1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
22 #include "xfs_health.h"
24 kmem_zone_t
*xfs_log_ticket_zone
;
26 /* Local miscellaneous function prototypes */
30 struct xlog_ticket
*ticket
,
31 struct xlog_in_core
**iclog
,
32 xfs_lsn_t
*commitlsnp
);
37 struct xfs_buftarg
*log_target
,
38 xfs_daddr_t blk_offset
,
48 /* local state machine functions */
49 STATIC
void xlog_state_done_syncing(
50 struct xlog_in_core
*iclog
,
53 xlog_state_get_iclog_space(
56 struct xlog_in_core
**iclog
,
57 struct xlog_ticket
*ticket
,
61 xlog_state_switch_iclogs(
63 struct xlog_in_core
*iclog
,
68 struct xlog_in_core
*iclog
);
75 xlog_regrant_reserve_log_space(
77 struct xlog_ticket
*ticket
);
79 xlog_ungrant_log_space(
81 struct xlog_ticket
*ticket
);
85 struct xlog_in_core
*iclog
);
92 xlog_verify_grant_tail(
97 struct xlog_in_core
*iclog
,
100 xlog_verify_tail_lsn(
102 struct xlog_in_core
*iclog
,
105 #define xlog_verify_dest_ptr(a,b)
106 #define xlog_verify_grant_tail(a)
107 #define xlog_verify_iclog(a,b,c)
108 #define xlog_verify_tail_lsn(a,b,c)
116 xlog_grant_sub_space(
121 int64_t head_val
= atomic64_read(head
);
127 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
131 space
+= log
->l_logsize
;
136 new = xlog_assign_grant_head_val(cycle
, space
);
137 head_val
= atomic64_cmpxchg(head
, old
, new);
138 } while (head_val
!= old
);
142 xlog_grant_add_space(
147 int64_t head_val
= atomic64_read(head
);
154 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
156 tmp
= log
->l_logsize
- space
;
165 new = xlog_assign_grant_head_val(cycle
, space
);
166 head_val
= atomic64_cmpxchg(head
, old
, new);
167 } while (head_val
!= old
);
171 xlog_grant_head_init(
172 struct xlog_grant_head
*head
)
174 xlog_assign_grant_head(&head
->grant
, 1, 0);
175 INIT_LIST_HEAD(&head
->waiters
);
176 spin_lock_init(&head
->lock
);
180 xlog_grant_head_wake_all(
181 struct xlog_grant_head
*head
)
183 struct xlog_ticket
*tic
;
185 spin_lock(&head
->lock
);
186 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
187 wake_up_process(tic
->t_task
);
188 spin_unlock(&head
->lock
);
192 xlog_ticket_reservation(
194 struct xlog_grant_head
*head
,
195 struct xlog_ticket
*tic
)
197 if (head
== &log
->l_write_head
) {
198 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
199 return tic
->t_unit_res
;
201 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
202 return tic
->t_unit_res
* tic
->t_cnt
;
204 return tic
->t_unit_res
;
209 xlog_grant_head_wake(
211 struct xlog_grant_head
*head
,
214 struct xlog_ticket
*tic
;
216 bool woken_task
= false;
218 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
221 * There is a chance that the size of the CIL checkpoints in
222 * progress at the last AIL push target calculation resulted in
223 * limiting the target to the log head (l_last_sync_lsn) at the
224 * time. This may not reflect where the log head is now as the
225 * CIL checkpoints may have completed.
227 * Hence when we are woken here, it may be that the head of the
228 * log that has moved rather than the tail. As the tail didn't
229 * move, there still won't be space available for the
230 * reservation we require. However, if the AIL has already
231 * pushed to the target defined by the old log head location, we
232 * will hang here waiting for something else to update the AIL
235 * Therefore, if there isn't space to wake the first waiter on
236 * the grant head, we need to push the AIL again to ensure the
237 * target reflects both the current log tail and log head
238 * position before we wait for the tail to move again.
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
) {
244 xlog_grant_push_ail(log
, need_bytes
);
248 *free_bytes
-= need_bytes
;
249 trace_xfs_log_grant_wake_up(log
, tic
);
250 wake_up_process(tic
->t_task
);
258 xlog_grant_head_wait(
260 struct xlog_grant_head
*head
,
261 struct xlog_ticket
*tic
,
262 int need_bytes
) __releases(&head
->lock
)
263 __acquires(&head
->lock
)
265 list_add_tail(&tic
->t_queue
, &head
->waiters
);
268 if (XLOG_FORCED_SHUTDOWN(log
))
270 xlog_grant_push_ail(log
, need_bytes
);
272 __set_current_state(TASK_UNINTERRUPTIBLE
);
273 spin_unlock(&head
->lock
);
275 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
277 trace_xfs_log_grant_sleep(log
, tic
);
279 trace_xfs_log_grant_wake(log
, tic
);
281 spin_lock(&head
->lock
);
282 if (XLOG_FORCED_SHUTDOWN(log
))
284 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
286 list_del_init(&tic
->t_queue
);
289 list_del_init(&tic
->t_queue
);
294 * Atomically get the log space required for a log ticket.
296 * Once a ticket gets put onto head->waiters, it will only return after the
297 * needed reservation is satisfied.
299 * This function is structured so that it has a lock free fast path. This is
300 * necessary because every new transaction reservation will come through this
301 * path. Hence any lock will be globally hot if we take it unconditionally on
304 * As tickets are only ever moved on and off head->waiters under head->lock, we
305 * only need to take that lock if we are going to add the ticket to the queue
306 * and sleep. We can avoid taking the lock if the ticket was never added to
307 * head->waiters because the t_queue list head will be empty and we hold the
308 * only reference to it so it can safely be checked unlocked.
311 xlog_grant_head_check(
313 struct xlog_grant_head
*head
,
314 struct xlog_ticket
*tic
,
320 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
323 * If there are other waiters on the queue then give them a chance at
324 * logspace before us. Wake up the first waiters, if we do not wake
325 * up all the waiters then go to sleep waiting for more free space,
326 * otherwise try to get some space for this transaction.
328 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
329 free_bytes
= xlog_space_left(log
, &head
->grant
);
330 if (!list_empty_careful(&head
->waiters
)) {
331 spin_lock(&head
->lock
);
332 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
333 free_bytes
< *need_bytes
) {
334 error
= xlog_grant_head_wait(log
, head
, tic
,
337 spin_unlock(&head
->lock
);
338 } else if (free_bytes
< *need_bytes
) {
339 spin_lock(&head
->lock
);
340 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
341 spin_unlock(&head
->lock
);
348 xlog_tic_reset_res(xlog_ticket_t
*tic
)
351 tic
->t_res_arr_sum
= 0;
352 tic
->t_res_num_ophdrs
= 0;
356 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
358 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
359 /* add to overflow and start again */
360 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
362 tic
->t_res_arr_sum
= 0;
365 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
366 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
367 tic
->t_res_arr_sum
+= len
;
372 * Replenish the byte reservation required by moving the grant write head.
376 struct xfs_mount
*mp
,
377 struct xlog_ticket
*tic
)
379 struct xlog
*log
= mp
->m_log
;
383 if (XLOG_FORCED_SHUTDOWN(log
))
386 XFS_STATS_INC(mp
, xs_try_logspace
);
389 * This is a new transaction on the ticket, so we need to change the
390 * transaction ID so that the next transaction has a different TID in
391 * the log. Just add one to the existing tid so that we can see chains
392 * of rolling transactions in the log easily.
396 xlog_grant_push_ail(log
, tic
->t_unit_res
);
398 tic
->t_curr_res
= tic
->t_unit_res
;
399 xlog_tic_reset_res(tic
);
404 trace_xfs_log_regrant(log
, tic
);
406 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
411 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
412 trace_xfs_log_regrant_exit(log
, tic
);
413 xlog_verify_grant_tail(log
);
418 * If we are failing, make sure the ticket doesn't have any current
419 * reservations. We don't want to add this back when the ticket/
420 * transaction gets cancelled.
423 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
428 * Reserve log space and return a ticket corresponding to the reservation.
430 * Each reservation is going to reserve extra space for a log record header.
431 * When writes happen to the on-disk log, we don't subtract the length of the
432 * log record header from any reservation. By wasting space in each
433 * reservation, we prevent over allocation problems.
437 struct xfs_mount
*mp
,
440 struct xlog_ticket
**ticp
,
444 struct xlog
*log
= mp
->m_log
;
445 struct xlog_ticket
*tic
;
449 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
451 if (XLOG_FORCED_SHUTDOWN(log
))
454 XFS_STATS_INC(mp
, xs_try_logspace
);
456 ASSERT(*ticp
== NULL
);
457 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
, 0);
460 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
463 trace_xfs_log_reserve(log
, tic
);
465 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
470 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
471 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
472 trace_xfs_log_reserve_exit(log
, tic
);
473 xlog_verify_grant_tail(log
);
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
483 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
511 struct xfs_mount
*mp
,
512 struct xlog_ticket
*ticket
,
513 struct xlog_in_core
**iclog
,
516 struct xlog
*log
= mp
->m_log
;
519 if (XLOG_FORCED_SHUTDOWN(log
) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
525 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
526 lsn
= (xfs_lsn_t
) -1;
532 trace_xfs_log_done_nonperm(log
, ticket
);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log
, ticket
);
540 trace_xfs_log_done_perm(log
, ticket
);
542 xlog_regrant_reserve_log_space(log
, ticket
);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket
->t_flags
|= XLOG_TIC_INITED
;
550 xfs_log_ticket_put(ticket
);
555 __xlog_state_release_iclog(
557 struct xlog_in_core
*iclog
)
559 lockdep_assert_held(&log
->l_icloglock
);
561 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
562 /* update tail before writing to iclog */
563 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
565 iclog
->ic_state
= XLOG_STATE_SYNCING
;
566 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
567 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
568 /* cycle incremented when incrementing curr_block */
572 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
577 * Flush iclog to disk if this is the last reference to the given iclog and the
578 * it is in the WANT_SYNC state.
581 xlog_state_release_iclog(
583 struct xlog_in_core
*iclog
)
585 lockdep_assert_held(&log
->l_icloglock
);
587 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
590 if (atomic_dec_and_test(&iclog
->ic_refcnt
) &&
591 __xlog_state_release_iclog(log
, iclog
)) {
592 spin_unlock(&log
->l_icloglock
);
593 xlog_sync(log
, iclog
);
594 spin_lock(&log
->l_icloglock
);
601 xfs_log_release_iclog(
602 struct xfs_mount
*mp
,
603 struct xlog_in_core
*iclog
)
605 struct xlog
*log
= mp
->m_log
;
608 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
611 if (atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
)) {
612 if (iclog
->ic_state
== XLOG_STATE_IOERROR
) {
613 spin_unlock(&log
->l_icloglock
);
616 sync
= __xlog_state_release_iclog(log
, iclog
);
617 spin_unlock(&log
->l_icloglock
);
619 xlog_sync(log
, iclog
);
623 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
628 * Mount a log filesystem
630 * mp - ubiquitous xfs mount point structure
631 * log_target - buftarg of on-disk log device
632 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
633 * num_bblocks - Number of BBSIZE blocks in on-disk log
635 * Return error or zero.
640 xfs_buftarg_t
*log_target
,
641 xfs_daddr_t blk_offset
,
644 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
648 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
649 xfs_notice(mp
, "Mounting V%d Filesystem",
650 XFS_SB_VERSION_NUM(&mp
->m_sb
));
653 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
654 XFS_SB_VERSION_NUM(&mp
->m_sb
));
655 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
658 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
659 if (IS_ERR(mp
->m_log
)) {
660 error
= PTR_ERR(mp
->m_log
);
665 * Validate the given log space and drop a critical message via syslog
666 * if the log size is too small that would lead to some unexpected
667 * situations in transaction log space reservation stage.
