io_uring: don't use 'fd' for openat/openat2/statx
[linux/fpc-iii.git] / fs / xfs / xfs_inode_item.c
blob8bd5d0de6321e8fa4d790a0febcf11852e4d9c33
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_error.h"
22 #include <linux/iversion.h>
24 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
28 return container_of(lip, struct xfs_inode_log_item, ili_item);
31 STATIC void
32 xfs_inode_item_data_fork_size(
33 struct xfs_inode_log_item *iip,
34 int *nvecs,
35 int *nbytes)
37 struct xfs_inode *ip = iip->ili_inode;
39 switch (ip->i_d.di_format) {
40 case XFS_DINODE_FMT_EXTENTS:
41 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
42 ip->i_d.di_nextents > 0 &&
43 ip->i_df.if_bytes > 0) {
44 /* worst case, doesn't subtract delalloc extents */
45 *nbytes += XFS_IFORK_DSIZE(ip);
46 *nvecs += 1;
48 break;
49 case XFS_DINODE_FMT_BTREE:
50 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
51 ip->i_df.if_broot_bytes > 0) {
52 *nbytes += ip->i_df.if_broot_bytes;
53 *nvecs += 1;
55 break;
56 case XFS_DINODE_FMT_LOCAL:
57 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
58 ip->i_df.if_bytes > 0) {
59 *nbytes += roundup(ip->i_df.if_bytes, 4);
60 *nvecs += 1;
62 break;
64 case XFS_DINODE_FMT_DEV:
65 break;
66 default:
67 ASSERT(0);
68 break;
72 STATIC void
73 xfs_inode_item_attr_fork_size(
74 struct xfs_inode_log_item *iip,
75 int *nvecs,
76 int *nbytes)
78 struct xfs_inode *ip = iip->ili_inode;
80 switch (ip->i_d.di_aformat) {
81 case XFS_DINODE_FMT_EXTENTS:
82 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
83 ip->i_d.di_anextents > 0 &&
84 ip->i_afp->if_bytes > 0) {
85 /* worst case, doesn't subtract unused space */
86 *nbytes += XFS_IFORK_ASIZE(ip);
87 *nvecs += 1;
89 break;
90 case XFS_DINODE_FMT_BTREE:
91 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
92 ip->i_afp->if_broot_bytes > 0) {
93 *nbytes += ip->i_afp->if_broot_bytes;
94 *nvecs += 1;
96 break;
97 case XFS_DINODE_FMT_LOCAL:
98 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
99 ip->i_afp->if_bytes > 0) {
100 *nbytes += roundup(ip->i_afp->if_bytes, 4);
101 *nvecs += 1;
103 break;
104 default:
105 ASSERT(0);
106 break;
111 * This returns the number of iovecs needed to log the given inode item.
113 * We need one iovec for the inode log format structure, one for the
114 * inode core, and possibly one for the inode data/extents/b-tree root
115 * and one for the inode attribute data/extents/b-tree root.
117 STATIC void
118 xfs_inode_item_size(
119 struct xfs_log_item *lip,
120 int *nvecs,
121 int *nbytes)
123 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124 struct xfs_inode *ip = iip->ili_inode;
126 *nvecs += 2;
127 *nbytes += sizeof(struct xfs_inode_log_format) +
128 xfs_log_dinode_size(ip->i_d.di_version);
130 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131 if (XFS_IFORK_Q(ip))
132 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
135 STATIC void
136 xfs_inode_item_format_data_fork(
137 struct xfs_inode_log_item *iip,
138 struct xfs_inode_log_format *ilf,
139 struct xfs_log_vec *lv,
140 struct xfs_log_iovec **vecp)
142 struct xfs_inode *ip = iip->ili_inode;
143 size_t data_bytes;
145 switch (ip->i_d.di_format) {
146 case XFS_DINODE_FMT_EXTENTS:
147 iip->ili_fields &=
148 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
150 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151 ip->i_d.di_nextents > 0 &&
152 ip->i_df.if_bytes > 0) {
153 struct xfs_bmbt_rec *p;
155 ASSERT(xfs_iext_count(&ip->i_df) > 0);
157 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159 xlog_finish_iovec(lv, *vecp, data_bytes);
161 ASSERT(data_bytes <= ip->i_df.if_bytes);
163 ilf->ilf_dsize = data_bytes;
164 ilf->ilf_size++;
165 } else {
166 iip->ili_fields &= ~XFS_ILOG_DEXT;
168 break;
169 case XFS_DINODE_FMT_BTREE:
170 iip->ili_fields &=
171 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
173 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174 ip->i_df.if_broot_bytes > 0) {
175 ASSERT(ip->i_df.if_broot != NULL);
176 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177 ip->i_df.if_broot,
178 ip->i_df.if_broot_bytes);
179 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180 ilf->ilf_size++;
181 } else {
182 ASSERT(!(iip->ili_fields &
183 XFS_ILOG_DBROOT));
184 iip->ili_fields &= ~XFS_ILOG_DBROOT;
186 break;
187 case XFS_DINODE_FMT_LOCAL:
188 iip->ili_fields &=
189 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
190 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191 ip->i_df.if_bytes > 0) {
193 * Round i_bytes up to a word boundary.
