io_uring: don't use 'fd' for openat/openat2/statx
[linux/fpc-iii.git] / fs / iomap / buffered-io.c
blob7c84c4c027c4943e987aa30f6760116b27edc751
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
22 #include "../internal.h"
25 * Structure allocated for each page when block size < PAGE_SIZE to track
26 * sub-page uptodate status and I/O completions.
28 struct iomap_page {
29 atomic_t read_count;
30 atomic_t write_count;
31 spinlock_t uptodate_lock;
32 DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
35 static inline struct iomap_page *to_iomap_page(struct page *page)
37 if (page_has_private(page))
38 return (struct iomap_page *)page_private(page);
39 return NULL;
42 static struct bio_set iomap_ioend_bioset;
44 static struct iomap_page *
45 iomap_page_create(struct inode *inode, struct page *page)
47 struct iomap_page *iop = to_iomap_page(page);
49 if (iop || i_blocksize(inode) == PAGE_SIZE)
50 return iop;
52 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
53 atomic_set(&iop->read_count, 0);
54 atomic_set(&iop->write_count, 0);
55 spin_lock_init(&iop->uptodate_lock);
56 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
59 * migrate_page_move_mapping() assumes that pages with private data have
60 * their count elevated by 1.
62 get_page(page);
63 set_page_private(page, (unsigned long)iop);
64 SetPagePrivate(page);
65 return iop;
68 static void
69 iomap_page_release(struct page *page)
71 struct iomap_page *iop = to_iomap_page(page);
73 if (!iop)
74 return;
75 WARN_ON_ONCE(atomic_read(&iop->read_count));
76 WARN_ON_ONCE(atomic_read(&iop->write_count));
77 ClearPagePrivate(page);
78 set_page_private(page, 0);
79 put_page(page);
80 kfree(iop);
84 * Calculate the range inside the page that we actually need to read.
86 static void
87 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
88 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 loff_t orig_pos = *pos;
91 loff_t isize = i_size_read(inode);
92 unsigned block_bits = inode->i_blkbits;
93 unsigned block_size = (1 << block_bits);
94 unsigned poff = offset_in_page(*pos);
95 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
96 unsigned first = poff >> block_bits;
97 unsigned last = (poff + plen - 1) >> block_bits;
100 * If the block size is smaller than the page size we need to check the
101 * per-block uptodate status and adjust the offset and length if needed
102 * to avoid reading in already uptodate ranges.
104 if (iop) {
105 unsigned int i;
107 /* move forward for each leading block marked uptodate */
108 for (i = first; i <= last; i++) {
109 if (!test_bit(i, iop->uptodate))
110 break;
111 *pos += block_size;
112 poff += block_size;
113 plen -= block_size;
114 first++;
117 /* truncate len if we find any trailing uptodate block(s) */
118 for ( ; i <= last; i++) {
119 if (test_bit(i, iop->uptodate)) {
120 plen -= (last - i + 1) * block_size;
121 last = i - 1;
122 break;
128 * If the extent spans the block that contains the i_size we need to
129 * handle both halves separately so that we properly zero data in the
130 * page cache for blocks that are entirely outside of i_size.
132 if (orig_pos <= isize && orig_pos + length > isize) {
133 unsigned end = offset_in_page(isize - 1) >> block_bits;
135 if (first <= end && last > end)
136 plen -= (last - end) * block_size;
139 *offp = poff;
140 *lenp = plen;
143 static void
144 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 struct iomap_page *iop = to_iomap_page(page);
147 struct inode *inode = page->mapping->host;
148 unsigned first = off >> inode->i_blkbits;
149 unsigned last = (off + len - 1) >> inode->i_blkbits;
150 bool uptodate = true;
151 unsigned long flags;
152 unsigned int i;
154 spin_lock_irqsave(&iop->uptodate_lock, flags);
155 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
156 if (i >= first && i <= last)
157 set_bit(i, iop->uptodate);
158 else if (!test_bit(i, iop->uptodate))
159 uptodate = false;
162 if (uptodate)
163 SetPageUptodate(page);
164 spin_unlock_irqrestore(&iop->uptodate_lock, flags);
167 static void
168 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
170 if (PageError(page))
171 return;
173 if (page_has_private(page))
174 iomap_iop_set_range_uptodate(page, off, len);
175 else
176 SetPageUptodate(page);
179 static void
180 iomap_read_finish(struct iomap_page *iop, struct page *page)
182 if (!iop || atomic_dec_and_test(&iop->read_count))
183 unlock_page(page);
186 static void
187 iomap_read_page_end_io(struct bio_vec *bvec, int error)
189 struct page *page = bvec->bv_page;
190 struct iomap_page *iop = to_iomap_page(page);
192 if (unlikely(error)) {
193 ClearPageUptodate(page);
194 SetPageError(page);
195 } else {
196 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
199 iomap_read_finish(iop, page);
202 static void
203 iomap_read_end_io(struct bio *bio)
205 int error = blk_status_to_errno(bio->bi_status);
