io_uring: don't use 'fd' for openat/openat2/statx
[linux/fpc-iii.git] / fs / xfs / scrub / scrub.c
blobf1775bb193135e704108846406c9a29ef3a876b6
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_scrub.h"
20 #include "scrub/scrub.h"
21 #include "scrub/common.h"
22 #include "scrub/trace.h"
23 #include "scrub/repair.h"
24 #include "scrub/health.h"
27 * Online Scrub and Repair
29 * Traditionally, XFS (the kernel driver) did not know how to check or
30 * repair on-disk data structures. That task was left to the xfs_check
31 * and xfs_repair tools, both of which require taking the filesystem
32 * offline for a thorough but time consuming examination. Online
33 * scrub & repair, on the other hand, enables us to check the metadata
34 * for obvious errors while carefully stepping around the filesystem's
35 * ongoing operations, locking rules, etc.
37 * Given that most XFS metadata consist of records stored in a btree,
38 * most of the checking functions iterate the btree blocks themselves
39 * looking for irregularities. When a record block is encountered, each
40 * record can be checked for obviously bad values. Record values can
41 * also be cross-referenced against other btrees to look for potential
42 * misunderstandings between pieces of metadata.
44 * It is expected that the checkers responsible for per-AG metadata
45 * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46 * metadata structure, and perform any relevant cross-referencing before
47 * unlocking the AG and returning the results to userspace. These
48 * scrubbers must not keep an AG locked for too long to avoid tying up
49 * the block and inode allocators.
51 * Block maps and b-trees rooted in an inode present a special challenge
52 * because they can involve extents from any AG. The general scrubber
53 * structure of lock -> check -> xref -> unlock still holds, but AG
54 * locking order rules /must/ be obeyed to avoid deadlocks. The
55 * ordering rule, of course, is that we must lock in increasing AG
56 * order. Helper functions are provided to track which AG headers we've
57 * already locked. If we detect an imminent locking order violation, we
58 * can signal a potential deadlock, in which case the scrubber can jump
59 * out to the top level, lock all the AGs in order, and retry the scrub.
61 * For file data (directories, extended attributes, symlinks) scrub, we
62 * can simply lock the inode and walk the data. For btree data
63 * (directories and attributes) we follow the same btree-scrubbing
64 * strategy outlined previously to check the records.
66 * We use a bit of trickery with transactions to avoid buffer deadlocks
67 * if there is a cycle in the metadata. The basic problem is that
68 * travelling down a btree involves locking the current buffer at each
69 * tree level. If a pointer should somehow point back to a buffer that
70 * we've already examined, we will deadlock due to the second buffer
71 * locking attempt. Note however that grabbing a buffer in transaction
72 * context links the locked buffer to the transaction. If we try to
73 * re-grab the buffer in the context of the same transaction, we avoid
74 * the second lock attempt and continue. Between the verifier and the
75 * scrubber, something will notice that something is amiss and report
76 * the corruption. Therefore, each scrubber will allocate an empty
77 * transaction, attach buffers to it, and cancel the transaction at the
78 * end of the scrub run. Cancelling a non-dirty transaction simply
79 * unlocks the buffers.
81 * There are four pieces of data that scrub can communicate to
82 * userspace. The first is the error code (errno), which can be used to
83 * communicate operational errors in performing the scrub. There are
84 * also three flags that can be set in the scrub context. If the data
85 * structure itself is corrupt, the CORRUPT flag will be set. If
86 * the metadata is correct but otherwise suboptimal, the PREEN flag
87 * will be set.
89 * We perform secondary validation of filesystem metadata by
90 * cross-referencing every record with all other available metadata.
91 * For example, for block mapping extents, we verify that there are no
92 * records in the free space and inode btrees corresponding to that
93 * space extent and that there is a corresponding entry in the reverse
94 * mapping btree. Inconsistent metadata is noted by setting the
95 * XCORRUPT flag; btree query function errors are noted by setting the
96 * XFAIL flag and deleting the cursor to prevent further attempts to
97 * cross-reference with a defective btree.
