bh->b_state = 0;
2653 create = 1;
2654 if (block_start >= to)
2655 create = 0;
2656 ret = get_block(inode, block_in_file + block_in_page,
2657 bh, create);
2658 if (ret)
2659 goto failed;
2660 if (!buffer_mapped(bh))
2661 is_mapped_to_disk = 0;
2662 if (buffer_new(bh))
2663 clean_bdev_bh_alias(bh);
2664 if (PageUptodate(page)) {
2665 set_buffer_uptodate(bh);
2666 continue;
2668 if (buffer_new(bh) || !buffer_mapped(bh)) {
2669 zero_user_segments(page, block_start, from,
2670 to, block_end);
2671 continue;
2673 if (buffer_uptodate(bh))
2674 continue; /* reiserfs does this */
2675 if (block_start < from || block_end > to) {
2676 lock_buffer(bh);
2677 bh->b_end_io = end_buffer_read_nobh;
2678 submit_bh(REQ_OP_READ, 0, bh);
2679 nr_reads++;
2683 if (nr_reads) {
2685 * The page is locked, so these buffers are protected from
2686 * any VM or truncate activity. Hence we don't need to care
2687 * for the buffer_head refcounts.
2689 for (bh = head; bh; bh = bh->b_this_page) {
2690 wait_on_buffer(bh);
2691 if (!buffer_uptodate(bh))
2692 ret = -EIO;
2694 if (ret)
2695 goto failed;
2698 if (is_mapped_to_disk)
2699 SetPageMappedToDisk(page);
2701 *fsdata = head; /* to be released by nobh_write_end */
2703 return 0;
2705 failed:
2706 BUG_ON(!ret);
2708 * Error recovery is a bit difficult. We need to zero out blocks that
2709 * were newly allocated, and dirty them to ensure they get written out.
2710 * Buffers need to be attached to the page at this point, otherwise
2711 * the handling of potential IO errors during writeout would be hard
2712 * (could try doing synchronous writeout, but what if that fails too?)
2714 attach_nobh_buffers(page, head);
2715 page_zero_new_buffers(page, from, to);
2717 out_release:
2718 unlock_page(page);
2719 put_page(page);
2720 *pagep = NULL;
2722 return ret;
2724 EXPORT_SYMBOL(nobh_write_begin);
2726 int nobh_write_end(struct file *file, struct address_space *mapping,
2727 loff_t pos, unsigned len, unsigned copied,
2728 struct page *page, void *fsdata)
2730 struct inode *inode = page->mapping->host;
2731 struct buffer_head *head = fsdata;
2732 struct buffer_head *bh;
2733 BUG_ON(fsdata != NULL && page_has_buffers(page));
2735 if (unlikely(copied < len) && head)
2736 attach_nobh_buffers(page, head);
2737 if (page_has_buffers(page))
2738 return generic_write_end(file, mapping, pos, len,
2739 copied, page, fsdata);
2741 SetPageUptodate(page);
2742 set_page_dirty(page);
2743 if (pos+copied > inode->i_size) {
2744 i_size_write(inode, pos+copied);
2745 mark_inode_dirty(inode);
2748 unlock_page(page);
2749 put_page(page);
2751 while (head) {
2752 bh = head;
2753 head = head->b_this_page;
2754 free_buffer_head(bh);
2757 return copied;
2759 EXPORT_SYMBOL(nobh_write_end);
2762 * nobh_writepage() - based on block_full_write_page() except
2763 * that it tries to operate without attaching bufferheads to
2764 * the page.
2766 int nobh_writepage(struct page *page, get_block_t *get_block,
2767 struct writeback_control *wbc)
2769 struct inode * const inode = page->mapping->host;
2770 loff_t i_size = i_size_read(inode);
2771 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2772 unsigned offset;
2773 int ret;
2775 /* Is the page fully inside i_size? */
2776 if (page->index < end_index)
2777 goto out;
2779 /* Is the page fully outside i_size? (truncate in progress) */
2780 offset = i_size & (PAGE_SIZE-1);
2781 if (page->index >= end_index+1 || !offset) {
2783 * The page may have dirty, unmapped buffers. For example,
2784 * they may have been added in ext3_writepage(). Make them
2785 * freeable here, so the page does not leak.