669 * Note: we can't just reject the mount if the validation fails. This
670 * would mean that people would have to downgrade their kernel just to
671 * remedy the situation as there is no way to grow the log (short of
672 * black magic surgery with xfs_db).
674 * We can, however, reject mounts for CRC format filesystems, as the
675 * mkfs binary being used to make the filesystem should never create a
676 * filesystem with a log that is too small.
678 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
680 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
682 "Log size %d blocks too small, minimum size is %d blocks",
683 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
685 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
687 "Log size %d blocks too large, maximum size is %lld blocks",
688 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
690 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
692 "log size %lld bytes too large, maximum size is %lld bytes",
693 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
696 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
697 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
699 "log stripe unit %u bytes must be a multiple of block size",
700 mp
->m_sb
.sb_logsunit
);
706 * Log check errors are always fatal on v5; or whenever bad
707 * metadata leads to a crash.
710 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
714 xfs_crit(mp
, "Log size out of supported range.");
716 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
720 * Initialize the AIL now we have a log.
722 error
= xfs_trans_ail_init(mp
);
724 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
727 mp
->m_log
->l_ailp
= mp
->m_ail
;
730 * skip log recovery on a norecovery mount. pretend it all
733 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
734 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
737 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
739 error
= xlog_recover(mp
->m_log
);
742 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
744 xfs_warn(mp
, "log mount/recovery failed: error %d",
746 xlog_recover_cancel(mp
->m_log
);
747 goto out_destroy_ail
;
751 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
754 goto out_destroy_ail
;
756 /* Normal transactions can now occur */
757 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
760 * Now the log has been fully initialised and we know were our
761 * space grant counters are, we can initialise the permanent ticket
762 * needed for delayed logging to work.
764 xlog_cil_init_post_recovery(mp
->m_log
);
769 xfs_trans_ail_destroy(mp
);
771 xlog_dealloc_log(mp
->m_log
);
777 * Finish the recovery of the file system. This is separate from the
778 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
779 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
782 * If we finish recovery successfully, start the background log work. If we are
783 * not doing recovery, then we have a RO filesystem and we don't need to start
787 xfs_log_mount_finish(
788 struct xfs_mount
*mp
)
791 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
792 bool recovered
= mp
->m_log
->l_flags
& XLOG_RECOVERY_NEEDED
;
794 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
795 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
797 } else if (readonly
) {
798 /* Allow unlinked processing to proceed */
799 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
803 * During the second phase of log recovery, we need iget and
804 * iput to behave like they do for an active filesystem.
805 * xfs_fs_drop_inode needs to be able to prevent the deletion
806 * of inodes before we're done replaying log items on those
807 * inodes. Turn it off immediately after recovery finishes
808 * so that we don't leak the quota inodes if subsequent mount
811 * We let all inodes involved in redo item processing end up on
812 * the LRU instead of being evicted immediately so that if we do
813 * something to an unlinked inode, the irele won't cause
814 * premature truncation and freeing of the inode, which results
815 * in log recovery failure. We have to evict the unreferenced
816 * lru inodes after clearing SB_ACTIVE because we don't
817 * otherwise clean up the lru if there's a subsequent failure in
818 * xfs_mountfs, which leads to us leaking the inodes if nothing
819 * else (e.g. quotacheck) references the inodes before the
820 * mount failure occurs.
822 mp
->m_super
->s_flags
|= SB_ACTIVE
;
823 error
= xlog_recover_finish(mp
->m_log
);
825 xfs_log_work_queue(mp
);
826 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
827 evict_inodes(mp
->m_super
);
830 * Drain the buffer LRU after log recovery. This is required for v4
831 * filesystems to avoid leaving around buffers with NULL verifier ops,
832 * but we do it unconditionally to make sure we're always in a clean
833 * cache state after mount.
835 * Don't push in the error case because the AIL may have pending intents
836 * that aren't removed until recovery is cancelled.
838 if (!error
&& recovered
) {
839 xfs_log_force(mp
, XFS_LOG_SYNC
);
840 xfs_ail_push_all_sync(mp
->m_ail
);
842 xfs_wait_buftarg(mp
->m_ddev_targp
);
845 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
851 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
855 xfs_log_mount_cancel(
856 struct xfs_mount
*mp
)
858 xlog_recover_cancel(mp
->m_log
);
863 * Final log writes as part of unmount.
865 * Mark the filesystem clean as unmount happens. Note that during relocation
866 * this routine needs to be executed as part of source-bag while the
867 * deallocation must not be done until source-end.
870 /* Actually write the unmount record to disk. */
872 xfs_log_write_unmount_record(
873 struct xfs_mount
*mp
)
875 /* the data section must be 32 bit size aligned */
876 struct xfs_unmount_log_format magic
= {
877 .magic
= XLOG_UNMOUNT_TYPE
,
879 struct xfs_log_iovec reg
= {
881 .i_len
= sizeof(magic
),
882 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
884 struct xfs_log_vec vec
= {
888 struct xlog
*log
= mp
->m_log
;
889 struct xlog_in_core
*iclog
;
890 struct xlog_ticket
*tic
= NULL
;
892 uint flags
= XLOG_UNMOUNT_TRANS
;
895 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
900 * If we think the summary counters are bad, clear the unmount header
901 * flag in the unmount record so that the summary counters will be
902 * recalculated during log recovery at next mount. Refer to
903 * xlog_check_unmount_rec for more details.
905 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp
, XFS_SICK_FS_COUNTERS
), mp
,
906 XFS_ERRTAG_FORCE_SUMMARY_RECALC
)) {
907 xfs_alert(mp
, "%s: will fix summary counters at next mount",
909 flags
&= ~XLOG_UNMOUNT_TRANS
;
912 /* remove inited flag, and account for space used */
914 tic
->t_curr_res
-= sizeof(magic
);
915 error
= xlog_write(log
, &vec
, tic
, &lsn
, NULL
, flags
);
917 * At this point, we're umounting anyway, so there's no point in
918 * transitioning log state to IOERROR. Just continue...
922 xfs_alert(mp
, "%s: unmount record failed", __func__
);
924 spin_lock(&log
->l_icloglock
);
925 iclog
= log
->l_iclog
;
926 atomic_inc(&iclog
->ic_refcnt
);
927 xlog_state_want_sync(log
, iclog
);
928 error
= xlog_state_release_iclog(log
, iclog
);
929 switch (iclog
->ic_state
) {
931 if (!XLOG_FORCED_SHUTDOWN(log
)) {
932 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
936 case XLOG_STATE_ACTIVE
:
937 case XLOG_STATE_DIRTY
:
938 spin_unlock(&log
->l_icloglock
);
943 trace_xfs_log_umount_write(log
, tic
);
944 xlog_ungrant_log_space(log
, tic
);
945 xfs_log_ticket_put(tic
);
950 * Unmount record used to have a string "Unmount filesystem--" in the
951 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
952 * We just write the magic number now since that particular field isn't
953 * currently architecture converted and "Unmount" is a bit foo.
954 * As far as I know, there weren't any dependencies on the old behaviour.
958 xfs_log_unmount_write(xfs_mount_t
*mp
)
960 struct xlog
*log
= mp
->m_log
;
961 xlog_in_core_t
*iclog
;
963 xlog_in_core_t
*first_iclog
;
968 * Don't write out unmount record on norecovery mounts or ro devices.
969 * Or, if we are doing a forced umount (typically because of IO errors).
971 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
972 xfs_readonly_buftarg(log
->l_targ
)) {
973 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
977 error
= xfs_log_force(mp
, XFS_LOG_SYNC
);
978 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
981 first_iclog
= iclog
= log
->l_iclog
;
983 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
984 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
985 ASSERT(iclog
->ic_offset
== 0);
987 iclog
= iclog
->ic_next
;
988 } while (iclog
!= first_iclog
);
990 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
991 xfs_log_write_unmount_record(mp
);
994 * We're already in forced_shutdown mode, couldn't
995 * even attempt to write out the unmount transaction.
997 * Go through the motions of sync'ing and releasing
998 * the iclog, even though no I/O will actually happen,
999 * we need to wait for other log I/Os that may already
1000 * be in progress. Do this as a separate section of
1001 * code so we'll know if we ever get stuck here that
1002 * we're in this odd situation of trying to unmount
1003 * a file system that went into forced_shutdown as
1004 * the result of an unmount..
1006 spin_lock(&log
->l_icloglock
);
1007 iclog
= log
->l_iclog
;
1008 atomic_inc(&iclog
->ic_refcnt
);
1009 xlog_state_want_sync(log
, iclog
);
1010 error
= xlog_state_release_iclog(log
, iclog
);
1011 switch (iclog
->ic_state
) {
1012 case XLOG_STATE_ACTIVE
:
1013 case XLOG_STATE_DIRTY
:
1014 case XLOG_STATE_IOERROR
:
1015 spin_unlock(&log
->l_icloglock
);
1018 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
1024 } /* xfs_log_unmount_write */
1027 * Empty the log for unmount/freeze.
1029 * To do this, we first need to shut down the background log work so it is not
1030 * trying to cover the log as we clean up. We then need to unpin all objects in
1031 * the log so we can then flush them out. Once they have completed their IO and
1032 * run the callbacks removing themselves from the AIL, we can write the unmount
1037 struct xfs_mount
*mp
)
1039 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
1040 xfs_log_force(mp
, XFS_LOG_SYNC
);
1043 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1044 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1045 * xfs_buf_iowait() cannot be used because it was pushed with the
1046 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1047 * the IO to complete.
1049 xfs_ail_push_all_sync(mp
->m_ail
);
1050 xfs_wait_buftarg(mp
->m_ddev_targp
);
1051 xfs_buf_lock(mp
->m_sb_bp
);
1052 xfs_buf_unlock(mp
->m_sb_bp
);
1054 xfs_log_unmount_write(mp
);
1058 * Shut down and release the AIL and Log.
1060 * During unmount, we need to ensure we flush all the dirty metadata objects
1061 * from the AIL so that the log is empty before we write the unmount record to
1062 * the log. Once this is done, we can tear down the AIL and the log.
1066 struct xfs_mount
*mp
)
1068 xfs_log_quiesce(mp
);
1070 xfs_trans_ail_destroy(mp
);
1072 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1074 xlog_dealloc_log(mp
->m_log
);
1079 struct xfs_mount
*mp
,
1080 struct xfs_log_item
*item
,
1082 const struct xfs_item_ops
*ops
)
1084 item
->li_mountp
= mp
;
1085 item
->li_ailp
= mp
->m_ail
;
1086 item
->li_type
= type
;
1090 INIT_LIST_HEAD(&item
->li_ail
);
1091 INIT_LIST_HEAD(&item
->li_cil
);
1092 INIT_LIST_HEAD(&item
->li_bio_list
);
1093 INIT_LIST_HEAD(&item
->li_trans
);
1097 * Wake up processes waiting for log space after we have moved the log tail.
1101 struct xfs_mount
*mp
)
1103 struct xlog
*log
= mp
->m_log
;
1106 if (XLOG_FORCED_SHUTDOWN(log
))
1109 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1110 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1112 spin_lock(&log
->l_write_head
.lock
);
1113 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1114 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1115 spin_unlock(&log
->l_write_head
.lock
);
1118 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1119 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1121 spin_lock(&log
->l_reserve_head
.lock
);
1122 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1123 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1124 spin_unlock(&log
->l_reserve_head
.lock
);
1129 * Determine if we have a transaction that has gone to disk that needs to be
1130 * covered. To begin the transition to the idle state firstly the log needs to
1131 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1132 * we start attempting to cover the log.
1134 * Only if we are then in a state where covering is needed, the caller is
1135 * informed that dummy transactions are required to move the log into the idle
1138 * If there are any items in the AIl or CIL, then we do not want to attempt to
1139 * cover the log as we may be in a situation where there isn't log space
1140 * available to run a dummy transaction and this can lead to deadlocks when the
1141 * tail of the log is pinned by an item that is modified in the CIL. Hence
1142 * there's no point in running a dummy transaction at this point because we
1143 * can't start trying to idle the log until both the CIL and AIL are empty.