206 struct bio_vec *bvec;
207 struct bvec_iter_all iter_all;
209 bio_for_each_segment_all(bvec, bio, iter_all)
210 iomap_read_page_end_io(bvec, error);
211 bio_put(bio);
214 struct iomap_readpage_ctx {
215 struct page *cur_page;
216 bool cur_page_in_bio;
217 bool is_readahead;
218 struct bio *bio;
219 struct list_head *pages;
222 static void
223 iomap_read_inline_data(struct inode *inode, struct page *page,
224 struct iomap *iomap)
226 size_t size = i_size_read(inode);
227 void *addr;
229 if (PageUptodate(page))
230 return;
232 BUG_ON(page->index);
233 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
235 addr = kmap_atomic(page);
236 memcpy(addr, iomap->inline_data, size);
237 memset(addr + size, 0, PAGE_SIZE - size);
238 kunmap_atomic(addr);
239 SetPageUptodate(page);
242 static inline bool iomap_block_needs_zeroing(struct inode *inode,
243 struct iomap *iomap, loff_t pos)
245 return iomap->type != IOMAP_MAPPED ||
246 (iomap->flags & IOMAP_F_NEW) ||
247 pos >= i_size_read(inode);
250 static loff_t
251 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
252 struct iomap *iomap, struct iomap *srcmap)
254 struct iomap_readpage_ctx *ctx = data;
255 struct page *page = ctx->cur_page;
256 struct iomap_page *iop = iomap_page_create(inode, page);
257 bool same_page = false, is_contig = false;
258 loff_t orig_pos = pos;
259 unsigned poff, plen;
260 sector_t sector;
262 if (iomap->type == IOMAP_INLINE) {
263 WARN_ON_ONCE(pos);
264 iomap_read_inline_data(inode, page, iomap);
265 return PAGE_SIZE;
268 /* zero post-eof blocks as the page may be mapped */
269 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
270 if (plen == 0)
271 goto done;
273 if (iomap_block_needs_zeroing(inode, iomap, pos)) {
274 zero_user(page, poff, plen);
275 iomap_set_range_uptodate(page, poff, plen);
276 goto done;
279 ctx->cur_page_in_bio = true;
282 * Try to merge into a previous segment if we can.
284 sector = iomap_sector(iomap, pos);
285 if (ctx->bio && bio_end_sector(ctx->bio) == sector)
286 is_contig = true;
288 if (is_contig &&
289 __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
290 if (!same_page && iop)
291 atomic_inc(&iop->read_count);
292 goto done;
296 * If we start a new segment we need to increase the read count, and we
297 * need to do so before submitting any previous full bio to make sure
298 * that we don't prematurely unlock the page.
300 if (iop)
301 atomic_inc(&iop->read_count);
303 if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
304 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
305 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
307 if (ctx->bio)
308 submit_bio(ctx->bio);
310 if (ctx->is_readahead) /* same as readahead_gfp_mask */
311 gfp |= __GFP_NORETRY | __GFP_NOWARN;
312 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
313 ctx->bio->bi_opf = REQ_OP_READ;
314 if (ctx->is_readahead)
315 ctx->bio->bi_opf |= REQ_RAHEAD;
316 ctx->bio->bi_iter.bi_sector = sector;
317 bio_set_dev(ctx->bio, iomap->bdev);
318 ctx->bio->bi_end_io = iomap_read_end_io;
321 bio_add_page(ctx->bio, page, plen, poff);
322 done:
324 * Move the caller beyond our range so that it keeps making progress.
325 * For that we have to include any leading non-uptodate ranges, but
326 * we can skip trailing ones as they will be handled in the next
327 * iteration.
329 return pos - orig_pos + plen;
333 iomap_readpage(struct page *page, const struct iomap_ops *ops)
335 struct iomap_readpage_ctx ctx = { .cur_page = page };
336 struct inode *inode = page->mapping->host;
337 unsigned poff;
338 loff_t ret;
340 trace_iomap_readpage(page->mapping->host, 1);
342 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
343 ret = iomap_apply(inode, page_offset(page) + poff,
344 PAGE_SIZE - poff, 0, ops, &ctx,
345 iomap_readpage_actor);
346 if (ret <= 0) {
347 WARN_ON_ONCE(ret == 0);
348 SetPageError(page);
349 break;
353 if (ctx.bio) {
354 submit_bio(ctx.bio);
355 WARN_ON_ONCE(!ctx.cur_page_in_bio);
356 } else {
357 WARN_ON_ONCE(ctx.cur_page_in_bio);
358 unlock_page(page);
362 * Just like mpage_readpages and block_read_full_page we always
363 * return 0 and just mark the page as PageError on errors. This
364 * should be cleaned up all through the stack eventually.
366 return 0;
368 EXPORT_SYMBOL_GPL(iomap_readpage);
370 static struct page *
371 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
372 loff_t length, loff_t *done)
374 while (!list_empty(pages)) {
375 struct page *page = lru_to_page(pages);
377 if (page_offset(page) >= (u64)pos + length)
378 break;
380 list_del(&page->lru);
381 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
382 GFP_NOFS))
383 return page;
386 * If we already have a page in the page cache at index we are
387 * done. Upper layers don't care if it is uptodate after the
388 * readpages call itself as every page gets checked again once
389 * actually needed.
