2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
49 * There are three level of locking required by epoll :
53 * 3) ep->lock (spinlock)
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
108 #define EP_UNACTIVE_PTR ((void *) -1L)
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
112 struct epoll_filefd
{
118 * Structure used to track possible nested calls, for too deep recursions
121 struct nested_call_node
{
122 struct list_head llink
;
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
131 struct nested_calls
{
132 struct list_head tasks_call_list
;
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
144 /* RB tree node links this structure to the eventpoll RB tree */
146 /* Used to free the struct epitem */
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink
;
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd
;
162 /* Number of active wait queue attached to poll operations */
165 /* List containing poll wait queues */
166 struct list_head pwqlist
;
168 /* The "container" of this item */
169 struct eventpoll
*ep
;
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink
;
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu
*ws
;
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event
;
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
187 /* Protect the access to this structure */
191 * This mutex is used to ensure that files are not removed
192 * while epoll is using them. This is held during the event
193 * collection loop, the file cleanup path, the epoll file exit
194 * code and the ctl operations.
198 /* Wait queue used by sys_epoll_wait() */
199 wait_queue_head_t wq
;
201 /* Wait queue used by file->poll() */
202 wait_queue_head_t poll_wait
;
204 /* List of ready file descriptors */
205 struct list_head rdllist
;
207 /* RB tree root used to store monitored fd structs */
208 struct rb_root_cached rbr
;
211 * This is a single linked list that chains all the "struct epitem" that
212 * happened while transferring ready events to userspace w/out
215 struct epitem
*ovflist
;
217 /* wakeup_source used when ep_scan_ready_list is running */
218 struct wakeup_source
*ws
;
220 /* The user that created the eventpoll descriptor */
221 struct user_struct
*user
;
225 /* used to optimize loop detection check */
227 struct list_head visited_list_link
;
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id
;
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry
{
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink
;
240 /* The "base" pointer is set to the container "struct epitem" */
244 * Wait queue item that will be linked to the target file wait
247 wait_queue_entry_t wait
;
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t
*whead
;
253 /* Wrapper struct used by poll queueing */
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data
{
262 struct epoll_event __user
*events
;
267 * Configuration options available inside /proc/sys/fs/epoll/
269 /* Maximum number of epoll watched descriptors, per user */
270 static long max_user_watches __read_mostly
;
273 * This mutex is used to serialize ep_free() and eventpoll_release_file().
275 static DEFINE_MUTEX(epmutex
);
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls
;
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache
*epi_cache __read_mostly
;
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache
*pwq_cache __read_mostly
;
286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
287 static LIST_HEAD(visited_list
);
290 * List of files with newly added links, where we may need to limit the number
291 * of emanating paths. Protected by the epmutex.
293 static LIST_HEAD(tfile_check_list
);
297 #include <linux/sysctl.h>
300 static long long_max
= LONG_MAX
;
302 struct ctl_table epoll_table
[] = {
304 .procname
= "max_user_watches",
305 .data
= &max_user_watches
,
306 .maxlen
= sizeof(max_user_watches
),
308 .proc_handler
= proc_doulongvec_minmax
,
314 #endif /* CONFIG_SYSCTL */
316 static const struct file_operations eventpoll_fops
;
318 static inline int is_file_epoll(struct file
*f
)
320 return f
->f_op
== &eventpoll_fops
;
323 /* Setup the structure that is used as key for the RB tree */
324 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
325 struct file
*file
, int fd
)
331 /* Compare RB tree keys */
332 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
333 struct epoll_filefd
*p2
)
335 return (p1
->file
> p2
->file
? +1:
336 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
339 /* Tells us if the item is currently linked */
340 static inline int ep_is_linked(struct list_head
*p
)
342 return !list_empty(p
);
345 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
347 return container_of(p
, struct eppoll_entry
, wait
);
350 /* Get the "struct epitem" from a wait queue pointer */
351 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
353 return container_of(p
, struct eppoll_entry
, wait
)->base
;
356 /* Get the "struct epitem" from an epoll queue wrapper */
357 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
359 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
363 static inline int ep_op_has_event(int op
)
365 return op
!= EPOLL_CTL_DEL
;
368 /* Initialize the poll safe wake up structure */
369 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
371 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
372 spin_lock_init(&ncalls
->lock
);
376 * ep_events_available - Checks if ready events might be available.