194 * The underlying memory is guaranteed to
195 * to be there by xfs_idata_realloc().
197 data_bytes = roundup(ip->i_df.if_bytes, 4);
198 ASSERT(ip->i_df.if_u1.if_data != NULL);
199 ASSERT(ip->i_d.di_size > 0);
200 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201 ip->i_df.if_u1.if_data, data_bytes);
202 ilf->ilf_dsize = (unsigned)data_bytes;
203 ilf->ilf_size++;
204 } else {
205 iip->ili_fields &= ~XFS_ILOG_DDATA;
207 break;
208 case XFS_DINODE_FMT_DEV:
209 iip->ili_fields &=
210 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211 if (iip->ili_fields & XFS_ILOG_DEV)
212 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
213 break;
214 default:
215 ASSERT(0);
216 break;
220 STATIC void
221 xfs_inode_item_format_attr_fork(
222 struct xfs_inode_log_item *iip,
223 struct xfs_inode_log_format *ilf,
224 struct xfs_log_vec *lv,
225 struct xfs_log_iovec **vecp)
227 struct xfs_inode *ip = iip->ili_inode;
228 size_t data_bytes;
230 switch (ip->i_d.di_aformat) {
231 case XFS_DINODE_FMT_EXTENTS:
232 iip->ili_fields &=
233 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
235 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236 ip->i_d.di_anextents > 0 &&
237 ip->i_afp->if_bytes > 0) {
238 struct xfs_bmbt_rec *p;
240 ASSERT(xfs_iext_count(ip->i_afp) ==
241 ip->i_d.di_anextents);
243 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245 xlog_finish_iovec(lv, *vecp, data_bytes);
247 ilf->ilf_asize = data_bytes;
248 ilf->ilf_size++;
249 } else {
250 iip->ili_fields &= ~XFS_ILOG_AEXT;
252 break;
253 case XFS_DINODE_FMT_BTREE:
254 iip->ili_fields &=
255 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
257 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258 ip->i_afp->if_broot_bytes > 0) {
259 ASSERT(ip->i_afp->if_broot != NULL);
261 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262 ip->i_afp->if_broot,
263 ip->i_afp->if_broot_bytes);
264 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265 ilf->ilf_size++;
266 } else {
267 iip->ili_fields &= ~XFS_ILOG_ABROOT;
269 break;
270 case XFS_DINODE_FMT_LOCAL:
271 iip->ili_fields &=
272 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
274 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275 ip->i_afp->if_bytes > 0) {
277 * Round i_bytes up to a word boundary.
278 * The underlying memory is guaranteed to
279 * to be there by xfs_idata_realloc().