391 *done += PAGE_SIZE;
392 put_page(page);
395 return NULL;
398 static loff_t
399 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
400 void *data, struct iomap *iomap, struct iomap *srcmap)
402 struct iomap_readpage_ctx *ctx = data;
403 loff_t done, ret;
405 for (done = 0; done < length; done += ret) {
406 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
407 if (!ctx->cur_page_in_bio)
408 unlock_page(ctx->cur_page);
409 put_page(ctx->cur_page);
410 ctx->cur_page = NULL;
412 if (!ctx->cur_page) {
413 ctx->cur_page = iomap_next_page(inode, ctx->pages,
414 pos, length, &done);
415 if (!ctx->cur_page)
416 break;
417 ctx->cur_page_in_bio = false;
419 ret = iomap_readpage_actor(inode, pos + done, length - done,
420 ctx, iomap, srcmap);
423 return done;
427 iomap_readpages(struct address_space *mapping, struct list_head *pages,
428 unsigned nr_pages, const struct iomap_ops *ops)
430 struct iomap_readpage_ctx ctx = {
431 .pages = pages,
432 .is_readahead = true,
434 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
435 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
436 loff_t length = last - pos + PAGE_SIZE, ret = 0;
438 trace_iomap_readpages(mapping->host, nr_pages);
440 while (length > 0) {
441 ret = iomap_apply(mapping->host, pos, length, 0, ops,
442 &ctx, iomap_readpages_actor);
443 if (ret <= 0) {
444 WARN_ON_ONCE(ret == 0);
445 goto done;
447 pos += ret;
448 length -= ret;
450 ret = 0;
451 done:
452 if (ctx.bio)
453 submit_bio(ctx.bio);
454 if (ctx.cur_page) {
455 if (!ctx.cur_page_in_bio)
456 unlock_page(ctx.cur_page);
457 put_page(ctx.cur_page);
461 * Check that we didn't lose a page due to the arcance calling
462 * conventions..
464 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
465 return ret;
467 EXPORT_SYMBOL_GPL(iomap_readpages);
470 * iomap_is_partially_uptodate checks whether blocks within a page are
471 * uptodate or not.
473 * Returns true if all blocks which correspond to a file portion
474 * we want to read within the page are uptodate.
477 iomap_is_partially_uptodate(struct page *page, unsigned long from,
478 unsigned long count)
480 struct iomap_page *iop = to_iomap_page(page);
481 struct inode *inode = page->mapping->host;
482 unsigned len, first, last;
483 unsigned i;
485 /* Limit range to one page */
486 len = min_t(unsigned, PAGE_SIZE - from, count);
488 /* First and last blocks in range within page */
489 first = from >> inode->i_blkbits;
490 last = (from + len - 1) >> inode->i_blkbits;
492 if (iop) {
493 for (i = first; i <= last; i++)
494 if (!test_bit(i, iop->uptodate))
495 return 0;
496 return 1;
499 return 0;
501 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
504 iomap_releasepage(struct page *page, gfp_t gfp_mask)
506 trace_iomap_releasepage(page->mapping->host, page, 0, 0);
509 * mm accommodates an old ext3 case where clean pages might not have had
510 * the dirty bit cleared. Thus, it can send actual dirty pages to
511 * ->releasepage() via shrink_active_list(), skip those here.
513 if (PageDirty(page) || PageWriteback(page))
514 return 0;
515 iomap_page_release(page);
516 return 1;
518 EXPORT_SYMBOL_GPL(iomap_releasepage);
520 void
521 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
523 trace_iomap_invalidatepage(page->mapping->host, page, offset, len);
526 * If we are invalidating the entire page, clear the dirty state from it
527 * and release it to avoid unnecessary buildup of the LRU.
529 if (offset == 0 && len == PAGE_SIZE) {
530 WARN_ON_ONCE(PageWriteback(page));
531 cancel_dirty_page(page);
532 iomap_page_release(page);
535 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
537 #ifdef CONFIG_MIGRATION
539 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
540 struct page *page, enum migrate_mode mode)
542 int ret;
544 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
545 if (ret != MIGRATEPAGE_SUCCESS)
546 return ret;
548 if (page_has_private(page)) {
549 ClearPagePrivate(page);
550 get_page(newpage);
551 set_page_private(newpage, page_private(page));
552 set_page_private(page, 0);
553 put_page(page);
554 SetPagePrivate(newpage);
557 if (mode != MIGRATE_SYNC_NO_COPY)
558 migrate_page_copy(newpage, page);
559 else
560 migrate_page_states(newpage, page);
561 return MIGRATEPAGE_SUCCESS;
563 EXPORT_SYMBOL_GPL(iomap_migrate_page);
564 #endif /* CONFIG_MIGRATION */
566 enum {
567 IOMAP_WRITE_F_UNSHARE = (1 << 0),
570 static void
571 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
573 loff_t i_size = i_size_read(inode);
576 * Only truncate newly allocated pages beyoned EOF, even if the
577 * write started inside the existing inode size.