99 * If a piece of metadata proves corrupt or suboptimal, the userspace
100 * program can ask the kernel to apply some tender loving care (TLC) to
101 * the metadata object by setting the REPAIR flag and re-calling the
102 * scrub ioctl. "Corruption" is defined by metadata violating the
103 * on-disk specification; operations cannot continue if the violation is
104 * left untreated. It is possible for XFS to continue if an object is
105 * "suboptimal", however performance may be degraded. Repairs are
106 * usually performed by rebuilding the metadata entirely out of
107 * redundant metadata. Optimizing, on the other hand, can sometimes be
108 * done without rebuilding entire structures.
110 * Generally speaking, the repair code has the following code structure:
111 * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112 * The first check helps us figure out if we need to rebuild or simply
113 * optimize the structure so that the rebuild knows what to do. The
114 * second check evaluates the completeness of the repair; that is what
115 * is reported to userspace.
117 * A quick note on symbol prefixes:
118 * - "xfs_" are general XFS symbols.
119 * - "xchk_" are symbols related to metadata checking.
120 * - "xrep_" are symbols related to metadata repair.
121 * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
125 * Scrub probe -- userspace uses this to probe if we're willing to scrub
126 * or repair a given mountpoint. This will be used by xfs_scrub to
127 * probe the kernel's abilities to scrub (and repair) the metadata. We
128 * do this by validating the ioctl inputs from userspace, preparing the
129 * filesystem for a scrub (or a repair) operation, and immediately
130 * returning to userspace. Userspace can use the returned errno and
131 * structure state to decide (in broad terms) if scrub/repair are
132 * supported by the running kernel.
134 static int
135 xchk_probe(
136 struct xfs_scrub *sc)
138 int error = 0;
140 if (xchk_should_terminate(sc, &error))
141 return error;
143 return 0;
146 /* Scrub setup and teardown */
148 /* Free all the resources and finish the transactions. */
149 STATIC int
150 xchk_teardown(
151 struct xfs_scrub *sc,
152 struct xfs_inode *ip_in,
153 int error)
155 xchk_ag_free(sc, &sc->sa);
156 if (sc->tp) {
157 if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
158 error = xfs_trans_commit(sc->tp);
159 else
160 xfs_trans_cancel(sc->tp);
161 sc->tp = NULL;
163 if (sc->ip) {
164 if (sc->ilock_flags)
165 xfs_iunlock(sc->ip, sc->ilock_flags);
166 if (sc->ip != ip_in &&
167 !xfs_internal_inum(sc->mp, sc->ip->i_ino))
168 xfs_irele(sc->ip);
169 sc->ip = NULL;
171 if (sc->flags & XCHK_REAPING_DISABLED)
172 xchk_start_reaping(sc);
173 if (sc->flags & XCHK_HAS_QUOTAOFFLOCK) {
174 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
175 sc->flags &= ~XCHK_HAS_QUOTAOFFLOCK;
177 if (sc->buf) {
178 kmem_free(sc->buf);
179 sc->buf = NULL;
181 return error;
184 /* Scrubbing dispatch. */
186 static const struct xchk_meta_ops meta_scrub_ops[] = {
187 [XFS_SCRUB_TYPE_PROBE] = { /* ioctl presence test */