1146 xfs_log_need_covered(xfs_mount_t
*mp
)
1148 struct xlog
*log
= mp
->m_log
;
1151 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1154 if (!xlog_cil_empty(log
))
1157 spin_lock(&log
->l_icloglock
);
1158 switch (log
->l_covered_state
) {
1159 case XLOG_STATE_COVER_DONE
:
1160 case XLOG_STATE_COVER_DONE2
:
1161 case XLOG_STATE_COVER_IDLE
:
1163 case XLOG_STATE_COVER_NEED
:
1164 case XLOG_STATE_COVER_NEED2
:
1165 if (xfs_ail_min_lsn(log
->l_ailp
))
1167 if (!xlog_iclogs_empty(log
))
1171 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1172 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1174 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1180 spin_unlock(&log
->l_icloglock
);
1185 * We may be holding the log iclog lock upon entering this routine.
1188 xlog_assign_tail_lsn_locked(
1189 struct xfs_mount
*mp
)
1191 struct xlog
*log
= mp
->m_log
;
1192 struct xfs_log_item
*lip
;
1195 assert_spin_locked(&mp
->m_ail
->ail_lock
);
1198 * To make sure we always have a valid LSN for the log tail we keep
1199 * track of the last LSN which was committed in log->l_last_sync_lsn,
1200 * and use that when the AIL was empty.
1202 lip
= xfs_ail_min(mp
->m_ail
);
1204 tail_lsn
= lip
->li_lsn
;
1206 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1207 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1208 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1213 xlog_assign_tail_lsn(
1214 struct xfs_mount
*mp
)
1218 spin_lock(&mp
->m_ail
->ail_lock
);
1219 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1220 spin_unlock(&mp
->m_ail
->ail_lock
);
1226 * Return the space in the log between the tail and the head. The head
1227 * is passed in the cycle/bytes formal parms. In the special case where
1228 * the reserve head has wrapped passed the tail, this calculation is no
1229 * longer valid. In this case, just return 0 which means there is no space
1230 * in the log. This works for all places where this function is called
1231 * with the reserve head. Of course, if the write head were to ever
1232 * wrap the tail, we should blow up. Rather than catch this case here,
1233 * we depend on other ASSERTions in other parts of the code. XXXmiken
1235 * This code also handles the case where the reservation head is behind
1236 * the tail. The details of this case are described below, but the end
1237 * result is that we return the size of the log as the amount of space left.
1250 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1251 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1252 tail_bytes
= BBTOB(tail_bytes
);
1253 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1254 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1255 else if (tail_cycle
+ 1 < head_cycle
)
1257 else if (tail_cycle
< head_cycle
) {
1258 ASSERT(tail_cycle
== (head_cycle
- 1));
1259 free_bytes
= tail_bytes
- head_bytes
;
1262 * The reservation head is behind the tail.
1263 * In this case we just want to return the size of the
1264 * log as the amount of space left.
1266 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1267 xfs_alert(log
->l_mp
,
1268 " tail_cycle = %d, tail_bytes = %d",
1269 tail_cycle
, tail_bytes
);
1270 xfs_alert(log
->l_mp
,
1271 " GH cycle = %d, GH bytes = %d",
1272 head_cycle
, head_bytes
);
1274 free_bytes
= log
->l_logsize
;
1282 struct work_struct
*work
)
1284 struct xlog_in_core
*iclog
=
1285 container_of(work
, struct xlog_in_core
, ic_end_io_work
);
1286 struct xlog
*log
= iclog
->ic_log
;
1287 bool aborted
= false;
1290 error
= blk_status_to_errno(iclog
->ic_bio
.bi_status
);
1292 /* treat writes with injected CRC errors as failed */
1293 if (iclog
->ic_fail_crc
)
1298 * Race to shutdown the filesystem if we see an error.
1300 if (XFS_TEST_ERROR(error
, log
->l_mp
, XFS_ERRTAG_IODONE_IOERR
)) {
1301 xfs_alert(log
->l_mp
, "log I/O error %d", error
);
1302 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1304 * This flag will be propagated to the trans-committed
1305 * callback routines to let them know that the log-commit
1309 } else if (iclog
->ic_state
== XLOG_STATE_IOERROR
) {
1313 xlog_state_done_syncing(iclog
, aborted
);
1314 bio_uninit(&iclog
->ic_bio
);
1317 * Drop the lock to signal that we are done. Nothing references the
1318 * iclog after this, so an unmount waiting on this lock can now tear it
1319 * down safely. As such, it is unsafe to reference the iclog after the
1320 * unlock as we could race with it being freed.
1322 up(&iclog
->ic_sema
);
1326 * Return size of each in-core log record buffer.
1328 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1330 * If the filesystem blocksize is too large, we may need to choose a
1331 * larger size since the directory code currently logs entire blocks.
1334 xlog_get_iclog_buffer_size(
1335 struct xfs_mount
*mp
,
1338 if (mp
->m_logbufs
<= 0)
1339 mp
->m_logbufs
= XLOG_MAX_ICLOGS
;
1340 if (mp
->m_logbsize
<= 0)
1341 mp
->m_logbsize
= XLOG_BIG_RECORD_BSIZE
;
1343 log
->l_iclog_bufs
= mp
->m_logbufs
;
1344 log
->l_iclog_size
= mp
->m_logbsize
;
1347 * # headers = size / 32k - one header holds cycles from 32k of data.
1349 log
->l_iclog_heads
=
1350 DIV_ROUND_UP(mp
->m_logbsize
, XLOG_HEADER_CYCLE_SIZE
);
1351 log
->l_iclog_hsize
= log
->l_iclog_heads
<< BBSHIFT
;
1356 struct xfs_mount
*mp
)
1358 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1359 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1363 * Every sync period we need to unpin all items in the AIL and push them to
1364 * disk. If there is nothing dirty, then we might need to cover the log to
1365 * indicate that the filesystem is idle.
1369 struct work_struct
*work
)
1371 struct xlog
*log
= container_of(to_delayed_work(work
),
1372 struct xlog
, l_work
);
1373 struct xfs_mount
*mp
= log
->l_mp
;
1375 /* dgc: errors ignored - not fatal and nowhere to report them */
1376 if (xfs_log_need_covered(mp
)) {
1378 * Dump a transaction into the log that contains no real change.
1379 * This is needed to stamp the current tail LSN into the log
1380 * during the covering operation.
1382 * We cannot use an inode here for this - that will push dirty
1383 * state back up into the VFS and then periodic inode flushing
1384 * will prevent log covering from making progress. Hence we
1385 * synchronously log the superblock instead to ensure the
1386 * superblock is immediately unpinned and can be written back.
1388 xfs_sync_sb(mp
, true);
1390 xfs_log_force(mp
, 0);
1392 /* start pushing all the metadata that is currently dirty */
1393 xfs_ail_push_all(mp
->m_ail
);
1395 /* queue us up again */
1396 xfs_log_work_queue(mp
);
1400 * This routine initializes some of the log structure for a given mount point.
1401 * Its primary purpose is to fill in enough, so recovery can occur. However,
1402 * some other stuff may be filled in too.
1404 STATIC
struct xlog
*
1406 struct xfs_mount
*mp
,
1407 struct xfs_buftarg
*log_target
,
1408 xfs_daddr_t blk_offset
,
1412 xlog_rec_header_t
*head
;
1413 xlog_in_core_t
**iclogp
;
1414 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1416 int error
= -ENOMEM
;
1419 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1421 xfs_warn(mp
, "Log allocation failed: No memory!");
1426 log
->l_targ
= log_target
;
1427 log
->l_logsize
= BBTOB(num_bblks
);
1428 log
->l_logBBstart
= blk_offset
;
1429 log
->l_logBBsize
= num_bblks
;
1430 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1431 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1432 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1434 log
->l_prev_block
= -1;
1435 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1437 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1438 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1440 xlog_grant_head_init(&log
->l_reserve_head
);
1441 xlog_grant_head_init(&log
->l_write_head
);
1443 error
= -EFSCORRUPTED
;
1444 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1445 log2_size
= mp
->m_sb
.sb_logsectlog
;
1446 if (log2_size
< BBSHIFT
) {
1447 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1448 log2_size
, BBSHIFT
);
1452 log2_size
-= BBSHIFT
;
1453 if (log2_size
> mp
->m_sectbb_log
) {
1454 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1455 log2_size
, mp
->m_sectbb_log
);
1459 /* for larger sector sizes, must have v2 or external log */
1460 if (log2_size
&& log
->l_logBBstart
> 0 &&
1461 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1463 "log sector size (0x%x) invalid for configuration.",
1468 log
->l_sectBBsize
= 1 << log2_size
;
1470 xlog_get_iclog_buffer_size(mp
, log
);
1472 spin_lock_init(&log
->l_icloglock
);
1473 init_waitqueue_head(&log
->l_flush_wait
);
1475 iclogp
= &log
->l_iclog
;
1477 * The amount of memory to allocate for the iclog structure is
1478 * rather funky due to the way the structure is defined. It is
1479 * done this way so that we can use different sizes for machines
1480 * with different amounts of memory. See the definition of
1481 * xlog_in_core_t in xfs_log_priv.h for details.
1483 ASSERT(log
->l_iclog_size
>= 4096);
1484 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1485 int align_mask
= xfs_buftarg_dma_alignment(mp
->m_logdev_targp
);
1486 size_t bvec_size
= howmany(log
->l_iclog_size
, PAGE_SIZE
) *
1487 sizeof(struct bio_vec
);
1489 iclog
= kmem_zalloc(sizeof(*iclog
) + bvec_size
, KM_MAYFAIL
);
1491 goto out_free_iclog
;
1494 iclog
->ic_prev
= prev_iclog
;
1497 iclog
->ic_data
= kmem_alloc_io(log
->l_iclog_size
, align_mask
,
1498 KM_MAYFAIL
| KM_ZERO
);
1499 if (!iclog
->ic_data
)
1500 goto out_free_iclog
;
1502 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1504 head
= &iclog
->ic_header
;
1505 memset(head
, 0, sizeof(xlog_rec_header_t
));
1506 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1507 head
->h_version
= cpu_to_be32(
1508 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1509 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1511 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1512 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1514 iclog
->ic_size
= log
->l_iclog_size
- log
->l_iclog_hsize
;
1515 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1516 iclog
->ic_log
= log
;
1517 atomic_set(&iclog
->ic_refcnt
, 0);
1518 spin_lock_init(&iclog
->ic_callback_lock
);
1519 INIT_LIST_HEAD(&iclog
->ic_callbacks
);
1520 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1522 init_waitqueue_head(&iclog
->ic_force_wait
);
1523 init_waitqueue_head(&iclog
->ic_write_wait
);
1524 INIT_WORK(&iclog
->ic_end_io_work
, xlog_ioend_work
);
1525 sema_init(&iclog
->ic_sema
, 1);
1527 iclogp
= &iclog
->ic_next
;
1529 *iclogp
= log
->l_iclog
; /* complete ring */
1530 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1532 log
->l_ioend_workqueue
= alloc_workqueue("xfs-log/%s",
1533 WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_HIGHPRI
, 0,
1535 if (!log
->l_ioend_workqueue
)
1536 goto out_free_iclog
;
1538 error
= xlog_cil_init(log
);
1540 goto out_destroy_workqueue
;
1543 out_destroy_workqueue
:
1544 destroy_workqueue(log
->l_ioend_workqueue
);
1546 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1547 prev_iclog
= iclog
->ic_next
;
1548 kmem_free(iclog
->ic_data
);
1550 if (prev_iclog
== log
->l_iclog
)
1556 return ERR_PTR(error
);
1557 } /* xlog_alloc_log */
1561 * Write out the commit record of a transaction associated with the given
1562 * ticket. Return the lsn of the commit record.