579 if (pos + len > i_size)
580 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
583 static int
584 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
585 unsigned plen, struct iomap *iomap)
587 struct bio_vec bvec;
588 struct bio bio;
590 bio_init(&bio, &bvec, 1);
591 bio.bi_opf = REQ_OP_READ;
592 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
593 bio_set_dev(&bio, iomap->bdev);
594 __bio_add_page(&bio, page, plen, poff);
595 return submit_bio_wait(&bio);
598 static int
599 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
600 struct page *page, struct iomap *srcmap)
602 struct iomap_page *iop = iomap_page_create(inode, page);
603 loff_t block_size = i_blocksize(inode);
604 loff_t block_start = pos & ~(block_size - 1);
605 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
606 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
607 int status;
609 if (PageUptodate(page))
610 return 0;
612 do {
613 iomap_adjust_read_range(inode, iop, &block_start,
614 block_end - block_start, &poff, &plen);
615 if (plen == 0)
616 break;
618 if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
619 (from <= poff || from >= poff + plen) &&
620 (to <= poff || to >= poff + plen))
621 continue;
623 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
624 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
625 return -EIO;
626 zero_user_segments(page, poff, from, to, poff + plen);
627 iomap_set_range_uptodate(page, poff, plen);
628 continue;
631 status = iomap_read_page_sync(block_start, page, poff, plen,
632 srcmap);
633 if (status)
634 return status;
635 } while ((block_start += plen) < block_end);
637 return 0;
640 static int
641 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
642 struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
644 const struct iomap_page_ops *page_ops = iomap->page_ops;
645 struct page *page;
646 int status = 0;
648 BUG_ON(pos + len > iomap->offset + iomap->length);
649 if (srcmap != iomap)
650 BUG_ON(pos + len > srcmap->offset + srcmap->length);
652 if (fatal_signal_pending(current))
653 return -EINTR;
655 if (page_ops && page_ops->page_prepare) {
656 status = page_ops->page_prepare(inode, pos, len, iomap);
657 if (status)
658 return status;
661 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
662 AOP_FLAG_NOFS);
663 if (!page) {
664 status = -ENOMEM;
665 goto out_no_page;
668 if (srcmap->type == IOMAP_INLINE)
669 iomap_read_inline_data(inode, page, srcmap);
670 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
671 status = __block_write_begin_int(page, pos, len, NULL, srcmap);
672 else
673 status = __iomap_write_begin(inode, pos, len, flags, page,
674 srcmap);
676 if (unlikely(status))
677 goto out_unlock;
679 *pagep = page;
680 return 0;
682 out_unlock:
683 unlock_page(page);
684 put_page(page);
685 iomap_write_failed(inode, pos, len);
687 out_no_page:
688 if (page_ops && page_ops->page_done)
689 page_ops->page_done(inode, pos, 0, NULL, iomap);
690 return status;
694 iomap_set_page_dirty(struct page *page)
696 struct address_space *mapping = page_mapping(page);
697 int newly_dirty;
699 if (unlikely(!mapping))
700 return !TestSetPageDirty(page);
703 * Lock out page->mem_cgroup migration to keep PageDirty
704 * synchronized with per-memcg dirty page counters.
706 lock_page_memcg(page);
707 newly_dirty = !TestSetPageDirty(page);
708 if (newly_dirty)
709 __set_page_dirty(page, mapping, 0);
710 unlock_page_memcg(page);
712 if (newly_dirty)
713 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
714 return newly_dirty;
716 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
718 static int
719 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
720 unsigned copied, struct page *page)
722 flush_dcache_page(page);
725 * The blocks that were entirely written will now be uptodate, so we
726 * don't have to worry about a readpage reading them and overwriting a
727 * partial write. However if we have encountered a short write and only
728 * partially written into a block, it will not be marked uptodate, so a
729 * readpage might come in and destroy our partial write.
731 * Do the simplest thing, and just treat any short write to a non
732 * uptodate page as a zero-length write, and force the caller to redo
733 * the whole thing.
735 if (unlikely(copied < len && !PageUptodate(page)))
736 return 0;
737 iomap_set_range_uptodate(page, offset_in_page(pos), len);
738 iomap_set_page_dirty(page);
739 return copied;
742 static int
743 iomap_write_end_inline(struct inode *inode, struct page *page,
744 struct iomap *iomap, loff_t pos, unsigned copied)
746 void *addr;
748 WARN_ON_ONCE(!PageUptodate(page));
749 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
751 addr = kmap_atomic(page);
752 memcpy(iomap->inline_data + pos, addr + pos, copied);
753 kunmap_atomic(addr);
755 mark_inode_dirty(inode);
756 return copied;
759 static int
760 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
761 struct page *page, struct iomap *iomap, struct iomap *srcmap)
763 const struct iomap_page_ops *page_ops = iomap->page_ops;
764 loff_t old_size = inode->i_size;
765 int ret;
767 if (srcmap->type == IOMAP_INLINE) {
768 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
769 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
770 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
771 page, NULL);
772 } else {
773 ret = __iomap_write_end(inode, pos, len, copied, page);
777 * Update the in-memory inode size after copying the data into the page
778 * cache. It's up to the file system to write the updated size to disk,
779 * preferably after I/O completion so that no stale data is exposed.
781 if (pos + ret > old_size) {
782 i_size_write(inode, pos + ret);
783 iomap->flags |= IOMAP_F_SIZE_CHANGED;
785 unlock_page(page);
787 if (old_size < pos)
788 pagecache_isize_extended(inode, old_size, pos);
789 if (page_ops && page_ops->page_done)
790 page_ops->page_done(inode, pos, ret, page, iomap);
791 put_page(page);
793 if (ret < len)
794 iomap_write_failed(inode, pos, len);
795 return ret;
798 static loff_t
799 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
800 struct iomap *iomap, struct iomap *srcmap)
802 struct iov_iter *i = data;
803 long status = 0;
804 ssize_t written = 0;
806 do {
807 struct page *page;
808 unsigned long offset; /* Offset into pagecache page */
809 unsigned long bytes; /* Bytes to write to page */
810 size_t copied; /* Bytes copied from user */
812 offset = offset_in_page(pos);
813 bytes = min_t(unsigned long, PAGE_SIZE - offset,
814 iov_iter_count(i));
815 again:
816 if (bytes > length)
817 bytes = length;
820 * Bring in the user page that we will copy from _first_.