281 data_bytes = roundup(ip->i_afp->if_bytes, 4);
282 ASSERT(ip->i_afp->if_u1.if_data != NULL);
283 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284 ip->i_afp->if_u1.if_data,
285 data_bytes);
286 ilf->ilf_asize = (unsigned)data_bytes;
287 ilf->ilf_size++;
288 } else {
289 iip->ili_fields &= ~XFS_ILOG_ADATA;
291 break;
292 default:
293 ASSERT(0);
294 break;
298 static void
299 xfs_inode_to_log_dinode(
300 struct xfs_inode *ip,
301 struct xfs_log_dinode *to,
302 xfs_lsn_t lsn)
304 struct xfs_icdinode *from = &ip->i_d;
305 struct inode *inode = VFS_I(ip);
307 to->di_magic = XFS_DINODE_MAGIC;
309 to->di_version = from->di_version;
310 to->di_format = from->di_format;
311 to->di_uid = from->di_uid;
312 to->di_gid = from->di_gid;
313 to->di_projid_lo = from->di_projid & 0xffff;
314 to->di_projid_hi = from->di_projid >> 16;
316 memset(to->di_pad, 0, sizeof(to->di_pad));
317 memset(to->di_pad3, 0, sizeof(to->di_pad3));
318 to->di_atime.t_sec = inode->i_atime.tv_sec;
319 to->di_atime.t_nsec = inode->i_atime.tv_nsec;
320 to->di_mtime.t_sec = inode->i_mtime.tv_sec;
321 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
322 to->di_ctime.t_sec = inode->i_ctime.tv_sec;
323 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
324 to->di_nlink = inode->i_nlink;
325 to->di_gen = inode->i_generation;
326 to->di_mode = inode->i_mode;
328 to->di_size = from->di_size;
329 to->di_nblocks = from->di_nblocks;
330 to->di_extsize = from->di_extsize;
331 to->di_nextents = from->di_nextents;
332 to->di_anextents = from->di_anextents;
333 to->di_forkoff = from->di_forkoff;
334 to->di_aformat = from->di_aformat;
335 to->di_dmevmask = from->di_dmevmask;
336 to->di_dmstate = from->di_dmstate;
337 to->di_flags = from->di_flags;
339 /* log a dummy value to ensure log structure is fully initialised */
340 to->di_next_unlinked = NULLAGINO;
342 if (from->di_version == 3) {
343 to->di_changecount = inode_peek_iversion(inode);
344 to->di_crtime.t_sec = from->di_crtime.tv_sec;
345 to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
346 to->di_flags2 = from->di_flags2;
347 to->di_cowextsize = from->di_cowextsize;
348 to->di_ino = ip->i_ino;
349 to->di_lsn = lsn;
350 memset(to->di_pad2, 0, sizeof(to->di_pad2));
351 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
352 to->di_flushiter = 0;
353 } else {
354 to->di_flushiter = from->di_flushiter;
359 * Format the inode core. Current timestamp data is only in the VFS inode
360 * fields, so we need to grab them from there. Hence rather than just copying
361 * the XFS inode core structure, format the fields directly into the iovec.
363 static void
364 xfs_inode_item_format_core(
365 struct xfs_inode *ip,
366 struct xfs_log_vec *lv,
367 struct xfs_log_iovec **vecp)
369 struct xfs_log_dinode *dic;
371 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
377 * This is called to fill in the vector of log iovecs for the given inode
378 * log item. It fills the first item with an inode log format structure,
379 * the second with the on-disk inode structure, and a possible third and/or
380 * fourth with the inode data/extents/b-tree root and inode attributes
381 * data/extents/b-tree root.
383 * Note: Always use the 64 bit inode log format structure so we don't
384 * leave an uninitialised hole in the format item on 64 bit systems. Log
385 * recovery on 32 bit systems handles this just fine, so there's no reason
386 * for not using an initialising the properly padded structure all the time.
388 STATIC void
389 xfs_inode_item_format(
390 struct xfs_log_item *lip,
391 struct xfs_log_vec *lv)
393 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394 struct xfs_inode *ip = iip->ili_inode;
395 struct xfs_log_iovec *vecp = NULL;
396 struct xfs_inode_log_format *ilf;
398 ASSERT(ip->i_d.di_version > 1);
400 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
401 ilf->ilf_type = XFS_LI_INODE;
402 ilf->ilf_ino = ip->i_ino;
403 ilf->ilf_blkno = ip->i_imap.im_blkno;
404 ilf->ilf_len = ip->i_imap.im_len;
405 ilf->ilf_boffset = ip->i_imap.im_boffset;
406 ilf->ilf_fields = XFS_ILOG_CORE;
407 ilf->ilf_size = 2; /* format + core */
410 * make sure we don't leak uninitialised data into the log in the case
411 * when we don't log every field in the inode.