378 * @ep: Pointer to the eventpoll context.
380 * Returns: Returns a value different than zero if ready events are available,
383 static inline int ep_events_available(struct eventpoll
*ep
)
385 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
391 struct eventpoll
*ep
= p
;
393 return ep_events_available(ep
) || busy_loop_timeout(start_time
);
395 #endif /* CONFIG_NET_RX_BUSY_POLL */
398 * Busy poll if globally on and supporting sockets found && no events,
399 * busy loop will return if need_resched or ep_events_available.
401 * we must do our busy polling with irqs enabled
403 static void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
405 #ifdef CONFIG_NET_RX_BUSY_POLL
406 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
408 if ((napi_id
>= MIN_NAPI_ID
) && net_busy_loop_on())
409 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
, ep
);
413 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
415 #ifdef CONFIG_NET_RX_BUSY_POLL
422 * Set epoll busy poll NAPI ID from sk.
424 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
426 #ifdef CONFIG_NET_RX_BUSY_POLL
427 struct eventpoll
*ep
;
428 unsigned int napi_id
;
433 if (!net_busy_loop_on())
436 sock
= sock_from_file(epi
->ffd
.file
, &err
);
444 napi_id
= READ_ONCE(sk
->sk_napi_id
);
447 /* Non-NAPI IDs can be rejected
449 * Nothing to do if we already have this ID
451 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
454 /* record NAPI ID for use in next busy poll */
455 ep
->napi_id
= napi_id
;
460 * ep_call_nested - Perform a bound (possibly) nested call, by checking
461 * that the recursion limit is not exceeded, and that
462 * the same nested call (by the meaning of same cookie) is
465 * @ncalls: Pointer to the nested_calls structure to be used for this call.
466 * @max_nests: Maximum number of allowed nesting calls.
467 * @nproc: Nested call core function pointer.
468 * @priv: Opaque data to be passed to the @nproc callback.
469 * @cookie: Cookie to be used to identify this nested call.
470 * @ctx: This instance context.
472 * Returns: Returns the code returned by the @nproc callback, or -1 if
473 * the maximum recursion limit has been exceeded.
475 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
476 int (*nproc
)(void *, void *, int), void *priv
,
477 void *cookie
, void *ctx
)
479 int error
, call_nests
= 0;
481 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
482 struct nested_call_node
*tncur
;
483 struct nested_call_node tnode
;
485 spin_lock_irqsave(&ncalls
->lock
, flags
);
488 * Try to see if the current task is already inside this wakeup call.
489 * We use a list here, since the population inside this set is always
492 list_for_each_entry(tncur
, lsthead
, llink
) {
493 if (tncur
->ctx
== ctx
&&
494 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
496 * Ops ... loop detected or maximum nest level reached.
497 * We abort this wake by breaking the cycle itself.
504 /* Add the current task and cookie to the list */
506 tnode
.cookie
= cookie
;
507 list_add(&tnode
.llink
, lsthead
);
509 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
511 /* Call the nested function */
512 error
= (*nproc
)(priv
, cookie
, call_nests
);
514 /* Remove the current task from the list */
515 spin_lock_irqsave(&ncalls
->lock
, flags
);
516 list_del(&tnode
.llink
);
518 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
524 * As described in commit 0ccf831cb lockdep: annotate epoll
525 * the use of wait queues used by epoll is done in a very controlled
526 * manner. Wake ups can nest inside each other, but are never done
527 * with the same locking. For example:
530 * efd1 = epoll_create();
531 * efd2 = epoll_create();
532 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
533 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
535 * When a packet arrives to the device underneath "dfd", the net code will
536 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
537 * callback wakeup entry on that queue, and the wake_up() performed by the
538 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
539 * (efd1) notices that it may have some event ready, so it needs to wake up
540 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
541 * that ends up in another wake_up(), after having checked about the
542 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
543 * avoid stack blasting.