821 * Otherwise there's a nasty deadlock on copying from the
822 * same page as we're writing to, without it being marked
823 * up-to-date.
825 * Not only is this an optimisation, but it is also required
826 * to check that the address is actually valid, when atomic
827 * usercopies are used, below.
829 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
830 status = -EFAULT;
831 break;
834 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
835 srcmap);
836 if (unlikely(status))
837 break;
839 if (mapping_writably_mapped(inode->i_mapping))
840 flush_dcache_page(page);
842 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
844 flush_dcache_page(page);
846 status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
847 srcmap);
848 if (unlikely(status < 0))
849 break;
850 copied = status;
852 cond_resched();
854 iov_iter_advance(i, copied);
855 if (unlikely(copied == 0)) {
857 * If we were unable to copy any data at all, we must
858 * fall back to a single segment length write.
860 * If we didn't fallback here, we could livelock
861 * because not all segments in the iov can be copied at
862 * once without a pagefault.
864 bytes = min_t(unsigned long, PAGE_SIZE - offset,
865 iov_iter_single_seg_count(i));
866 goto again;
868 pos += copied;
869 written += copied;
870 length -= copied;
872 balance_dirty_pages_ratelimited(inode->i_mapping);
873 } while (iov_iter_count(i) && length);
875 return written ? written : status;
878 ssize_t
879 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
880 const struct iomap_ops *ops)
882 struct inode *inode = iocb->ki_filp->f_mapping->host;
883 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
885 while (iov_iter_count(iter)) {
886 ret = iomap_apply(inode, pos, iov_iter_count(iter),
887 IOMAP_WRITE, ops, iter, iomap_write_actor);
888 if (ret <= 0)
889 break;
890 pos += ret;
891 written += ret;
894 return written ? written : ret;
896 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
898 static loff_t
899 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
900 struct iomap *iomap, struct iomap *srcmap)
902 long status = 0;
903 ssize_t written = 0;
905 /* don't bother with blocks that are not shared to start with */
906 if (!(iomap->flags & IOMAP_F_SHARED))
907 return length;
908 /* don't bother with holes or unwritten extents */
909 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
910 return length;
912 do {
913 unsigned long offset = offset_in_page(pos);
914 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
915 struct page *page;
917 status = iomap_write_begin(inode, pos, bytes,
918 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
919 if (unlikely(status))
920 return status;
922 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
923 srcmap);
924 if (unlikely(status <= 0)) {
925 if (WARN_ON_ONCE(status == 0))
926 return -EIO;
927 return status;
930 cond_resched();
932 pos += status;
933 written += status;
934 length -= status;
936 balance_dirty_pages_ratelimited(inode->i_mapping);
937 } while (length);
939 return written;
943 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
944 const struct iomap_ops *ops)
946 loff_t ret;
948 while (len) {
949 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
950 iomap_unshare_actor);
951 if (ret <= 0)
952 return ret;
953 pos += ret;
954 len -= ret;
957 return 0;
959 EXPORT_SYMBOL_GPL(iomap_file_unshare);
961 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
962 unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
964 struct page *page;
965 int status;
967 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
968 if (status)
969 return status;
971 zero_user(page, offset, bytes);
972 mark_page_accessed(page);
974 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
977 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
978 struct iomap *iomap)
980 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
981 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
984 static loff_t
985 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
986 void *data, struct iomap *iomap, struct iomap *srcmap)
988 bool *did_zero = data;
989 loff_t written = 0;
990 int status;
992 /* already zeroed? we're done. */
993 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
994 return count;
996 do {
997 unsigned offset, bytes;
999 offset = offset_in_page(pos);
1000 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1002 if (IS_DAX(inode))
1003 status = iomap_dax_zero(pos, offset, bytes, iomap);
1004 else
1005 status = iomap_zero(inode, pos, offset, bytes, iomap,
1006 srcmap);
1007 if (status < 0)
1008 return status;
1010 pos += bytes;
1011 count -= bytes;
1012 written += bytes;
1013 if (did_zero)
1014 *did_zero = true;
1015 } while (count > 0);
1017 return written;
1021 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1022 const struct iomap_ops *ops)
1024 loff_t ret;
1026 while (len > 0) {
1027 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1028 ops, did_zero, iomap_zero_range_actor);
1029 if (ret <= 0)
1030 return ret;
1032 pos += ret;
1033 len -= ret;
1036 return 0;
1038 EXPORT_SYMBOL_GPL(iomap_zero_range);
1041 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1042 const struct iomap_ops *ops)
1044 unsigned int blocksize = i_blocksize(inode);
1045 unsigned int off = pos & (blocksize - 1);
1047 /* Block boundary? Nothing to do */
1048 if (!off)
1049 return 0;
1050 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1052 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1054 static loff_t
1055 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1056 void *data, struct iomap *iomap, struct iomap *srcmap)
1058 struct page *page = data;
1059 int ret;
1061 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1062 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1063 if (ret)
1064 return ret;
1065 block_commit_write(page, 0, length);
1066 } else {
1067 WARN_ON_ONCE(!PageUptodate(page));
1068 iomap_page_create(inode, page);
1069 set_page_dirty(page);
1072 return length;
1075 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1077 struct page *page = vmf->page;
1078 struct inode *inode = file_inode(vmf->vma->vm_file);
1079 unsigned long length;
1080 loff_t offset;
1081 ssize_t ret;
1083 lock_page(page);
1084 ret = page_mkwrite_check_truncate(page, inode);
1085 if (ret < 0)
1086 goto out_unlock;
1087 length = ret;
1089 offset = page_offset(page);
1090 while (length > 0) {
1091 ret = iomap_apply(inode, offset, length,
1092 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1093 iomap_page_mkwrite_actor);
1094 if (unlikely(ret <= 0))
1095 goto out_unlock;
1096 offset += ret;
1097 length -= ret;
1100 wait_for_stable_page(page);
1101 return VM_FAULT_LOCKED;
1102 out_unlock:
1103 unlock_page(page);
1104 return block_page_mkwrite_return(ret);
1106 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1108 static void
1109 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1110 int error)
1112 struct iomap_page *iop = to_iomap_page(page);
1114 if (error) {
1115 SetPageError(page);
1116 mapping_set_error(inode->i_mapping, -EIO);
1119 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1120 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1122 if (!iop || atomic_dec_and_test(&iop->write_count))
1123 end_page_writeback(page);
1127 * We're now finished for good with this ioend structure. Update the page
1128 * state, release holds on bios, and finally free up memory. Do not use the
1129 * ioend after this.
