1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
20 #include "xfs_error.h"
22 #include <linux/iversion.h>
24 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
26 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
28 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
32 xfs_inode_item_data_fork_size(
33 struct xfs_inode_log_item
*iip
,
37 struct xfs_inode
*ip
= iip
->ili_inode
;
39 switch (ip
->i_d
.di_format
) {
40 case XFS_DINODE_FMT_EXTENTS
:
41 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
42 ip
->i_d
.di_nextents
> 0 &&
43 ip
->i_df
.if_bytes
> 0) {
44 /* worst case, doesn't subtract delalloc extents */
45 *nbytes
+= XFS_IFORK_DSIZE(ip
);
49 case XFS_DINODE_FMT_BTREE
:
50 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
51 ip
->i_df
.if_broot_bytes
> 0) {
52 *nbytes
+= ip
->i_df
.if_broot_bytes
;
56 case XFS_DINODE_FMT_LOCAL
:
57 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
58 ip
->i_df
.if_bytes
> 0) {
59 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
64 case XFS_DINODE_FMT_DEV
:
73 xfs_inode_item_attr_fork_size(
74 struct xfs_inode_log_item
*iip
,
78 struct xfs_inode
*ip
= iip
->ili_inode
;
80 switch (ip
->i_d
.di_aformat
) {
81 case XFS_DINODE_FMT_EXTENTS
:
82 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
83 ip
->i_d
.di_anextents
> 0 &&
84 ip
->i_afp
->if_bytes
> 0) {
85 /* worst case, doesn't subtract unused space */
86 *nbytes
+= XFS_IFORK_ASIZE(ip
);
90 case XFS_DINODE_FMT_BTREE
:
91 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
92 ip
->i_afp
->if_broot_bytes
> 0) {
93 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
97 case XFS_DINODE_FMT_LOCAL
:
98 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
99 ip
->i_afp
->if_bytes
> 0) {
100 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
111 * This returns the number of iovecs needed to log the given inode item.
113 * We need one iovec for the inode log format structure, one for the
114 * inode core, and possibly one for the inode data/extents/b-tree root
115 * and one for the inode attribute data/extents/b-tree root.
119 struct xfs_log_item
*lip
,
123 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
124 struct xfs_inode
*ip
= iip
->ili_inode
;
127 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
128 xfs_log_dinode_size(ip
->i_d
.di_version
);
130 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
132 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
136 xfs_inode_item_format_data_fork(
137 struct xfs_inode_log_item
*iip
,
138 struct xfs_inode_log_format
*ilf
,
139 struct xfs_log_vec
*lv
,
140 struct xfs_log_iovec
**vecp
)
142 struct xfs_inode
*ip
= iip
->ili_inode
;
145 switch (ip
->i_d
.di_format
) {
146 case XFS_DINODE_FMT_EXTENTS
:
148 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
150 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
151 ip
->i_d
.di_nextents
> 0 &&
152 ip
->i_df
.if_bytes
> 0) {
153 struct xfs_bmbt_rec
*p
;
155 ASSERT(xfs_iext_count(&ip
->i_df
) > 0);
157 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
158 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
159 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
161 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
163 ilf
->ilf_dsize
= data_bytes
;
166 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
169 case XFS_DINODE_FMT_BTREE
:
171 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
173 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
174 ip
->i_df
.if_broot_bytes
> 0) {
175 ASSERT(ip
->i_df
.if_broot
!= NULL
);
176 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
178 ip
->i_df
.if_broot_bytes
);
179 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
182 ASSERT(!(iip
->ili_fields
&
184 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
187 case XFS_DINODE_FMT_LOCAL
:
189 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
190 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
191 ip
->i_df
.if_bytes
> 0) {
193 * Round i_bytes up to a word boundary.
194 * The underlying memory is guaranteed to
195 * to be there by xfs_idata_realloc().
