io_uring: don't use 'fd' for openat/openat2/statx
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blob796ff37d5bb5b82564d8fba330342be1a6b78e7f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
24 kmem_zone_t *xfs_log_ticket_zone;
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 struct xlog *log,
30 struct xlog_ticket *ticket,
31 struct xlog_in_core **iclog,
32 xfs_lsn_t *commitlsnp);
34 STATIC struct xlog *
35 xlog_alloc_log(
36 struct xfs_mount *mp,
37 struct xfs_buftarg *log_target,
38 xfs_daddr_t blk_offset,
39 int num_bblks);
40 STATIC int
41 xlog_space_left(
42 struct xlog *log,
43 atomic64_t *head);
44 STATIC void
45 xlog_dealloc_log(
46 struct xlog *log);
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 struct xlog_in_core *iclog,
51 bool aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54 struct xlog *log,
55 int len,
56 struct xlog_in_core **iclog,
57 struct xlog_ticket *ticket,
58 int *continued_write,
59 int *logoffsetp);
60 STATIC void
61 xlog_state_switch_iclogs(
62 struct xlog *log,
63 struct xlog_in_core *iclog,
64 int eventual_size);
65 STATIC void
66 xlog_state_want_sync(
67 struct xlog *log,
68 struct xlog_in_core *iclog);
70 STATIC void
71 xlog_grant_push_ail(
72 struct xlog *log,
73 int need_bytes);
74 STATIC void
75 xlog_regrant_reserve_log_space(
76 struct xlog *log,
77 struct xlog_ticket *ticket);
78 STATIC void
79 xlog_ungrant_log_space(
80 struct xlog *log,
81 struct xlog_ticket *ticket);
82 STATIC void
83 xlog_sync(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86 #if defined(DEBUG)
87 STATIC void
88 xlog_verify_dest_ptr(
89 struct xlog *log,
90 void *ptr);
91 STATIC void
92 xlog_verify_grant_tail(
93 struct xlog *log);
94 STATIC void
95 xlog_verify_iclog(
96 struct xlog *log,
97 struct xlog_in_core *iclog,
98 int count);
99 STATIC void
100 xlog_verify_tail_lsn(
101 struct xlog *log,
102 struct xlog_in_core *iclog,
103 xfs_lsn_t tail_lsn);
104 #else
105 #define xlog_verify_dest_ptr(a,b)
106 #define xlog_verify_grant_tail(a)
107 #define xlog_verify_iclog(a,b,c)
108 #define xlog_verify_tail_lsn(a,b,c)
109 #endif
111 STATIC int
112 xlog_iclogs_empty(
113 struct xlog *log);
115 static void
116 xlog_grant_sub_space(
117 struct xlog *log,
118 atomic64_t *head,
119 int bytes)
121 int64_t head_val = atomic64_read(head);
122 int64_t new, old;
124 do {
125 int cycle, space;
127 xlog_crack_grant_head_val(head_val, &cycle, &space);
129 space -= bytes;
130 if (space < 0) {
131 space += log->l_logsize;
132 cycle--;
135 old = head_val;
136 new = xlog_assign_grant_head_val(cycle, space);
137 head_val = atomic64_cmpxchg(head, old, new);
138 } while (head_val != old);
141 static void
142 xlog_grant_add_space(
143 struct xlog *log,
144 atomic64_t *head,
145 int bytes)
147 int64_t head_val = atomic64_read(head);
148 int64_t new, old;
150 do {
151 int tmp;
152 int cycle, space;
154 xlog_crack_grant_head_val(head_val, &cycle, &space);
156 tmp = log->l_logsize - space;
157 if (tmp > bytes)
158 space += bytes;
159 else {
160 space = bytes - tmp;
161 cycle++;
164 old = head_val;
165 new = xlog_assign_grant_head_val(cycle, space);
166 head_val = atomic64_cmpxchg(head, old, new);
167 } while (head_val != old);
170 STATIC void
171 xlog_grant_head_init(
172 struct xlog_grant_head *head)
174 xlog_assign_grant_head(&head->grant, 1, 0);
175 INIT_LIST_HEAD(&head->waiters);
176 spin_lock_init(&head->lock);
179 STATIC void
180 xlog_grant_head_wake_all(
181 struct xlog_grant_head *head)
183 struct xlog_ticket *tic;
185 spin_lock(&head->lock);
186 list_for_each_entry(tic, &head->waiters, t_queue)
187 wake_up_process(tic->t_task);
188 spin_unlock(&head->lock);
191 static inline int
192 xlog_ticket_reservation(
193 struct xlog *log,
194 struct xlog_grant_head *head,
195 struct xlog_ticket *tic)
197 if (head == &log->l_write_head) {
198 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
199 return tic->t_unit_res;
200 } else {
201 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
202 return tic->t_unit_res * tic->t_cnt;
203 else
204 return tic->t_unit_res;
208 STATIC bool
209 xlog_grant_head_wake(
210 struct xlog *log,
211 struct xlog_grant_head *head,
212 int *free_bytes)
214 struct xlog_ticket *tic;
215 int need_bytes;
216 bool woken_task = false;
218 list_for_each_entry(tic, &head->waiters, t_queue) {
221 * There is a chance that the size of the CIL checkpoints in
222 * progress at the last AIL push target calculation resulted in
223 * limiting the target to the log head (l_last_sync_lsn) at the
224 * time. This may not reflect where the log head is now as the
225 * CIL checkpoints may have completed.
227 * Hence when we are woken here, it may be that the head of the
228 * log that has moved rather than the tail. As the tail didn't
229 * move, there still won't be space available for the
230 * reservation we require. However, if the AIL has already
231 * pushed to the target defined by the old log head location, we
232 * will hang here waiting for something else to update the AIL
233 * push target.
235 * Therefore, if there isn't space to wake the first waiter on
236 * the grant head, we need to push the AIL again to ensure the
237 * target reflects both the current log tail and log head
238 * position before we wait for the tail to move again.
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes) {
243 if (!woken_task)
244 xlog_grant_push_ail(log, need_bytes);
245 return false;
248 *free_bytes -= need_bytes;
249 trace_xfs_log_grant_wake_up(log, tic);
250 wake_up_process(tic->t_task);
251 woken_task = true;
254 return true;
257 STATIC int
258 xlog_grant_head_wait(
259 struct xlog *log,
260 struct xlog_grant_head *head,
261 struct xlog_ticket *tic,
262 int need_bytes) __releases(&head->lock)
263 __acquires(&head->lock)
265 list_add_tail(&tic->t_queue, &head->waiters);
267 do {
268 if (XLOG_FORCED_SHUTDOWN(log))
269 goto shutdown;
270 xlog_grant_push_ail(log, need_bytes);
272 __set_current_state(TASK_UNINTERRUPTIBLE);
273 spin_unlock(&head->lock);
275 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
277 trace_xfs_log_grant_sleep(log, tic);
278 schedule();
279 trace_xfs_log_grant_wake(log, tic);
281 spin_lock(&head->lock);
282 if (XLOG_FORCED_SHUTDOWN(log))
283 goto shutdown;
284 } while (xlog_space_left(log, &head->grant) < need_bytes);
286 list_del_init(&tic->t_queue);
287 return 0;
288 shutdown:
289 list_del_init(&tic->t_queue);
290 return -EIO;
294 * Atomically get the log space required for a log ticket.
296 * Once a ticket gets put onto head->waiters, it will only return after the
297 * needed reservation is satisfied.
299 * This function is structured so that it has a lock free fast path. This is
300 * necessary because every new transaction reservation will come through this
301 * path. Hence any lock will be globally hot if we take it unconditionally on
302 * every pass.
304 * As tickets are only ever moved on and off head->waiters under head->lock, we
305 * only need to take that lock if we are going to add the ticket to the queue
306 * and sleep. We can avoid taking the lock if the ticket was never added to
307 * head->waiters because the t_queue list head will be empty and we hold the
308 * only reference to it so it can safely be checked unlocked.
310 STATIC int
311 xlog_grant_head_check(
312 struct xlog *log,
313 struct xlog_grant_head *head,
314 struct xlog_ticket *tic,
315 int *need_bytes)
317 int free_bytes;
318 int error = 0;
320 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
323 * If there are other waiters on the queue then give them a chance at
324 * logspace before us. Wake up the first waiters, if we do not wake
325 * up all the waiters then go to sleep waiting for more free space,
326 * otherwise try to get some space for this transaction.
328 *need_bytes = xlog_ticket_reservation(log, head, tic);
329 free_bytes = xlog_space_left(log, &head->grant);
330 if (!list_empty_careful(&head->waiters)) {
331 spin_lock(&head->lock);
332 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
333 free_bytes < *need_bytes) {
334 error = xlog_grant_head_wait(log, head, tic,
335 *need_bytes);
337 spin_unlock(&head->lock);
338 } else if (free_bytes < *need_bytes) {
339 spin_lock(&head->lock);
340 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
341 spin_unlock(&head->lock);
344 return error;
347 static void
348 xlog_tic_reset_res(xlog_ticket_t *tic)
350 tic->t_res_num = 0;
351 tic->t_res_arr_sum = 0;
352 tic->t_res_num_ophdrs = 0;
355 static void
356 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
358 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
359 /* add to overflow and start again */
360 tic->t_res_o_flow += tic->t_res_arr_sum;
361 tic->t_res_num = 0;
362 tic->t_res_arr_sum = 0;
365 tic->t_res_arr[tic->t_res_num].r_len = len;
366 tic->t_res_arr[tic->t_res_num].r_type = type;
367 tic->t_res_arr_sum += len;
368 tic->t_res_num++;
372 * Replenish the byte reservation required by moving the grant write head.
375 xfs_log_regrant(
376 struct xfs_mount *mp,
377 struct xlog_ticket *tic)
379 struct xlog *log = mp->m_log;
380 int need_bytes;
381 int error = 0;
383 if (XLOG_FORCED_SHUTDOWN(log))
384 return -EIO;
386 XFS_STATS_INC(mp, xs_try_logspace);
389 * This is a new transaction on the ticket, so we need to change the
390 * transaction ID so that the next transaction has a different TID in
391 * the log. Just add one to the existing tid so that we can see chains
392 * of rolling transactions in the log easily.
394 tic->t_tid++;
396 xlog_grant_push_ail(log, tic->t_unit_res);
398 tic->t_curr_res = tic->t_unit_res;
399 xlog_tic_reset_res(tic);
401 if (tic->t_cnt > 0)
402 return 0;
404 trace_xfs_log_regrant(log, tic);
406 error = xlog_grant_head_check(log, &log->l_write_head, tic,
407 &need_bytes);
408 if (error)
409 goto out_error;
411 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
412 trace_xfs_log_regrant_exit(log, tic);
413 xlog_verify_grant_tail(log);
414 return 0;
416 out_error:
418 * If we are failing, make sure the ticket doesn't have any current
419 * reservations. We don't want to add this back when the ticket/
420 * transaction gets cancelled.
422 tic->t_curr_res = 0;
423 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
424 return error;
428 * Reserve log space and return a ticket corresponding to the reservation.
430 * Each reservation is going to reserve extra space for a log record header.
431 * When writes happen to the on-disk log, we don't subtract the length of the
432 * log record header from any reservation. By wasting space in each
433 * reservation, we prevent over allocation problems.
436 xfs_log_reserve(
437 struct xfs_mount *mp,
438 int unit_bytes,
439 int cnt,
440 struct xlog_ticket **ticp,
441 uint8_t client,
442 bool permanent)
444 struct xlog *log = mp->m_log;
445 struct xlog_ticket *tic;
446 int need_bytes;
447 int error = 0;
449 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
451 if (XLOG_FORCED_SHUTDOWN(log))
452 return -EIO;
454 XFS_STATS_INC(mp, xs_try_logspace);
456 ASSERT(*ticp == NULL);
457 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
458 *ticp = tic;
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
463 trace_xfs_log_reserve(log, tic);
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
476 out_error:
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
489 * NOTES:
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
509 xfs_lsn_t
510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
519 if (XLOG_FORCED_SHUTDOWN(log) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket->t_flags |= XLOG_TIC_INITED;
550 xfs_log_ticket_put(ticket);
551 return lsn;
554 static bool
555 __xlog_state_release_iclog(
556 struct xlog *log,
557 struct xlog_in_core *iclog)
559 lockdep_assert_held(&log->l_icloglock);
561 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
562 /* update tail before writing to iclog */
563 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
565 iclog->ic_state = XLOG_STATE_SYNCING;
566 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
567 xlog_verify_tail_lsn(log, iclog, tail_lsn);
568 /* cycle incremented when incrementing curr_block */
569 return true;
572 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
573 return false;
577 * Flush iclog to disk if this is the last reference to the given iclog and the
578 * it is in the WANT_SYNC state.
580 static int
581 xlog_state_release_iclog(
582 struct xlog *log,
583 struct xlog_in_core *iclog)
585 lockdep_assert_held(&log->l_icloglock);
587 if (iclog->ic_state == XLOG_STATE_IOERROR)
588 return -EIO;
590 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
591 __xlog_state_release_iclog(log, iclog)) {
592 spin_unlock(&log->l_icloglock);
593 xlog_sync(log, iclog);
594 spin_lock(&log->l_icloglock);
597 return 0;
601 xfs_log_release_iclog(
602 struct xfs_mount *mp,
603 struct xlog_in_core *iclog)
605 struct xlog *log = mp->m_log;
606 bool sync;
608 if (iclog->ic_state == XLOG_STATE_IOERROR)
609 goto error;
611 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
612 if (iclog->ic_state == XLOG_STATE_IOERROR) {
613 spin_unlock(&log->l_icloglock);
614 goto error;
616 sync = __xlog_state_release_iclog(log, iclog);
617 spin_unlock(&log->l_icloglock);
618 if (sync)
619 xlog_sync(log, iclog);
621 return 0;
622 error:
623 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
624 return -EIO;
628 * Mount a log filesystem
630 * mp - ubiquitous xfs mount point structure
631 * log_target - buftarg of on-disk log device
632 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
633 * num_bblocks - Number of BBSIZE blocks in on-disk log
635 * Return error or zero.