1131 static void
1132 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1134 struct inode *inode = ioend->io_inode;
1135 struct bio *bio = &ioend->io_inline_bio;
1136 struct bio *last = ioend->io_bio, *next;
1137 u64 start = bio->bi_iter.bi_sector;
1138 loff_t offset = ioend->io_offset;
1139 bool quiet = bio_flagged(bio, BIO_QUIET);
1141 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1142 struct bio_vec *bv;
1143 struct bvec_iter_all iter_all;
1146 * For the last bio, bi_private points to the ioend, so we
1147 * need to explicitly end the iteration here.
1149 if (bio == last)
1150 next = NULL;
1151 else
1152 next = bio->bi_private;
1154 /* walk each page on bio, ending page IO on them */
1155 bio_for_each_segment_all(bv, bio, iter_all)
1156 iomap_finish_page_writeback(inode, bv->bv_page, error);
1157 bio_put(bio);
1159 /* The ioend has been freed by bio_put() */
1161 if (unlikely(error && !quiet)) {
1162 printk_ratelimited(KERN_ERR
1163 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1164 inode->i_sb->s_id, inode->i_ino, offset, start);
1168 void
1169 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1171 struct list_head tmp;
1173 list_replace_init(&ioend->io_list, &tmp);
1174 iomap_finish_ioend(ioend, error);
1176 while (!list_empty(&tmp)) {
1177 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1178 list_del_init(&ioend->io_list);
1179 iomap_finish_ioend(ioend, error);
1182 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1185 * We can merge two adjacent ioends if they have the same set of work to do.
1187 static bool
1188 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1190 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1191 return false;
1192 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1193 (next->io_flags & IOMAP_F_SHARED))
1194 return false;
1195 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1196 (next->io_type == IOMAP_UNWRITTEN))
1197 return false;
1198 if (ioend->io_offset + ioend->io_size != next->io_offset)
1199 return false;
1200 return true;
1203 void
1204 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1205 void (*merge_private)(struct iomap_ioend *ioend,
1206 struct iomap_ioend *next))
1208 struct iomap_ioend *next;
1210 INIT_LIST_HEAD(&ioend->io_list);
1212 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1213 io_list))) {
1214 if (!iomap_ioend_can_merge(ioend, next))
1215 break;
1216 list_move_tail(&next->io_list, &ioend->io_list);
1217 ioend->io_size += next->io_size;
1218 if (next->io_private && merge_private)
1219 merge_private(ioend, next);
1222 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1224 static int
1225 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1227 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1228 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1230 if (ia->io_offset < ib->io_offset)
1231 return -1;
1232 if (ia->io_offset > ib->io_offset)
1233 return 1;
1234 return 0;
1237 void
1238 iomap_sort_ioends(struct list_head *ioend_list)
1240 list_sort(NULL, ioend_list, iomap_ioend_compare);
1242 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1244 static void iomap_writepage_end_bio(struct bio *bio)
1246 struct iomap_ioend *ioend = bio->bi_private;
1248 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1252 * Submit the final bio for an ioend.
1254 * If @error is non-zero, it means that we have a situation where some part of
1255 * the submission process has failed after we have marked paged for writeback
1256 * and unlocked them. In this situation, we need to fail the bio instead of
1257 * submitting it. This typically only happens on a filesystem shutdown.
1259 static int
1260 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1261 int error)
1263 ioend->io_bio->bi_private = ioend;
1264 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1266 if (wpc->ops->prepare_ioend)
1267 error = wpc->ops->prepare_ioend(ioend, error);
1268 if (error) {
1270 * If we are failing the IO now, just mark the ioend with an
1271 * error and finish it. This will run IO completion immediately
1272 * as there is only one reference to the ioend at this point in
1273 * time.