197 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
198 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
199 ASSERT(ip
->i_d
.di_size
> 0);
200 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
201 ip
->i_df
.if_u1
.if_data
, data_bytes
);
202 ilf
->ilf_dsize
= (unsigned)data_bytes
;
205 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
208 case XFS_DINODE_FMT_DEV
:
210 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
);
211 if (iip
->ili_fields
& XFS_ILOG_DEV
)
212 ilf
->ilf_u
.ilfu_rdev
= sysv_encode_dev(VFS_I(ip
)->i_rdev
);
221 xfs_inode_item_format_attr_fork(
222 struct xfs_inode_log_item
*iip
,
223 struct xfs_inode_log_format
*ilf
,
224 struct xfs_log_vec
*lv
,
225 struct xfs_log_iovec
**vecp
)
227 struct xfs_inode
*ip
= iip
->ili_inode
;
230 switch (ip
->i_d
.di_aformat
) {
231 case XFS_DINODE_FMT_EXTENTS
:
233 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
235 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
236 ip
->i_d
.di_anextents
> 0 &&
237 ip
->i_afp
->if_bytes
> 0) {
238 struct xfs_bmbt_rec
*p
;
240 ASSERT(xfs_iext_count(ip
->i_afp
) ==
241 ip
->i_d
.di_anextents
);
243 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
244 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
245 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
247 ilf
->ilf_asize
= data_bytes
;
250 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
253 case XFS_DINODE_FMT_BTREE
:
255 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
257 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
258 ip
->i_afp
->if_broot_bytes
> 0) {
259 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
261 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
263 ip
->i_afp
->if_broot_bytes
);
264 ilf
->ilf_asize
= ip
->i_afp
->if_broot_bytes
;
267 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
270 case XFS_DINODE_FMT_LOCAL
:
272 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
274 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
275 ip
->i_afp
->if_bytes
> 0) {
277 * Round i_bytes up to a word boundary.
278 * The underlying memory is guaranteed to
279 * to be there by xfs_idata_realloc().
281 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
282 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
283 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
284 ip
->i_afp
->if_u1
.if_data
,
286 ilf
->ilf_asize
= (unsigned)data_bytes
;
289 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
299 xfs_inode_to_log_dinode(
300 struct xfs_inode
*ip
,
301 struct xfs_log_dinode
*to
,
304 struct xfs_icdinode
*from
= &ip
->i_d
;
305 struct inode
*inode
= VFS_I(ip
);
307 to
->di_magic
= XFS_DINODE_MAGIC
;
309 to
->di_version
= from
->di_version
;
310 to
->di_format
= from
->di_format
;
311 to
->di_uid
= from
->di_uid
;
312 to
->di_gid
= from
->di_gid
;
313 to
->di_projid_lo
= from
->di_projid
& 0xffff;
314 to
->di_projid_hi
= from
->di_projid
>> 16;
316 memset(to
->di_pad
, 0, sizeof(to
->di_pad
));
317 memset(to
->di_pad3
, 0, sizeof(to
->di_pad3
));
318 to
->di_atime
.t_sec
= inode
->i_atime
.tv_sec
;
319 to
->di_atime
.t_nsec
= inode
->i_atime
.tv_nsec
;
320 to
->di_mtime
.t_sec
= inode
->i_mtime
.tv_sec
;
321 to
->di_mtime
.t_nsec
= inode
->i_mtime
.tv_nsec
;
322 to
->di_ctime
.t_sec
= inode
->i_ctime
.tv_sec
;
323 to
->di_ctime
.t_nsec
= inode
->i_ctime
.tv_nsec
;
324 to
->di_nlink
= inode
->i_nlink
;
325 to
->di_gen
= inode
->i_generation
;
326 to
->di_mode
= inode
->i_mode
;
328 to
->di_size
= from
->di_size
;
329 to
->di_nblocks
= from
->di_nblocks
;
330 to
->di_extsize
= from
->di_extsize
;
331 to
->di_nextents
= from
->di_nextents
;
332 to
->di_anextents
= from
->di_anextents
;
333 to
->di_forkoff
= from
->di_forkoff
;
334 to
->di_aformat
= from
->di_aformat
;
335 to
->di_dmevmask
= from
->di_dmevmask
;
336 to
->di_dmstate
= from
->di_dmstate
;
337 to
->di_flags
= from
->di_flags
;
339 /* log a dummy value to ensure log structure is fully initialised */
340 to
->di_next_unlinked
= NULLAGINO
;
342 if (from
->di_version
== 3) {
343 to
->di_changecount
= inode_peek_iversion(inode
);
344 to
->di_crtime
.t_sec
= from
->di_crtime
.tv_sec
;
345 to
->di_crtime
.t_nsec
= from
->di_crtime
.tv_nsec
;
346 to
->di_flags2
= from
->di_flags2
;
347 to
->di_cowextsize
= from
->di_cowextsize
;
348 to
->di_ino
= ip
->i_ino
;
350 memset(to
->di_pad2
, 0, sizeof(to
->di_pad2
));
351 uuid_copy(&to
->di_uuid
, &ip
->i_mount
->m_sb
.sb_meta_uuid
);
352 to
->di_flushiter
= 0;
354 to
->di_flushiter
= from
->di_flushiter
;
359 * Format the inode core. Current timestamp data is only in the VFS inode
360 * fields, so we need to grab them from there. Hence rather than just copying
361 * the XFS inode core structure, format the fields directly into the iovec.