545 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
546 * this special case of epoll.
548 #ifdef CONFIG_DEBUG_LOCK_ALLOC
550 static struct nested_calls poll_safewake_ncalls
;
552 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
555 wait_queue_head_t
*wqueue
= (wait_queue_head_t
*)cookie
;
557 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, call_nests
+ 1);
558 wake_up_locked_poll(wqueue
, EPOLLIN
);
559 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
564 static void ep_poll_safewake(wait_queue_head_t
*wq
)
566 int this_cpu
= get_cpu();
568 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
569 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
576 static void ep_poll_safewake(wait_queue_head_t
*wq
)
578 wake_up_poll(wq
, EPOLLIN
);
583 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
585 wait_queue_head_t
*whead
;
589 * If it is cleared by POLLFREE, it should be rcu-safe.
590 * If we read NULL we need a barrier paired with
591 * smp_store_release() in ep_poll_callback(), otherwise
592 * we rely on whead->lock.
594 whead
= smp_load_acquire(&pwq
->whead
);
596 remove_wait_queue(whead
, &pwq
->wait
);
601 * This function unregisters poll callbacks from the associated file
602 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
605 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
607 struct list_head
*lsthead
= &epi
->pwqlist
;
608 struct eppoll_entry
*pwq
;
610 while (!list_empty(lsthead
)) {
611 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
613 list_del(&pwq
->llink
);
614 ep_remove_wait_queue(pwq
);
615 kmem_cache_free(pwq_cache
, pwq
);
619 /* call only when ep->mtx is held */
620 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
622 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
625 /* call only when ep->mtx is held */
626 static inline void ep_pm_stay_awake(struct epitem
*epi
)
628 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
634 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
636 return rcu_access_pointer(epi
->ws
) ? true : false;
639 /* call when ep->mtx cannot be held (ep_poll_callback) */
640 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
642 struct wakeup_source
*ws
;
645 ws
= rcu_dereference(epi
->ws
);
652 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
653 * the scan code, to call f_op->poll(). Also allows for
654 * O(NumReady) performance.
656 * @ep: Pointer to the epoll private data structure.
657 * @sproc: Pointer to the scan callback.
658 * @priv: Private opaque data passed to the @sproc callback.
659 * @depth: The current depth of recursive f_op->poll calls.
660 * @ep_locked: caller already holds ep->mtx
662 * Returns: The same integer error code returned by the @sproc callback.
664 static __poll_t
ep_scan_ready_list(struct eventpoll
*ep
,
665 __poll_t (*sproc
)(struct eventpoll
*,
666 struct list_head
*, void *),
667 void *priv
, int depth
, bool ep_locked
)
672 struct epitem
*epi
, *nepi
;
676 * We need to lock this because we could be hit by
677 * eventpoll_release_file() and epoll_ctl().
681 mutex_lock_nested(&ep
->mtx
, depth
);
684 * Steal the ready list, and re-init the original one to the
685 * empty list. Also, set ep->ovflist to NULL so that events
686 * happening while looping w/out locks, are not lost. We cannot
687 * have the poll callback to queue directly on ep->rdllist,
688 * because we want the "sproc" callback to be able to do it
691 spin_lock_irqsave(&ep
->lock
, flags
);
692 list_splice_init(&ep
->rdllist
, &txlist
);
694 spin_unlock_irqrestore(&ep
->lock
, flags
);
697 * Now call the callback function.
699 res
= (*sproc
)(ep
, &txlist
, priv
);
701 spin_lock_irqsave(&ep
->lock
, flags
);
703 * During the time we spent inside the "sproc" callback, some
704 * other events might have been queued by the poll callback.