1275 ioend->io_bio->bi_status = errno_to_blk_status(error);
1276 bio_endio(ioend->io_bio);
1277 return error;
1280 submit_bio(ioend->io_bio);
1281 return 0;
1284 static struct iomap_ioend *
1285 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1286 loff_t offset, sector_t sector, struct writeback_control *wbc)
1288 struct iomap_ioend *ioend;
1289 struct bio *bio;
1291 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1292 bio_set_dev(bio, wpc->iomap.bdev);
1293 bio->bi_iter.bi_sector = sector;
1294 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1295 bio->bi_write_hint = inode->i_write_hint;
1296 wbc_init_bio(wbc, bio);
1298 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1299 INIT_LIST_HEAD(&ioend->io_list);
1300 ioend->io_type = wpc->iomap.type;
1301 ioend->io_flags = wpc->iomap.flags;
1302 ioend->io_inode = inode;
1303 ioend->io_size = 0;
1304 ioend->io_offset = offset;
1305 ioend->io_private = NULL;
1306 ioend->io_bio = bio;
1307 return ioend;
1311 * Allocate a new bio, and chain the old bio to the new one.
1313 * Note that we have to do perform the chaining in this unintuitive order
1314 * so that the bi_private linkage is set up in the right direction for the
1315 * traversal in iomap_finish_ioend().
1317 static struct bio *
1318 iomap_chain_bio(struct bio *prev)
1320 struct bio *new;
1322 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1323 bio_copy_dev(new, prev);/* also copies over blkcg information */
1324 new->bi_iter.bi_sector = bio_end_sector(prev);
1325 new->bi_opf = prev->bi_opf;
1326 new->bi_write_hint = prev->bi_write_hint;
1328 bio_chain(prev, new);
1329 bio_get(prev); /* for iomap_finish_ioend */
1330 submit_bio(prev);
1331 return new;
1334 static bool
1335 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1336 sector_t sector)
1338 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1339 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1340 return false;
1341 if (wpc->iomap.type != wpc->ioend->io_type)
1342 return false;
1343 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1344 return false;
1345 if (sector != bio_end_sector(wpc->ioend->io_bio))
1346 return false;
1347 return true;
1351 * Test to see if we have an existing ioend structure that we could append to
1352 * first, otherwise finish off the current ioend and start another.
1354 static void
1355 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1356 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1357 struct writeback_control *wbc, struct list_head *iolist)
1359 sector_t sector = iomap_sector(&wpc->iomap, offset);
1360 unsigned len = i_blocksize(inode);
1361 unsigned poff = offset & (PAGE_SIZE - 1);
1362 bool merged, same_page = false;
1364 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1365 if (wpc->ioend)
1366 list_add(&wpc->ioend->io_list, iolist);
1367 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1370 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1371 &same_page);
1372 if (iop && !same_page)
1373 atomic_inc(&iop->write_count);
1375 if (!merged) {
1376 if (bio_full(wpc->ioend->io_bio, len)) {
1377 wpc->ioend->io_bio =
1378 iomap_chain_bio(wpc->ioend->io_bio);
1380 bio_add_page(wpc->ioend->io_bio, page, len, poff);
1383 wpc->ioend->io_size += len;
1384 wbc_account_cgroup_owner(wbc, page, len);
1388 * We implement an immediate ioend submission policy here to avoid needing to
1389 * chain multiple ioends and hence nest mempool allocations which can violate
1390 * forward progress guarantees we need to provide. The current ioend we are
1391 * adding blocks to is cached on the writepage context, and if the new block
1392 * does not append to the cached ioend it will create a new ioend and cache that
1393 * instead.
1395 * If a new ioend is created and cached, the old ioend is returned and queued
1396 * locally for submission once the entire page is processed or an error has been
1397 * detected. While ioends are submitted immediately after they are completed,
1398 * batching optimisations are provided by higher level block plugging.
1400 * At the end of a writeback pass, there will be a cached ioend remaining on the
1401 * writepage context that the caller will need to submit.
1403 static int
1404 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1405 struct writeback_control *wbc, struct inode *inode,
1406 struct page *page, u64 end_offset)
1408 struct iomap_page *iop = to_iomap_page(page);
1409 struct iomap_ioend *ioend, *next;
1410 unsigned len = i_blocksize(inode);
1411 u64 file_offset; /* file offset of page */
1412 int error = 0, count = 0, i;
1413 LIST_HEAD(submit_list);
1415 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1416 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1419 * Walk through the page to find areas to write back. If we run off the
1420 * end of the current map or find the current map invalid, grab a new
1421 * one.
1423 for (i = 0, file_offset = page_offset(page);
1424 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1425 i++, file_offset += len) {
1426 if (iop && !test_bit(i, iop->uptodate))
1427 continue;
1429 error = wpc->ops->map_blocks(wpc, inode, file_offset);
1430 if (error)
1431 break;
1432 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1433 continue;
1434 if (wpc->iomap.type == IOMAP_HOLE)
1435 continue;
1436 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1437 &submit_list);
1438 count++;
1441 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1442 WARN_ON_ONCE(!PageLocked(page));
1443 WARN_ON_ONCE(PageWriteback(page));
1446 * We cannot cancel the ioend directly here on error. We may have
1447 * already set other pages under writeback and hence we have to run I/O
1448 * completion to mark the error state of the pages under writeback
1449 * appropriately.
1451 if (unlikely(error)) {
1452 if (!count) {
1454 * If the current page hasn't been added to ioend, it
1455 * won't be affected by I/O completions and we must
1456 * discard and unlock it right here.
1458 if (wpc->ops->discard_page)
1459 wpc->ops->discard_page(page);
1460 ClearPageUptodate(page);
1461 unlock_page(page);
1462 goto done;
1466 * If the page was not fully cleaned, we need to ensure that the
1467 * higher layers come back to it correctly. That means we need
1468 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1469 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1470 * so another attempt to write this page in this writeback sweep
1471 * will be made.