364 xfs_inode_item_format_core(
365 struct xfs_inode
*ip
,
366 struct xfs_log_vec
*lv
,
367 struct xfs_log_iovec
**vecp
)
369 struct xfs_log_dinode
*dic
;
371 dic
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_ICORE
);
372 xfs_inode_to_log_dinode(ip
, dic
, ip
->i_itemp
->ili_item
.li_lsn
);
373 xlog_finish_iovec(lv
, *vecp
, xfs_log_dinode_size(ip
->i_d
.di_version
));
377 * This is called to fill in the vector of log iovecs for the given inode
378 * log item. It fills the first item with an inode log format structure,
379 * the second with the on-disk inode structure, and a possible third and/or
380 * fourth with the inode data/extents/b-tree root and inode attributes
381 * data/extents/b-tree root.
383 * Note: Always use the 64 bit inode log format structure so we don't
384 * leave an uninitialised hole in the format item on 64 bit systems. Log
385 * recovery on 32 bit systems handles this just fine, so there's no reason
386 * for not using an initialising the properly padded structure all the time.
389 xfs_inode_item_format(
390 struct xfs_log_item
*lip
,
391 struct xfs_log_vec
*lv
)
393 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
394 struct xfs_inode
*ip
= iip
->ili_inode
;
395 struct xfs_log_iovec
*vecp
= NULL
;
396 struct xfs_inode_log_format
*ilf
;
398 ASSERT(ip
->i_d
.di_version
> 1);
400 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
401 ilf
->ilf_type
= XFS_LI_INODE
;
402 ilf
->ilf_ino
= ip
->i_ino
;
403 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
404 ilf
->ilf_len
= ip
->i_imap
.im_len
;
405 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
406 ilf
->ilf_fields
= XFS_ILOG_CORE
;
407 ilf
->ilf_size
= 2; /* format + core */
410 * make sure we don't leak uninitialised data into the log in the case
411 * when we don't log every field in the inode.
416 memset(&ilf
->ilf_u
, 0, sizeof(ilf
->ilf_u
));
418 xlog_finish_iovec(lv
, vecp
, sizeof(*ilf
));
420 xfs_inode_item_format_core(ip
, lv
, &vecp
);
421 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
422 if (XFS_IFORK_Q(ip
)) {
423 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
426 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
429 /* update the format with the exact fields we actually logged */
430 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
434 * This is called to pin the inode associated with the inode log
435 * item in memory so it cannot be written out.
439 struct xfs_log_item
*lip
)
441 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
443 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
445 trace_xfs_inode_pin(ip
, _RET_IP_
);
446 atomic_inc(&ip
->i_pincount
);
451 * This is called to unpin the inode associated with the inode log
452 * item which was previously pinned with a call to xfs_inode_item_pin().
454 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
457 xfs_inode_item_unpin(
458 struct xfs_log_item
*lip
,
461 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
463 trace_xfs_inode_unpin(ip
, _RET_IP_
);
464 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
465 if (atomic_dec_and_test(&ip
->i_pincount
))
466 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
470 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
471 * have been failed during writeback
473 * This informs the AIL that the inode is already flush locked on the next push,
474 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
475 * dirty data makes it to disk.
478 xfs_inode_item_error(
479 struct xfs_log_item
*lip
,
482 ASSERT(xfs_isiflocked(INODE_ITEM(lip
)->ili_inode
));
483 xfs_set_li_failed(lip
, bp
);
488 struct xfs_log_item
*lip
,
489 struct list_head
*buffer_list
)
490 __releases(&lip
->li_ailp
->ail_lock
)
491 __acquires(&lip
->li_ailp
->ail_lock
)
493 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
494 struct xfs_inode
*ip
= iip
->ili_inode
;
495 struct xfs_buf
*bp
= lip
->li_buf
;
496 uint rval
= XFS_ITEM_SUCCESS
;
499 if (xfs_ipincount(ip
) > 0)
500 return XFS_ITEM_PINNED
;
503 * The buffer containing this item failed to be written back
504 * previously. Resubmit the buffer for IO.
506 if (test_bit(XFS_LI_FAILED
, &lip
->li_flags
)) {
507 if (!xfs_buf_trylock(bp
))
508 return XFS_ITEM_LOCKED
;
510 if (!xfs_buf_resubmit_failed_buffers(bp
, buffer_list
))
511 rval
= XFS_ITEM_FLUSHING
;
517 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
518 return XFS_ITEM_LOCKED
;
521 * Re-check the pincount now that we stabilized the value by
524 if (xfs_ipincount(ip
) > 0) {
525 rval
= XFS_ITEM_PINNED
;
530 * Stale inode items should force out the iclog.