705 * We re-insert them inside the main ready-list here.
707 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
708 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
710 * We need to check if the item is already in the list.
711 * During the "sproc" callback execution time, items are
712 * queued into ->ovflist but the "txlist" might already
713 * contain them, and the list_splice() below takes care of them.
715 if (!ep_is_linked(&epi
->rdllink
)) {
716 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
717 ep_pm_stay_awake(epi
);
721 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
722 * releasing the lock, events will be queued in the normal way inside
725 ep
->ovflist
= EP_UNACTIVE_PTR
;
728 * Quickly re-inject items left on "txlist".
730 list_splice(&txlist
, &ep
->rdllist
);
733 if (!list_empty(&ep
->rdllist
)) {
735 * Wake up (if active) both the eventpoll wait list and
736 * the ->poll() wait list (delayed after we release the lock).
738 if (waitqueue_active(&ep
->wq
))
739 wake_up_locked(&ep
->wq
);
740 if (waitqueue_active(&ep
->poll_wait
))
743 spin_unlock_irqrestore(&ep
->lock
, flags
);
746 mutex_unlock(&ep
->mtx
);
748 /* We have to call this outside the lock */
750 ep_poll_safewake(&ep
->poll_wait
);
755 static void epi_rcu_free(struct rcu_head
*head
)
757 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
758 kmem_cache_free(epi_cache
, epi
);
762 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
763 * all the associated resources. Must be called with "mtx" held.
765 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
768 struct file
*file
= epi
->ffd
.file
;
771 * Removes poll wait queue hooks. We _have_ to do this without holding
772 * the "ep->lock" otherwise a deadlock might occur. This because of the
773 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
774 * queue head lock when unregistering the wait queue. The wakeup callback
775 * will run by holding the wait queue head lock and will call our callback
776 * that will try to get "ep->lock".
778 ep_unregister_pollwait(ep
, epi
);
780 /* Remove the current item from the list of epoll hooks */
781 spin_lock(&file
->f_lock
);
782 list_del_rcu(&epi
->fllink
);
783 spin_unlock(&file
->f_lock
);
785 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
787 spin_lock_irqsave(&ep
->lock
, flags
);
788 if (ep_is_linked(&epi
->rdllink
))
789 list_del_init(&epi
->rdllink
);
790 spin_unlock_irqrestore(&ep
->lock
, flags
);
792 wakeup_source_unregister(ep_wakeup_source(epi
));
794 * At this point it is safe to free the eventpoll item. Use the union
795 * field epi->rcu, since we are trying to minimize the size of
796 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
797 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
798 * use of the rbn field.
800 call_rcu(&epi
->rcu
, epi_rcu_free
);
802 atomic_long_dec(&ep
->user
->epoll_watches
);
807 static void ep_free(struct eventpoll
*ep
)
812 /* We need to release all tasks waiting for these file */
813 if (waitqueue_active(&ep
->poll_wait
))
814 ep_poll_safewake(&ep
->poll_wait
);
817 * We need to lock this because we could be hit by
818 * eventpoll_release_file() while we're freeing the "struct eventpoll".
819 * We do not need to hold "ep->mtx" here because the epoll file
820 * is on the way to be removed and no one has references to it
821 * anymore. The only hit might come from eventpoll_release_file() but
822 * holding "epmutex" is sufficient here.
824 mutex_lock(&epmutex
);
827 * Walks through the whole tree by unregistering poll callbacks.
829 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
830 epi
= rb_entry(rbp
, struct epitem
, rbn
);
832 ep_unregister_pollwait(ep
, epi
);
837 * Walks through the whole tree by freeing each "struct epitem". At this
838 * point we are sure no poll callbacks will be lingering around, and also by
839 * holding "epmutex" we can be sure that no file cleanup code will hit
840 * us during this operation. So we can avoid the lock on "ep->lock".