1473 set_page_writeback_keepwrite(page);
1474 } else {
1475 clear_page_dirty_for_io(page);
1476 set_page_writeback(page);
1479 unlock_page(page);
1482 * Preserve the original error if there was one, otherwise catch
1483 * submission errors here and propagate into subsequent ioend
1484 * submissions.
1486 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1487 int error2;
1489 list_del_init(&ioend->io_list);
1490 error2 = iomap_submit_ioend(wpc, ioend, error);
1491 if (error2 && !error)
1492 error = error2;
1496 * We can end up here with no error and nothing to write only if we race
1497 * with a partial page truncate on a sub-page block sized filesystem.
1499 if (!count)
1500 end_page_writeback(page);
1501 done:
1502 mapping_set_error(page->mapping, error);
1503 return error;
1507 * Write out a dirty page.
1509 * For delalloc space on the page we need to allocate space and flush it.
1510 * For unwritten space on the page we need to start the conversion to
1511 * regular allocated space.
1513 static int
1514 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1516 struct iomap_writepage_ctx *wpc = data;
1517 struct inode *inode = page->mapping->host;
1518 pgoff_t end_index;
1519 u64 end_offset;
1520 loff_t offset;
1522 trace_iomap_writepage(inode, page, 0, 0);
1525 * Refuse to write the page out if we are called from reclaim context.
1527 * This avoids stack overflows when called from deeply used stacks in
1528 * random callers for direct reclaim or memcg reclaim. We explicitly
1529 * allow reclaim from kswapd as the stack usage there is relatively low.
1531 * This should never happen except in the case of a VM regression so
1532 * warn about it.
1534 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1535 PF_MEMALLOC))
1536 goto redirty;
1539 * Given that we do not allow direct reclaim to call us, we should
1540 * never be called in a recursive filesystem reclaim context.
1542 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1543 goto redirty;
1546 * Is this page beyond the end of the file?
1548 * The page index is less than the end_index, adjust the end_offset
1549 * to the highest offset that this page should represent.
1550 * -----------------------------------------------------
1551 * | file mapping | <EOF> |
1552 * -----------------------------------------------------
1553 * | Page ... | Page N-2 | Page N-1 | Page N | |
1554 * ^--------------------------------^----------|--------
1555 * | desired writeback range | see else |
1556 * ---------------------------------^------------------|
1558 offset = i_size_read(inode);
1559 end_index = offset >> PAGE_SHIFT;
1560 if (page->index < end_index)
1561 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1562 else {
1564 * Check whether the page to write out is beyond or straddles
1565 * i_size or not.
1566 * -------------------------------------------------------
1567 * | file mapping | <EOF> |
1568 * -------------------------------------------------------
1569 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1570 * ^--------------------------------^-----------|---------
1571 * | | Straddles |
1572 * ---------------------------------^-----------|--------|
1574 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1577 * Skip the page if it is fully outside i_size, e.g. due to a
1578 * truncate operation that is in progress. We must redirty the
1579 * page so that reclaim stops reclaiming it. Otherwise
1580 * iomap_vm_releasepage() is called on it and gets confused.
1582 * Note that the end_index is unsigned long, it would overflow
1583 * if the given offset is greater than 16TB on 32-bit system
1584 * and if we do check the page is fully outside i_size or not
1585 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1586 * will be evaluated to 0. Hence this page will be redirtied
1587 * and be written out repeatedly which would result in an
1588 * infinite loop, the user program that perform this operation
1589 * will hang. Instead, we can verify this situation by checking
1590 * if the page to write is totally beyond the i_size or if it's
1591 * offset is just equal to the EOF.
1593 if (page->index > end_index ||
1594 (page->index == end_index && offset_into_page == 0))
1595 goto redirty;
1598 * The page straddles i_size. It must be zeroed out on each
1599 * and every writepage invocation because it may be mmapped.
1600 * "A file is mapped in multiples of the page size. For a file
1601 * that is not a multiple of the page size, the remaining
1602 * memory is zeroed when mapped, and writes to that region are
1603 * not written out to the file."
1605 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1607 /* Adjust the end_offset to the end of file */
1608 end_offset = offset;
1611 return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1613 redirty:
1614 redirty_page_for_writepage(wbc, page);
1615 unlock_page(page);
1616 return 0;
1620 iomap_writepage(struct page *page, struct writeback_control *wbc,
1621 struct iomap_writepage_ctx *wpc,
1622 const struct iomap_writeback_ops *ops)
1624 int ret;
1626 wpc->ops = ops;
1627 ret = iomap_do_writepage(page, wbc, wpc);
1628 if (!wpc->ioend)
1629 return ret;
1630 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1632 EXPORT_SYMBOL_GPL(iomap_writepage);
1635 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1636 struct iomap_writepage_ctx *wpc,
1637 const struct iomap_writeback_ops *ops)
1639 int ret;
1641 wpc->ops = ops;
1642 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1643 if (!wpc->ioend)
1644 return ret;
1645 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1647 EXPORT_SYMBOL_GPL(iomap_writepages);
1649 static int __init iomap_init(void)
1651 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1652 offsetof(struct iomap_ioend, io_inline_bio),
1653 BIOSET_NEED_BVECS);
1655 fs_initcall(iomap_init);