532 if (ip
->i_flags
& XFS_ISTALE
) {
533 rval
= XFS_ITEM_PINNED
;
538 * Someone else is already flushing the inode. Nothing we can do
539 * here but wait for the flush to finish and remove the item from
542 if (!xfs_iflock_nowait(ip
)) {
543 rval
= XFS_ITEM_FLUSHING
;
547 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
548 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
550 spin_unlock(&lip
->li_ailp
->ail_lock
);
552 error
= xfs_iflush(ip
, &bp
);
554 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
555 rval
= XFS_ITEM_FLUSHING
;
559 spin_lock(&lip
->li_ailp
->ail_lock
);
561 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
566 * Unlock the inode associated with the inode log item.
569 xfs_inode_item_release(
570 struct xfs_log_item
*lip
)
572 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
573 struct xfs_inode
*ip
= iip
->ili_inode
;
574 unsigned short lock_flags
;
576 ASSERT(ip
->i_itemp
!= NULL
);
577 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
579 lock_flags
= iip
->ili_lock_flags
;
580 iip
->ili_lock_flags
= 0;
582 xfs_iunlock(ip
, lock_flags
);
586 * This is called to find out where the oldest active copy of the inode log
587 * item in the on disk log resides now that the last log write of it completed
588 * at the given lsn. Since we always re-log all dirty data in an inode, the
589 * latest copy in the on disk log is the only one that matters. Therefore,
590 * simply return the given lsn.
592 * If the inode has been marked stale because the cluster is being freed, we
593 * don't want to (re-)insert this inode into the AIL. There is a race condition
594 * where the cluster buffer may be unpinned before the inode is inserted into
595 * the AIL during transaction committed processing. If the buffer is unpinned
596 * before the inode item has been committed and inserted, then it is possible
597 * for the buffer to be written and IO completes before the inode is inserted
598 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
599 * AIL which will never get removed. It will, however, get reclaimed which
600 * triggers an assert in xfs_inode_free() complaining about freein an inode
603 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
604 * transaction committed code knows that it does not need to do any further
605 * processing on the item.
608 xfs_inode_item_committed(
609 struct xfs_log_item
*lip
,
612 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
613 struct xfs_inode
*ip
= iip
->ili_inode
;
615 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
616 xfs_inode_item_unpin(lip
, 0);
623 xfs_inode_item_committing(
624 struct xfs_log_item
*lip
,
625 xfs_lsn_t commit_lsn
)
627 INODE_ITEM(lip
)->ili_last_lsn
= commit_lsn
;
628 return xfs_inode_item_release(lip
);
631 static const struct xfs_item_ops xfs_inode_item_ops
= {
632 .iop_size
= xfs_inode_item_size
,
633 .iop_format
= xfs_inode_item_format
,
634 .iop_pin
= xfs_inode_item_pin
,
635 .iop_unpin
= xfs_inode_item_unpin
,
636 .iop_release
= xfs_inode_item_release
,
637 .iop_committed
= xfs_inode_item_committed
,
638 .iop_push
= xfs_inode_item_push
,
639 .iop_committing
= xfs_inode_item_committing
,
640 .iop_error
= xfs_inode_item_error
645 * Initialize the inode log item for a newly allocated (in-core) inode.
649 struct xfs_inode
*ip
,
650 struct xfs_mount
*mp
)
652 struct xfs_inode_log_item
*iip
;
654 ASSERT(ip
->i_itemp
== NULL
);
655 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, 0);
658 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
659 &xfs_inode_item_ops
);
663 * Free the inode log item and any memory hanging off of it.
666 xfs_inode_item_destroy(
669 kmem_free(ip
->i_itemp
->ili_item
.li_lv_shadow
);
670 kmem_cache_free(xfs_ili_zone
, ip
->i_itemp
);
675 * This is the inode flushing I/O completion routine. It is called
676 * from interrupt level when the buffer containing the inode is
677 * flushed to disk. It is responsible for removing the inode item
678 * from the AIL if it has not been re-logged, and unlocking the inode's
681 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
682 * list for other inodes that will run this function. We remove them from the
683 * buffer list so we can process all the inode IO completions in one AIL lock
689 struct xfs_log_item
*lip
)
691 struct xfs_inode_log_item
*iip
;
692 struct xfs_log_item
*blip
, *n
;
693 struct xfs_ail
*ailp
= lip
->li_ailp
;
698 * Scan the buffer IO completions for other inodes being completed and
699 * attach them to the current inode log item.