638 xfs_log_mount(
639 xfs_mount_t *mp,
640 xfs_buftarg_t *log_target,
641 xfs_daddr_t blk_offset,
642 int num_bblks)
644 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
645 int error = 0;
646 int min_logfsbs;
648 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
649 xfs_notice(mp, "Mounting V%d Filesystem",
650 XFS_SB_VERSION_NUM(&mp->m_sb));
651 } else {
652 xfs_notice(mp,
653 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
654 XFS_SB_VERSION_NUM(&mp->m_sb));
655 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
658 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
659 if (IS_ERR(mp->m_log)) {
660 error = PTR_ERR(mp->m_log);
661 goto out;
665 * Validate the given log space and drop a critical message via syslog
666 * if the log size is too small that would lead to some unexpected
667 * situations in transaction log space reservation stage.
669 * Note: we can't just reject the mount if the validation fails. This
670 * would mean that people would have to downgrade their kernel just to
671 * remedy the situation as there is no way to grow the log (short of
672 * black magic surgery with xfs_db).
674 * We can, however, reject mounts for CRC format filesystems, as the
675 * mkfs binary being used to make the filesystem should never create a
676 * filesystem with a log that is too small.
678 min_logfsbs = xfs_log_calc_minimum_size(mp);
680 if (mp->m_sb.sb_logblocks < min_logfsbs) {
681 xfs_warn(mp,
682 "Log size %d blocks too small, minimum size is %d blocks",
683 mp->m_sb.sb_logblocks, min_logfsbs);
684 error = -EINVAL;
685 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
686 xfs_warn(mp,
687 "Log size %d blocks too large, maximum size is %lld blocks",
688 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
689 error = -EINVAL;
690 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
691 xfs_warn(mp,
692 "log size %lld bytes too large, maximum size is %lld bytes",
693 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
694 XFS_MAX_LOG_BYTES);
695 error = -EINVAL;
696 } else if (mp->m_sb.sb_logsunit > 1 &&
697 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
698 xfs_warn(mp,
699 "log stripe unit %u bytes must be a multiple of block size",
700 mp->m_sb.sb_logsunit);
701 error = -EINVAL;
702 fatal = true;
704 if (error) {
706 * Log check errors are always fatal on v5; or whenever bad
707 * metadata leads to a crash.
709 if (fatal) {
710 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
711 ASSERT(0);
712 goto out_free_log;
714 xfs_crit(mp, "Log size out of supported range.");
715 xfs_crit(mp,
716 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
720 * Initialize the AIL now we have a log.
722 error = xfs_trans_ail_init(mp);
723 if (error) {
724 xfs_warn(mp, "AIL initialisation failed: error %d", error);
725 goto out_free_log;
727 mp->m_log->l_ailp = mp->m_ail;
730 * skip log recovery on a norecovery mount. pretend it all
731 * just worked.
733 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
734 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
736 if (readonly)
737 mp->m_flags &= ~XFS_MOUNT_RDONLY;
739 error = xlog_recover(mp->m_log);
741 if (readonly)
742 mp->m_flags |= XFS_MOUNT_RDONLY;
743 if (error) {
744 xfs_warn(mp, "log mount/recovery failed: error %d",
745 error);
746 xlog_recover_cancel(mp->m_log);
747 goto out_destroy_ail;
751 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
752 "log");
753 if (error)
754 goto out_destroy_ail;
756 /* Normal transactions can now occur */
757 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
760 * Now the log has been fully initialised and we know were our
761 * space grant counters are, we can initialise the permanent ticket
762 * needed for delayed logging to work.
764 xlog_cil_init_post_recovery(mp->m_log);
766 return 0;
768 out_destroy_ail:
769 xfs_trans_ail_destroy(mp);
770 out_free_log:
771 xlog_dealloc_log(mp->m_log);
772 out:
773 return error;
777 * Finish the recovery of the file system. This is separate from the
778 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
779 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
780 * here.
782 * If we finish recovery successfully, start the background log work. If we are
783 * not doing recovery, then we have a RO filesystem and we don't need to start
784 * it.
787 xfs_log_mount_finish(
788 struct xfs_mount *mp)
790 int error = 0;
791 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
792 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
794 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
795 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
796 return 0;
797 } else if (readonly) {
798 /* Allow unlinked processing to proceed */
799 mp->m_flags &= ~XFS_MOUNT_RDONLY;
803 * During the second phase of log recovery, we need iget and
804 * iput to behave like they do for an active filesystem.
805 * xfs_fs_drop_inode needs to be able to prevent the deletion
806 * of inodes before we're done replaying log items on those
807 * inodes. Turn it off immediately after recovery finishes
808 * so that we don't leak the quota inodes if subsequent mount
809 * activities fail.
811 * We let all inodes involved in redo item processing end up on
812 * the LRU instead of being evicted immediately so that if we do
813 * something to an unlinked inode, the irele won't cause
814 * premature truncation and freeing of the inode, which results
815 * in log recovery failure. We have to evict the unreferenced
816 * lru inodes after clearing SB_ACTIVE because we don't
817 * otherwise clean up the lru if there's a subsequent failure in
818 * xfs_mountfs, which leads to us leaking the inodes if nothing
819 * else (e.g. quotacheck) references the inodes before the
820 * mount failure occurs.
822 mp->m_super->s_flags |= SB_ACTIVE;
823 error = xlog_recover_finish(mp->m_log);
824 if (!error)
825 xfs_log_work_queue(mp);
826 mp->m_super->s_flags &= ~SB_ACTIVE;
827 evict_inodes(mp->m_super);
830 * Drain the buffer LRU after log recovery. This is required for v4
831 * filesystems to avoid leaving around buffers with NULL verifier ops,
832 * but we do it unconditionally to make sure we're always in a clean
833 * cache state after mount.
835 * Don't push in the error case because the AIL may have pending intents
836 * that aren't removed until recovery is cancelled.
838 if (!error && recovered) {
839 xfs_log_force(mp, XFS_LOG_SYNC);
840 xfs_ail_push_all_sync(mp->m_ail);
842 xfs_wait_buftarg(mp->m_ddev_targp);
844 if (readonly)
845 mp->m_flags |= XFS_MOUNT_RDONLY;
847 return error;
851 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
852 * the log.
854 void
855 xfs_log_mount_cancel(
856 struct xfs_mount *mp)
858 xlog_recover_cancel(mp->m_log);
859 xfs_log_unmount(mp);
863 * Final log writes as part of unmount.
865 * Mark the filesystem clean as unmount happens. Note that during relocation
866 * this routine needs to be executed as part of source-bag while the
867 * deallocation must not be done until source-end.
870 /* Actually write the unmount record to disk. */
871 static void
872 xfs_log_write_unmount_record(
873 struct xfs_mount *mp)
875 /* the data section must be 32 bit size aligned */
876 struct xfs_unmount_log_format magic = {
877 .magic = XLOG_UNMOUNT_TYPE,
879 struct xfs_log_iovec reg = {
880 .i_addr = &magic,
881 .i_len = sizeof(magic),
882 .i_type = XLOG_REG_TYPE_UNMOUNT,
884 struct xfs_log_vec vec = {
885 .lv_niovecs = 1,
886 .lv_iovecp = &reg,
888 struct xlog *log = mp->m_log;
889 struct xlog_in_core *iclog;
890 struct xlog_ticket *tic = NULL;
891 xfs_lsn_t lsn;
892 uint flags = XLOG_UNMOUNT_TRANS;
893 int error;
895 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
896 if (error)
897 goto out_err;
900 * If we think the summary counters are bad, clear the unmount header
901 * flag in the unmount record so that the summary counters will be
902 * recalculated during log recovery at next mount. Refer to
903 * xlog_check_unmount_rec for more details.
905 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
906 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
907 xfs_alert(mp, "%s: will fix summary counters at next mount",
908 __func__);
909 flags &= ~XLOG_UNMOUNT_TRANS;
912 /* remove inited flag, and account for space used */
913 tic->t_flags = 0;
914 tic->t_curr_res -= sizeof(magic);
915 error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
917 * At this point, we're umounting anyway, so there's no point in
918 * transitioning log state to IOERROR. Just continue...
920 out_err:
921 if (error)
922 xfs_alert(mp, "%s: unmount record failed", __func__);
924 spin_lock(&log->l_icloglock);
925 iclog = log->l_iclog;
926 atomic_inc(&iclog->ic_refcnt);
927 xlog_state_want_sync(log, iclog);
928 error = xlog_state_release_iclog(log, iclog);
929 switch (iclog->ic_state) {
930 default:
931 if (!XLOG_FORCED_SHUTDOWN(log)) {
932 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
933 break;
935 /* fall through */
936 case XLOG_STATE_ACTIVE:
937 case XLOG_STATE_DIRTY:
938 spin_unlock(&log->l_icloglock);
939 break;
942 if (tic) {
943 trace_xfs_log_umount_write(log, tic);
944 xlog_ungrant_log_space(log, tic);
945 xfs_log_ticket_put(tic);
950 * Unmount record used to have a string "Unmount filesystem--" in the
951 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
952 * We just write the magic number now since that particular field isn't
953 * currently architecture converted and "Unmount" is a bit foo.
954 * As far as I know, there weren't any dependencies on the old behaviour.
957 static int
958 xfs_log_unmount_write(xfs_mount_t *mp)
960 struct xlog *log = mp->m_log;
961 xlog_in_core_t *iclog;
962 #ifdef DEBUG
963 xlog_in_core_t *first_iclog;
964 #endif
965 int error;
968 * Don't write out unmount record on norecovery mounts or ro devices.
969 * Or, if we are doing a forced umount (typically because of IO errors).
971 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
972 xfs_readonly_buftarg(log->l_targ)) {
973 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
974 return 0;
977 error = xfs_log_force(mp, XFS_LOG_SYNC);
978 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
980 #ifdef DEBUG
981 first_iclog = iclog = log->l_iclog;
982 do {
983 if (iclog->ic_state != XLOG_STATE_IOERROR) {
984 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
985 ASSERT(iclog->ic_offset == 0);
987 iclog = iclog->ic_next;
988 } while (iclog != first_iclog);
989 #endif
990 if (! (XLOG_FORCED_SHUTDOWN(log))) {
991 xfs_log_write_unmount_record(mp);
992 } else {
994 * We're already in forced_shutdown mode, couldn't
995 * even attempt to write out the unmount transaction.
997 * Go through the motions of sync'ing and releasing
998 * the iclog, even though no I/O will actually happen,
999 * we need to wait for other log I/Os that may already
1000 * be in progress. Do this as a separate section of
1001 * code so we'll know if we ever get stuck here that
1002 * we're in this odd situation of trying to unmount
1003 * a file system that went into forced_shutdown as
1004 * the result of an unmount..
1006 spin_lock(&log->l_icloglock);
1007 iclog = log->l_iclog;
1008 atomic_inc(&iclog->ic_refcnt);
1009 xlog_state_want_sync(log, iclog);
1010 error = xlog_state_release_iclog(log, iclog);
1011 switch (iclog->ic_state) {
1012 case XLOG_STATE_ACTIVE:
1013 case XLOG_STATE_DIRTY:
1014 case XLOG_STATE_IOERROR:
1015 spin_unlock(&log->l_icloglock);
1016 break;
1017 default:
1018 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1019 break;
1023 return error;
1024 } /* xfs_log_unmount_write */
1027 * Empty the log for unmount/freeze.
1029 * To do this, we first need to shut down the background log work so it is not
1030 * trying to cover the log as we clean up. We then need to unpin all objects in
1031 * the log so we can then flush them out. Once they have completed their IO and
1032 * run the callbacks removing themselves from the AIL, we can write the unmount
1033 * record.
1035 void
1036 xfs_log_quiesce(
1037 struct xfs_mount *mp)
1039 cancel_delayed_work_sync(&mp->m_log->l_work);
1040 xfs_log_force(mp, XFS_LOG_SYNC);
1043 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1044 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1045 * xfs_buf_iowait() cannot be used because it was pushed with the
1046 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1047 * the IO to complete.
1049 xfs_ail_push_all_sync(mp->m_ail);
1050 xfs_wait_buftarg(mp->m_ddev_targp);
1051 xfs_buf_lock(mp->m_sb_bp);
1052 xfs_buf_unlock(mp->m_sb_bp);
1054 xfs_log_unmount_write(mp);
1058 * Shut down and release the AIL and Log.
1060 * During unmount, we need to ensure we flush all the dirty metadata objects
1061 * from the AIL so that the log is empty before we write the unmount record to
1062 * the log. Once this is done, we can tear down the AIL and the log.
1064 void
1065 xfs_log_unmount(
1066 struct xfs_mount *mp)
1068 xfs_log_quiesce(mp);
1070 xfs_trans_ail_destroy(mp);
1072 xfs_sysfs_del(&mp->m_log->l_kobj);
1074 xlog_dealloc_log(mp->m_log);
1077 void
1078 xfs_log_item_init(
1079 struct xfs_mount *mp,
1080 struct xfs_log_item *item,
1081 int type,
1082 const struct xfs_item_ops *ops)
1084 item->li_mountp = mp;
1085 item->li_ailp = mp->m_ail;
1086 item->li_type = type;
1087 item->li_ops = ops;
1088 item->li_lv = NULL;
1090 INIT_LIST_HEAD(&item->li_ail);
1091 INIT_LIST_HEAD(&item->li_cil);
1092 INIT_LIST_HEAD(&item->li_bio_list);
1093 INIT_LIST_HEAD(&item->li_trans);
1097 * Wake up processes waiting for log space after we have moved the log tail.