2787 #if 0
2788 /* Not really sure about this - do we need this ? */
2789 if (page->mapping->a_ops->invalidatepage)
2790 page->mapping->a_ops->invalidatepage(page, offset);
2791 #endif
2792 unlock_page(page);
2793 return 0; /* don't care */
2797 * The page straddles i_size. It must be zeroed out on each and every
2798 * writepage invocation because it may be mmapped. "A file is mapped
2799 * in multiples of the page size. For a file that is not a multiple of
2800 * the page size, the remaining memory is zeroed when mapped, and
2801 * writes to that region are not written out to the file."
2803 zero_user_segment(page, offset, PAGE_SIZE);
2804 out:
2805 ret = mpage_writepage(page, get_block, wbc);
2806 if (ret == -EAGAIN)
2807 ret = __block_write_full_page(inode, page, get_block, wbc,
2808 end_buffer_async_write);
2809 return ret;
2811 EXPORT_SYMBOL(nobh_writepage);
2813 int nobh_truncate_page(struct address_space *mapping,
2814 loff_t from, get_block_t *get_block)
2816 pgoff_t index = from >> PAGE_SHIFT;
2817 unsigned offset = from & (PAGE_SIZE-1);
2818 unsigned blocksize;
2819 sector_t iblock;
2820 unsigned length, pos;
2821 struct inode *inode = mapping->host;
2822 struct page *page;
2823 struct buffer_head map_bh;
2824 int err;
2826 blocksize = i_blocksize(inode);
2827 length = offset & (blocksize - 1);
2829 /* Block boundary? Nothing to do */
2830 if (!length)
2831 return 0;
2833 length = blocksize - length;
2834 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2836 page = grab_cache_page(mapping, index);
2837 err = -ENOMEM;
2838 if (!page)
2839 goto out;
2841 if (page_has_buffers(page)) {
2842 has_buffers:
2843 unlock_page(page);
2844 put_page(page);
2845 return block_truncate_page(mapping, from, get_block);
2848 /* Find the buffer that contains "offset" */
2849 pos = blocksize;
2850 while (offset >= pos) {
2851 iblock++;
2852 pos += blocksize;
2855 map_bh.b_size = blocksize;
2856 map_bh.b_state = 0;
2857 err = get_block(inode, iblock, &map_bh, 0);
2858 if (err)
2859 goto unlock;
2860 /* unmapped? It's a hole - nothing to do */
2861 if (!buffer_mapped(&map_bh))
2862 goto unlock;
2864 /* Ok, it's mapped. Make sure it's up-to-date */
2865 if (!PageUptodate(page)) {
2866 err = mapping->a_ops->readpage(NULL, page);
2867 if (err) {
2868 put_page(page);
2869 goto out;
2871 lock_page(page);
2872 if (!PageUptodate(page)) {
2873 err = -EIO;
2874 goto unlock;
2876 if (page_has_buffers(page))
2877 goto has_buffers;
2879 zero_user(page, offset, length);
2880 set_page_dirty(page);
2881 err = 0;
2883 unlock:
2884 unlock_page(page);
2885 put_page(page);
2886 out:
2887 return err;
2889 EXPORT_SYMBOL(nobh_truncate_page);
2891 int block_truncate_page(struct address_space *mapping,
2892 loff_t from, get_block_t *get_block)
2894 pgoff_t index = from >> PAGE_SHIFT;
2895 unsigned offset = from & (PAGE_SIZE-1);
2896 unsigned blocksize;
2897 sector_t iblock;
2898 unsigned length, pos;
2899 struct inode *inode = mapping->host;
2900 struct page *page;
2901 struct buffer_head *bh;
2902 int err;
2904 blocksize = i_blocksize(inode);
2905 length = offset & (blocksize - 1);
2907 /* Block boundary? Nothing to do */
2908 if (!length)
2909 return 0;
2911 length = blocksize - length;
2912 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2914 page = grab_cache_page(mapping, index);
2915 err = -ENOMEM;
2916 if (!page)
2917 goto out;
2919 if (!page_has_buffers(page))
2920 create_empty_buffers(page, blocksize, 0);
2922 /* Find the buffer that contains "offset" */