702 list_add_tail(&lip
->li_bio_list
, &tmp
);
704 list_for_each_entry_safe(blip
, n
, &bp
->b_li_list
, li_bio_list
) {
705 if (lip
->li_cb
!= xfs_iflush_done
)
708 list_move_tail(&blip
->li_bio_list
, &tmp
);
710 * while we have the item, do the unlocked check for needing
713 iip
= INODE_ITEM(blip
);
714 if ((iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
) ||
715 test_bit(XFS_LI_FAILED
, &blip
->li_flags
))
719 /* make sure we capture the state of the initial inode. */
720 iip
= INODE_ITEM(lip
);
721 if ((iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
) ||
722 test_bit(XFS_LI_FAILED
, &lip
->li_flags
))
726 * We only want to pull the item from the AIL if it is
727 * actually there and its location in the log has not
728 * changed since we started the flush. Thus, we only bother
729 * if the ili_logged flag is set and the inode's lsn has not
730 * changed. First we check the lsn outside
731 * the lock since it's cheaper, and then we recheck while
732 * holding the lock before removing the inode from the AIL.
735 bool mlip_changed
= false;
737 /* this is an opencoded batch version of xfs_trans_ail_delete */
738 spin_lock(&ailp
->ail_lock
);
739 list_for_each_entry(blip
, &tmp
, li_bio_list
) {
740 if (INODE_ITEM(blip
)->ili_logged
&&
741 blip
->li_lsn
== INODE_ITEM(blip
)->ili_flush_lsn
)
742 mlip_changed
|= xfs_ail_delete_one(ailp
, blip
);
744 xfs_clear_li_failed(blip
);
749 if (!XFS_FORCED_SHUTDOWN(ailp
->ail_mount
))
750 xlog_assign_tail_lsn_locked(ailp
->ail_mount
);
751 if (list_empty(&ailp
->ail_head
))
752 wake_up_all(&ailp
->ail_empty
);
754 spin_unlock(&ailp
->ail_lock
);
757 xfs_log_space_wake(ailp
->ail_mount
);
761 * clean up and unlock the flush lock now we are done. We can clear the
762 * ili_last_fields bits now that we know that the data corresponding to
763 * them is safely on disk.
765 list_for_each_entry_safe(blip
, n
, &tmp
, li_bio_list
) {
766 list_del_init(&blip
->li_bio_list
);
767 iip
= INODE_ITEM(blip
);
769 iip
->ili_last_fields
= 0;
770 xfs_ifunlock(iip
->ili_inode
);
776 * This is the inode flushing abort routine. It is called from xfs_iflush when
777 * the filesystem is shutting down to clean up the inode state. It is
778 * responsible for removing the inode item from the AIL if it has not been
779 * re-logged, and unlocking the inode's flush lock.
786 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
789 if (test_bit(XFS_LI_IN_AIL
, &iip
->ili_item
.li_flags
)) {
790 xfs_trans_ail_remove(&iip
->ili_item
,
791 stale
? SHUTDOWN_LOG_IO_ERROR
:
792 SHUTDOWN_CORRUPT_INCORE
);
796 * Clear the ili_last_fields bits now that we know that the
797 * data corresponding to them is safely on disk.
799 iip
->ili_last_fields
= 0;
801 * Clear the inode logging fields so no more flushes are
805 iip
->ili_fsync_fields
= 0;
808 * Release the inode's flush lock since we're done with it.
816 struct xfs_log_item
*lip
)
818 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
822 * convert an xfs_inode_log_format struct from the old 32 bit version
823 * (which can have different field alignments) to the native 64 bit version
826 xfs_inode_item_format_convert(
827 struct xfs_log_iovec
*buf
,
828 struct xfs_inode_log_format
*in_f
)
830 struct xfs_inode_log_format_32
*in_f32
= buf
->i_addr
;
832 if (buf
->i_len
!= sizeof(*in_f32
)) {
833 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_LOW
, NULL
);
834 return -EFSCORRUPTED
;
837 in_f
->ilf_type
= in_f32
->ilf_type
;
838 in_f
->ilf_size
= in_f32
->ilf_size
;
839 in_f
->ilf_fields
= in_f32
->ilf_fields
;
840 in_f
->ilf_asize
= in_f32
->ilf_asize
;
841 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
842 in_f
->ilf_ino
= in_f32
->ilf_ino
;
843 memcpy(&in_f
->ilf_u
, &in_f32
->ilf_u
, sizeof(in_f
->ilf_u
));
844 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
845 in_f
->ilf_len
= in_f32
->ilf_len
;
846 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;