1567 struct xlog_ticket
*ticket
,
1568 struct xlog_in_core
**iclog
,
1569 xfs_lsn_t
*commitlsnp
)
1571 struct xfs_mount
*mp
= log
->l_mp
;
1573 struct xfs_log_iovec reg
= {
1576 .i_type
= XLOG_REG_TYPE_COMMIT
,
1578 struct xfs_log_vec vec
= {
1583 ASSERT_ALWAYS(iclog
);
1584 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1587 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1592 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1593 * log space. This code pushes on the lsn which would supposedly free up
1594 * the 25% which we want to leave free. We may need to adopt a policy which
1595 * pushes on an lsn which is further along in the log once we reach the high
1596 * water mark. In this manner, we would be creating a low water mark.
1599 xlog_grant_push_ail(
1603 xfs_lsn_t threshold_lsn
= 0;
1604 xfs_lsn_t last_sync_lsn
;
1607 int threshold_block
;
1608 int threshold_cycle
;
1611 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1613 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1614 free_blocks
= BTOBBT(free_bytes
);
1617 * Set the threshold for the minimum number of free blocks in the
1618 * log to the maximum of what the caller needs, one quarter of the
1619 * log, and 256 blocks.
1621 free_threshold
= BTOBB(need_bytes
);
1622 free_threshold
= max(free_threshold
, (log
->l_logBBsize
>> 2));
1623 free_threshold
= max(free_threshold
, 256);
1624 if (free_blocks
>= free_threshold
)
1627 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1629 threshold_block
+= free_threshold
;
1630 if (threshold_block
>= log
->l_logBBsize
) {
1631 threshold_block
-= log
->l_logBBsize
;
1632 threshold_cycle
+= 1;
1634 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1637 * Don't pass in an lsn greater than the lsn of the last
1638 * log record known to be on disk. Use a snapshot of the last sync lsn
1639 * so that it doesn't change between the compare and the set.
1641 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1642 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1643 threshold_lsn
= last_sync_lsn
;
1646 * Get the transaction layer to kick the dirty buffers out to
1647 * disk asynchronously. No point in trying to do this if
1648 * the filesystem is shutting down.
1650 if (!XLOG_FORCED_SHUTDOWN(log
))
1651 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1655 * Stamp cycle number in every block
1660 struct xlog_in_core
*iclog
,
1664 int size
= iclog
->ic_offset
+ roundoff
;
1668 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1670 dp
= iclog
->ic_datap
;
1671 for (i
= 0; i
< BTOBB(size
); i
++) {
1672 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1674 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1675 *(__be32
*)dp
= cycle_lsn
;
1679 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1680 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1682 for ( ; i
< BTOBB(size
); i
++) {
1683 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1684 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1685 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1686 *(__be32
*)dp
= cycle_lsn
;
1690 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1691 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1696 * Calculate the checksum for a log buffer.
1698 * This is a little more complicated than it should be because the various
1699 * headers and the actual data are non-contiguous.
1704 struct xlog_rec_header
*rhead
,
1710 /* first generate the crc for the record header ... */
1711 crc
= xfs_start_cksum_update((char *)rhead
,
1712 sizeof(struct xlog_rec_header
),
1713 offsetof(struct xlog_rec_header
, h_crc
));
1715 /* ... then for additional cycle data for v2 logs ... */
1716 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1717 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1721 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1722 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1725 for (i
= 1; i
< xheads
; i
++) {
1726 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1727 sizeof(struct xlog_rec_ext_header
));
1731 /* ... and finally for the payload */
1732 crc
= crc32c(crc
, dp
, size
);
1734 return xfs_end_cksum(crc
);
1741 struct xlog_in_core
*iclog
= bio
->bi_private
;
1743 queue_work(iclog
->ic_log
->l_ioend_workqueue
,
1744 &iclog
->ic_end_io_work
);
1748 xlog_map_iclog_data(
1754 struct page
*page
= kmem_to_page(data
);
1755 unsigned int off
= offset_in_page(data
);
1756 size_t len
= min_t(size_t, count
, PAGE_SIZE
- off
);
1758 WARN_ON_ONCE(bio_add_page(bio
, page
, len
, off
) != len
);
1768 struct xlog_in_core
*iclog
,
1773 ASSERT(bno
< log
->l_logBBsize
);
1776 * We lock the iclogbufs here so that we can serialise against I/O
1777 * completion during unmount. We might be processing a shutdown
1778 * triggered during unmount, and that can occur asynchronously to the
1779 * unmount thread, and hence we need to ensure that completes before
1780 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1781 * across the log IO to archieve that.
1783 down(&iclog
->ic_sema
);
1784 if (unlikely(iclog
->ic_state
== XLOG_STATE_IOERROR
)) {
1786 * It would seem logical to return EIO here, but we rely on
1787 * the log state machine to propagate I/O errors instead of
1788 * doing it here. We kick of the state machine and unlock
1789 * the buffer manually, the code needs to be kept in sync
1790 * with the I/O completion path.
1792 xlog_state_done_syncing(iclog
, true);
1793 up(&iclog
->ic_sema
);
1797 bio_init(&iclog
->ic_bio
, iclog
->ic_bvec
, howmany(count
, PAGE_SIZE
));
1798 bio_set_dev(&iclog
->ic_bio
, log
->l_targ
->bt_bdev
);
1799 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
+ bno
;
1800 iclog
->ic_bio
.bi_end_io
= xlog_bio_end_io
;
1801 iclog
->ic_bio
.bi_private
= iclog
;
1802 iclog
->ic_bio
.bi_opf
= REQ_OP_WRITE
| REQ_META
| REQ_SYNC
| REQ_FUA
;
1804 iclog
->ic_bio
.bi_opf
|= REQ_PREFLUSH
;
1806 xlog_map_iclog_data(&iclog
->ic_bio
, iclog
->ic_data
, count
);
1807 if (is_vmalloc_addr(iclog
->ic_data
))
1808 flush_kernel_vmap_range(iclog
->ic_data
, count
);
1811 * If this log buffer would straddle the end of the log we will have
1812 * to split it up into two bios, so that we can continue at the start.
1814 if (bno
+ BTOBB(count
) > log
->l_logBBsize
) {
1817 split
= bio_split(&iclog
->ic_bio
, log
->l_logBBsize
- bno
,
1818 GFP_NOIO
, &fs_bio_set
);
1819 bio_chain(split
, &iclog
->ic_bio
);
1822 /* restart at logical offset zero for the remainder */
1823 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
;
1826 submit_bio(&iclog
->ic_bio
);
1830 * We need to bump cycle number for the part of the iclog that is
1831 * written to the start of the log. Watch out for the header magic
1832 * number case, though.
1841 unsigned int split_offset
= BBTOB(log
->l_logBBsize
- bno
);
1844 for (i
= split_offset
; i
< count
; i
+= BBSIZE
) {
1845 uint32_t cycle
= get_unaligned_be32(data
+ i
);
1847 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1849 put_unaligned_be32(cycle
, data
+ i
);
1854 xlog_calc_iclog_size(
1856 struct xlog_in_core
*iclog
,
1859 uint32_t count_init
, count
;
1862 use_lsunit
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
1863 log
->l_mp
->m_sb
.sb_logsunit
> 1;
1865 /* Add for LR header */
1866 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1868 /* Round out the log write size */
1870 /* we have a v2 stripe unit to use */
1871 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1873 count
= BBTOB(BTOBB(count_init
));
1876 ASSERT(count
>= count_init
);
1877 *roundoff
= count
- count_init
;
1880 ASSERT(*roundoff
< log
->l_mp
->m_sb
.sb_logsunit
);
1882 ASSERT(*roundoff
< BBTOB(1));
1887 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1888 * fashion. Previously, we should have moved the current iclog
1889 * ptr in the log to point to the next available iclog. This allows further
1890 * write to continue while this code syncs out an iclog ready to go.
1891 * Before an in-core log can be written out, the data section must be scanned
1892 * to save away the 1st word of each BBSIZE block into the header. We replace
1893 * it with the current cycle count. Each BBSIZE block is tagged with the
1894 * cycle count because there in an implicit assumption that drives will
1895 * guarantee that entire 512 byte blocks get written at once. In other words,
1896 * we can't have part of a 512 byte block written and part not written. By
1897 * tagging each block, we will know which blocks are valid when recovering
1898 * after an unclean shutdown.
1900 * This routine is single threaded on the iclog. No other thread can be in
1901 * this routine with the same iclog. Changing contents of iclog can there-
1902 * fore be done without grabbing the state machine lock. Updating the global
1903 * log will require grabbing the lock though.
1905 * The entire log manager uses a logical block numbering scheme. Only
1906 * xlog_write_iclog knows about the fact that the log may not start with
1907 * block zero on a given device.
1912 struct xlog_in_core
*iclog
)
1914 unsigned int count
; /* byte count of bwrite */
1915 unsigned int roundoff
; /* roundoff to BB or stripe */
1918 bool need_flush
= true, split
= false;
1920 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1922 count
= xlog_calc_iclog_size(log
, iclog
, &roundoff
);
1924 /* move grant heads by roundoff in sync */
1925 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1926 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1928 /* put cycle number in every block */
1929 xlog_pack_data(log
, iclog
, roundoff
);
1931 /* real byte length */
1932 size
= iclog
->ic_offset
;
1933 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
))
1935 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1937 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1938 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1940 bno
= BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
));
1942 /* Do we need to split this write into 2 parts? */
1943 if (bno
+ BTOBB(count
) > log
->l_logBBsize
) {
1944 xlog_split_iclog(log
, &iclog
->ic_header
, bno
, count
);
1948 /* calculcate the checksum */
1949 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1950 iclog
->ic_datap
, size
);
1952 * Intentionally corrupt the log record CRC based on the error injection
1953 * frequency, if defined. This facilitates testing log recovery in the
1954 * event of torn writes. Hence, set the IOABORT state to abort the log
1955 * write on I/O completion and shutdown the fs. The subsequent mount
1956 * detects the bad CRC and attempts to recover.
1959 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1960 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1961 iclog
->ic_fail_crc
= true;
1963 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1964 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1969 * Flush the data device before flushing the log to make sure all meta
1970 * data written back from the AIL actually made it to disk before
1971 * stamping the new log tail LSN into the log buffer. For an external
1972 * log we need to issue the flush explicitly, and unfortunately
1973 * synchronously here; for an internal log we can simply use the block
1974 * layer state machine for preflushes.
1976 if (log
->l_targ
!= log
->l_mp
->m_ddev_targp
|| split
) {
1977 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1981 xlog_verify_iclog(log
, iclog
, count
);
1982 xlog_write_iclog(log
, iclog
, bno
, count
, need_flush
);
1986 * Deallocate a log structure
1992 xlog_in_core_t
*iclog
, *next_iclog
;
1995 xlog_cil_destroy(log
);
1998 * Cycle all the iclogbuf locks to make sure all log IO completion
1999 * is done before we tear down these buffers.
2001 iclog
= log
->l_iclog
;
2002 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2003 down(&iclog
->ic_sema
);
2004 up(&iclog
->ic_sema
);
2005 iclog
= iclog
->ic_next
;
2008 iclog
= log
->l_iclog
;
2009 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2010 next_iclog
= iclog
->ic_next
;
2011 kmem_free(iclog
->ic_data
);
2016 log
->l_mp
->m_log
= NULL
;
2017 destroy_workqueue(log
->l_ioend_workqueue
);
2019 } /* xlog_dealloc_log */
2022 * Update counters atomically now that memcpy is done.