2923 bh = page_buffers(page);
2924 pos = blocksize;
2925 while (offset >= pos) {
2926 bh = bh->b_this_page;
2927 iblock++;
2928 pos += blocksize;
2931 err = 0;
2932 if (!buffer_mapped(bh)) {
2933 WARN_ON(bh->b_size != blocksize);
2934 err = get_block(inode, iblock, bh, 0);
2935 if (err)
2936 goto unlock;
2937 /* unmapped? It's a hole - nothing to do */
2938 if (!buffer_mapped(bh))
2939 goto unlock;
2942 /* Ok, it's mapped. Make sure it's up-to-date */
2943 if (PageUptodate(page))
2944 set_buffer_uptodate(bh);
2946 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2947 err = -EIO;
2948 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2949 wait_on_buffer(bh);
2950 /* Uhhuh. Read error. Complain and punt. */
2951 if (!buffer_uptodate(bh))
2952 goto unlock;
2955 zero_user(page, offset, length);
2956 mark_buffer_dirty(bh);
2957 err = 0;
2959 unlock:
2960 unlock_page(page);
2961 put_page(page);
2962 out:
2963 return err;
2965 EXPORT_SYMBOL(block_truncate_page);
2968 * The generic ->writepage function for buffer-backed address_spaces
2970 int block_write_full_page(struct page *page, get_block_t *get_block,
2971 struct writeback_control *wbc)
2973 struct inode * const inode = page->mapping->host;
2974 loff_t i_size = i_size_read(inode);
2975 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2976 unsigned offset;
2978 /* Is the page fully inside i_size? */
2979 if (page->index < end_index)
2980 return __block_write_full_page(inode, page, get_block, wbc,
2981 end_buffer_async_write);
2983 /* Is the page fully outside i_size? (truncate in progress) */
2984 offset = i_size & (PAGE_SIZE-1);
2985 if (page->index >= end_index+1 || !offset) {
2987 * The page may have dirty, unmapped buffers. For example,
2988 * they may have been added in ext3_writepage(). Make them
2989 * freeable here, so the page does not leak.
2991 do_invalidatepage(page, 0, PAGE_SIZE);
2992 unlock_page(page);
2993 return 0; /* don't care */
2997 * The page straddles i_size. It must be zeroed out on each and every
2998 * writepage invocation because it may be mmapped. "A file is mapped
2999 * in multiples of the page size. For a file that is not a multiple of
3000 * the page size, the remaining memory is zeroed when mapped, and
3001 * writes to that region are not written out to the file."
3003 zero_user_segment(page, offset, PAGE_SIZE);
3004 return __block_write_full_page(inode, page, get_block, wbc,
3005 end_buffer_async_write);
3007 EXPORT_SYMBOL(block_write_full_page);
3009 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3010 get_block_t *get_block)
3012 struct inode *inode = mapping->host;
3013 struct buffer_head tmp = {
3014 .b_size = i_blocksize(inode),
3017 get_block(inode, block, &tmp, 0);
3018 return tmp.b_blocknr;
3020 EXPORT_SYMBOL(generic_block_bmap);
3022 static void end_bio_bh_io_sync(struct bio *bio)
3024 struct buffer_head *bh = bio->bi_private;
3026 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3027 set_bit(BH_Quiet, &bh->b_state);
3029 bh->b_end_io(bh, !bio->bi_status);
3030 bio_put(bio);
3034 * This allows us to do IO even on the odd last sectors
3035 * of a device, even if the block size is some multiple
3036 * of the physical sector size.
3038 * We'll just truncate the bio to the size of the device,
3039 * and clear the end of the buffer head manually.
3041 * Truly out-of-range accesses will turn into actual IO
3042 * errors, this only handles the "we need to be able to
3043 * do IO at the final sector" case.