413 ilf->ilf_dsize = 0;
414 ilf->ilf_asize = 0;
415 ilf->ilf_pad = 0;
416 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
418 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
420 xfs_inode_item_format_core(ip, lv, &vecp);
421 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
422 if (XFS_IFORK_Q(ip)) {
423 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
424 } else {
425 iip->ili_fields &=
426 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
429 /* update the format with the exact fields we actually logged */
430 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
434 * This is called to pin the inode associated with the inode log
435 * item in memory so it cannot be written out.
437 STATIC void
438 xfs_inode_item_pin(
439 struct xfs_log_item *lip)
441 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
443 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
445 trace_xfs_inode_pin(ip, _RET_IP_);
446 atomic_inc(&ip->i_pincount);
451 * This is called to unpin the inode associated with the inode log
452 * item which was previously pinned with a call to xfs_inode_item_pin().
454 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
456 STATIC void
457 xfs_inode_item_unpin(
458 struct xfs_log_item *lip,
459 int remove)
461 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
463 trace_xfs_inode_unpin(ip, _RET_IP_);
464 ASSERT(atomic_read(&ip->i_pincount) > 0);
465 if (atomic_dec_and_test(&ip->i_pincount))
466 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
470 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
471 * have been failed during writeback
473 * This informs the AIL that the inode is already flush locked on the next push,
474 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
475 * dirty data makes it to disk.
477 STATIC void
478 xfs_inode_item_error(
479 struct xfs_log_item *lip,
480 struct xfs_buf *bp)
482 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
483 xfs_set_li_failed(lip, bp);
486 STATIC uint
487 xfs_inode_item_push(
488 struct xfs_log_item *lip,
489 struct list_head *buffer_list)
490 __releases(&lip->li_ailp->ail_lock)
491 __acquires(&lip->li_ailp->ail_lock)
493 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
494 struct xfs_inode *ip = iip->ili_inode;
495 struct xfs_buf *bp = lip->li_buf;
496 uint rval = XFS_ITEM_SUCCESS;
497 int error;
499 if (xfs_ipincount(ip) > 0)
500 return XFS_ITEM_PINNED;
503 * The buffer containing this item failed to be written back
504 * previously. Resubmit the buffer for IO.
506 if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
507 if (!xfs_buf_trylock(bp))
508 return XFS_ITEM_LOCKED;
510 if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
511 rval = XFS_ITEM_FLUSHING;
513 xfs_buf_unlock(bp);
514 return rval;
517 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
518 return XFS_ITEM_LOCKED;
521 * Re-check the pincount now that we stabilized the value by
522 * taking the ilock.
524 if (xfs_ipincount(ip) > 0) {
525 rval = XFS_ITEM_PINNED;
526 goto out_unlock;
530 * Stale inode items should force out the iclog.
532 if (ip->i_flags & XFS_ISTALE) {
533 rval = XFS_ITEM_PINNED;
534 goto out_unlock;
538 * Someone else is already flushing the inode. Nothing we can do
539 * here but wait for the flush to finish and remove the item from
540 * the AIL.
542 if (!xfs_iflock_nowait(ip)) {
543 rval = XFS_ITEM_FLUSHING;
544 goto out_unlock;
547 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
548 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
550 spin_unlock(&lip->li_ailp->ail_lock);
552 error = xfs_iflush(ip, &bp);
553 if (!error) {
554 if (!xfs_buf_delwri_queue(bp, buffer_list))
555 rval = XFS_ITEM_FLUSHING;
556 xfs_buf_relse(bp);
559 spin_lock(&lip->li_ailp->ail_lock);
560 out_unlock:
561 xfs_iunlock(ip, XFS_ILOCK_SHARED);
562 return rval;
566 * Unlock the inode associated with the inode log item.