188 .type = ST_NONE,
189 .setup = xchk_setup_fs,
190 .scrub = xchk_probe,
191 .repair = xrep_probe,
193 [XFS_SCRUB_TYPE_SB] = { /* superblock */
194 .type = ST_PERAG,
195 .setup = xchk_setup_fs,
196 .scrub = xchk_superblock,
197 .repair = xrep_superblock,
199 [XFS_SCRUB_TYPE_AGF] = { /* agf */
200 .type = ST_PERAG,
201 .setup = xchk_setup_fs,
202 .scrub = xchk_agf,
203 .repair = xrep_agf,
205 [XFS_SCRUB_TYPE_AGFL]= { /* agfl */
206 .type = ST_PERAG,
207 .setup = xchk_setup_fs,
208 .scrub = xchk_agfl,
209 .repair = xrep_agfl,
211 [XFS_SCRUB_TYPE_AGI] = { /* agi */
212 .type = ST_PERAG,
213 .setup = xchk_setup_fs,
214 .scrub = xchk_agi,
215 .repair = xrep_agi,
217 [XFS_SCRUB_TYPE_BNOBT] = { /* bnobt */
218 .type = ST_PERAG,
219 .setup = xchk_setup_ag_allocbt,
220 .scrub = xchk_bnobt,
221 .repair = xrep_notsupported,
223 [XFS_SCRUB_TYPE_CNTBT] = { /* cntbt */
224 .type = ST_PERAG,
225 .setup = xchk_setup_ag_allocbt,
226 .scrub = xchk_cntbt,
227 .repair = xrep_notsupported,
229 [XFS_SCRUB_TYPE_INOBT] = { /* inobt */
230 .type = ST_PERAG,
231 .setup = xchk_setup_ag_iallocbt,
232 .scrub = xchk_inobt,
233 .repair = xrep_notsupported,
235 [XFS_SCRUB_TYPE_FINOBT] = { /* finobt */
236 .type = ST_PERAG,
237 .setup = xchk_setup_ag_iallocbt,
238 .scrub = xchk_finobt,
239 .has = xfs_sb_version_hasfinobt,
240 .repair = xrep_notsupported,
242 [XFS_SCRUB_TYPE_RMAPBT] = { /* rmapbt */
243 .type = ST_PERAG,
244 .setup = xchk_setup_ag_rmapbt,
245 .scrub = xchk_rmapbt,
246 .has = xfs_sb_version_hasrmapbt,
247 .repair = xrep_notsupported,
249 [XFS_SCRUB_TYPE_REFCNTBT] = { /* refcountbt */
250 .type = ST_PERAG,
251 .setup = xchk_setup_ag_refcountbt,
252 .scrub = xchk_refcountbt,
253 .has = xfs_sb_version_hasreflink,
254 .repair = xrep_notsupported,
256 [XFS_SCRUB_TYPE_INODE] = { /* inode record */
257 .type = ST_INODE,
258 .setup = xchk_setup_inode,
259 .scrub = xchk_inode,
260 .repair = xrep_notsupported,
262 [XFS_SCRUB_TYPE_BMBTD] = { /* inode data fork */
263 .type = ST_INODE,
264 .setup = xchk_setup_inode_bmap,
265 .scrub = xchk_bmap_data,
266 .repair = xrep_notsupported,
268 [XFS_SCRUB_TYPE_BMBTA] = { /* inode attr fork */
269 .type = ST_INODE,
270 .setup = xchk_setup_inode_bmap,
271 .scrub = xchk_bmap_attr,
272 .repair = xrep_notsupported,
274 [XFS_SCRUB_TYPE_BMBTC] = { /* inode CoW fork */
275 .type = ST_INODE,
276 .setup = xchk_setup_inode_bmap,
277 .scrub = xchk_bmap_cow,
278 .repair = xrep_notsupported,
280 [XFS_SCRUB_TYPE_DIR] = { /* directory */
281 .type = ST_INODE,
282 .setup = xchk_setup_directory,
283 .scrub = xchk_directory,
284 .repair = xrep_notsupported,
286 [XFS_SCRUB_TYPE_XATTR] = { /* extended attributes */
287 .type = ST_INODE,
288 .setup = xchk_setup_xattr,
289 .scrub = xchk_xattr,
290 .repair = xrep_notsupported,
292 [XFS_SCRUB_TYPE_SYMLINK] = { /* symbolic link */
293 .type = ST_INODE,
294 .setup = xchk_setup_symlink,
295 .scrub = xchk_symlink,
296 .repair = xrep_notsupported,
298 [XFS_SCRUB_TYPE_PARENT] = { /* parent pointers */
299 .type = ST_INODE,
300 .setup = xchk_setup_parent,