2025 xlog_state_finish_copy(
2027 struct xlog_in_core
*iclog
,
2031 lockdep_assert_held(&log
->l_icloglock
);
2033 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2034 iclog
->ic_offset
+= copy_bytes
;
2038 * print out info relating to regions written which consume
2043 struct xfs_mount
*mp
,
2044 struct xlog_ticket
*ticket
)
2047 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2049 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2050 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2051 static char *res_type_str
[] = {
2052 REG_TYPE_STR(BFORMAT
, "bformat"),
2053 REG_TYPE_STR(BCHUNK
, "bchunk"),
2054 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2055 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2056 REG_TYPE_STR(IFORMAT
, "iformat"),
2057 REG_TYPE_STR(ICORE
, "icore"),
2058 REG_TYPE_STR(IEXT
, "iext"),
2059 REG_TYPE_STR(IBROOT
, "ibroot"),
2060 REG_TYPE_STR(ILOCAL
, "ilocal"),
2061 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2062 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2063 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2064 REG_TYPE_STR(QFORMAT
, "qformat"),
2065 REG_TYPE_STR(DQUOT
, "dquot"),
2066 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2067 REG_TYPE_STR(LRHEADER
, "LR header"),
2068 REG_TYPE_STR(UNMOUNT
, "unmount"),
2069 REG_TYPE_STR(COMMIT
, "commit"),
2070 REG_TYPE_STR(TRANSHDR
, "trans header"),
2071 REG_TYPE_STR(ICREATE
, "inode create"),
2072 REG_TYPE_STR(RUI_FORMAT
, "rui_format"),
2073 REG_TYPE_STR(RUD_FORMAT
, "rud_format"),
2074 REG_TYPE_STR(CUI_FORMAT
, "cui_format"),
2075 REG_TYPE_STR(CUD_FORMAT
, "cud_format"),
2076 REG_TYPE_STR(BUI_FORMAT
, "bui_format"),
2077 REG_TYPE_STR(BUD_FORMAT
, "bud_format"),
2079 BUILD_BUG_ON(ARRAY_SIZE(res_type_str
) != XLOG_REG_TYPE_MAX
+ 1);
2082 xfs_warn(mp
, "ticket reservation summary:");
2083 xfs_warn(mp
, " unit res = %d bytes",
2084 ticket
->t_unit_res
);
2085 xfs_warn(mp
, " current res = %d bytes",
2086 ticket
->t_curr_res
);
2087 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2088 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2089 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2090 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2091 xfs_warn(mp
, " ophdr + reg = %u bytes",
2092 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2093 xfs_warn(mp
, " num regions = %u",
2096 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2097 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2098 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2099 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2100 "bad-rtype" : res_type_str
[r_type
]),
2101 ticket
->t_res_arr
[i
].r_len
);
2106 * Print a summary of the transaction.
2110 struct xfs_trans
*tp
)
2112 struct xfs_mount
*mp
= tp
->t_mountp
;
2113 struct xfs_log_item
*lip
;
2115 /* dump core transaction and ticket info */
2116 xfs_warn(mp
, "transaction summary:");
2117 xfs_warn(mp
, " log res = %d", tp
->t_log_res
);
2118 xfs_warn(mp
, " log count = %d", tp
->t_log_count
);
2119 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2121 xlog_print_tic_res(mp
, tp
->t_ticket
);
2123 /* dump each log item */
2124 list_for_each_entry(lip
, &tp
->t_items
, li_trans
) {
2125 struct xfs_log_vec
*lv
= lip
->li_lv
;
2126 struct xfs_log_iovec
*vec
;
2129 xfs_warn(mp
, "log item: ");
2130 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2131 xfs_warn(mp
, " flags = 0x%lx", lip
->li_flags
);
2134 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2135 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2136 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2137 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2139 /* dump each iovec for the log item */
2140 vec
= lv
->lv_iovecp
;
2141 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2142 int dumplen
= min(vec
->i_len
, 32);
2144 xfs_warn(mp
, " iovec[%d]", i
);
2145 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2146 xfs_warn(mp
, " len = %d", vec
->i_len
);
2147 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2148 xfs_hex_dump(vec
->i_addr
, dumplen
);
2156 * Calculate the potential space needed by the log vector. Each region gets
2157 * its own xlog_op_header_t and may need to be double word aligned.
2160 xlog_write_calc_vec_length(
2161 struct xlog_ticket
*ticket
,
2162 struct xfs_log_vec
*log_vector
)
2164 struct xfs_log_vec
*lv
;
2169 /* acct for start rec of xact */
2170 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2173 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2174 /* we don't write ordered log vectors */
2175 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2178 headers
+= lv
->lv_niovecs
;
2180 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2181 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2184 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2188 ticket
->t_res_num_ophdrs
+= headers
;
2189 len
+= headers
* sizeof(struct xlog_op_header
);
2195 * If first write for transaction, insert start record We can't be trying to
2196 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2199 xlog_write_start_rec(
2200 struct xlog_op_header
*ophdr
,
2201 struct xlog_ticket
*ticket
)
2203 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2206 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2207 ophdr
->oh_clientid
= ticket
->t_clientid
;
2209 ophdr
->oh_flags
= XLOG_START_TRANS
;
2212 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2214 return sizeof(struct xlog_op_header
);
2217 static xlog_op_header_t
*
2218 xlog_write_setup_ophdr(
2220 struct xlog_op_header
*ophdr
,
2221 struct xlog_ticket
*ticket
,
2224 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2225 ophdr
->oh_clientid
= ticket
->t_clientid
;
2228 /* are we copying a commit or unmount record? */
2229 ophdr
->oh_flags
= flags
;
2232 * We've seen logs corrupted with bad transaction client ids. This
2233 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2234 * and shut down the filesystem.
2236 switch (ophdr
->oh_clientid
) {
2237 case XFS_TRANSACTION
:
2243 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT
,
2244 ophdr
->oh_clientid
, ticket
);
2252 * Set up the parameters of the region copy into the log. This has
2253 * to handle region write split across multiple log buffers - this
2254 * state is kept external to this function so that this code can
2255 * be written in an obvious, self documenting manner.
2258 xlog_write_setup_copy(
2259 struct xlog_ticket
*ticket
,
2260 struct xlog_op_header
*ophdr
,
2261 int space_available
,
2265 int *last_was_partial_copy
,
2266 int *bytes_consumed
)
2270 still_to_copy
= space_required
- *bytes_consumed
;
2271 *copy_off
= *bytes_consumed
;
2273 if (still_to_copy
<= space_available
) {
2274 /* write of region completes here */
2275 *copy_len
= still_to_copy
;
2276 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2277 if (*last_was_partial_copy
)
2278 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2279 *last_was_partial_copy
= 0;
2280 *bytes_consumed
= 0;
2284 /* partial write of region, needs extra log op header reservation */
2285 *copy_len
= space_available
;
2286 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2287 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2288 if (*last_was_partial_copy
)
2289 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2290 *bytes_consumed
+= *copy_len
;
2291 (*last_was_partial_copy
)++;
2293 /* account for new log op header */
2294 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2295 ticket
->t_res_num_ophdrs
++;
2297 return sizeof(struct xlog_op_header
);
2301 xlog_write_copy_finish(
2303 struct xlog_in_core
*iclog
,
2308 int *partial_copy_len
,
2310 struct xlog_in_core
**commit_iclog
)
2314 if (*partial_copy
) {
2316 * This iclog has already been marked WANT_SYNC by
2317 * xlog_state_get_iclog_space.
2319 spin_lock(&log
->l_icloglock
);
2320 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2327 *partial_copy_len
= 0;
2329 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2330 /* no more space in this iclog - push it. */
2331 spin_lock(&log
->l_icloglock
);
2332 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2336 xlog_state_want_sync(log
, iclog
);
2339 spin_unlock(&log
->l_icloglock
);
2340 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2341 *commit_iclog
= iclog
;
2347 error
= xlog_state_release_iclog(log
, iclog
);
2348 spin_unlock(&log
->l_icloglock
);
2353 * Write some region out to in-core log
2355 * This will be called when writing externally provided regions or when
2356 * writing out a commit record for a given transaction.
2358 * General algorithm:
2359 * 1. Find total length of this write. This may include adding to the
2360 * lengths passed in.
2361 * 2. Check whether we violate the tickets reservation.
2362 * 3. While writing to this iclog
2363 * A. Reserve as much space in this iclog as can get
2364 * B. If this is first write, save away start lsn
2365 * C. While writing this region:
2366 * 1. If first write of transaction, write start record
2367 * 2. Write log operation header (header per region)
2368 * 3. Find out if we can fit entire region into this iclog
2369 * 4. Potentially, verify destination memcpy ptr
2370 * 5. Memcpy (partial) region
2371 * 6. If partial copy, release iclog; otherwise, continue
2372 * copying more regions into current iclog
2373 * 4. Mark want sync bit (in simulation mode)
2374 * 5. Release iclog for potential flush to on-disk log.
2377 * 1. Panic if reservation is overrun. This should never happen since
2378 * reservation amounts are generated internal to the filesystem.
2380 * 1. Tickets are single threaded data structures.
2381 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2382 * syncing routine. When a single log_write region needs to span
2383 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2384 * on all log operation writes which don't contain the end of the
2385 * region. The XLOG_END_TRANS bit is used for the in-core log
2386 * operation which contains the end of the continued log_write region.
2387 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2388 * we don't really know exactly how much space will be used. As a result,
2389 * we don't update ic_offset until the end when we know exactly how many
2390 * bytes have been written out.
2395 struct xfs_log_vec
*log_vector
,
2396 struct xlog_ticket
*ticket
,
2397 xfs_lsn_t
*start_lsn
,
2398 struct xlog_in_core
**commit_iclog
,
2401 struct xlog_in_core
*iclog
= NULL
;
2402 struct xfs_log_iovec
*vecp
;
2403 struct xfs_log_vec
*lv
;
2406 int partial_copy
= 0;
2407 int partial_copy_len
= 0;
2415 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2418 * Region headers and bytes are already accounted for.
2419 * We only need to take into account start records and
2420 * split regions in this function.
2422 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2423 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2426 * Commit record headers need to be accounted for. These
2427 * come in as separate writes so are easy to detect.
2429 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2430 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2432 if (ticket
->t_curr_res
< 0) {
2433 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2434 "ctx ticket reservation ran out. Need to up reservation");
2435 xlog_print_tic_res(log
->l_mp
, ticket
);
2436 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2441 vecp
= lv
->lv_iovecp
;
2442 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2446 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2447 &contwr
, &log_offset
);
2451 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2452 ptr
= iclog
->ic_datap
+ log_offset
;
2454 /* start_lsn is the first lsn written to. That's all we need. */
2456 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2459 * This loop writes out as many regions as can fit in the amount
2460 * of space which was allocated by xlog_state_get_iclog_space().
2462 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2463 struct xfs_log_iovec
*reg
;
2464 struct xlog_op_header
*ophdr
;
2468 bool ordered
= false;
2470 /* ordered log vectors have no regions to write */
2471 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2472 ASSERT(lv
->lv_niovecs
== 0);
2478 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2479 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2481 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2482 if (start_rec_copy
) {
2484 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2488 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2492 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2493 sizeof(struct xlog_op_header
));
2495 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2496 iclog
->ic_size
-log_offset
,
2498 ©_off
, ©_len
,
2501 xlog_verify_dest_ptr(log
, ptr
);
2506 * Unmount records just log an opheader, so can have
2507 * empty payloads with no data region to copy. Hence we
2508 * only copy the payload if the vector says it has data
2511 ASSERT(copy_len
>= 0);
2513 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2514 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2517 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2519 data_cnt
+= contwr
? copy_len
: 0;
2521 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2522 &record_cnt
, &data_cnt
,
2531 * if we had a partial copy, we need to get more iclog
2532 * space but we don't want to increment the region
2533 * index because there is still more is this region to
2536 * If we completed writing this region, and we flushed
2537 * the iclog (indicated by resetting of the record
2538 * count), then we also need to get more log space. If
2539 * this was the last record, though, we are done and
2545 if (++index
== lv
->lv_niovecs
) {
2550 vecp
= lv
->lv_iovecp
;
2552 if (record_cnt
== 0 && !ordered
) {
2562 spin_lock(&log
->l_icloglock
);
2563 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2565 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2566 *commit_iclog
= iclog
;
2568 error
= xlog_state_release_iclog(log
, iclog
);
2570 spin_unlock(&log
->l_icloglock
);
2576 /*****************************************************************************
2578 * State Machine functions
2580 *****************************************************************************
2584 * An iclog has just finished IO completion processing, so we need to update
2585 * the iclog state and propagate that up into the overall log state. Hence we
2586 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2587 * starting from the head, and then wake up any threads that are waiting for the
2588 * iclog to be marked clean.