1099 void
1100 xfs_log_space_wake(
1101 struct xfs_mount *mp)
1103 struct xlog *log = mp->m_log;
1104 int free_bytes;
1106 if (XLOG_FORCED_SHUTDOWN(log))
1107 return;
1109 if (!list_empty_careful(&log->l_write_head.waiters)) {
1110 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1112 spin_lock(&log->l_write_head.lock);
1113 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1114 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1115 spin_unlock(&log->l_write_head.lock);
1118 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1119 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1121 spin_lock(&log->l_reserve_head.lock);
1122 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1123 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1124 spin_unlock(&log->l_reserve_head.lock);
1129 * Determine if we have a transaction that has gone to disk that needs to be
1130 * covered. To begin the transition to the idle state firstly the log needs to
1131 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1132 * we start attempting to cover the log.
1134 * Only if we are then in a state where covering is needed, the caller is
1135 * informed that dummy transactions are required to move the log into the idle
1136 * state.
1138 * If there are any items in the AIl or CIL, then we do not want to attempt to
1139 * cover the log as we may be in a situation where there isn't log space
1140 * available to run a dummy transaction and this can lead to deadlocks when the
1141 * tail of the log is pinned by an item that is modified in the CIL. Hence
1142 * there's no point in running a dummy transaction at this point because we
1143 * can't start trying to idle the log until both the CIL and AIL are empty.
1145 static int
1146 xfs_log_need_covered(xfs_mount_t *mp)
1148 struct xlog *log = mp->m_log;
1149 int needed = 0;
1151 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1152 return 0;
1154 if (!xlog_cil_empty(log))
1155 return 0;
1157 spin_lock(&log->l_icloglock);
1158 switch (log->l_covered_state) {
1159 case XLOG_STATE_COVER_DONE:
1160 case XLOG_STATE_COVER_DONE2:
1161 case XLOG_STATE_COVER_IDLE:
1162 break;
1163 case XLOG_STATE_COVER_NEED:
1164 case XLOG_STATE_COVER_NEED2:
1165 if (xfs_ail_min_lsn(log->l_ailp))
1166 break;
1167 if (!xlog_iclogs_empty(log))
1168 break;
1170 needed = 1;
1171 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1172 log->l_covered_state = XLOG_STATE_COVER_DONE;
1173 else
1174 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1175 break;
1176 default:
1177 needed = 1;
1178 break;
1180 spin_unlock(&log->l_icloglock);
1181 return needed;
1185 * We may be holding the log iclog lock upon entering this routine.
1187 xfs_lsn_t
1188 xlog_assign_tail_lsn_locked(
1189 struct xfs_mount *mp)
1191 struct xlog *log = mp->m_log;
1192 struct xfs_log_item *lip;
1193 xfs_lsn_t tail_lsn;
1195 assert_spin_locked(&mp->m_ail->ail_lock);
1198 * To make sure we always have a valid LSN for the log tail we keep
1199 * track of the last LSN which was committed in log->l_last_sync_lsn,
1200 * and use that when the AIL was empty.
1202 lip = xfs_ail_min(mp->m_ail);
1203 if (lip)
1204 tail_lsn = lip->li_lsn;
1205 else
1206 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1207 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1208 atomic64_set(&log->l_tail_lsn, tail_lsn);
1209 return tail_lsn;
1212 xfs_lsn_t
1213 xlog_assign_tail_lsn(
1214 struct xfs_mount *mp)
1216 xfs_lsn_t tail_lsn;
1218 spin_lock(&mp->m_ail->ail_lock);
1219 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1220 spin_unlock(&mp->m_ail->ail_lock);
1222 return tail_lsn;
1226 * Return the space in the log between the tail and the head. The head
1227 * is passed in the cycle/bytes formal parms. In the special case where
1228 * the reserve head has wrapped passed the tail, this calculation is no
1229 * longer valid. In this case, just return 0 which means there is no space
1230 * in the log. This works for all places where this function is called
1231 * with the reserve head. Of course, if the write head were to ever
1232 * wrap the tail, we should blow up. Rather than catch this case here,
1233 * we depend on other ASSERTions in other parts of the code. XXXmiken
1235 * This code also handles the case where the reservation head is behind
1236 * the tail. The details of this case are described below, but the end
1237 * result is that we return the size of the log as the amount of space left.
1239 STATIC int
1240 xlog_space_left(
1241 struct xlog *log,
1242 atomic64_t *head)
1244 int free_bytes;
1245 int tail_bytes;
1246 int tail_cycle;
1247 int head_cycle;
1248 int head_bytes;
1250 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1251 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1252 tail_bytes = BBTOB(tail_bytes);
1253 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1254 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1255 else if (tail_cycle + 1 < head_cycle)
1256 return 0;
1257 else if (tail_cycle < head_cycle) {
1258 ASSERT(tail_cycle == (head_cycle - 1));
1259 free_bytes = tail_bytes - head_bytes;
1260 } else {
1262 * The reservation head is behind the tail.
1263 * In this case we just want to return the size of the
1264 * log as the amount of space left.
1266 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1267 xfs_alert(log->l_mp,
1268 " tail_cycle = %d, tail_bytes = %d",
1269 tail_cycle, tail_bytes);
1270 xfs_alert(log->l_mp,
1271 " GH cycle = %d, GH bytes = %d",
1272 head_cycle, head_bytes);
1273 ASSERT(0);
1274 free_bytes = log->l_logsize;
1276 return free_bytes;
1280 static void
1281 xlog_ioend_work(
1282 struct work_struct *work)
1284 struct xlog_in_core *iclog =
1285 container_of(work, struct xlog_in_core, ic_end_io_work);
1286 struct xlog *log = iclog->ic_log;
1287 bool aborted = false;
1288 int error;
1290 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1291 #ifdef DEBUG
1292 /* treat writes with injected CRC errors as failed */
1293 if (iclog->ic_fail_crc)
1294 error = -EIO;
1295 #endif
1298 * Race to shutdown the filesystem if we see an error.
1300 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1301 xfs_alert(log->l_mp, "log I/O error %d", error);
1302 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1304 * This flag will be propagated to the trans-committed
1305 * callback routines to let them know that the log-commit
1306 * didn't succeed.
1308 aborted = true;
1309 } else if (iclog->ic_state == XLOG_STATE_IOERROR) {
1310 aborted = true;
1313 xlog_state_done_syncing(iclog, aborted);
1314 bio_uninit(&iclog->ic_bio);
1317 * Drop the lock to signal that we are done. Nothing references the
1318 * iclog after this, so an unmount waiting on this lock can now tear it
1319 * down safely. As such, it is unsafe to reference the iclog after the
1320 * unlock as we could race with it being freed.
1322 up(&iclog->ic_sema);
1326 * Return size of each in-core log record buffer.
1328 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1330 * If the filesystem blocksize is too large, we may need to choose a
1331 * larger size since the directory code currently logs entire blocks.
1333 STATIC void
1334 xlog_get_iclog_buffer_size(
1335 struct xfs_mount *mp,
1336 struct xlog *log)
1338 if (mp->m_logbufs <= 0)
1339 mp->m_logbufs = XLOG_MAX_ICLOGS;
1340 if (mp->m_logbsize <= 0)
1341 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1343 log->l_iclog_bufs = mp->m_logbufs;
1344 log->l_iclog_size = mp->m_logbsize;
1347 * # headers = size / 32k - one header holds cycles from 32k of data.
1349 log->l_iclog_heads =
1350 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1351 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1354 void
1355 xfs_log_work_queue(
1356 struct xfs_mount *mp)
1358 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1359 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1363 * Every sync period we need to unpin all items in the AIL and push them to
1364 * disk. If there is nothing dirty, then we might need to cover the log to
1365 * indicate that the filesystem is idle.
1367 static void
1368 xfs_log_worker(
1369 struct work_struct *work)
1371 struct xlog *log = container_of(to_delayed_work(work),
1372 struct xlog, l_work);
1373 struct xfs_mount *mp = log->l_mp;
1375 /* dgc: errors ignored - not fatal and nowhere to report them */
1376 if (xfs_log_need_covered(mp)) {
1378 * Dump a transaction into the log that contains no real change.
1379 * This is needed to stamp the current tail LSN into the log
1380 * during the covering operation.
1382 * We cannot use an inode here for this - that will push dirty
1383 * state back up into the VFS and then periodic inode flushing
1384 * will prevent log covering from making progress. Hence we
1385 * synchronously log the superblock instead to ensure the
1386 * superblock is immediately unpinned and can be written back.
1388 xfs_sync_sb(mp, true);
1389 } else
1390 xfs_log_force(mp, 0);
1392 /* start pushing all the metadata that is currently dirty */
1393 xfs_ail_push_all(mp->m_ail);
1395 /* queue us up again */
1396 xfs_log_work_queue(mp);
1400 * This routine initializes some of the log structure for a given mount point.
1401 * Its primary purpose is to fill in enough, so recovery can occur. However,
1402 * some other stuff may be filled in too.
1404 STATIC struct xlog *
1405 xlog_alloc_log(
1406 struct xfs_mount *mp,
1407 struct xfs_buftarg *log_target,
1408 xfs_daddr_t blk_offset,
1409 int num_bblks)
1411 struct xlog *log;
1412 xlog_rec_header_t *head;
1413 xlog_in_core_t **iclogp;
1414 xlog_in_core_t *iclog, *prev_iclog=NULL;
1415 int i;
1416 int error = -ENOMEM;
1417 uint log2_size = 0;
1419 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1420 if (!log) {
1421 xfs_warn(mp, "Log allocation failed: No memory!");
1422 goto out;
1425 log->l_mp = mp;
1426 log->l_targ = log_target;
1427 log->l_logsize = BBTOB(num_bblks);
1428 log->l_logBBstart = blk_offset;
1429 log->l_logBBsize = num_bblks;
1430 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1431 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1432 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1434 log->l_prev_block = -1;
1435 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1437 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1438 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1440 xlog_grant_head_init(&log->l_reserve_head);
1441 xlog_grant_head_init(&log->l_write_head);
1443 error = -EFSCORRUPTED;
1444 if (xfs_sb_version_hassector(&mp->m_sb)) {
1445 log2_size = mp->m_sb.sb_logsectlog;
1446 if (log2_size < BBSHIFT) {
1447 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1448 log2_size, BBSHIFT);
1449 goto out_free_log;
1452 log2_size -= BBSHIFT;
1453 if (log2_size > mp->m_sectbb_log) {
1454 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1455 log2_size, mp->m_sectbb_log);
1456 goto out_free_log;
1459 /* for larger sector sizes, must have v2 or external log */
1460 if (log2_size && log->l_logBBstart > 0 &&
1461 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1462 xfs_warn(mp,
1463 "log sector size (0x%x) invalid for configuration.",
1464 log2_size);
1465 goto out_free_log;
1468 log->l_sectBBsize = 1 << log2_size;
1470 xlog_get_iclog_buffer_size(mp, log);
1472 spin_lock_init(&log->l_icloglock);
1473 init_waitqueue_head(&log->l_flush_wait);
1475 iclogp = &log->l_iclog;
1477 * The amount of memory to allocate for the iclog structure is
1478 * rather funky due to the way the structure is defined. It is
1479 * done this way so that we can use different sizes for machines
1480 * with different amounts of memory. See the definition of
1481 * xlog_in_core_t in xfs_log_priv.h for details.
1483 ASSERT(log->l_iclog_size >= 4096);
1484 for (i = 0; i < log->l_iclog_bufs; i++) {
1485 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1486 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1487 sizeof(struct bio_vec);
1489 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1490 if (!iclog)
1491 goto out_free_iclog;
1493 *iclogp = iclog;
1494 iclog->ic_prev = prev_iclog;
1495 prev_iclog = iclog;
1497 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1498 KM_MAYFAIL | KM_ZERO);
1499 if (!iclog->ic_data)
1500 goto out_free_iclog;
1501 #ifdef DEBUG
1502 log->l_iclog_bak[i] = &iclog->ic_header;
1503 #endif
1504 head = &iclog->ic_header;
1505 memset(head, 0, sizeof(xlog_rec_header_t));
1506 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1507 head->h_version = cpu_to_be32(
1508 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1509 head->h_size = cpu_to_be32(log->l_iclog_size);
1510 /* new fields */
1511 head->h_fmt = cpu_to_be32(XLOG_FMT);
1512 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1514 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1515 iclog->ic_state = XLOG_STATE_ACTIVE;
1516 iclog->ic_log = log;
1517 atomic_set(&iclog->ic_refcnt, 0);
1518 spin_lock_init(&iclog->ic_callback_lock);
1519 INIT_LIST_HEAD(&iclog->ic_callbacks);
1520 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1522 init_waitqueue_head(&iclog->ic_force_wait);
1523 init_waitqueue_head(&iclog->ic_write_wait);
1524 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1525 sema_init(&iclog->ic_sema, 1);
1527 iclogp = &iclog->ic_next;
1529 *iclogp = log->l_iclog; /* complete ring */
1530 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1532 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1533 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1534 mp->m_super->s_id);
1535 if (!log->l_ioend_workqueue)
1536 goto out_free_iclog;
1538 error = xlog_cil_init(log);
1539 if (error)
1540 goto out_destroy_workqueue;
1541 return log;
1543 out_destroy_workqueue:
1544 destroy_workqueue(log->l_ioend_workqueue);
1545 out_free_iclog:
1546 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1547 prev_iclog = iclog->ic_next;
1548 kmem_free(iclog->ic_data);
1549 kmem_free(iclog);
1550 if (prev_iclog == log->l_iclog)
1551 break;
1553 out_free_log:
1554 kmem_free(log);
1555 out:
1556 return ERR_PTR(error);
1557 } /* xlog_alloc_log */
1561 * Write out the commit record of a transaction associated with the given
1562 * ticket. Return the lsn of the commit record.
1564 STATIC int
1565 xlog_commit_record(
1566 struct xlog *log,
1567 struct xlog_ticket *ticket,
1568 struct xlog_in_core **iclog,
1569 xfs_lsn_t *commitlsnp)
1571 struct xfs_mount *mp = log->l_mp;
1572 int error;
1573 struct xfs_log_iovec reg = {
1574 .i_addr = NULL,
1575 .i_len = 0,
1576 .i_type = XLOG_REG_TYPE_COMMIT,
1578 struct xfs_log_vec vec = {
1579 .lv_niovecs = 1,
1580 .lv_iovecp = &reg,
1583 ASSERT_ALWAYS(iclog);
1584 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1585 XLOG_COMMIT_TRANS);
1586 if (error)
1587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1588 return error;
1592 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1593 * log space. This code pushes on the lsn which would supposedly free up
1594 * the 25% which we want to leave free. We may need to adopt a policy which
1595 * pushes on an lsn which is further along in the log once we reach the high
1596 * water mark. In this manner, we would be creating a low water mark.