568 STATIC void
569 xfs_inode_item_release(
570 struct xfs_log_item *lip)
572 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
573 struct xfs_inode *ip = iip->ili_inode;
574 unsigned short lock_flags;
576 ASSERT(ip->i_itemp != NULL);
577 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
579 lock_flags = iip->ili_lock_flags;
580 iip->ili_lock_flags = 0;
581 if (lock_flags)
582 xfs_iunlock(ip, lock_flags);
586 * This is called to find out where the oldest active copy of the inode log
587 * item in the on disk log resides now that the last log write of it completed
588 * at the given lsn. Since we always re-log all dirty data in an inode, the
589 * latest copy in the on disk log is the only one that matters. Therefore,
590 * simply return the given lsn.
592 * If the inode has been marked stale because the cluster is being freed, we
593 * don't want to (re-)insert this inode into the AIL. There is a race condition
594 * where the cluster buffer may be unpinned before the inode is inserted into
595 * the AIL during transaction committed processing. If the buffer is unpinned
596 * before the inode item has been committed and inserted, then it is possible
597 * for the buffer to be written and IO completes before the inode is inserted
598 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
599 * AIL which will never get removed. It will, however, get reclaimed which
600 * triggers an assert in xfs_inode_free() complaining about freein an inode
601 * still in the AIL.
603 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
604 * transaction committed code knows that it does not need to do any further
605 * processing on the item.
607 STATIC xfs_lsn_t
608 xfs_inode_item_committed(
609 struct xfs_log_item *lip,
610 xfs_lsn_t lsn)
612 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
613 struct xfs_inode *ip = iip->ili_inode;
615 if (xfs_iflags_test(ip, XFS_ISTALE)) {
616 xfs_inode_item_unpin(lip, 0);
617 return -1;
619 return lsn;
622 STATIC void
623 xfs_inode_item_committing(
624 struct xfs_log_item *lip,
625 xfs_lsn_t commit_lsn)
627 INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
628 return xfs_inode_item_release(lip);
631 static const struct xfs_item_ops xfs_inode_item_ops = {
632 .iop_size = xfs_inode_item_size,
633 .iop_format = xfs_inode_item_format,
634 .iop_pin = xfs_inode_item_pin,
635 .iop_unpin = xfs_inode_item_unpin,
636 .iop_release = xfs_inode_item_release,
637 .iop_committed = xfs_inode_item_committed,
638 .iop_push = xfs_inode_item_push,
639 .iop_committing = xfs_inode_item_committing,
640 .iop_error = xfs_inode_item_error
645 * Initialize the inode log item for a newly allocated (in-core) inode.
647 void
648 xfs_inode_item_init(
649 struct xfs_inode *ip,
650 struct xfs_mount *mp)
652 struct xfs_inode_log_item *iip;
654 ASSERT(ip->i_itemp == NULL);
655 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
657 iip->ili_inode = ip;
658 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
659 &xfs_inode_item_ops);
663 * Free the inode log item and any memory hanging off of it.
665 void
666 xfs_inode_item_destroy(
667 xfs_inode_t *ip)
669 kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
670 kmem_cache_free(xfs_ili_zone, ip->i_itemp);
675 * This is the inode flushing I/O completion routine. It is called
676 * from interrupt level when the buffer containing the inode is
677 * flushed to disk. It is responsible for removing the inode item
678 * from the AIL if it has not been re-logged, and unlocking the inode's
679 * flush lock.
681 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
682 * list for other inodes that will run this function. We remove them from the
683 * buffer list so we can process all the inode IO completions in one AIL lock
684 * traversal.
686 void
687 xfs_iflush_done(
688 struct xfs_buf *bp,
689 struct xfs_log_item *lip)
691 struct xfs_inode_log_item *iip;
692 struct xfs_log_item *blip, *n;
693 struct xfs_ail *ailp = lip->li_ailp;
694 int need_ail = 0;
695 LIST_HEAD(tmp);
698 * Scan the buffer IO completions for other inodes being completed and
699 * attach them to the current inode log item.
702 list_add_tail(&lip->li_bio_list, &tmp);
704 list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
705 if (lip->li_cb != xfs_iflush_done)
706 continue;
708 list_move_tail(&blip->li_bio_list, &tmp);
710 * while we have the item, do the unlocked check for needing
711 * the AIL lock.