2590 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2591 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to
2592 * maintain the notion that we use a ordered wait queue to hold off would be
2593 * writers to the log when every iclog is trying to sync to disk.
2595 * Caller must hold the icloglock before calling us.
2597 * State Change: !IOERROR -> DIRTY -> ACTIVE
2600 xlog_state_clean_iclog(
2602 struct xlog_in_core
*dirty_iclog
)
2604 struct xlog_in_core
*iclog
;
2607 /* Prepare the completed iclog. */
2608 if (dirty_iclog
->ic_state
!= XLOG_STATE_IOERROR
)
2609 dirty_iclog
->ic_state
= XLOG_STATE_DIRTY
;
2611 /* Walk all the iclogs to update the ordered active state. */
2612 iclog
= log
->l_iclog
;
2614 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2615 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2616 iclog
->ic_offset
= 0;
2617 ASSERT(list_empty_careful(&iclog
->ic_callbacks
));
2619 * If the number of ops in this iclog indicate it just
2620 * contains the dummy transaction, we can
2621 * change state into IDLE (the second time around).
2622 * Otherwise we should change the state into
2624 * We don't need to cover the dummy.
2627 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2632 * We have two dirty iclogs so start over
2633 * This could also be num of ops indicates
2634 * this is not the dummy going out.
2638 iclog
->ic_header
.h_num_logops
= 0;
2639 memset(iclog
->ic_header
.h_cycle_data
, 0,
2640 sizeof(iclog
->ic_header
.h_cycle_data
));
2641 iclog
->ic_header
.h_lsn
= 0;
2642 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2645 break; /* stop cleaning */
2646 iclog
= iclog
->ic_next
;
2647 } while (iclog
!= log
->l_iclog
);
2651 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2654 wake_up_all(&dirty_iclog
->ic_force_wait
);
2657 * Change state for the dummy log recording.
2658 * We usually go to NEED. But we go to NEED2 if the changed indicates
2659 * we are done writing the dummy record.
2660 * If we are done with the second dummy recored (DONE2), then
2664 switch (log
->l_covered_state
) {
2665 case XLOG_STATE_COVER_IDLE
:
2666 case XLOG_STATE_COVER_NEED
:
2667 case XLOG_STATE_COVER_NEED2
:
2668 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2671 case XLOG_STATE_COVER_DONE
:
2673 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2675 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2678 case XLOG_STATE_COVER_DONE2
:
2680 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2682 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2692 xlog_get_lowest_lsn(
2695 struct xlog_in_core
*iclog
= log
->l_iclog
;
2696 xfs_lsn_t lowest_lsn
= 0, lsn
;
2699 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2700 iclog
->ic_state
== XLOG_STATE_DIRTY
)
2703 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2704 if ((lsn
&& !lowest_lsn
) || XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)
2706 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
2712 * Completion of a iclog IO does not imply that a transaction has completed, as
2713 * transactions can be large enough to span many iclogs. We cannot change the
2714 * tail of the log half way through a transaction as this may be the only
2715 * transaction in the log and moving the tail to point to the middle of it
2716 * will prevent recovery from finding the start of the transaction. Hence we
2717 * should only update the last_sync_lsn if this iclog contains transaction
2718 * completion callbacks on it.
2720 * We have to do this before we drop the icloglock to ensure we are the only one
2721 * that can update it.
2723 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2724 * the reservation grant head pushing. This is due to the fact that the push
2725 * target is bound by the current last_sync_lsn value. Hence if we have a large
2726 * amount of log space bound up in this committing transaction then the
2727 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2728 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2729 * should push the AIL to ensure the push target (and hence the grant head) is
2730 * no longer bound by the old log head location and can move forwards and make
2734 xlog_state_set_callback(
2736 struct xlog_in_core
*iclog
,
2737 xfs_lsn_t header_lsn
)
2739 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2741 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2744 if (list_empty_careful(&iclog
->ic_callbacks
))
2747 atomic64_set(&log
->l_last_sync_lsn
, header_lsn
);
2748 xlog_grant_push_ail(log
, 0);
2752 * Return true if we need to stop processing, false to continue to the next
2753 * iclog. The caller will need to run callbacks if the iclog is returned in the
2754 * XLOG_STATE_CALLBACK state.
2757 xlog_state_iodone_process_iclog(
2759 struct xlog_in_core
*iclog
,
2762 xfs_lsn_t lowest_lsn
;
2763 xfs_lsn_t header_lsn
;
2765 switch (iclog
->ic_state
) {
2766 case XLOG_STATE_ACTIVE
:
2767 case XLOG_STATE_DIRTY
:
2769 * Skip all iclogs in the ACTIVE & DIRTY states:
2772 case XLOG_STATE_IOERROR
:
2774 * Between marking a filesystem SHUTDOWN and stopping the log,
2775 * we do flush all iclogs to disk (if there wasn't a log I/O
2776 * error). So, we do want things to go smoothly in case of just
2777 * a SHUTDOWN w/o a LOG_IO_ERROR.
2781 case XLOG_STATE_DONE_SYNC
:
2783 * Now that we have an iclog that is in the DONE_SYNC state, do
2784 * one more check here to see if we have chased our tail around.
2785 * If this is not the lowest lsn iclog, then we will leave it
2786 * for another completion to process.
2788 header_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2789 lowest_lsn
= xlog_get_lowest_lsn(log
);
2790 if (lowest_lsn
&& XFS_LSN_CMP(lowest_lsn
, header_lsn
) < 0)
2792 xlog_state_set_callback(log
, iclog
, header_lsn
);
2796 * Can only perform callbacks in order. Since this iclog is not
2797 * in the DONE_SYNC state, we skip the rest and just try to
2805 * Keep processing entries in the iclog callback list until we come around and
2806 * it is empty. We need to atomically see that the list is empty and change the
2807 * state to DIRTY so that we don't miss any more callbacks being added.
2809 * This function is called with the icloglock held and returns with it held. We
2810 * drop it while running callbacks, however, as holding it over thousands of
2811 * callbacks is unnecessary and causes excessive contention if we do.
2814 xlog_state_do_iclog_callbacks(
2816 struct xlog_in_core
*iclog
,
2818 __releases(&log
->l_icloglock
)
2819 __acquires(&log
->l_icloglock
)
2821 spin_unlock(&log
->l_icloglock
);
2822 spin_lock(&iclog
->ic_callback_lock
);
2823 while (!list_empty(&iclog
->ic_callbacks
)) {
2826 list_splice_init(&iclog
->ic_callbacks
, &tmp
);
2828 spin_unlock(&iclog
->ic_callback_lock
);
2829 xlog_cil_process_committed(&tmp
, aborted
);
2830 spin_lock(&iclog
->ic_callback_lock
);
2834 * Pick up the icloglock while still holding the callback lock so we
2835 * serialise against anyone trying to add more callbacks to this iclog
2836 * now we've finished processing.
2838 spin_lock(&log
->l_icloglock
);
2839 spin_unlock(&iclog
->ic_callback_lock
);
2843 xlog_state_do_callback(
2847 struct xlog_in_core
*iclog
;
2848 struct xlog_in_core
*first_iclog
;
2849 bool cycled_icloglock
;
2854 spin_lock(&log
->l_icloglock
);
2857 * Scan all iclogs starting with the one pointed to by the
2858 * log. Reset this starting point each time the log is
2859 * unlocked (during callbacks).
2861 * Keep looping through iclogs until one full pass is made
2862 * without running any callbacks.
2864 first_iclog
= log
->l_iclog
;
2865 iclog
= log
->l_iclog
;
2866 cycled_icloglock
= false;
2871 if (xlog_state_iodone_process_iclog(log
, iclog
,
2875 if (iclog
->ic_state
!= XLOG_STATE_CALLBACK
&&
2876 iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2877 iclog
= iclog
->ic_next
;
2882 * Running callbacks will drop the icloglock which means
2883 * we'll have to run at least one more complete loop.
2885 cycled_icloglock
= true;
2886 xlog_state_do_iclog_callbacks(log
, iclog
, aborted
);
2888 xlog_state_clean_iclog(log
, iclog
);
2889 iclog
= iclog
->ic_next
;
2890 } while (first_iclog
!= iclog
);
2892 if (repeats
> 5000) {
2893 flushcnt
+= repeats
;
2896 "%s: possible infinite loop (%d iterations)",
2897 __func__
, flushcnt
);
2899 } while (!ioerror
&& cycled_icloglock
);
2901 if (log
->l_iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2902 log
->l_iclog
->ic_state
== XLOG_STATE_IOERROR
)
2903 wake_up_all(&log
->l_flush_wait
);
2905 spin_unlock(&log
->l_icloglock
);
2910 * Finish transitioning this iclog to the dirty state.
2912 * Make sure that we completely execute this routine only when this is
2913 * the last call to the iclog. There is a good chance that iclog flushes,
2914 * when we reach the end of the physical log, get turned into 2 separate
2915 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2916 * routine. By using the reference count bwritecnt, we guarantee that only
2917 * the second completion goes through.
2919 * Callbacks could take time, so they are done outside the scope of the
2920 * global state machine log lock.
2923 xlog_state_done_syncing(
2924 struct xlog_in_core
*iclog
,
2927 struct xlog
*log
= iclog
->ic_log
;
2929 spin_lock(&log
->l_icloglock
);
2931 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2934 * If we got an error, either on the first buffer, or in the case of
2935 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2936 * and none should ever be attempted to be written to disk
2939 if (iclog
->ic_state
== XLOG_STATE_SYNCING
)
2940 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2942 ASSERT(iclog
->ic_state
== XLOG_STATE_IOERROR
);
2945 * Someone could be sleeping prior to writing out the next
2946 * iclog buffer, we wake them all, one will get to do the
2947 * I/O, the others get to wait for the result.
2949 wake_up_all(&iclog
->ic_write_wait
);
2950 spin_unlock(&log
->l_icloglock
);
2951 xlog_state_do_callback(log
, aborted
); /* also cleans log */
2952 } /* xlog_state_done_syncing */
2956 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2957 * sleep. We wait on the flush queue on the head iclog as that should be
2958 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2959 * we will wait here and all new writes will sleep until a sync completes.
2961 * The in-core logs are used in a circular fashion. They are not used
2962 * out-of-order even when an iclog past the head is free.
2965 * * log_offset where xlog_write() can start writing into the in-core
2967 * * in-core log pointer to which xlog_write() should write.
2968 * * boolean indicating this is a continued write to an in-core log.
2969 * If this is the last write, then the in-core log's offset field
2970 * needs to be incremented, depending on the amount of data which
2974 xlog_state_get_iclog_space(
2977 struct xlog_in_core
**iclogp
,
2978 struct xlog_ticket
*ticket
,
2979 int *continued_write
,
2983 xlog_rec_header_t
*head
;
2984 xlog_in_core_t
*iclog
;
2987 spin_lock(&log
->l_icloglock
);
2988 if (XLOG_FORCED_SHUTDOWN(log
)) {
2989 spin_unlock(&log
->l_icloglock
);
2993 iclog
= log
->l_iclog
;
2994 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2995 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
2997 /* Wait for log writes to have flushed */
2998 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
3002 head
= &iclog
->ic_header
;
3004 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
3005 log_offset
= iclog
->ic_offset
;
3007 /* On the 1st write to an iclog, figure out lsn. This works
3008 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3009 * committing to. If the offset is set, that's how many blocks
3012 if (log_offset
== 0) {
3013 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
3014 xlog_tic_add_region(ticket
,
3016 XLOG_REG_TYPE_LRHEADER
);
3017 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
3018 head
->h_lsn
= cpu_to_be64(
3019 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
3020 ASSERT(log
->l_curr_block
>= 0);
3023 /* If there is enough room to write everything, then do it. Otherwise,
3024 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3025 * bit is on, so this will get flushed out. Don't update ic_offset
3026 * until you know exactly how many bytes get copied. Therefore, wait
3027 * until later to update ic_offset.