1598 STATIC void
1599 xlog_grant_push_ail(
1600 struct xlog *log,
1601 int need_bytes)
1603 xfs_lsn_t threshold_lsn = 0;
1604 xfs_lsn_t last_sync_lsn;
1605 int free_blocks;
1606 int free_bytes;
1607 int threshold_block;
1608 int threshold_cycle;
1609 int free_threshold;
1611 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1613 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1614 free_blocks = BTOBBT(free_bytes);
1617 * Set the threshold for the minimum number of free blocks in the
1618 * log to the maximum of what the caller needs, one quarter of the
1619 * log, and 256 blocks.
1621 free_threshold = BTOBB(need_bytes);
1622 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1623 free_threshold = max(free_threshold, 256);
1624 if (free_blocks >= free_threshold)
1625 return;
1627 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1628 &threshold_block);
1629 threshold_block += free_threshold;
1630 if (threshold_block >= log->l_logBBsize) {
1631 threshold_block -= log->l_logBBsize;
1632 threshold_cycle += 1;
1634 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1635 threshold_block);
1637 * Don't pass in an lsn greater than the lsn of the last
1638 * log record known to be on disk. Use a snapshot of the last sync lsn
1639 * so that it doesn't change between the compare and the set.
1641 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1642 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1643 threshold_lsn = last_sync_lsn;
1646 * Get the transaction layer to kick the dirty buffers out to
1647 * disk asynchronously. No point in trying to do this if
1648 * the filesystem is shutting down.
1650 if (!XLOG_FORCED_SHUTDOWN(log))
1651 xfs_ail_push(log->l_ailp, threshold_lsn);
1655 * Stamp cycle number in every block
1657 STATIC void
1658 xlog_pack_data(
1659 struct xlog *log,
1660 struct xlog_in_core *iclog,
1661 int roundoff)
1663 int i, j, k;
1664 int size = iclog->ic_offset + roundoff;
1665 __be32 cycle_lsn;
1666 char *dp;
1668 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1670 dp = iclog->ic_datap;
1671 for (i = 0; i < BTOBB(size); i++) {
1672 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1673 break;
1674 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1675 *(__be32 *)dp = cycle_lsn;
1676 dp += BBSIZE;
1679 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1680 xlog_in_core_2_t *xhdr = iclog->ic_data;
1682 for ( ; i < BTOBB(size); i++) {
1683 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1684 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1685 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1686 *(__be32 *)dp = cycle_lsn;
1687 dp += BBSIZE;
1690 for (i = 1; i < log->l_iclog_heads; i++)
1691 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1696 * Calculate the checksum for a log buffer.
1698 * This is a little more complicated than it should be because the various
1699 * headers and the actual data are non-contiguous.
1701 __le32
1702 xlog_cksum(
1703 struct xlog *log,
1704 struct xlog_rec_header *rhead,
1705 char *dp,
1706 int size)
1708 uint32_t crc;
1710 /* first generate the crc for the record header ... */
1711 crc = xfs_start_cksum_update((char *)rhead,
1712 sizeof(struct xlog_rec_header),
1713 offsetof(struct xlog_rec_header, h_crc));
1715 /* ... then for additional cycle data for v2 logs ... */
1716 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1717 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1718 int i;
1719 int xheads;
1721 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1722 if (size % XLOG_HEADER_CYCLE_SIZE)
1723 xheads++;
1725 for (i = 1; i < xheads; i++) {
1726 crc = crc32c(crc, &xhdr[i].hic_xheader,
1727 sizeof(struct xlog_rec_ext_header));
1731 /* ... and finally for the payload */
1732 crc = crc32c(crc, dp, size);
1734 return xfs_end_cksum(crc);
1737 static void
1738 xlog_bio_end_io(
1739 struct bio *bio)
1741 struct xlog_in_core *iclog = bio->bi_private;
1743 queue_work(iclog->ic_log->l_ioend_workqueue,
1744 &iclog->ic_end_io_work);
1747 static void
1748 xlog_map_iclog_data(
1749 struct bio *bio,
1750 void *data,
1751 size_t count)
1753 do {
1754 struct page *page = kmem_to_page(data);
1755 unsigned int off = offset_in_page(data);
1756 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1758 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1760 data += len;
1761 count -= len;
1762 } while (count);
1765 STATIC void
1766 xlog_write_iclog(
1767 struct xlog *log,
1768 struct xlog_in_core *iclog,
1769 uint64_t bno,
1770 unsigned int count,
1771 bool need_flush)
1773 ASSERT(bno < log->l_logBBsize);
1776 * We lock the iclogbufs here so that we can serialise against I/O
1777 * completion during unmount. We might be processing a shutdown
1778 * triggered during unmount, and that can occur asynchronously to the
1779 * unmount thread, and hence we need to ensure that completes before
1780 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1781 * across the log IO to archieve that.
1783 down(&iclog->ic_sema);
1784 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1786 * It would seem logical to return EIO here, but we rely on
1787 * the log state machine to propagate I/O errors instead of
1788 * doing it here. We kick of the state machine and unlock
1789 * the buffer manually, the code needs to be kept in sync
1790 * with the I/O completion path.
1792 xlog_state_done_syncing(iclog, true);
1793 up(&iclog->ic_sema);
1794 return;
1797 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1798 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1799 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1800 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1801 iclog->ic_bio.bi_private = iclog;
1802 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1803 if (need_flush)
1804 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1806 xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count);
1807 if (is_vmalloc_addr(iclog->ic_data))
1808 flush_kernel_vmap_range(iclog->ic_data, count);
1811 * If this log buffer would straddle the end of the log we will have
1812 * to split it up into two bios, so that we can continue at the start.
1814 if (bno + BTOBB(count) > log->l_logBBsize) {
1815 struct bio *split;
1817 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1818 GFP_NOIO, &fs_bio_set);
1819 bio_chain(split, &iclog->ic_bio);
1820 submit_bio(split);
1822 /* restart at logical offset zero for the remainder */
1823 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1826 submit_bio(&iclog->ic_bio);
1830 * We need to bump cycle number for the part of the iclog that is
1831 * written to the start of the log. Watch out for the header magic
1832 * number case, though.
1834 static void
1835 xlog_split_iclog(
1836 struct xlog *log,
1837 void *data,
1838 uint64_t bno,
1839 unsigned int count)
1841 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1842 unsigned int i;
1844 for (i = split_offset; i < count; i += BBSIZE) {
1845 uint32_t cycle = get_unaligned_be32(data + i);
1847 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1848 cycle++;
1849 put_unaligned_be32(cycle, data + i);
1853 static int
1854 xlog_calc_iclog_size(
1855 struct xlog *log,
1856 struct xlog_in_core *iclog,
1857 uint32_t *roundoff)
1859 uint32_t count_init, count;
1860 bool use_lsunit;
1862 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1863 log->l_mp->m_sb.sb_logsunit > 1;
1865 /* Add for LR header */
1866 count_init = log->l_iclog_hsize + iclog->ic_offset;
1868 /* Round out the log write size */
1869 if (use_lsunit) {
1870 /* we have a v2 stripe unit to use */
1871 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1872 } else {
1873 count = BBTOB(BTOBB(count_init));
1876 ASSERT(count >= count_init);
1877 *roundoff = count - count_init;
1879 if (use_lsunit)
1880 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1881 else
1882 ASSERT(*roundoff < BBTOB(1));
1883 return count;
1887 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1888 * fashion. Previously, we should have moved the current iclog
1889 * ptr in the log to point to the next available iclog. This allows further
1890 * write to continue while this code syncs out an iclog ready to go.
1891 * Before an in-core log can be written out, the data section must be scanned
1892 * to save away the 1st word of each BBSIZE block into the header. We replace
1893 * it with the current cycle count. Each BBSIZE block is tagged with the
1894 * cycle count because there in an implicit assumption that drives will
1895 * guarantee that entire 512 byte blocks get written at once. In other words,
1896 * we can't have part of a 512 byte block written and part not written. By
1897 * tagging each block, we will know which blocks are valid when recovering
1898 * after an unclean shutdown.
1900 * This routine is single threaded on the iclog. No other thread can be in
1901 * this routine with the same iclog. Changing contents of iclog can there-
1902 * fore be done without grabbing the state machine lock. Updating the global
1903 * log will require grabbing the lock though.
1905 * The entire log manager uses a logical block numbering scheme. Only
1906 * xlog_write_iclog knows about the fact that the log may not start with
1907 * block zero on a given device.
1909 STATIC void
1910 xlog_sync(
1911 struct xlog *log,
1912 struct xlog_in_core *iclog)
1914 unsigned int count; /* byte count of bwrite */
1915 unsigned int roundoff; /* roundoff to BB or stripe */
1916 uint64_t bno;
1917 unsigned int size;
1918 bool need_flush = true, split = false;
1920 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1922 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1924 /* move grant heads by roundoff in sync */
1925 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1926 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1928 /* put cycle number in every block */
1929 xlog_pack_data(log, iclog, roundoff);
1931 /* real byte length */
1932 size = iclog->ic_offset;
1933 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1934 size += roundoff;
1935 iclog->ic_header.h_len = cpu_to_be32(size);
1937 XFS_STATS_INC(log->l_mp, xs_log_writes);
1938 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1940 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1942 /* Do we need to split this write into 2 parts? */
1943 if (bno + BTOBB(count) > log->l_logBBsize) {
1944 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1945 split = true;
1948 /* calculcate the checksum */
1949 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1950 iclog->ic_datap, size);
1952 * Intentionally corrupt the log record CRC based on the error injection
1953 * frequency, if defined. This facilitates testing log recovery in the
1954 * event of torn writes. Hence, set the IOABORT state to abort the log
1955 * write on I/O completion and shutdown the fs. The subsequent mount
1956 * detects the bad CRC and attempts to recover.
1958 #ifdef DEBUG
1959 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1960 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1961 iclog->ic_fail_crc = true;
1962 xfs_warn(log->l_mp,
1963 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1964 be64_to_cpu(iclog->ic_header.h_lsn));
1966 #endif
1969 * Flush the data device before flushing the log to make sure all meta
1970 * data written back from the AIL actually made it to disk before
1971 * stamping the new log tail LSN into the log buffer. For an external
1972 * log we need to issue the flush explicitly, and unfortunately
1973 * synchronously here; for an internal log we can simply use the block
1974 * layer state machine for preflushes.
1976 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1977 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1978 need_flush = false;
1981 xlog_verify_iclog(log, iclog, count);
1982 xlog_write_iclog(log, iclog, bno, count, need_flush);
1986 * Deallocate a log structure
1988 STATIC void
1989 xlog_dealloc_log(
1990 struct xlog *log)
1992 xlog_in_core_t *iclog, *next_iclog;
1993 int i;
1995 xlog_cil_destroy(log);
1998 * Cycle all the iclogbuf locks to make sure all log IO completion
1999 * is done before we tear down these buffers.
2001 iclog = log->l_iclog;
2002 for (i = 0; i < log->l_iclog_bufs; i++) {
2003 down(&iclog->ic_sema);
2004 up(&iclog->ic_sema);
2005 iclog = iclog->ic_next;
2008 iclog = log->l_iclog;
2009 for (i = 0; i < log->l_iclog_bufs; i++) {
2010 next_iclog = iclog->ic_next;
2011 kmem_free(iclog->ic_data);
2012 kmem_free(iclog);
2013 iclog = next_iclog;
2016 log->l_mp->m_log = NULL;
2017 destroy_workqueue(log->l_ioend_workqueue);
2018 kmem_free(log);
2019 } /* xlog_dealloc_log */
2022 * Update counters atomically now that memcpy is done.
2024 static inline void
2025 xlog_state_finish_copy(
2026 struct xlog *log,
2027 struct xlog_in_core *iclog,
2028 int record_cnt,
2029 int copy_bytes)
2031 lockdep_assert_held(&log->l_icloglock);
2033 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2034 iclog->ic_offset += copy_bytes;
2038 * print out info relating to regions written which consume
2039 * the reservation
2041 void
2042 xlog_print_tic_res(
2043 struct xfs_mount *mp,
2044 struct xlog_ticket *ticket)
2046 uint i;
2047 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2049 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2050 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2051 static char *res_type_str[] = {
2052 REG_TYPE_STR(BFORMAT, "bformat"),
2053 REG_TYPE_STR(BCHUNK, "bchunk"),
2054 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2055 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2056 REG_TYPE_STR(IFORMAT, "iformat"),
2057 REG_TYPE_STR(ICORE, "icore"),
2058 REG_TYPE_STR(IEXT, "iext"),
2059 REG_TYPE_STR(IBROOT, "ibroot"),
2060 REG_TYPE_STR(ILOCAL, "ilocal"),
2061 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2062 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2063 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2064 REG_TYPE_STR(QFORMAT, "qformat"),
2065 REG_TYPE_STR(DQUOT, "dquot"),
2066 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2067 REG_TYPE_STR(LRHEADER, "LR header"),
2068 REG_TYPE_STR(UNMOUNT, "unmount"),
2069 REG_TYPE_STR(COMMIT, "commit"),
2070 REG_TYPE_STR(TRANSHDR, "trans header"),
2071 REG_TYPE_STR(ICREATE, "inode create"),
2072 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2073 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2074 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2075 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2076 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2077 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2079 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2080 #undef REG_TYPE_STR
2082 xfs_warn(mp, "ticket reservation summary:");
2083 xfs_warn(mp, " unit res = %d bytes",
2084 ticket->t_unit_res);
2085 xfs_warn(mp, " current res = %d bytes",
2086 ticket->t_curr_res);
2087 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2088 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2089 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2090 ticket->t_res_num_ophdrs, ophdr_spc);
2091 xfs_warn(mp, " ophdr + reg = %u bytes",
2092 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2093 xfs_warn(mp, " num regions = %u",
2094 ticket->t_res_num);
2096 for (i = 0; i < ticket->t_res_num; i++) {
2097 uint r_type = ticket->t_res_arr[i].r_type;
2098 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2099 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2100 "bad-rtype" : res_type_str[r_type]),
2101 ticket->t_res_arr[i].r_len);
2106 * Print a summary of the transaction.