301 .scrub = xchk_parent,
302 .repair = xrep_notsupported,
304 [XFS_SCRUB_TYPE_RTBITMAP] = { /* realtime bitmap */
305 .type = ST_FS,
306 .setup = xchk_setup_rt,
307 .scrub = xchk_rtbitmap,
308 .has = xfs_sb_version_hasrealtime,
309 .repair = xrep_notsupported,
311 [XFS_SCRUB_TYPE_RTSUM] = { /* realtime summary */
312 .type = ST_FS,
313 .setup = xchk_setup_rt,
314 .scrub = xchk_rtsummary,
315 .has = xfs_sb_version_hasrealtime,
316 .repair = xrep_notsupported,
318 [XFS_SCRUB_TYPE_UQUOTA] = { /* user quota */
319 .type = ST_FS,
320 .setup = xchk_setup_quota,
321 .scrub = xchk_quota,
322 .repair = xrep_notsupported,
324 [XFS_SCRUB_TYPE_GQUOTA] = { /* group quota */
325 .type = ST_FS,
326 .setup = xchk_setup_quota,
327 .scrub = xchk_quota,
328 .repair = xrep_notsupported,
330 [XFS_SCRUB_TYPE_PQUOTA] = { /* project quota */
331 .type = ST_FS,
332 .setup = xchk_setup_quota,
333 .scrub = xchk_quota,
334 .repair = xrep_notsupported,
336 [XFS_SCRUB_TYPE_FSCOUNTERS] = { /* fs summary counters */
337 .type = ST_FS,
338 .setup = xchk_setup_fscounters,
339 .scrub = xchk_fscounters,
340 .repair = xrep_notsupported,
344 /* This isn't a stable feature, warn once per day. */
345 static inline void
346 xchk_experimental_warning(
347 struct xfs_mount *mp)
349 static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
350 "xchk_warning", 86400 * HZ, 1);
351 ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
353 if (__ratelimit(&scrub_warning))
354 xfs_alert(mp,
355 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
358 static int
359 xchk_validate_inputs(
360 struct xfs_mount *mp,
361 struct xfs_scrub_metadata *sm)
363 int error;
364 const struct xchk_meta_ops *ops;
366 error = -EINVAL;
367 /* Check our inputs. */
368 sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
369 if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
370 goto out;
371 /* sm_reserved[] must be zero */
372 if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
373 goto out;
375 error = -ENOENT;
376 /* Do we know about this type of metadata? */
377 if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
378 goto out;
379 ops = &meta_scrub_ops[sm->sm_type];
380 if (ops->setup == NULL || ops->scrub == NULL)
381 goto out;
382 /* Does this fs even support this type of metadata? */
383 if (ops->has && !ops->has(&mp->m_sb))
384 goto out;
386 error = -EINVAL;
387 /* restricting fields must be appropriate for type */
388 switch (ops->type) {
389 case ST_NONE:
390 case ST_FS:
391 if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
392 goto out;
393 break;
394 case ST_PERAG:
395 if (sm->sm_ino || sm->sm_gen ||
396 sm->sm_agno >= mp->m_sb.sb_agcount)
397 goto out;
398 break;
399 case ST_INODE:
400 if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
401 goto out;
402 break;
403 default:
404 goto out;
408 * We only want to repair read-write v5+ filesystems. Defer the check
409 * for ops->repair until after our scrub confirms that we need to
410 * perform repairs so that we avoid failing due to not supporting
411 * repairing an object that doesn't need repairs.