3029 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3030 * can fit into remaining data section.
3032 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
3035 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3038 * If we are the only one writing to this iclog, sync it to
3039 * disk. We need to do an atomic compare and decrement here to
3040 * avoid racing with concurrent atomic_dec_and_lock() calls in
3041 * xlog_state_release_iclog() when there is more than one
3042 * reference to the iclog.
3044 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1))
3045 error
= xlog_state_release_iclog(log
, iclog
);
3046 spin_unlock(&log
->l_icloglock
);
3052 /* Do we have enough room to write the full amount in the remainder
3053 * of this iclog? Or must we continue a write on the next iclog and
3054 * mark this iclog as completely taken? In the case where we switch
3055 * iclogs (to mark it taken), this particular iclog will release/sync
3056 * to disk in xlog_write().
3058 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3059 *continued_write
= 0;
3060 iclog
->ic_offset
+= len
;
3062 *continued_write
= 1;
3063 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3067 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3068 spin_unlock(&log
->l_icloglock
);
3070 *logoffsetp
= log_offset
;
3072 } /* xlog_state_get_iclog_space */
3074 /* The first cnt-1 times through here we don't need to
3075 * move the grant write head because the permanent
3076 * reservation has reserved cnt times the unit amount.
3077 * Release part of current permanent unit reservation and
3078 * reset current reservation to be one units worth. Also
3079 * move grant reservation head forward.
3082 xlog_regrant_reserve_log_space(
3084 struct xlog_ticket
*ticket
)
3086 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3088 if (ticket
->t_cnt
> 0)
3091 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3092 ticket
->t_curr_res
);
3093 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3094 ticket
->t_curr_res
);
3095 ticket
->t_curr_res
= ticket
->t_unit_res
;
3096 xlog_tic_reset_res(ticket
);
3098 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3100 /* just return if we still have some of the pre-reserved space */
3101 if (ticket
->t_cnt
> 0)
3104 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3105 ticket
->t_unit_res
);
3107 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3109 ticket
->t_curr_res
= ticket
->t_unit_res
;
3110 xlog_tic_reset_res(ticket
);
3111 } /* xlog_regrant_reserve_log_space */
3115 * Give back the space left from a reservation.
3117 * All the information we need to make a correct determination of space left
3118 * is present. For non-permanent reservations, things are quite easy. The
3119 * count should have been decremented to zero. We only need to deal with the
3120 * space remaining in the current reservation part of the ticket. If the
3121 * ticket contains a permanent reservation, there may be left over space which
3122 * needs to be released. A count of N means that N-1 refills of the current
3123 * reservation can be done before we need to ask for more space. The first
3124 * one goes to fill up the first current reservation. Once we run out of
3125 * space, the count will stay at zero and the only space remaining will be
3126 * in the current reservation field.
3129 xlog_ungrant_log_space(
3131 struct xlog_ticket
*ticket
)
3135 if (ticket
->t_cnt
> 0)
3138 trace_xfs_log_ungrant_enter(log
, ticket
);
3139 trace_xfs_log_ungrant_sub(log
, ticket
);
3142 * If this is a permanent reservation ticket, we may be able to free
3143 * up more space based on the remaining count.
3145 bytes
= ticket
->t_curr_res
;
3146 if (ticket
->t_cnt
> 0) {
3147 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3148 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3151 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3152 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3154 trace_xfs_log_ungrant_exit(log
, ticket
);
3156 xfs_log_space_wake(log
->l_mp
);
3160 * This routine will mark the current iclog in the ring as WANT_SYNC
3161 * and move the current iclog pointer to the next iclog in the ring.
3162 * When this routine is called from xlog_state_get_iclog_space(), the
3163 * exact size of the iclog has not yet been determined. All we know is
3164 * that every data block. We have run out of space in this log record.
3167 xlog_state_switch_iclogs(
3169 struct xlog_in_core
*iclog
,
3172 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3174 eventual_size
= iclog
->ic_offset
;
3175 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3176 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3177 log
->l_prev_block
= log
->l_curr_block
;
3178 log
->l_prev_cycle
= log
->l_curr_cycle
;
3180 /* roll log?: ic_offset changed later */
3181 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3183 /* Round up to next log-sunit */
3184 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3185 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3186 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3187 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3190 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3192 * Rewind the current block before the cycle is bumped to make
3193 * sure that the combined LSN never transiently moves forward
3194 * when the log wraps to the next cycle. This is to support the
3195 * unlocked sample of these fields from xlog_valid_lsn(). Most
3196 * other cases should acquire l_icloglock.
3198 log
->l_curr_block
-= log
->l_logBBsize
;
3199 ASSERT(log
->l_curr_block
>= 0);
3201 log
->l_curr_cycle
++;
3202 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3203 log
->l_curr_cycle
++;
3205 ASSERT(iclog
== log
->l_iclog
);
3206 log
->l_iclog
= iclog
->ic_next
;
3207 } /* xlog_state_switch_iclogs */
3210 * Write out all data in the in-core log as of this exact moment in time.
3212 * Data may be written to the in-core log during this call. However,
3213 * we don't guarantee this data will be written out. A change from past
3214 * implementation means this routine will *not* write out zero length LRs.
3216 * Basically, we try and perform an intelligent scan of the in-core logs.
3217 * If we determine there is no flushable data, we just return. There is no
3218 * flushable data if:
3220 * 1. the current iclog is active and has no data; the previous iclog
3221 * is in the active or dirty state.
3222 * 2. the current iclog is drity, and the previous iclog is in the
3223 * active or dirty state.
3227 * 1. the current iclog is not in the active nor dirty state.
3228 * 2. the current iclog dirty, and the previous iclog is not in the
3229 * active nor dirty state.
3230 * 3. the current iclog is active, and there is another thread writing
3231 * to this particular iclog.
3232 * 4. a) the current iclog is active and has no other writers
3233 * b) when we return from flushing out this iclog, it is still
3234 * not in the active nor dirty state.
3238 struct xfs_mount
*mp
,
3241 struct xlog
*log
= mp
->m_log
;
3242 struct xlog_in_core
*iclog
;
3245 XFS_STATS_INC(mp
, xs_log_force
);
3246 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3248 xlog_cil_force(log
);
3250 spin_lock(&log
->l_icloglock
);
3251 iclog
= log
->l_iclog
;
3252 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3255 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3256 (iclog
->ic_state
== XLOG_STATE_ACTIVE
&&
3257 atomic_read(&iclog
->ic_refcnt
) == 0 && iclog
->ic_offset
== 0)) {
3259 * If the head is dirty or (active and empty), then we need to
3260 * look at the previous iclog.
3262 * If the previous iclog is active or dirty we are done. There
3263 * is nothing to sync out. Otherwise, we attach ourselves to the
3264 * previous iclog and go to sleep.
3266 iclog
= iclog
->ic_prev
;
3267 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3268 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3270 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3271 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3273 * We are the only one with access to this iclog.
3275 * Flush it out now. There should be a roundoff of zero
3276 * to show that someone has already taken care of the
3277 * roundoff from the previous sync.
3279 atomic_inc(&iclog
->ic_refcnt
);
3280 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3281 xlog_state_switch_iclogs(log
, iclog
, 0);
3282 if (xlog_state_release_iclog(log
, iclog
))
3285 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
||
3286 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3290 * Someone else is writing to this iclog.
3292 * Use its call to flush out the data. However, the
3293 * other thread may not force out this LR, so we mark
3296 xlog_state_switch_iclogs(log
, iclog
, 0);
3300 * If the head iclog is not active nor dirty, we just attach
3301 * ourselves to the head and go to sleep if necessary.
3306 if (!(flags
& XFS_LOG_SYNC
))
3309 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3311 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3312 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3313 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3318 spin_unlock(&log
->l_icloglock
);
3321 spin_unlock(&log
->l_icloglock
);
3326 __xfs_log_force_lsn(
3327 struct xfs_mount
*mp
,
3333 struct xlog
*log
= mp
->m_log
;
3334 struct xlog_in_core
*iclog
;
3336 spin_lock(&log
->l_icloglock
);
3337 iclog
= log
->l_iclog
;
3338 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3341 while (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3342 iclog
= iclog
->ic_next
;
3343 if (iclog
== log
->l_iclog
)
3347 if (iclog
->ic_state
== XLOG_STATE_DIRTY
)
3350 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3352 * We sleep here if we haven't already slept (e.g. this is the
3353 * first time we've looked at the correct iclog buf) and the
3354 * buffer before us is going to be sync'ed. The reason for this
3355 * is that if we are doing sync transactions here, by waiting
3356 * for the previous I/O to complete, we can allow a few more
3357 * transactions into this iclog before we close it down.
3359 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3360 * refcnt so we can release the log (which drops the ref count).
3361 * The state switch keeps new transaction commits from using
3362 * this buffer. When the current commits finish writing into
3363 * the buffer, the refcount will drop to zero and the buffer
3366 if (!already_slept
&&
3367 (iclog
->ic_prev
->ic_state
== XLOG_STATE_WANT_SYNC
||
3368 iclog
->ic_prev
->ic_state
== XLOG_STATE_SYNCING
)) {
3369 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3371 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3375 atomic_inc(&iclog
->ic_refcnt
);
3376 xlog_state_switch_iclogs(log
, iclog
, 0);
3377 if (xlog_state_release_iclog(log
, iclog
))
3383 if (!(flags
& XFS_LOG_SYNC
) ||
3384 (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3385 iclog
->ic_state
== XLOG_STATE_DIRTY
))
3388 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3391 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3392 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3393 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3398 spin_unlock(&log
->l_icloglock
);
3401 spin_unlock(&log
->l_icloglock
);
3406 * Force the in-core log to disk for a specific LSN.
3408 * Find in-core log with lsn.
3409 * If it is in the DIRTY state, just return.
3410 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3411 * state and go to sleep or return.
3412 * If it is in any other state, go to sleep or return.
3414 * Synchronous forces are implemented with a wait queue. All callers trying
3415 * to force a given lsn to disk must wait on the queue attached to the
3416 * specific in-core log. When given in-core log finally completes its write
3417 * to disk, that thread will wake up all threads waiting on the queue.
3421 struct xfs_mount
*mp
,
3429 XFS_STATS_INC(mp
, xs_log_force
);
3430 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3432 lsn
= xlog_cil_force_lsn(mp
->m_log
, lsn
);
3433 if (lsn
== NULLCOMMITLSN
)
3436 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, false);
3438 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, true);
3443 * Called when we want to mark the current iclog as being ready to sync to
3447 xlog_state_want_sync(
3449 struct xlog_in_core
*iclog
)
3451 assert_spin_locked(&log
->l_icloglock
);
3453 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3454 xlog_state_switch_iclogs(log
, iclog
, 0);
3456 ASSERT(iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
3457 iclog
->ic_state
== XLOG_STATE_IOERROR
);
3462 /*****************************************************************************
3466 *****************************************************************************
3470 * Free a used ticket when its refcount falls to zero.
3474 xlog_ticket_t
*ticket
)
3476 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3477 if (atomic_dec_and_test(&ticket
->t_ref
))
3478 kmem_cache_free(xfs_log_ticket_zone
, ticket
);
3483 xlog_ticket_t
*ticket
)
3485 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3486 atomic_inc(&ticket
->t_ref
);
3491 * Figure out the total log space unit (in bytes) that would be
3492 * required for a log ticket.
3495 xfs_log_calc_unit_res(
3496 struct xfs_mount
*mp
,
3499 struct xlog
*log
= mp
->m_log
;
3504 * Permanent reservations have up to 'cnt'-1 active log operations
3505 * in the log. A unit in this case is the amount of space for one
3506 * of these log operations. Normal reservations have a cnt of 1
3507 * and their unit amount is the total amount of space required.