2108 void
2109 xlog_print_trans(
2110 struct xfs_trans *tp)
2112 struct xfs_mount *mp = tp->t_mountp;
2113 struct xfs_log_item *lip;
2115 /* dump core transaction and ticket info */
2116 xfs_warn(mp, "transaction summary:");
2117 xfs_warn(mp, " log res = %d", tp->t_log_res);
2118 xfs_warn(mp, " log count = %d", tp->t_log_count);
2119 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2121 xlog_print_tic_res(mp, tp->t_ticket);
2123 /* dump each log item */
2124 list_for_each_entry(lip, &tp->t_items, li_trans) {
2125 struct xfs_log_vec *lv = lip->li_lv;
2126 struct xfs_log_iovec *vec;
2127 int i;
2129 xfs_warn(mp, "log item: ");
2130 xfs_warn(mp, " type = 0x%x", lip->li_type);
2131 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2132 if (!lv)
2133 continue;
2134 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2135 xfs_warn(mp, " size = %d", lv->lv_size);
2136 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2137 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2139 /* dump each iovec for the log item */
2140 vec = lv->lv_iovecp;
2141 for (i = 0; i < lv->lv_niovecs; i++) {
2142 int dumplen = min(vec->i_len, 32);
2144 xfs_warn(mp, " iovec[%d]", i);
2145 xfs_warn(mp, " type = 0x%x", vec->i_type);
2146 xfs_warn(mp, " len = %d", vec->i_len);
2147 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2148 xfs_hex_dump(vec->i_addr, dumplen);
2150 vec++;
2156 * Calculate the potential space needed by the log vector. Each region gets
2157 * its own xlog_op_header_t and may need to be double word aligned.
2159 static int
2160 xlog_write_calc_vec_length(
2161 struct xlog_ticket *ticket,
2162 struct xfs_log_vec *log_vector)
2164 struct xfs_log_vec *lv;
2165 int headers = 0;
2166 int len = 0;
2167 int i;
2169 /* acct for start rec of xact */
2170 if (ticket->t_flags & XLOG_TIC_INITED)
2171 headers++;
2173 for (lv = log_vector; lv; lv = lv->lv_next) {
2174 /* we don't write ordered log vectors */
2175 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2176 continue;
2178 headers += lv->lv_niovecs;
2180 for (i = 0; i < lv->lv_niovecs; i++) {
2181 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2183 len += vecp->i_len;
2184 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2188 ticket->t_res_num_ophdrs += headers;
2189 len += headers * sizeof(struct xlog_op_header);
2191 return len;
2195 * If first write for transaction, insert start record We can't be trying to
2196 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2198 static int
2199 xlog_write_start_rec(
2200 struct xlog_op_header *ophdr,
2201 struct xlog_ticket *ticket)
2203 if (!(ticket->t_flags & XLOG_TIC_INITED))
2204 return 0;
2206 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2207 ophdr->oh_clientid = ticket->t_clientid;
2208 ophdr->oh_len = 0;
2209 ophdr->oh_flags = XLOG_START_TRANS;
2210 ophdr->oh_res2 = 0;
2212 ticket->t_flags &= ~XLOG_TIC_INITED;
2214 return sizeof(struct xlog_op_header);
2217 static xlog_op_header_t *
2218 xlog_write_setup_ophdr(
2219 struct xlog *log,
2220 struct xlog_op_header *ophdr,
2221 struct xlog_ticket *ticket,
2222 uint flags)
2224 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2225 ophdr->oh_clientid = ticket->t_clientid;
2226 ophdr->oh_res2 = 0;
2228 /* are we copying a commit or unmount record? */
2229 ophdr->oh_flags = flags;
2232 * We've seen logs corrupted with bad transaction client ids. This
2233 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2234 * and shut down the filesystem.
2236 switch (ophdr->oh_clientid) {
2237 case XFS_TRANSACTION:
2238 case XFS_VOLUME:
2239 case XFS_LOG:
2240 break;
2241 default:
2242 xfs_warn(log->l_mp,
2243 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2244 ophdr->oh_clientid, ticket);
2245 return NULL;
2248 return ophdr;
2252 * Set up the parameters of the region copy into the log. This has
2253 * to handle region write split across multiple log buffers - this
2254 * state is kept external to this function so that this code can
2255 * be written in an obvious, self documenting manner.
2257 static int
2258 xlog_write_setup_copy(
2259 struct xlog_ticket *ticket,
2260 struct xlog_op_header *ophdr,
2261 int space_available,
2262 int space_required,
2263 int *copy_off,
2264 int *copy_len,
2265 int *last_was_partial_copy,
2266 int *bytes_consumed)
2268 int still_to_copy;
2270 still_to_copy = space_required - *bytes_consumed;
2271 *copy_off = *bytes_consumed;
2273 if (still_to_copy <= space_available) {
2274 /* write of region completes here */
2275 *copy_len = still_to_copy;
2276 ophdr->oh_len = cpu_to_be32(*copy_len);
2277 if (*last_was_partial_copy)
2278 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2279 *last_was_partial_copy = 0;
2280 *bytes_consumed = 0;
2281 return 0;
2284 /* partial write of region, needs extra log op header reservation */
2285 *copy_len = space_available;
2286 ophdr->oh_len = cpu_to_be32(*copy_len);
2287 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2288 if (*last_was_partial_copy)
2289 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2290 *bytes_consumed += *copy_len;
2291 (*last_was_partial_copy)++;
2293 /* account for new log op header */
2294 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2295 ticket->t_res_num_ophdrs++;
2297 return sizeof(struct xlog_op_header);
2300 static int
2301 xlog_write_copy_finish(
2302 struct xlog *log,
2303 struct xlog_in_core *iclog,
2304 uint flags,
2305 int *record_cnt,
2306 int *data_cnt,
2307 int *partial_copy,
2308 int *partial_copy_len,
2309 int log_offset,
2310 struct xlog_in_core **commit_iclog)
2312 int error;
2314 if (*partial_copy) {
2316 * This iclog has already been marked WANT_SYNC by
2317 * xlog_state_get_iclog_space.
2319 spin_lock(&log->l_icloglock);
2320 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2321 *record_cnt = 0;
2322 *data_cnt = 0;
2323 goto release_iclog;
2326 *partial_copy = 0;
2327 *partial_copy_len = 0;
2329 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2330 /* no more space in this iclog - push it. */
2331 spin_lock(&log->l_icloglock);
2332 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2333 *record_cnt = 0;
2334 *data_cnt = 0;
2336 xlog_state_want_sync(log, iclog);
2337 if (!commit_iclog)
2338 goto release_iclog;
2339 spin_unlock(&log->l_icloglock);
2340 ASSERT(flags & XLOG_COMMIT_TRANS);
2341 *commit_iclog = iclog;
2344 return 0;
2346 release_iclog:
2347 error = xlog_state_release_iclog(log, iclog);
2348 spin_unlock(&log->l_icloglock);
2349 return error;
2353 * Write some region out to in-core log
2355 * This will be called when writing externally provided regions or when
2356 * writing out a commit record for a given transaction.
2358 * General algorithm:
2359 * 1. Find total length of this write. This may include adding to the
2360 * lengths passed in.
2361 * 2. Check whether we violate the tickets reservation.
2362 * 3. While writing to this iclog
2363 * A. Reserve as much space in this iclog as can get
2364 * B. If this is first write, save away start lsn
2365 * C. While writing this region:
2366 * 1. If first write of transaction, write start record
2367 * 2. Write log operation header (header per region)
2368 * 3. Find out if we can fit entire region into this iclog
2369 * 4. Potentially, verify destination memcpy ptr
2370 * 5. Memcpy (partial) region
2371 * 6. If partial copy, release iclog; otherwise, continue
2372 * copying more regions into current iclog
2373 * 4. Mark want sync bit (in simulation mode)
2374 * 5. Release iclog for potential flush to on-disk log.
2376 * ERRORS:
2377 * 1. Panic if reservation is overrun. This should never happen since
2378 * reservation amounts are generated internal to the filesystem.
2379 * NOTES:
2380 * 1. Tickets are single threaded data structures.
2381 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2382 * syncing routine. When a single log_write region needs to span
2383 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2384 * on all log operation writes which don't contain the end of the
2385 * region. The XLOG_END_TRANS bit is used for the in-core log
2386 * operation which contains the end of the continued log_write region.
2387 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2388 * we don't really know exactly how much space will be used. As a result,
2389 * we don't update ic_offset until the end when we know exactly how many
2390 * bytes have been written out.
2393 xlog_write(
2394 struct xlog *log,
2395 struct xfs_log_vec *log_vector,
2396 struct xlog_ticket *ticket,
2397 xfs_lsn_t *start_lsn,
2398 struct xlog_in_core **commit_iclog,
2399 uint flags)
2401 struct xlog_in_core *iclog = NULL;
2402 struct xfs_log_iovec *vecp;
2403 struct xfs_log_vec *lv;
2404 int len;
2405 int index;
2406 int partial_copy = 0;
2407 int partial_copy_len = 0;
2408 int contwr = 0;
2409 int record_cnt = 0;
2410 int data_cnt = 0;
2411 int error = 0;
2413 *start_lsn = 0;
2415 len = xlog_write_calc_vec_length(ticket, log_vector);
2418 * Region headers and bytes are already accounted for.
2419 * We only need to take into account start records and
2420 * split regions in this function.
2422 if (ticket->t_flags & XLOG_TIC_INITED)
2423 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2426 * Commit record headers need to be accounted for. These
2427 * come in as separate writes so are easy to detect.
2429 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2430 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2432 if (ticket->t_curr_res < 0) {
2433 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2434 "ctx ticket reservation ran out. Need to up reservation");
2435 xlog_print_tic_res(log->l_mp, ticket);
2436 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2439 index = 0;
2440 lv = log_vector;
2441 vecp = lv->lv_iovecp;
2442 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2443 void *ptr;
2444 int log_offset;
2446 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2447 &contwr, &log_offset);
2448 if (error)
2449 return error;
2451 ASSERT(log_offset <= iclog->ic_size - 1);
2452 ptr = iclog->ic_datap + log_offset;
2454 /* start_lsn is the first lsn written to. That's all we need. */
2455 if (!*start_lsn)
2456 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2459 * This loop writes out as many regions as can fit in the amount
2460 * of space which was allocated by xlog_state_get_iclog_space().
2462 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2463 struct xfs_log_iovec *reg;
2464 struct xlog_op_header *ophdr;
2465 int start_rec_copy;
2466 int copy_len;
2467 int copy_off;
2468 bool ordered = false;
2470 /* ordered log vectors have no regions to write */
2471 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2472 ASSERT(lv->lv_niovecs == 0);
2473 ordered = true;
2474 goto next_lv;
2477 reg = &vecp[index];
2478 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2479 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2481 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2482 if (start_rec_copy) {
2483 record_cnt++;
2484 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2485 start_rec_copy);
2488 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2489 if (!ophdr)
2490 return -EIO;
2492 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2493 sizeof(struct xlog_op_header));
2495 len += xlog_write_setup_copy(ticket, ophdr,
2496 iclog->ic_size-log_offset,
2497 reg->i_len,
2498 &copy_off, &copy_len,
2499 &partial_copy,
2500 &partial_copy_len);
2501 xlog_verify_dest_ptr(log, ptr);
2504 * Copy region.
2506 * Unmount records just log an opheader, so can have
2507 * empty payloads with no data region to copy. Hence we
2508 * only copy the payload if the vector says it has data
2509 * to copy.
2511 ASSERT(copy_len >= 0);
2512 if (copy_len > 0) {
2513 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2514 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2515 copy_len);
2517 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2518 record_cnt++;
2519 data_cnt += contwr ? copy_len : 0;
2521 error = xlog_write_copy_finish(log, iclog, flags,
2522 &record_cnt, &data_cnt,
2523 &partial_copy,
2524 &partial_copy_len,
2525 log_offset,
2526 commit_iclog);
2527 if (error)
2528 return error;
2531 * if we had a partial copy, we need to get more iclog
2532 * space but we don't want to increment the region
2533 * index because there is still more is this region to
2534 * write.
2536 * If we completed writing this region, and we flushed
2537 * the iclog (indicated by resetting of the record
2538 * count), then we also need to get more log space. If
2539 * this was the last record, though, we are done and
2540 * can just return.
2542 if (partial_copy)
2543 break;
2545 if (++index == lv->lv_niovecs) {
2546 next_lv:
2547 lv = lv->lv_next;
2548 index = 0;
2549 if (lv)
2550 vecp = lv->lv_iovecp;
2552 if (record_cnt == 0 && !ordered) {
2553 if (!lv)
2554 return 0;
2555 break;
2560 ASSERT(len == 0);
2562 spin_lock(&log->l_icloglock);
2563 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2564 if (commit_iclog) {
2565 ASSERT(flags & XLOG_COMMIT_TRANS);
2566 *commit_iclog = iclog;
2567 } else {
2568 error = xlog_state_release_iclog(log, iclog);
2570 spin_unlock(&log->l_icloglock);
2572 return error;
2576 /*****************************************************************************
2578 * State Machine functions
2580 *****************************************************************************
2584 * An iclog has just finished IO completion processing, so we need to update
2585 * the iclog state and propagate that up into the overall log state. Hence we
2586 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2587 * starting from the head, and then wake up any threads that are waiting for the
2588 * iclog to be marked clean.
2590 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2591 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to
2592 * maintain the notion that we use a ordered wait queue to hold off would be
2593 * writers to the log when every iclog is trying to sync to disk.