3045 void guard_bio_eod(struct bio *bio)
3047 sector_t maxsector;
3048 struct hd_struct *part;
3050 rcu_read_lock();
3051 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3052 if (part)
3053 maxsector = part_nr_sects_read(part);
3054 else
3055 maxsector = get_capacity(bio->bi_disk);
3056 rcu_read_unlock();
3058 if (!maxsector)
3059 return;
3062 * If the *whole* IO is past the end of the device,
3063 * let it through, and the IO layer will turn it into
3064 * an EIO.
3066 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3067 return;
3069 maxsector -= bio->bi_iter.bi_sector;
3070 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3071 return;
3073 bio_truncate(bio, maxsector << 9);
3076 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3077 enum rw_hint write_hint, struct writeback_control *wbc)
3079 struct bio *bio;
3081 BUG_ON(!buffer_locked(bh));
3082 BUG_ON(!buffer_mapped(bh));
3083 BUG_ON(!bh->b_end_io);
3084 BUG_ON(buffer_delay(bh));
3085 BUG_ON(buffer_unwritten(bh));
3088 * Only clear out a write error when rewriting
3090 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3091 clear_buffer_write_io_error(bh);
3094 * from here on down, it's all bio -- do the initial mapping,
3095 * submit_bio -> generic_make_request may further map this bio around
3097 bio = bio_alloc(GFP_NOIO, 1);
3099 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3100 bio_set_dev(bio, bh->b_bdev);
3101 bio->bi_write_hint = write_hint;
3103 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3104 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3106 bio->bi_end_io = end_bio_bh_io_sync;
3107 bio->bi_private = bh;
3109 if (buffer_meta(bh))
3110 op_flags |= REQ_META;
3111 if (buffer_prio(bh))
3112 op_flags |= REQ_PRIO;
3113 bio_set_op_attrs(bio, op, op_flags);
3115 /* Take care of bh's that straddle the end of the device */
3116 guard_bio_eod(bio);
3118 if (wbc) {
3119 wbc_init_bio(wbc, bio);
3120 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3123 submit_bio(bio);
3124 return 0;
3127 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3129 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3131 EXPORT_SYMBOL(submit_bh);
3134 * ll_rw_block: low-level access to block devices (DEPRECATED)
3135 * @op: whether to %READ or %WRITE
3136 * @op_flags: req_flag_bits
3137 * @nr: number of &struct buffer_heads in the array
3138 * @bhs: array of pointers to &struct buffer_head
3140 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3141 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3142 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3143 * %REQ_RAHEAD.
3145 * This function drops any buffer that it cannot get a lock on (with the
3146 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3147 * request, and any buffer that appears to be up-to-date when doing read
3148 * request. Further it marks as clean buffers that are processed for
3149 * writing (the buffer cache won't assume that they are actually clean
3150 * until the buffer gets unlocked).
3152 * ll_rw_block sets b_end_io to simple completion handler that marks
3153 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3154 * any waiters.
3156 * All of the buffers must be for the same device, and must also be a
3157 * multiple of the current approved size for the device.
3159 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3161 int i;
3163 for (i = 0; i < nr; i++) {
3164 struct buffer_head *bh = bhs[i];
3166 if (!trylock_buffer(bh))
3167 continue;
3168 if (op == WRITE) {
3169 if (test_clear_buffer_dirty(bh)) {
3170 bh->b_end_io = end_buffer_write_sync;
3171 get_bh(bh);
3172 submit_bh(op, op_flags, bh);
3173 continue;
3175 } else {
3176 if (!buffer_uptodate(bh)) {
3177 bh->b_end_io = end_buffer_read_sync;
3178 get_bh(bh);
3179 submit_bh(op, op_flags, bh);
3180 continue;
3183 unlock_buffer(bh);
3186 EXPORT_SYMBOL(ll_rw_block);
3188 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3190 lock_buffer(bh);
3191 if (!test_clear_buffer_dirty(bh)) {
3192 unlock_buffer(bh);
3193 return;
3195 bh->b_end_io = end_buffer_write_sync;
3196 get_bh(bh);
3197 submit_bh(REQ_OP_WRITE, op_flags, bh);
3199 EXPORT_SYMBOL(write_dirty_buffer);
3202 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3203 * and then start new I/O and then wait upon it. The caller must have a ref on
3204 * the buffer_head.