841 * We do not need to lock ep->mtx, either, we only do it to prevent
844 mutex_lock(&ep
->mtx
);
845 while ((rbp
= rb_first_cached(&ep
->rbr
)) != NULL
) {
846 epi
= rb_entry(rbp
, struct epitem
, rbn
);
850 mutex_unlock(&ep
->mtx
);
852 mutex_unlock(&epmutex
);
853 mutex_destroy(&ep
->mtx
);
855 wakeup_source_unregister(ep
->ws
);
859 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
861 struct eventpoll
*ep
= file
->private_data
;
869 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
871 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
875 * Differs from ep_eventpoll_poll() in that internal callers already have
876 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
877 * is correctly annotated.
879 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
,
882 struct eventpoll
*ep
;
885 pt
->_key
= epi
->event
.events
;
886 if (!is_file_epoll(epi
->ffd
.file
))
887 return vfs_poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
889 ep
= epi
->ffd
.file
->private_data
;
890 poll_wait(epi
->ffd
.file
, &ep
->poll_wait
, pt
);
891 locked
= pt
&& (pt
->_qproc
== ep_ptable_queue_proc
);
893 return ep_scan_ready_list(epi
->ffd
.file
->private_data
,
894 ep_read_events_proc
, &depth
, depth
,
895 locked
) & epi
->event
.events
;
898 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
901 struct epitem
*epi
, *tmp
;
903 int depth
= *(int *)priv
;
905 init_poll_funcptr(&pt
, NULL
);
908 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
909 if (ep_item_poll(epi
, &pt
, depth
)) {
910 return EPOLLIN
| EPOLLRDNORM
;
913 * Item has been dropped into the ready list by the poll
914 * callback, but it's not actually ready, as far as
915 * caller requested events goes. We can remove it here.
917 __pm_relax(ep_wakeup_source(epi
));
918 list_del_init(&epi
->rdllink
);
925 static __poll_t
ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
927 struct eventpoll
*ep
= file
->private_data
;
930 /* Insert inside our poll wait queue */
931 poll_wait(file
, &ep
->poll_wait
, wait
);
934 * Proceed to find out if wanted events are really available inside
937 return ep_scan_ready_list(ep
, ep_read_events_proc
,
938 &depth
, depth
, false);
941 #ifdef CONFIG_PROC_FS
942 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
944 struct eventpoll
*ep
= f
->private_data
;
947 mutex_lock(&ep
->mtx
);
948 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
949 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
950 struct inode
*inode
= file_inode(epi
->ffd
.file
);
952 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
953 " pos:%lli ino:%lx sdev:%x\n",
954 epi
->ffd
.fd
, epi
->event
.events
,
955 (long long)epi
->event
.data
,
956 (long long)epi
->ffd
.file
->f_pos
,
957 inode
->i_ino
, inode
->i_sb
->s_dev
);
958 if (seq_has_overflowed(m
))
961 mutex_unlock(&ep
->mtx
);
965 /* File callbacks that implement the eventpoll file behaviour */
966 static const struct file_operations eventpoll_fops
= {
967 #ifdef CONFIG_PROC_FS
968 .show_fdinfo
= ep_show_fdinfo
,
970 .release
= ep_eventpoll_release
,
971 .poll
= ep_eventpoll_poll
,
972 .llseek
= noop_llseek
,
976 * This is called from eventpoll_release() to unlink files from the eventpoll
977 * interface. We need to have this facility to cleanup correctly files that are
978 * closed without being removed from the eventpoll interface.
980 void eventpoll_release_file(struct file
*file
)
982 struct eventpoll
*ep
;
983 struct epitem
*epi
, *next
;
986 * We don't want to get "file->f_lock" because it is not
987 * necessary. It is not necessary because we're in the "struct file"
988 * cleanup path, and this means that no one is using this file anymore.
989 * So, for example, epoll_ctl() cannot hit here since if we reach this
990 * point, the file counter already went to zero and fget() would fail.
991 * The only hit might come from ep_free() but by holding the mutex
992 * will correctly serialize the operation. We do need to acquire
993 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
994 * from anywhere but ep_free().