2595 * Caller must hold the icloglock before calling us.
2597 * State Change: !IOERROR -> DIRTY -> ACTIVE
2599 STATIC void
2600 xlog_state_clean_iclog(
2601 struct xlog *log,
2602 struct xlog_in_core *dirty_iclog)
2604 struct xlog_in_core *iclog;
2605 int changed = 0;
2607 /* Prepare the completed iclog. */
2608 if (dirty_iclog->ic_state != XLOG_STATE_IOERROR)
2609 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2611 /* Walk all the iclogs to update the ordered active state. */
2612 iclog = log->l_iclog;
2613 do {
2614 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2615 iclog->ic_state = XLOG_STATE_ACTIVE;
2616 iclog->ic_offset = 0;
2617 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2619 * If the number of ops in this iclog indicate it just
2620 * contains the dummy transaction, we can
2621 * change state into IDLE (the second time around).
2622 * Otherwise we should change the state into
2623 * NEED a dummy.
2624 * We don't need to cover the dummy.
2626 if (!changed &&
2627 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2628 XLOG_COVER_OPS)) {
2629 changed = 1;
2630 } else {
2632 * We have two dirty iclogs so start over
2633 * This could also be num of ops indicates
2634 * this is not the dummy going out.
2636 changed = 2;
2638 iclog->ic_header.h_num_logops = 0;
2639 memset(iclog->ic_header.h_cycle_data, 0,
2640 sizeof(iclog->ic_header.h_cycle_data));
2641 iclog->ic_header.h_lsn = 0;
2642 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2643 /* do nothing */;
2644 else
2645 break; /* stop cleaning */
2646 iclog = iclog->ic_next;
2647 } while (iclog != log->l_iclog);
2651 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2652 * to be cleaned.
2654 wake_up_all(&dirty_iclog->ic_force_wait);
2657 * Change state for the dummy log recording.
2658 * We usually go to NEED. But we go to NEED2 if the changed indicates
2659 * we are done writing the dummy record.
2660 * If we are done with the second dummy recored (DONE2), then
2661 * we go to IDLE.
2663 if (changed) {
2664 switch (log->l_covered_state) {
2665 case XLOG_STATE_COVER_IDLE:
2666 case XLOG_STATE_COVER_NEED:
2667 case XLOG_STATE_COVER_NEED2:
2668 log->l_covered_state = XLOG_STATE_COVER_NEED;
2669 break;
2671 case XLOG_STATE_COVER_DONE:
2672 if (changed == 1)
2673 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2674 else
2675 log->l_covered_state = XLOG_STATE_COVER_NEED;
2676 break;
2678 case XLOG_STATE_COVER_DONE2:
2679 if (changed == 1)
2680 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2681 else
2682 log->l_covered_state = XLOG_STATE_COVER_NEED;
2683 break;
2685 default:
2686 ASSERT(0);
2691 STATIC xfs_lsn_t
2692 xlog_get_lowest_lsn(
2693 struct xlog *log)
2695 struct xlog_in_core *iclog = log->l_iclog;
2696 xfs_lsn_t lowest_lsn = 0, lsn;
2698 do {
2699 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2700 iclog->ic_state == XLOG_STATE_DIRTY)
2701 continue;
2703 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2704 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2705 lowest_lsn = lsn;
2706 } while ((iclog = iclog->ic_next) != log->l_iclog);
2708 return lowest_lsn;
2712 * Completion of a iclog IO does not imply that a transaction has completed, as
2713 * transactions can be large enough to span many iclogs. We cannot change the
2714 * tail of the log half way through a transaction as this may be the only
2715 * transaction in the log and moving the tail to point to the middle of it
2716 * will prevent recovery from finding the start of the transaction. Hence we
2717 * should only update the last_sync_lsn if this iclog contains transaction
2718 * completion callbacks on it.
2720 * We have to do this before we drop the icloglock to ensure we are the only one
2721 * that can update it.
2723 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2724 * the reservation grant head pushing. This is due to the fact that the push
2725 * target is bound by the current last_sync_lsn value. Hence if we have a large
2726 * amount of log space bound up in this committing transaction then the
2727 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2728 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2729 * should push the AIL to ensure the push target (and hence the grant head) is
2730 * no longer bound by the old log head location and can move forwards and make
2731 * progress again.
2733 static void
2734 xlog_state_set_callback(
2735 struct xlog *log,
2736 struct xlog_in_core *iclog,
2737 xfs_lsn_t header_lsn)
2739 iclog->ic_state = XLOG_STATE_CALLBACK;
2741 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2742 header_lsn) <= 0);
2744 if (list_empty_careful(&iclog->ic_callbacks))
2745 return;
2747 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2748 xlog_grant_push_ail(log, 0);
2752 * Return true if we need to stop processing, false to continue to the next
2753 * iclog. The caller will need to run callbacks if the iclog is returned in the
2754 * XLOG_STATE_CALLBACK state.
2756 static bool
2757 xlog_state_iodone_process_iclog(
2758 struct xlog *log,
2759 struct xlog_in_core *iclog,
2760 bool *ioerror)
2762 xfs_lsn_t lowest_lsn;
2763 xfs_lsn_t header_lsn;
2765 switch (iclog->ic_state) {
2766 case XLOG_STATE_ACTIVE:
2767 case XLOG_STATE_DIRTY:
2769 * Skip all iclogs in the ACTIVE & DIRTY states:
2771 return false;
2772 case XLOG_STATE_IOERROR:
2774 * Between marking a filesystem SHUTDOWN and stopping the log,
2775 * we do flush all iclogs to disk (if there wasn't a log I/O
2776 * error). So, we do want things to go smoothly in case of just
2777 * a SHUTDOWN w/o a LOG_IO_ERROR.
2779 *ioerror = true;
2780 return false;
2781 case XLOG_STATE_DONE_SYNC:
2783 * Now that we have an iclog that is in the DONE_SYNC state, do
2784 * one more check here to see if we have chased our tail around.
2785 * If this is not the lowest lsn iclog, then we will leave it
2786 * for another completion to process.
2788 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2789 lowest_lsn = xlog_get_lowest_lsn(log);
2790 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2791 return false;
2792 xlog_state_set_callback(log, iclog, header_lsn);
2793 return false;
2794 default:
2796 * Can only perform callbacks in order. Since this iclog is not
2797 * in the DONE_SYNC state, we skip the rest and just try to
2798 * clean up.
2800 return true;
2805 * Keep processing entries in the iclog callback list until we come around and
2806 * it is empty. We need to atomically see that the list is empty and change the
2807 * state to DIRTY so that we don't miss any more callbacks being added.
2809 * This function is called with the icloglock held and returns with it held. We
2810 * drop it while running callbacks, however, as holding it over thousands of
2811 * callbacks is unnecessary and causes excessive contention if we do.
2813 static void
2814 xlog_state_do_iclog_callbacks(
2815 struct xlog *log,
2816 struct xlog_in_core *iclog,
2817 bool aborted)
2818 __releases(&log->l_icloglock)
2819 __acquires(&log->l_icloglock)
2821 spin_unlock(&log->l_icloglock);
2822 spin_lock(&iclog->ic_callback_lock);
2823 while (!list_empty(&iclog->ic_callbacks)) {
2824 LIST_HEAD(tmp);
2826 list_splice_init(&iclog->ic_callbacks, &tmp);
2828 spin_unlock(&iclog->ic_callback_lock);
2829 xlog_cil_process_committed(&tmp, aborted);
2830 spin_lock(&iclog->ic_callback_lock);
2834 * Pick up the icloglock while still holding the callback lock so we
2835 * serialise against anyone trying to add more callbacks to this iclog
2836 * now we've finished processing.
2838 spin_lock(&log->l_icloglock);
2839 spin_unlock(&iclog->ic_callback_lock);
2842 STATIC void
2843 xlog_state_do_callback(
2844 struct xlog *log,
2845 bool aborted)
2847 struct xlog_in_core *iclog;
2848 struct xlog_in_core *first_iclog;
2849 bool cycled_icloglock;
2850 bool ioerror;
2851 int flushcnt = 0;
2852 int repeats = 0;
2854 spin_lock(&log->l_icloglock);
2855 do {
2857 * Scan all iclogs starting with the one pointed to by the
2858 * log. Reset this starting point each time the log is
2859 * unlocked (during callbacks).
2861 * Keep looping through iclogs until one full pass is made
2862 * without running any callbacks.
2864 first_iclog = log->l_iclog;
2865 iclog = log->l_iclog;
2866 cycled_icloglock = false;
2867 ioerror = false;
2868 repeats++;
2870 do {
2871 if (xlog_state_iodone_process_iclog(log, iclog,
2872 &ioerror))
2873 break;
2875 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2876 iclog->ic_state != XLOG_STATE_IOERROR) {
2877 iclog = iclog->ic_next;
2878 continue;
2882 * Running callbacks will drop the icloglock which means
2883 * we'll have to run at least one more complete loop.
2885 cycled_icloglock = true;
2886 xlog_state_do_iclog_callbacks(log, iclog, aborted);
2888 xlog_state_clean_iclog(log, iclog);
2889 iclog = iclog->ic_next;
2890 } while (first_iclog != iclog);
2892 if (repeats > 5000) {
2893 flushcnt += repeats;
2894 repeats = 0;
2895 xfs_warn(log->l_mp,
2896 "%s: possible infinite loop (%d iterations)",
2897 __func__, flushcnt);
2899 } while (!ioerror && cycled_icloglock);
2901 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2902 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2903 wake_up_all(&log->l_flush_wait);
2905 spin_unlock(&log->l_icloglock);
2910 * Finish transitioning this iclog to the dirty state.
2912 * Make sure that we completely execute this routine only when this is
2913 * the last call to the iclog. There is a good chance that iclog flushes,
2914 * when we reach the end of the physical log, get turned into 2 separate
2915 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2916 * routine. By using the reference count bwritecnt, we guarantee that only
2917 * the second completion goes through.
2919 * Callbacks could take time, so they are done outside the scope of the
2920 * global state machine log lock.
2922 STATIC void
2923 xlog_state_done_syncing(
2924 struct xlog_in_core *iclog,
2925 bool aborted)
2927 struct xlog *log = iclog->ic_log;
2929 spin_lock(&log->l_icloglock);
2931 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2934 * If we got an error, either on the first buffer, or in the case of
2935 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2936 * and none should ever be attempted to be written to disk
2937 * again.
2939 if (iclog->ic_state == XLOG_STATE_SYNCING)
2940 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2941 else
2942 ASSERT(iclog->ic_state == XLOG_STATE_IOERROR);
2945 * Someone could be sleeping prior to writing out the next
2946 * iclog buffer, we wake them all, one will get to do the
2947 * I/O, the others get to wait for the result.
2949 wake_up_all(&iclog->ic_write_wait);
2950 spin_unlock(&log->l_icloglock);
2951 xlog_state_do_callback(log, aborted); /* also cleans log */
2952 } /* xlog_state_done_syncing */
2956 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2957 * sleep. We wait on the flush queue on the head iclog as that should be
2958 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2959 * we will wait here and all new writes will sleep until a sync completes.
2961 * The in-core logs are used in a circular fashion. They are not used
2962 * out-of-order even when an iclog past the head is free.
2964 * return:
2965 * * log_offset where xlog_write() can start writing into the in-core
2966 * log's data space.
2967 * * in-core log pointer to which xlog_write() should write.
2968 * * boolean indicating this is a continued write to an in-core log.
2969 * If this is the last write, then the in-core log's offset field
2970 * needs to be incremented, depending on the amount of data which
2971 * is copied.
2973 STATIC int
2974 xlog_state_get_iclog_space(
2975 struct xlog *log,
2976 int len,
2977 struct xlog_in_core **iclogp,
2978 struct xlog_ticket *ticket,
2979 int *continued_write,
2980 int *logoffsetp)
2982 int log_offset;
2983 xlog_rec_header_t *head;
2984 xlog_in_core_t *iclog;
2986 restart:
2987 spin_lock(&log->l_icloglock);
2988 if (XLOG_FORCED_SHUTDOWN(log)) {
2989 spin_unlock(&log->l_icloglock);
2990 return -EIO;
2993 iclog = log->l_iclog;
2994 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2995 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2997 /* Wait for log writes to have flushed */
2998 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2999 goto restart;
3002 head = &iclog->ic_header;
3004 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
3005 log_offset = iclog->ic_offset;
3007 /* On the 1st write to an iclog, figure out lsn. This works
3008 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3009 * committing to. If the offset is set, that's how many blocks
3010 * must be written.
3012 if (log_offset == 0) {
3013 ticket->t_curr_res -= log->l_iclog_hsize;
3014 xlog_tic_add_region(ticket,
3015 log->l_iclog_hsize,
3016 XLOG_REG_TYPE_LRHEADER);
3017 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3018 head->h_lsn = cpu_to_be64(
3019 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3020 ASSERT(log->l_curr_block >= 0);
3023 /* If there is enough room to write everything, then do it. Otherwise,
3024 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3025 * bit is on, so this will get flushed out. Don't update ic_offset
3026 * until you know exactly how many bytes get copied. Therefore, wait
3027 * until later to update ic_offset.
3029 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3030 * can fit into remaining data section.
3032 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3033 int error = 0;
3035 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3038 * If we are the only one writing to this iclog, sync it to
3039 * disk. We need to do an atomic compare and decrement here to
3040 * avoid racing with concurrent atomic_dec_and_lock() calls in
3041 * xlog_state_release_iclog() when there is more than one
3042 * reference to the iclog.
3044 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3045 error = xlog_state_release_iclog(log, iclog);
3046 spin_unlock(&log->l_icloglock);
3047 if (error)
3048 return error;
3049 goto restart;
3052 /* Do we have enough room to write the full amount in the remainder
3053 * of this iclog? Or must we continue a write on the next iclog and
3054 * mark this iclog as completely taken? In the case where we switch
3055 * iclogs (to mark it taken), this particular iclog will release/sync
3056 * to disk in xlog_write().