413 if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
414 error = -EOPNOTSUPP;
415 if (!xfs_sb_version_hascrc(&mp->m_sb))
416 goto out;
418 error = -EROFS;
419 if (mp->m_flags & XFS_MOUNT_RDONLY)
420 goto out;
423 error = 0;
424 out:
425 return error;
428 #ifdef CONFIG_XFS_ONLINE_REPAIR
429 static inline void xchk_postmortem(struct xfs_scrub *sc)
432 * Userspace asked us to repair something, we repaired it, rescanned
433 * it, and the rescan says it's still broken. Scream about this in
434 * the system logs.
436 if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
437 (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
438 XFS_SCRUB_OFLAG_XCORRUPT)))
439 xrep_failure(sc->mp);
441 #else
442 static inline void xchk_postmortem(struct xfs_scrub *sc)
445 * Userspace asked us to scrub something, it's broken, and we have no
446 * way of fixing it. Scream in the logs.
448 if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
449 XFS_SCRUB_OFLAG_XCORRUPT))
450 xfs_alert_ratelimited(sc->mp,
451 "Corruption detected during scrub.");
453 #endif /* CONFIG_XFS_ONLINE_REPAIR */
455 /* Dispatch metadata scrubbing. */
457 xfs_scrub_metadata(
458 struct xfs_inode *ip,
459 struct xfs_scrub_metadata *sm)
461 struct xfs_scrub sc = {
462 .mp = ip->i_mount,
463 .sm = sm,
464 .sa = {
465 .agno = NULLAGNUMBER,
468 struct xfs_mount *mp = ip->i_mount;
469 int error = 0;
471 BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
472 (sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
474 trace_xchk_start(ip, sm, error);
476 /* Forbidden if we are shut down or mounted norecovery. */
477 error = -ESHUTDOWN;
478 if (XFS_FORCED_SHUTDOWN(mp))
479 goto out;
480 error = -ENOTRECOVERABLE;
481 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
482 goto out;
484 error = xchk_validate_inputs(mp, sm);
485 if (error)
486 goto out;
488 xchk_experimental_warning(mp);
490 sc.ops = &meta_scrub_ops[sm->sm_type];
491 sc.sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
492 retry_op:
493 /* Set up for the operation. */
494 error = sc.ops->setup(&sc, ip);
495 if (error)
496 goto out_teardown;
498 /* Scrub for errors. */
499 error = sc.ops->scrub(&sc);
500 if (!(sc.flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
502 * Scrubbers return -EDEADLOCK to mean 'try harder'.
503 * Tear down everything we hold, then set up again with
504 * preparation for worst-case scenarios.
506 error = xchk_teardown(&sc, ip, 0);
507 if (error)
508 goto out;
509 sc.flags |= XCHK_TRY_HARDER;
510 goto retry_op;
511 } else if (error)
512 goto out_teardown;
514 xchk_update_health(&sc);
516 if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
517 !(sc.flags & XREP_ALREADY_FIXED)) {
518 bool needs_fix;
520 /* Let debug users force us into the repair routines. */
521 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
522 sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
524 needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
525 XFS_SCRUB_OFLAG_XCORRUPT |
526 XFS_SCRUB_OFLAG_PREEN));
528 * If userspace asked for a repair but it wasn't necessary,
529 * report that back to userspace.
531 if (!needs_fix) {
532 sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
533 goto out_nofix;
537 * If it's broken, userspace wants us to fix it, and we haven't
538 * already tried to fix it, then attempt a repair.
540 error = xrep_attempt(ip, &sc);
541 if (error == -EAGAIN) {
543 * Either the repair function succeeded or it couldn't
544 * get all the resources it needs; either way, we go
545 * back to the beginning and call the scrub function.
547 error = xchk_teardown(&sc, ip, 0);
548 if (error) {
549 xrep_failure(mp);
550 goto out;
552 goto retry_op;
556 out_nofix:
557 xchk_postmortem(&sc);
558 out_teardown:
559 error = xchk_teardown(&sc, ip, error);
560 out:
561 trace_xchk_done(ip, sm, error);
562 if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
563 sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
564 error = 0;
566 return error;