996 * Besides, ep_remove() acquires the lock, so we can't hold it here.
998 mutex_lock(&epmutex
);
999 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
1001 mutex_lock_nested(&ep
->mtx
, 0);
1003 mutex_unlock(&ep
->mtx
);
1005 mutex_unlock(&epmutex
);
1008 static int ep_alloc(struct eventpoll
**pep
)
1011 struct user_struct
*user
;
1012 struct eventpoll
*ep
;
1014 user
= get_current_user();
1016 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1020 spin_lock_init(&ep
->lock
);
1021 mutex_init(&ep
->mtx
);
1022 init_waitqueue_head(&ep
->wq
);
1023 init_waitqueue_head(&ep
->poll_wait
);
1024 INIT_LIST_HEAD(&ep
->rdllist
);
1025 ep
->rbr
= RB_ROOT_CACHED
;
1026 ep
->ovflist
= EP_UNACTIVE_PTR
;
1039 * Search the file inside the eventpoll tree. The RB tree operations
1040 * are protected by the "mtx" mutex, and ep_find() must be called with
1043 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1046 struct rb_node
*rbp
;
1047 struct epitem
*epi
, *epir
= NULL
;
1048 struct epoll_filefd ffd
;
1050 ep_set_ffd(&ffd
, file
, fd
);
1051 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1052 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1053 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1055 rbp
= rbp
->rb_right
;
1067 #ifdef CONFIG_CHECKPOINT_RESTORE
1068 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1070 struct rb_node
*rbp
;
1073 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1074 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1075 if (epi
->ffd
.fd
== tfd
) {
1087 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1090 struct file
*file_raw
;
1091 struct eventpoll
*ep
;
1094 if (!is_file_epoll(file
))
1095 return ERR_PTR(-EINVAL
);
1097 ep
= file
->private_data
;
1099 mutex_lock(&ep
->mtx
);
1100 epi
= ep_find_tfd(ep
, tfd
, toff
);
1102 file_raw
= epi
->ffd
.file
;
1104 file_raw
= ERR_PTR(-ENOENT
);
1105 mutex_unlock(&ep
->mtx
);
1109 #endif /* CONFIG_CHECKPOINT_RESTORE */
1112 * This is the callback that is passed to the wait queue wakeup
1113 * mechanism. It is called by the stored file descriptors when they
1114 * have events to report.
1116 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1119 unsigned long flags
;
1120 struct epitem
*epi
= ep_item_from_wait(wait
);
1121 struct eventpoll
*ep
= epi
->ep
;
1122 __poll_t pollflags
= key_to_poll(key
);
1125 spin_lock_irqsave(&ep
->lock
, flags
);
1127 ep_set_busy_poll_napi_id(epi
);
1130 * If the event mask does not contain any poll(2) event, we consider the
1131 * descriptor to be disabled. This condition is likely the effect of the
1132 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1133 * until the next EPOLL_CTL_MOD will be issued.
1135 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1139 * Check the events coming with the callback. At this stage, not
1140 * every device reports the events in the "key" parameter of the
1141 * callback. We need to be able to handle both cases here, hence the
1142 * test for "key" != NULL before the event match test.
1144 if (pollflags
&& !(pollflags
& epi
->event
.events
))
1148 * If we are transferring events to userspace, we can hold no locks
1149 * (because we're accessing user memory, and because of linux f_op->poll()
1150 * semantics). All the events that happen during that period of time are
1151 * chained in ep->ovflist and requeued later on.
1153 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
1154 if (epi
->next
== EP_UNACTIVE_PTR
) {
1155 epi
->next
= ep
->ovflist
;
1159 * Activate ep->ws since epi->ws may get
1160 * deactivated at any time.