3058 if (len <= iclog->ic_size - iclog->ic_offset) {
3059 *continued_write = 0;
3060 iclog->ic_offset += len;
3061 } else {
3062 *continued_write = 1;
3063 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3065 *iclogp = iclog;
3067 ASSERT(iclog->ic_offset <= iclog->ic_size);
3068 spin_unlock(&log->l_icloglock);
3070 *logoffsetp = log_offset;
3071 return 0;
3072 } /* xlog_state_get_iclog_space */
3074 /* The first cnt-1 times through here we don't need to
3075 * move the grant write head because the permanent
3076 * reservation has reserved cnt times the unit amount.
3077 * Release part of current permanent unit reservation and
3078 * reset current reservation to be one units worth. Also
3079 * move grant reservation head forward.
3081 STATIC void
3082 xlog_regrant_reserve_log_space(
3083 struct xlog *log,
3084 struct xlog_ticket *ticket)
3086 trace_xfs_log_regrant_reserve_enter(log, ticket);
3088 if (ticket->t_cnt > 0)
3089 ticket->t_cnt--;
3091 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3092 ticket->t_curr_res);
3093 xlog_grant_sub_space(log, &log->l_write_head.grant,
3094 ticket->t_curr_res);
3095 ticket->t_curr_res = ticket->t_unit_res;
3096 xlog_tic_reset_res(ticket);
3098 trace_xfs_log_regrant_reserve_sub(log, ticket);
3100 /* just return if we still have some of the pre-reserved space */
3101 if (ticket->t_cnt > 0)
3102 return;
3104 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3105 ticket->t_unit_res);
3107 trace_xfs_log_regrant_reserve_exit(log, ticket);
3109 ticket->t_curr_res = ticket->t_unit_res;
3110 xlog_tic_reset_res(ticket);
3111 } /* xlog_regrant_reserve_log_space */
3115 * Give back the space left from a reservation.
3117 * All the information we need to make a correct determination of space left
3118 * is present. For non-permanent reservations, things are quite easy. The
3119 * count should have been decremented to zero. We only need to deal with the
3120 * space remaining in the current reservation part of the ticket. If the
3121 * ticket contains a permanent reservation, there may be left over space which
3122 * needs to be released. A count of N means that N-1 refills of the current
3123 * reservation can be done before we need to ask for more space. The first
3124 * one goes to fill up the first current reservation. Once we run out of
3125 * space, the count will stay at zero and the only space remaining will be
3126 * in the current reservation field.
3128 STATIC void
3129 xlog_ungrant_log_space(
3130 struct xlog *log,
3131 struct xlog_ticket *ticket)
3133 int bytes;
3135 if (ticket->t_cnt > 0)
3136 ticket->t_cnt--;
3138 trace_xfs_log_ungrant_enter(log, ticket);
3139 trace_xfs_log_ungrant_sub(log, ticket);
3142 * If this is a permanent reservation ticket, we may be able to free
3143 * up more space based on the remaining count.
3145 bytes = ticket->t_curr_res;
3146 if (ticket->t_cnt > 0) {
3147 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3148 bytes += ticket->t_unit_res*ticket->t_cnt;
3151 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3152 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3154 trace_xfs_log_ungrant_exit(log, ticket);
3156 xfs_log_space_wake(log->l_mp);
3160 * This routine will mark the current iclog in the ring as WANT_SYNC
3161 * and move the current iclog pointer to the next iclog in the ring.
3162 * When this routine is called from xlog_state_get_iclog_space(), the
3163 * exact size of the iclog has not yet been determined. All we know is
3164 * that every data block. We have run out of space in this log record.
3166 STATIC void
3167 xlog_state_switch_iclogs(
3168 struct xlog *log,
3169 struct xlog_in_core *iclog,
3170 int eventual_size)
3172 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3173 if (!eventual_size)
3174 eventual_size = iclog->ic_offset;
3175 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3176 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3177 log->l_prev_block = log->l_curr_block;
3178 log->l_prev_cycle = log->l_curr_cycle;
3180 /* roll log?: ic_offset changed later */
3181 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3183 /* Round up to next log-sunit */
3184 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3185 log->l_mp->m_sb.sb_logsunit > 1) {
3186 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3187 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3190 if (log->l_curr_block >= log->l_logBBsize) {
3192 * Rewind the current block before the cycle is bumped to make
3193 * sure that the combined LSN never transiently moves forward
3194 * when the log wraps to the next cycle. This is to support the
3195 * unlocked sample of these fields from xlog_valid_lsn(). Most
3196 * other cases should acquire l_icloglock.
3198 log->l_curr_block -= log->l_logBBsize;
3199 ASSERT(log->l_curr_block >= 0);
3200 smp_wmb();
3201 log->l_curr_cycle++;
3202 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3203 log->l_curr_cycle++;
3205 ASSERT(iclog == log->l_iclog);
3206 log->l_iclog = iclog->ic_next;
3207 } /* xlog_state_switch_iclogs */
3210 * Write out all data in the in-core log as of this exact moment in time.
3212 * Data may be written to the in-core log during this call. However,
3213 * we don't guarantee this data will be written out. A change from past
3214 * implementation means this routine will *not* write out zero length LRs.
3216 * Basically, we try and perform an intelligent scan of the in-core logs.
3217 * If we determine there is no flushable data, we just return. There is no
3218 * flushable data if:
3220 * 1. the current iclog is active and has no data; the previous iclog
3221 * is in the active or dirty state.
3222 * 2. the current iclog is drity, and the previous iclog is in the
3223 * active or dirty state.
3225 * We may sleep if:
3227 * 1. the current iclog is not in the active nor dirty state.
3228 * 2. the current iclog dirty, and the previous iclog is not in the
3229 * active nor dirty state.
3230 * 3. the current iclog is active, and there is another thread writing
3231 * to this particular iclog.
3232 * 4. a) the current iclog is active and has no other writers
3233 * b) when we return from flushing out this iclog, it is still
3234 * not in the active nor dirty state.
3237 xfs_log_force(
3238 struct xfs_mount *mp,
3239 uint flags)
3241 struct xlog *log = mp->m_log;
3242 struct xlog_in_core *iclog;
3243 xfs_lsn_t lsn;
3245 XFS_STATS_INC(mp, xs_log_force);
3246 trace_xfs_log_force(mp, 0, _RET_IP_);
3248 xlog_cil_force(log);
3250 spin_lock(&log->l_icloglock);
3251 iclog = log->l_iclog;
3252 if (iclog->ic_state == XLOG_STATE_IOERROR)
3253 goto out_error;
3255 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3256 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3257 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3259 * If the head is dirty or (active and empty), then we need to
3260 * look at the previous iclog.
3262 * If the previous iclog is active or dirty we are done. There
3263 * is nothing to sync out. Otherwise, we attach ourselves to the
3264 * previous iclog and go to sleep.
3266 iclog = iclog->ic_prev;
3267 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3268 iclog->ic_state == XLOG_STATE_DIRTY)
3269 goto out_unlock;
3270 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3271 if (atomic_read(&iclog->ic_refcnt) == 0) {
3273 * We are the only one with access to this iclog.
3275 * Flush it out now. There should be a roundoff of zero
3276 * to show that someone has already taken care of the
3277 * roundoff from the previous sync.
3279 atomic_inc(&iclog->ic_refcnt);
3280 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3281 xlog_state_switch_iclogs(log, iclog, 0);
3282 if (xlog_state_release_iclog(log, iclog))
3283 goto out_error;
3285 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3286 iclog->ic_state == XLOG_STATE_DIRTY)
3287 goto out_unlock;
3288 } else {
3290 * Someone else is writing to this iclog.
3292 * Use its call to flush out the data. However, the
3293 * other thread may not force out this LR, so we mark
3294 * it WANT_SYNC.
3296 xlog_state_switch_iclogs(log, iclog, 0);
3298 } else {
3300 * If the head iclog is not active nor dirty, we just attach
3301 * ourselves to the head and go to sleep if necessary.
3306 if (!(flags & XFS_LOG_SYNC))
3307 goto out_unlock;
3309 if (iclog->ic_state == XLOG_STATE_IOERROR)
3310 goto out_error;
3311 XFS_STATS_INC(mp, xs_log_force_sleep);
3312 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3313 if (iclog->ic_state == XLOG_STATE_IOERROR)
3314 return -EIO;
3315 return 0;
3317 out_unlock:
3318 spin_unlock(&log->l_icloglock);
3319 return 0;
3320 out_error:
3321 spin_unlock(&log->l_icloglock);
3322 return -EIO;
3325 static int
3326 __xfs_log_force_lsn(
3327 struct xfs_mount *mp,
3328 xfs_lsn_t lsn,
3329 uint flags,
3330 int *log_flushed,
3331 bool already_slept)
3333 struct xlog *log = mp->m_log;
3334 struct xlog_in_core *iclog;
3336 spin_lock(&log->l_icloglock);
3337 iclog = log->l_iclog;
3338 if (iclog->ic_state == XLOG_STATE_IOERROR)
3339 goto out_error;
3341 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3342 iclog = iclog->ic_next;
3343 if (iclog == log->l_iclog)
3344 goto out_unlock;
3347 if (iclog->ic_state == XLOG_STATE_DIRTY)
3348 goto out_unlock;
3350 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3352 * We sleep here if we haven't already slept (e.g. this is the
3353 * first time we've looked at the correct iclog buf) and the
3354 * buffer before us is going to be sync'ed. The reason for this
3355 * is that if we are doing sync transactions here, by waiting
3356 * for the previous I/O to complete, we can allow a few more
3357 * transactions into this iclog before we close it down.
3359 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3360 * refcnt so we can release the log (which drops the ref count).
3361 * The state switch keeps new transaction commits from using
3362 * this buffer. When the current commits finish writing into
3363 * the buffer, the refcount will drop to zero and the buffer
3364 * will go out then.
3366 if (!already_slept &&
3367 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3368 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3369 XFS_STATS_INC(mp, xs_log_force_sleep);
3371 xlog_wait(&iclog->ic_prev->ic_write_wait,
3372 &log->l_icloglock);
3373 return -EAGAIN;
3375 atomic_inc(&iclog->ic_refcnt);
3376 xlog_state_switch_iclogs(log, iclog, 0);
3377 if (xlog_state_release_iclog(log, iclog))
3378 goto out_error;
3379 if (log_flushed)
3380 *log_flushed = 1;
3383 if (!(flags & XFS_LOG_SYNC) ||
3384 (iclog->ic_state == XLOG_STATE_ACTIVE ||
3385 iclog->ic_state == XLOG_STATE_DIRTY))
3386 goto out_unlock;
3388 if (iclog->ic_state == XLOG_STATE_IOERROR)
3389 goto out_error;
3391 XFS_STATS_INC(mp, xs_log_force_sleep);
3392 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3393 if (iclog->ic_state == XLOG_STATE_IOERROR)
3394 return -EIO;
3395 return 0;
3397 out_unlock:
3398 spin_unlock(&log->l_icloglock);
3399 return 0;
3400 out_error:
3401 spin_unlock(&log->l_icloglock);
3402 return -EIO;
3406 * Force the in-core log to disk for a specific LSN.
3408 * Find in-core log with lsn.
3409 * If it is in the DIRTY state, just return.
3410 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3411 * state and go to sleep or return.
3412 * If it is in any other state, go to sleep or return.
3414 * Synchronous forces are implemented with a wait queue. All callers trying
3415 * to force a given lsn to disk must wait on the queue attached to the
3416 * specific in-core log. When given in-core log finally completes its write
3417 * to disk, that thread will wake up all threads waiting on the queue.
3420 xfs_log_force_lsn(
3421 struct xfs_mount *mp,
3422 xfs_lsn_t lsn,
3423 uint flags,
3424 int *log_flushed)
3426 int ret;
3427 ASSERT(lsn != 0);
3429 XFS_STATS_INC(mp, xs_log_force);
3430 trace_xfs_log_force(mp, lsn, _RET_IP_);
3432 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3433 if (lsn == NULLCOMMITLSN)
3434 return 0;
3436 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3437 if (ret == -EAGAIN)
3438 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3439 return ret;
3443 * Called when we want to mark the current iclog as being ready to sync to
3444 * disk.
3446 STATIC void
3447 xlog_state_want_sync(
3448 struct xlog *log,
3449 struct xlog_in_core *iclog)
3451 assert_spin_locked(&log->l_icloglock);
3453 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3454 xlog_state_switch_iclogs(log, iclog, 0);
3455 } else {
3456 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
3457 iclog->ic_state == XLOG_STATE_IOERROR);
3462 /*****************************************************************************
3464 * TICKET functions
3466 *****************************************************************************
3470 * Free a used ticket when its refcount falls to zero.
3472 void
3473 xfs_log_ticket_put(
3474 xlog_ticket_t *ticket)
3476 ASSERT(atomic_read(&ticket->t_ref) > 0);
3477 if (atomic_dec_and_test(&ticket->t_ref))
3478 kmem_cache_free(xfs_log_ticket_zone, ticket);
3481 xlog_ticket_t *
3482 xfs_log_ticket_get(
3483 xlog_ticket_t *ticket)
3485 ASSERT(atomic_read(&ticket->t_ref) > 0);
3486 atomic_inc(&ticket->t_ref);
3487 return ticket;
3491 * Figure out the total log space unit (in bytes) that would be
3492 * required for a log ticket.
3495 xfs_log_calc_unit_res(
3496 struct xfs_mount *mp,
3497 int unit_bytes)
3499 struct xlog *log = mp->m_log;
3500 int iclog_space;
3501 uint num_headers;
3504 * Permanent reservations have up to 'cnt'-1 active log operations
3505 * in the log. A unit in this case is the amount of space for one
3506 * of these log operations. Normal reservations have a cnt of 1
3507 * and their unit amount is the total amount of space required.
3509 * The following lines of code account for non-transaction data
3510 * which occupy space in the on-disk log.
3512 * Normal form of a transaction is:
3513 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3514 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3516 * We need to account for all the leadup data and trailer data
3517 * around the transaction data.