3206 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3208 int ret = 0;
3210 WARN_ON(atomic_read(&bh->b_count) < 1);
3211 lock_buffer(bh);
3212 if (test_clear_buffer_dirty(bh)) {
3213 get_bh(bh);
3214 bh->b_end_io = end_buffer_write_sync;
3215 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3216 wait_on_buffer(bh);
3217 if (!ret && !buffer_uptodate(bh))
3218 ret = -EIO;
3219 } else {
3220 unlock_buffer(bh);
3222 return ret;
3224 EXPORT_SYMBOL(__sync_dirty_buffer);
3226 int sync_dirty_buffer(struct buffer_head *bh)
3228 return __sync_dirty_buffer(bh, REQ_SYNC);
3230 EXPORT_SYMBOL(sync_dirty_buffer);
3233 * try_to_free_buffers() checks if all the buffers on this particular page
3234 * are unused, and releases them if so.
3236 * Exclusion against try_to_free_buffers may be obtained by either
3237 * locking the page or by holding its mapping's private_lock.
3239 * If the page is dirty but all the buffers are clean then we need to
3240 * be sure to mark the page clean as well. This is because the page
3241 * may be against a block device, and a later reattachment of buffers
3242 * to a dirty page will set *all* buffers dirty. Which would corrupt
3243 * filesystem data on the same device.
3245 * The same applies to regular filesystem pages: if all the buffers are
3246 * clean then we set the page clean and proceed. To do that, we require
3247 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3248 * private_lock.
3250 * try_to_free_buffers() is non-blocking.
3252 static inline int buffer_busy(struct buffer_head *bh)
3254 return atomic_read(&bh->b_count) |
3255 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3258 static int
3259 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3261 struct buffer_head *head = page_buffers(page);
3262 struct buffer_head *bh;
3264 bh = head;
3265 do {
3266 if (buffer_busy(bh))
3267 goto failed;
3268 bh = bh->b_this_page;
3269 } while (bh != head);
3271 do {
3272 struct buffer_head *next = bh->b_this_page;
3274 if (bh->b_assoc_map)
3275 __remove_assoc_queue(bh);
3276 bh = next;
3277 } while (bh != head);
3278 *buffers_to_free = head;
3279 __clear_page_buffers(page);
3280 return 1;
3281 failed:
3282 return 0;
3285 int try_to_free_buffers(struct page *page)
3287 struct address_space * const mapping = page->mapping;
3288 struct buffer_head *buffers_to_free = NULL;
3289 int ret = 0;
3291 BUG_ON(!PageLocked(page));
3292 if (PageWriteback(page))
3293 return 0;
3295 if (mapping == NULL) { /* can this still happen? */
3296 ret = drop_buffers(page, &buffers_to_free);
3297 goto out;
3300 spin_lock(&mapping->private_lock);
3301 ret = drop_buffers(page, &buffers_to_free);
3304 * If the filesystem writes its buffers by hand (eg ext3)
3305 * then we can have clean buffers against a dirty page. We
3306 * clean the page here; otherwise the VM will never notice
3307 * that the filesystem did any IO at all.
3309 * Also, during truncate, discard_buffer will have marked all
3310 * the page's buffers clean. We discover that here and clean
3311 * the page also.
3313 * private_lock must be held over this entire operation in order
3314 * to synchronise against __set_page_dirty_buffers and prevent the
3315 * dirty bit from being lost.
3317 if (ret)
3318 cancel_dirty_page(page);
3319 spin_unlock(&mapping->private_lock);
3320 out:
3321 if (buffers_to_free) {
3322 struct buffer_head *bh = buffers_to_free;
3324 do {
3325 struct buffer_head *next = bh->b_this_page;
3326 free_buffer_head(bh);
3327 bh = next;
3328 } while (bh != buffers_to_free);
3330 return ret;
3332 EXPORT_SYMBOL(try_to_free_buffers);
3335 * There are no bdflush tunables left. But distributions are
3336 * still running obsolete flush daemons, so we terminate them here.