713 iip = INODE_ITEM(blip);
714 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
715 test_bit(XFS_LI_FAILED, &blip->li_flags))
716 need_ail++;
719 /* make sure we capture the state of the initial inode. */
720 iip = INODE_ITEM(lip);
721 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
722 test_bit(XFS_LI_FAILED, &lip->li_flags))
723 need_ail++;
726 * We only want to pull the item from the AIL if it is
727 * actually there and its location in the log has not
728 * changed since we started the flush. Thus, we only bother
729 * if the ili_logged flag is set and the inode's lsn has not
730 * changed. First we check the lsn outside
731 * the lock since it's cheaper, and then we recheck while
732 * holding the lock before removing the inode from the AIL.
734 if (need_ail) {
735 bool mlip_changed = false;
737 /* this is an opencoded batch version of xfs_trans_ail_delete */
738 spin_lock(&ailp->ail_lock);
739 list_for_each_entry(blip, &tmp, li_bio_list) {
740 if (INODE_ITEM(blip)->ili_logged &&
741 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
742 mlip_changed |= xfs_ail_delete_one(ailp, blip);
743 else {
744 xfs_clear_li_failed(blip);
748 if (mlip_changed) {
749 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
750 xlog_assign_tail_lsn_locked(ailp->ail_mount);
751 if (list_empty(&ailp->ail_head))
752 wake_up_all(&ailp->ail_empty);
754 spin_unlock(&ailp->ail_lock);
756 if (mlip_changed)
757 xfs_log_space_wake(ailp->ail_mount);
761 * clean up and unlock the flush lock now we are done. We can clear the
762 * ili_last_fields bits now that we know that the data corresponding to
763 * them is safely on disk.
765 list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
766 list_del_init(&blip->li_bio_list);
767 iip = INODE_ITEM(blip);
768 iip->ili_logged = 0;
769 iip->ili_last_fields = 0;
770 xfs_ifunlock(iip->ili_inode);
772 list_del(&tmp);
776 * This is the inode flushing abort routine. It is called from xfs_iflush when
777 * the filesystem is shutting down to clean up the inode state. It is
778 * responsible for removing the inode item from the AIL if it has not been
779 * re-logged, and unlocking the inode's flush lock.
781 void
782 xfs_iflush_abort(
783 xfs_inode_t *ip,
784 bool stale)
786 xfs_inode_log_item_t *iip = ip->i_itemp;
788 if (iip) {
789 if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
790 xfs_trans_ail_remove(&iip->ili_item,
791 stale ? SHUTDOWN_LOG_IO_ERROR :
792 SHUTDOWN_CORRUPT_INCORE);
794 iip->ili_logged = 0;
796 * Clear the ili_last_fields bits now that we know that the
797 * data corresponding to them is safely on disk.
799 iip->ili_last_fields = 0;
801 * Clear the inode logging fields so no more flushes are
802 * attempted.
804 iip->ili_fields = 0;
805 iip->ili_fsync_fields = 0;
808 * Release the inode's flush lock since we're done with it.
810 xfs_ifunlock(ip);
813 void
814 xfs_istale_done(
815 struct xfs_buf *bp,
816 struct xfs_log_item *lip)
818 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
822 * convert an xfs_inode_log_format struct from the old 32 bit version
823 * (which can have different field alignments) to the native 64 bit version
826 xfs_inode_item_format_convert(
827 struct xfs_log_iovec *buf,
828 struct xfs_inode_log_format *in_f)
830 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
832 if (buf->i_len != sizeof(*in_f32)) {
833 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
834 return -EFSCORRUPTED;
837 in_f->ilf_type = in_f32->ilf_type;
838 in_f->ilf_size = in_f32->ilf_size;
839 in_f->ilf_fields = in_f32->ilf_fields;
840 in_f->ilf_asize = in_f32->ilf_asize;
841 in_f->ilf_dsize = in_f32->ilf_dsize;
842 in_f->ilf_ino = in_f32->ilf_ino;
843 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
844 in_f->ilf_blkno = in_f32->ilf_blkno;
845 in_f->ilf_len = in_f32->ilf_len;
846 in_f->ilf_boffset = in_f32->ilf_boffset;
847 return 0;