3509 * The following lines of code account for non-transaction data
3510 * which occupy space in the on-disk log.
3512 * Normal form of a transaction is:
3513 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3514 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3516 * We need to account for all the leadup data and trailer data
3517 * around the transaction data.
3518 * And then we need to account for the worst case in terms of using
3520 * The worst case will happen if:
3521 * - the placement of the transaction happens to be such that the
3522 * roundoff is at its maximum
3523 * - the transaction data is synced before the commit record is synced
3524 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3525 * Therefore the commit record is in its own Log Record.
3526 * This can happen as the commit record is called with its
3527 * own region to xlog_write().
3528 * This then means that in the worst case, roundoff can happen for
3529 * the commit-rec as well.
3530 * The commit-rec is smaller than padding in this scenario and so it is
3531 * not added separately.
3534 /* for trans header */
3535 unit_bytes
+= sizeof(xlog_op_header_t
);
3536 unit_bytes
+= sizeof(xfs_trans_header_t
);
3539 unit_bytes
+= sizeof(xlog_op_header_t
);
3542 * for LR headers - the space for data in an iclog is the size minus
3543 * the space used for the headers. If we use the iclog size, then we
3544 * undercalculate the number of headers required.
3546 * Furthermore - the addition of op headers for split-recs might
3547 * increase the space required enough to require more log and op
3548 * headers, so take that into account too.
3550 * IMPORTANT: This reservation makes the assumption that if this
3551 * transaction is the first in an iclog and hence has the LR headers
3552 * accounted to it, then the remaining space in the iclog is
3553 * exclusively for this transaction. i.e. if the transaction is larger
3554 * than the iclog, it will be the only thing in that iclog.
3555 * Fundamentally, this means we must pass the entire log vector to
3556 * xlog_write to guarantee this.
3558 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3559 num_headers
= howmany(unit_bytes
, iclog_space
);
3561 /* for split-recs - ophdrs added when data split over LRs */
3562 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3564 /* add extra header reservations if we overrun */
3565 while (!num_headers
||
3566 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3567 unit_bytes
+= sizeof(xlog_op_header_t
);
3570 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3572 /* for commit-rec LR header - note: padding will subsume the ophdr */
3573 unit_bytes
+= log
->l_iclog_hsize
;
3575 /* for roundoff padding for transaction data and one for commit record */
3576 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3577 /* log su roundoff */
3578 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3581 unit_bytes
+= 2 * BBSIZE
;
3588 * Allocate and initialise a new log ticket.
3590 struct xlog_ticket
*
3597 xfs_km_flags_t alloc_flags
)
3599 struct xlog_ticket
*tic
;
3602 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3606 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3608 atomic_set(&tic
->t_ref
, 1);
3609 tic
->t_task
= current
;
3610 INIT_LIST_HEAD(&tic
->t_queue
);
3611 tic
->t_unit_res
= unit_res
;
3612 tic
->t_curr_res
= unit_res
;
3615 tic
->t_tid
= prandom_u32();
3616 tic
->t_clientid
= client
;
3617 tic
->t_flags
= XLOG_TIC_INITED
;
3619 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3621 xlog_tic_reset_res(tic
);
3627 /******************************************************************************
3629 * Log debug routines
3631 ******************************************************************************
3635 * Make sure that the destination ptr is within the valid data region of
3636 * one of the iclogs. This uses backup pointers stored in a different
3637 * part of the log in case we trash the log structure.
3640 xlog_verify_dest_ptr(
3647 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3648 if (ptr
>= log
->l_iclog_bak
[i
] &&
3649 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3654 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3658 * Check to make sure the grant write head didn't just over lap the tail. If
3659 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3660 * the cycles differ by exactly one and check the byte count.
3662 * This check is run unlocked, so can give false positives. Rather than assert
3663 * on failures, use a warn-once flag and a panic tag to allow the admin to
3664 * determine if they want to panic the machine when such an error occurs. For
3665 * debug kernels this will have the same effect as using an assert but, unlinke
3666 * an assert, it can be turned off at runtime.
3669 xlog_verify_grant_tail(
3672 int tail_cycle
, tail_blocks
;
3675 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3676 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3677 if (tail_cycle
!= cycle
) {
3678 if (cycle
- 1 != tail_cycle
&&
3679 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3680 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3681 "%s: cycle - 1 != tail_cycle", __func__
);
3682 log
->l_flags
|= XLOG_TAIL_WARN
;
3685 if (space
> BBTOB(tail_blocks
) &&
3686 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3687 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3688 "%s: space > BBTOB(tail_blocks)", __func__
);
3689 log
->l_flags
|= XLOG_TAIL_WARN
;
3694 /* check if it will fit */
3696 xlog_verify_tail_lsn(
3698 struct xlog_in_core
*iclog
,
3703 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3705 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3706 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3707 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3709 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3711 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3712 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3714 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3715 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3716 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3718 } /* xlog_verify_tail_lsn */
3721 * Perform a number of checks on the iclog before writing to disk.
3723 * 1. Make sure the iclogs are still circular
3724 * 2. Make sure we have a good magic number
3725 * 3. Make sure we don't have magic numbers in the data
3726 * 4. Check fields of each log operation header for:
3727 * A. Valid client identifier
3728 * B. tid ptr value falls in valid ptr space (user space code)
3729 * C. Length in log record header is correct according to the
3730 * individual operation headers within record.
3731 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3732 * log, check the preceding blocks of the physical log to make sure all
3733 * the cycle numbers agree with the current cycle number.
3738 struct xlog_in_core
*iclog
,
3741 xlog_op_header_t
*ophead
;
3742 xlog_in_core_t
*icptr
;
3743 xlog_in_core_2_t
*xhdr
;
3744 void *base_ptr
, *ptr
, *p
;
3745 ptrdiff_t field_offset
;
3747 int len
, i
, j
, k
, op_len
;
3750 /* check validity of iclog pointers */
3751 spin_lock(&log
->l_icloglock
);
3752 icptr
= log
->l_iclog
;
3753 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3756 if (icptr
!= log
->l_iclog
)
3757 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3758 spin_unlock(&log
->l_icloglock
);
3760 /* check log magic numbers */
3761 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3762 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3764 base_ptr
= ptr
= &iclog
->ic_header
;
3765 p
= &iclog
->ic_header
;
3766 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3767 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3768 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3773 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3774 base_ptr
= ptr
= iclog
->ic_datap
;
3776 xhdr
= iclog
->ic_data
;
3777 for (i
= 0; i
< len
; i
++) {
3780 /* clientid is only 1 byte */
3781 p
= &ophead
->oh_clientid
;
3782 field_offset
= p
- base_ptr
;
3783 if (field_offset
& 0x1ff) {
3784 clientid
= ophead
->oh_clientid
;
3786 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3787 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3788 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3789 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3790 clientid
= xlog_get_client_id(
3791 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3793 clientid
= xlog_get_client_id(
3794 iclog
->ic_header
.h_cycle_data
[idx
]);
3797 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3799 "%s: invalid clientid %d op "PTR_FMT
" offset 0x%lx",
3800 __func__
, clientid
, ophead
,
3801 (unsigned long)field_offset
);
3804 p
= &ophead
->oh_len
;
3805 field_offset
= p
- base_ptr
;
3806 if (field_offset
& 0x1ff) {
3807 op_len
= be32_to_cpu(ophead
->oh_len
);
3809 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3810 (uintptr_t)iclog
->ic_datap
);
3811 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3812 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3813 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3814 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3816 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3819 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3821 } /* xlog_verify_iclog */
3825 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3831 xlog_in_core_t
*iclog
, *ic
;
3833 iclog
= log
->l_iclog
;
3834 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
3836 * Mark all the incore logs IOERROR.
3837 * From now on, no log flushes will result.
3841 ic
->ic_state
= XLOG_STATE_IOERROR
;
3843 } while (ic
!= iclog
);
3847 * Return non-zero, if state transition has already happened.
3853 * This is called from xfs_force_shutdown, when we're forcibly
3854 * shutting down the filesystem, typically because of an IO error.
3855 * Our main objectives here are to make sure that:
3856 * a. if !logerror, flush the logs to disk. Anything modified
3857 * after this is ignored.
3858 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3859 * parties to find out, 'atomically'.
3860 * c. those who're sleeping on log reservations, pinned objects and
3861 * other resources get woken up, and be told the bad news.
3862 * d. nothing new gets queued up after (b) and (c) are done.
3864 * Note: for the !logerror case we need to flush the regions held in memory out
3865 * to disk first. This needs to be done before the log is marked as shutdown,
3866 * otherwise the iclog writes will fail.
3869 xfs_log_force_umount(
3870 struct xfs_mount
*mp
,
3879 * If this happens during log recovery, don't worry about
3880 * locking; the log isn't open for business yet.
3883 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3884 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3886 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3891 * Somebody could've already done the hard work for us.
3892 * No need to get locks for this.
3894 if (logerror
&& log
->l_iclog
->ic_state
== XLOG_STATE_IOERROR
) {
3895 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3900 * Flush all the completed transactions to disk before marking the log
3901 * being shut down. We need to do it in this order to ensure that
3902 * completed operations are safely on disk before we shut down, and that
3903 * we don't have to issue any buffer IO after the shutdown flags are set
3904 * to guarantee this.
3907 xfs_log_force(mp
, XFS_LOG_SYNC
);
3910 * mark the filesystem and the as in a shutdown state and wake
3911 * everybody up to tell them the bad news.
3913 spin_lock(&log
->l_icloglock
);
3914 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3916 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3919 * Mark the log and the iclogs with IO error flags to prevent any
3920 * further log IO from being issued or completed.
3922 log
->l_flags
|= XLOG_IO_ERROR
;
3923 retval
= xlog_state_ioerror(log
);
3924 spin_unlock(&log
->l_icloglock
);
3927 * We don't want anybody waiting for log reservations after this. That
3928 * means we have to wake up everybody queued up on reserveq as well as
3929 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3930 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3931 * action is protected by the grant locks.
3933 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3934 xlog_grant_head_wake_all(&log
->l_write_head
);
3937 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3938 * as if the log writes were completed. The abort handling in the log
3939 * item committed callback functions will do this again under lock to
3942 spin_lock(&log
->l_cilp
->xc_push_lock
);
3943 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
3944 spin_unlock(&log
->l_cilp
->xc_push_lock
);
3945 xlog_state_do_callback(log
, true);
3947 /* return non-zero if log IOERROR transition had already happened */
3955 xlog_in_core_t
*iclog
;
3957 iclog
= log
->l_iclog
;
3959 /* endianness does not matter here, zero is zero in
3962 if (iclog
->ic_header
.h_num_logops
)
3964 iclog
= iclog
->ic_next
;
3965 } while (iclog
!= log
->l_iclog
);
3970 * Verify that an LSN stamped into a piece of metadata is valid. This is
3971 * intended for use in read verifiers on v5 superblocks.
3975 struct xfs_mount
*mp
,
3978 struct xlog
*log
= mp
->m_log
;
3982 * norecovery mode skips mount-time log processing and unconditionally
3983 * resets the in-core LSN. We can't validate in this mode, but
3984 * modifications are not allowed anyways so just return true.
3986 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
3990 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3991 * handled by recovery and thus safe to ignore here.
3993 if (lsn
== NULLCOMMITLSN
)
3996 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
3998 /* warn the user about what's gone wrong before verifier failure */
4000 spin_lock(&log
->l_icloglock
);
4002 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4003 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4004 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4005 log
->l_curr_cycle
, log
->l_curr_block
);
4006 spin_unlock(&log
->l_icloglock
);
4013 xfs_log_in_recovery(
4014 struct xfs_mount
*mp
)
4016 struct xlog
*log
= mp
->m_log
;
4018 return log
->l_flags
& XLOG_ACTIVE_RECOVERY
;