3518 * And then we need to account for the worst case in terms of using
3519 * more space.
3520 * The worst case will happen if:
3521 * - the placement of the transaction happens to be such that the
3522 * roundoff is at its maximum
3523 * - the transaction data is synced before the commit record is synced
3524 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3525 * Therefore the commit record is in its own Log Record.
3526 * This can happen as the commit record is called with its
3527 * own region to xlog_write().
3528 * This then means that in the worst case, roundoff can happen for
3529 * the commit-rec as well.
3530 * The commit-rec is smaller than padding in this scenario and so it is
3531 * not added separately.
3534 /* for trans header */
3535 unit_bytes += sizeof(xlog_op_header_t);
3536 unit_bytes += sizeof(xfs_trans_header_t);
3538 /* for start-rec */
3539 unit_bytes += sizeof(xlog_op_header_t);
3542 * for LR headers - the space for data in an iclog is the size minus
3543 * the space used for the headers. If we use the iclog size, then we
3544 * undercalculate the number of headers required.
3546 * Furthermore - the addition of op headers for split-recs might
3547 * increase the space required enough to require more log and op
3548 * headers, so take that into account too.
3550 * IMPORTANT: This reservation makes the assumption that if this
3551 * transaction is the first in an iclog and hence has the LR headers
3552 * accounted to it, then the remaining space in the iclog is
3553 * exclusively for this transaction. i.e. if the transaction is larger
3554 * than the iclog, it will be the only thing in that iclog.
3555 * Fundamentally, this means we must pass the entire log vector to
3556 * xlog_write to guarantee this.
3558 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3559 num_headers = howmany(unit_bytes, iclog_space);
3561 /* for split-recs - ophdrs added when data split over LRs */
3562 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3564 /* add extra header reservations if we overrun */
3565 while (!num_headers ||
3566 howmany(unit_bytes, iclog_space) > num_headers) {
3567 unit_bytes += sizeof(xlog_op_header_t);
3568 num_headers++;
3570 unit_bytes += log->l_iclog_hsize * num_headers;
3572 /* for commit-rec LR header - note: padding will subsume the ophdr */
3573 unit_bytes += log->l_iclog_hsize;
3575 /* for roundoff padding for transaction data and one for commit record */
3576 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3577 /* log su roundoff */
3578 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3579 } else {
3580 /* BB roundoff */
3581 unit_bytes += 2 * BBSIZE;
3584 return unit_bytes;
3588 * Allocate and initialise a new log ticket.
3590 struct xlog_ticket *
3591 xlog_ticket_alloc(
3592 struct xlog *log,
3593 int unit_bytes,
3594 int cnt,
3595 char client,
3596 bool permanent,
3597 xfs_km_flags_t alloc_flags)
3599 struct xlog_ticket *tic;
3600 int unit_res;
3602 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3603 if (!tic)
3604 return NULL;
3606 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3608 atomic_set(&tic->t_ref, 1);
3609 tic->t_task = current;
3610 INIT_LIST_HEAD(&tic->t_queue);
3611 tic->t_unit_res = unit_res;
3612 tic->t_curr_res = unit_res;
3613 tic->t_cnt = cnt;
3614 tic->t_ocnt = cnt;
3615 tic->t_tid = prandom_u32();
3616 tic->t_clientid = client;
3617 tic->t_flags = XLOG_TIC_INITED;
3618 if (permanent)
3619 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3621 xlog_tic_reset_res(tic);
3623 return tic;
3627 /******************************************************************************
3629 * Log debug routines
3631 ******************************************************************************
3633 #if defined(DEBUG)
3635 * Make sure that the destination ptr is within the valid data region of
3636 * one of the iclogs. This uses backup pointers stored in a different
3637 * part of the log in case we trash the log structure.
3639 STATIC void
3640 xlog_verify_dest_ptr(
3641 struct xlog *log,
3642 void *ptr)
3644 int i;
3645 int good_ptr = 0;
3647 for (i = 0; i < log->l_iclog_bufs; i++) {
3648 if (ptr >= log->l_iclog_bak[i] &&
3649 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3650 good_ptr++;
3653 if (!good_ptr)
3654 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3658 * Check to make sure the grant write head didn't just over lap the tail. If
3659 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3660 * the cycles differ by exactly one and check the byte count.
3662 * This check is run unlocked, so can give false positives. Rather than assert
3663 * on failures, use a warn-once flag and a panic tag to allow the admin to
3664 * determine if they want to panic the machine when such an error occurs. For
3665 * debug kernels this will have the same effect as using an assert but, unlinke
3666 * an assert, it can be turned off at runtime.
3668 STATIC void
3669 xlog_verify_grant_tail(
3670 struct xlog *log)
3672 int tail_cycle, tail_blocks;
3673 int cycle, space;
3675 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3676 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3677 if (tail_cycle != cycle) {
3678 if (cycle - 1 != tail_cycle &&
3679 !(log->l_flags & XLOG_TAIL_WARN)) {
3680 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3681 "%s: cycle - 1 != tail_cycle", __func__);
3682 log->l_flags |= XLOG_TAIL_WARN;
3685 if (space > BBTOB(tail_blocks) &&
3686 !(log->l_flags & XLOG_TAIL_WARN)) {
3687 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3688 "%s: space > BBTOB(tail_blocks)", __func__);
3689 log->l_flags |= XLOG_TAIL_WARN;
3694 /* check if it will fit */
3695 STATIC void
3696 xlog_verify_tail_lsn(
3697 struct xlog *log,
3698 struct xlog_in_core *iclog,
3699 xfs_lsn_t tail_lsn)
3701 int blocks;
3703 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3704 blocks =
3705 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3706 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3707 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3708 } else {
3709 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3711 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3712 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3714 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3715 if (blocks < BTOBB(iclog->ic_offset) + 1)
3716 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3718 } /* xlog_verify_tail_lsn */
3721 * Perform a number of checks on the iclog before writing to disk.
3723 * 1. Make sure the iclogs are still circular
3724 * 2. Make sure we have a good magic number
3725 * 3. Make sure we don't have magic numbers in the data
3726 * 4. Check fields of each log operation header for:
3727 * A. Valid client identifier
3728 * B. tid ptr value falls in valid ptr space (user space code)
3729 * C. Length in log record header is correct according to the
3730 * individual operation headers within record.
3731 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3732 * log, check the preceding blocks of the physical log to make sure all
3733 * the cycle numbers agree with the current cycle number.
3735 STATIC void
3736 xlog_verify_iclog(
3737 struct xlog *log,
3738 struct xlog_in_core *iclog,
3739 int count)
3741 xlog_op_header_t *ophead;
3742 xlog_in_core_t *icptr;
3743 xlog_in_core_2_t *xhdr;
3744 void *base_ptr, *ptr, *p;
3745 ptrdiff_t field_offset;
3746 uint8_t clientid;
3747 int len, i, j, k, op_len;
3748 int idx;
3750 /* check validity of iclog pointers */
3751 spin_lock(&log->l_icloglock);
3752 icptr = log->l_iclog;
3753 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3754 ASSERT(icptr);
3756 if (icptr != log->l_iclog)
3757 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3758 spin_unlock(&log->l_icloglock);
3760 /* check log magic numbers */
3761 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3762 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3764 base_ptr = ptr = &iclog->ic_header;
3765 p = &iclog->ic_header;
3766 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3767 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3768 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3769 __func__);
3772 /* check fields */
3773 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3774 base_ptr = ptr = iclog->ic_datap;
3775 ophead = ptr;
3776 xhdr = iclog->ic_data;
3777 for (i = 0; i < len; i++) {
3778 ophead = ptr;
3780 /* clientid is only 1 byte */
3781 p = &ophead->oh_clientid;
3782 field_offset = p - base_ptr;
3783 if (field_offset & 0x1ff) {
3784 clientid = ophead->oh_clientid;
3785 } else {
3786 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3787 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3788 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3789 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3790 clientid = xlog_get_client_id(
3791 xhdr[j].hic_xheader.xh_cycle_data[k]);
3792 } else {
3793 clientid = xlog_get_client_id(
3794 iclog->ic_header.h_cycle_data[idx]);
3797 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3798 xfs_warn(log->l_mp,
3799 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3800 __func__, clientid, ophead,
3801 (unsigned long)field_offset);
3803 /* check length */
3804 p = &ophead->oh_len;
3805 field_offset = p - base_ptr;
3806 if (field_offset & 0x1ff) {
3807 op_len = be32_to_cpu(ophead->oh_len);
3808 } else {
3809 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3810 (uintptr_t)iclog->ic_datap);
3811 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3812 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3813 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3814 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3815 } else {
3816 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3819 ptr += sizeof(xlog_op_header_t) + op_len;
3821 } /* xlog_verify_iclog */
3822 #endif
3825 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3827 STATIC int
3828 xlog_state_ioerror(
3829 struct xlog *log)
3831 xlog_in_core_t *iclog, *ic;
3833 iclog = log->l_iclog;
3834 if (iclog->ic_state != XLOG_STATE_IOERROR) {
3836 * Mark all the incore logs IOERROR.
3837 * From now on, no log flushes will result.
3839 ic = iclog;
3840 do {
3841 ic->ic_state = XLOG_STATE_IOERROR;
3842 ic = ic->ic_next;
3843 } while (ic != iclog);
3844 return 0;
3847 * Return non-zero, if state transition has already happened.
3849 return 1;
3853 * This is called from xfs_force_shutdown, when we're forcibly
3854 * shutting down the filesystem, typically because of an IO error.
3855 * Our main objectives here are to make sure that:
3856 * a. if !logerror, flush the logs to disk. Anything modified
3857 * after this is ignored.
3858 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3859 * parties to find out, 'atomically'.
3860 * c. those who're sleeping on log reservations, pinned objects and
3861 * other resources get woken up, and be told the bad news.
3862 * d. nothing new gets queued up after (b) and (c) are done.
3864 * Note: for the !logerror case we need to flush the regions held in memory out
3865 * to disk first. This needs to be done before the log is marked as shutdown,
3866 * otherwise the iclog writes will fail.
3869 xfs_log_force_umount(
3870 struct xfs_mount *mp,
3871 int logerror)
3873 struct xlog *log;
3874 int retval;
3876 log = mp->m_log;
3879 * If this happens during log recovery, don't worry about
3880 * locking; the log isn't open for business yet.
3882 if (!log ||
3883 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3884 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3885 if (mp->m_sb_bp)
3886 mp->m_sb_bp->b_flags |= XBF_DONE;
3887 return 0;
3891 * Somebody could've already done the hard work for us.
3892 * No need to get locks for this.
3894 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3895 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3896 return 1;
3900 * Flush all the completed transactions to disk before marking the log
3901 * being shut down. We need to do it in this order to ensure that
3902 * completed operations are safely on disk before we shut down, and that
3903 * we don't have to issue any buffer IO after the shutdown flags are set
3904 * to guarantee this.
3906 if (!logerror)
3907 xfs_log_force(mp, XFS_LOG_SYNC);
3910 * mark the filesystem and the as in a shutdown state and wake
3911 * everybody up to tell them the bad news.
3913 spin_lock(&log->l_icloglock);
3914 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3915 if (mp->m_sb_bp)
3916 mp->m_sb_bp->b_flags |= XBF_DONE;
3919 * Mark the log and the iclogs with IO error flags to prevent any
3920 * further log IO from being issued or completed.
3922 log->l_flags |= XLOG_IO_ERROR;
3923 retval = xlog_state_ioerror(log);
3924 spin_unlock(&log->l_icloglock);
3927 * We don't want anybody waiting for log reservations after this. That
3928 * means we have to wake up everybody queued up on reserveq as well as
3929 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3930 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3931 * action is protected by the grant locks.
3933 xlog_grant_head_wake_all(&log->l_reserve_head);
3934 xlog_grant_head_wake_all(&log->l_write_head);
3937 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3938 * as if the log writes were completed. The abort handling in the log
3939 * item committed callback functions will do this again under lock to
3940 * avoid races.
3942 spin_lock(&log->l_cilp->xc_push_lock);
3943 wake_up_all(&log->l_cilp->xc_commit_wait);
3944 spin_unlock(&log->l_cilp->xc_push_lock);
3945 xlog_state_do_callback(log, true);
3947 /* return non-zero if log IOERROR transition had already happened */
3948 return retval;
3951 STATIC int
3952 xlog_iclogs_empty(
3953 struct xlog *log)
3955 xlog_in_core_t *iclog;
3957 iclog = log->l_iclog;
3958 do {
3959 /* endianness does not matter here, zero is zero in
3960 * any language.
3962 if (iclog->ic_header.h_num_logops)
3963 return 0;
3964 iclog = iclog->ic_next;
3965 } while (iclog != log->l_iclog);
3966 return 1;
3970 * Verify that an LSN stamped into a piece of metadata is valid. This is
3971 * intended for use in read verifiers on v5 superblocks.
3973 bool
3974 xfs_log_check_lsn(
3975 struct xfs_mount *mp,
3976 xfs_lsn_t lsn)
3978 struct xlog *log = mp->m_log;
3979 bool valid;
3982 * norecovery mode skips mount-time log processing and unconditionally
3983 * resets the in-core LSN. We can't validate in this mode, but
3984 * modifications are not allowed anyways so just return true.
3986 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3987 return true;
3990 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3991 * handled by recovery and thus safe to ignore here.
3993 if (lsn == NULLCOMMITLSN)
3994 return true;
3996 valid = xlog_valid_lsn(mp->m_log, lsn);
3998 /* warn the user about what's gone wrong before verifier failure */
3999 if (!valid) {
4000 spin_lock(&log->l_icloglock);
4001 xfs_warn(mp,
4002 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4003 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4004 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4005 log->l_curr_cycle, log->l_curr_block);
4006 spin_unlock(&log->l_icloglock);
4009 return valid;
4012 bool
4013 xfs_log_in_recovery(
4014 struct xfs_mount *mp)
4016 struct xlog *log = mp->m_log;
4018 return log->l_flags & XLOG_ACTIVE_RECOVERY;