3338 * Use of bdflush() is deprecated and will be removed in a future kernel.
3339 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3341 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3343 static int msg_count;
3345 if (!capable(CAP_SYS_ADMIN))
3346 return -EPERM;
3348 if (msg_count < 5) {
3349 msg_count++;
3350 printk(KERN_INFO
3351 "warning: process `%s' used the obsolete bdflush"
3352 " system call\n", current->comm);
3353 printk(KERN_INFO "Fix your initscripts?\n");
3356 if (func == 1)
3357 do_exit(0);
3358 return 0;
3362 * Buffer-head allocation
3364 static struct kmem_cache *bh_cachep __read_mostly;
3367 * Once the number of bh's in the machine exceeds this level, we start
3368 * stripping them in writeback.
3370 static unsigned long max_buffer_heads;
3372 int buffer_heads_over_limit;
3374 struct bh_accounting {
3375 int nr; /* Number of live bh's */
3376 int ratelimit; /* Limit cacheline bouncing */
3379 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3381 static void recalc_bh_state(void)
3383 int i;
3384 int tot = 0;
3386 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3387 return;
3388 __this_cpu_write(bh_accounting.ratelimit, 0);
3389 for_each_online_cpu(i)
3390 tot += per_cpu(bh_accounting, i).nr;
3391 buffer_heads_over_limit = (tot > max_buffer_heads);
3394 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3396 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3397 if (ret) {
3398 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3399 preempt_disable();
3400 __this_cpu_inc(bh_accounting.nr);
3401 recalc_bh_state();
3402 preempt_enable();
3404 return ret;
3406 EXPORT_SYMBOL(alloc_buffer_head);
3408 void free_buffer_head(struct buffer_head *bh)
3410 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3411 kmem_cache_free(bh_cachep, bh);
3412 preempt_disable();
3413 __this_cpu_dec(bh_accounting.nr);
3414 recalc_bh_state();
3415 preempt_enable();
3417 EXPORT_SYMBOL(free_buffer_head);
3419 static int buffer_exit_cpu_dead(unsigned int cpu)
3421 int i;
3422 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3424 for (i = 0; i < BH_LRU_SIZE; i++) {
3425 brelse(b->bhs[i]);
3426 b->bhs[i] = NULL;
3428 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3429 per_cpu(bh_accounting, cpu).nr = 0;
3430 return 0;
3434 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3435 * @bh: struct buffer_head
3437 * Return true if the buffer is up-to-date and false,
3438 * with the buffer locked, if not.
3440 int bh_uptodate_or_lock(struct buffer_head *bh)
3442 if (!buffer_uptodate(bh)) {
3443 lock_buffer(bh);
3444 if (!buffer_uptodate(bh))
3445 return 0;
3446 unlock_buffer(bh);
3448 return 1;
3450 EXPORT_SYMBOL(bh_uptodate_or_lock);
3453 * bh_submit_read - Submit a locked buffer for reading
3454 * @bh: struct buffer_head
3456 * Returns zero on success and -EIO on error.
3458 int bh_submit_read(struct buffer_head *bh)
3460 BUG_ON(!buffer_locked(bh));
3462 if (buffer_uptodate(bh)) {
3463 unlock_buffer(bh);
3464 return 0;
3467 get_bh(bh);
3468 bh->b_end_io = end_buffer_read_sync;
3469 submit_bh(REQ_OP_READ, 0, bh);
3470 wait_on_buffer(bh);
3471 if (buffer_uptodate(bh))
3472 return 0;
3473 return -EIO;
3475 EXPORT_SYMBOL(bh_submit_read);
3477 void __init buffer_init(void)
3479 unsigned long nrpages;
3480 int ret;
3482 bh_cachep = kmem_cache_create("buffer_head",
3483 sizeof(struct buffer_head), 0,
3484 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3485 SLAB_MEM_SPREAD),
3486 NULL);
3489 * Limit the bh occupancy to 10% of ZONE_NORMAL
3491 nrpages = (nr_free_buffer_pages() * 10) / 100;
3492 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3493 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3494 NULL, buffer_exit_cpu_dead);
3495 WARN_ON(ret < 0);