1162 __pm_stay_awake(ep
->ws
);
1169 /* If this file is already in the ready list we exit soon */
1170 if (!ep_is_linked(&epi
->rdllink
)) {
1171 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1172 ep_pm_stay_awake_rcu(epi
);
1176 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1179 if (waitqueue_active(&ep
->wq
)) {
1180 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1181 !(pollflags
& POLLFREE
)) {
1182 switch (pollflags
& EPOLLINOUT_BITS
) {
1184 if (epi
->event
.events
& EPOLLIN
)
1188 if (epi
->event
.events
& EPOLLOUT
)
1196 wake_up_locked(&ep
->wq
);
1198 if (waitqueue_active(&ep
->poll_wait
))
1202 spin_unlock_irqrestore(&ep
->lock
, flags
);
1204 /* We have to call this outside the lock */
1206 ep_poll_safewake(&ep
->poll_wait
);
1208 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1211 if (pollflags
& POLLFREE
) {
1213 * If we race with ep_remove_wait_queue() it can miss
1214 * ->whead = NULL and do another remove_wait_queue() after
1215 * us, so we can't use __remove_wait_queue().
1217 list_del_init(&wait
->entry
);
1219 * ->whead != NULL protects us from the race with ep_free()
1220 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1221 * held by the caller. Once we nullify it, nothing protects
1222 * ep/epi or even wait.
1224 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1231 * This is the callback that is used to add our wait queue to the
1232 * target file wakeup lists.
1234 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1237 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1238 struct eppoll_entry
*pwq
;
1240 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1241 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1244 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1245 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1247 add_wait_queue(whead
, &pwq
->wait
);
1248 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1251 /* We have to signal that an error occurred */
1256 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1259 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1260 struct epitem
*epic
;
1261 bool leftmost
= true;
1265 epic
= rb_entry(parent
, struct epitem
, rbn
);
1266 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1268 p
= &parent
->rb_right
;
1271 p
= &parent
->rb_left
;
1273 rb_link_node(&epi
->rbn
, parent
, p
);
1274 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1279 #define PATH_ARR_SIZE 5
1281 * These are the number paths of length 1 to 5, that we are allowing to emanate
1282 * from a single file of interest. For example, we allow 1000 paths of length
1283 * 1, to emanate from each file of interest. This essentially represents the
1284 * potential wakeup paths, which need to be limited in order to avoid massive
1285 * uncontrolled wakeup storms. The common use case should be a single ep which
1286 * is connected to n file sources. In this case each file source has 1 path
1287 * of length 1. Thus, the numbers below should be more than sufficient. These
1288 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1289 * and delete can't add additional paths. Protected by the epmutex.
1291 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1292 static int path_count
[PATH_ARR_SIZE
];
1294 static int path_count_inc(int nests
)
1296 /* Allow an arbitrary number of depth 1 paths */
1300 if (++path_count
[nests
] > path_limits
[nests
])
1305 static void path_count_init(void)
1309 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1313 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1316 struct file
*file
= priv
;
1317 struct file
*child_file
;
1320 /* CTL_DEL can remove links here, but that can't increase our count */
1322 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1323 child_file
= epi
->ep
->file
;
1324 if (is_file_epoll(child_file
)) {
1325 if (list_empty(&child_file
->f_ep_links
)) {
1326 if (path_count_inc(call_nests
)) {
1331 error
= ep_call_nested(&poll_loop_ncalls
,
1333 reverse_path_check_proc
,
1334 child_file
, child_file
,
1340 printk(KERN_ERR
"reverse_path_check_proc: "
1341 "file is not an ep!\n");
1349 * reverse_path_check - The tfile_check_list is list of file *, which have
1350 * links that are proposed to be newly added. We need to
1351 * make sure that those added links don't add too many
1352 * paths such that we will spend all our time waking up
1353 * eventpoll objects.
1355 * Returns: Returns zero if the proposed links don't create too many paths,
1358 static int reverse_path_check(void)
1361 struct file
*current_file
;
1363 /* let's call this for all tfiles */
1364 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1366 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1367 reverse_path_check_proc
, current_file
,
1368 current_file
, current
);
1375 static int ep_create_wakeup_source(struct epitem
*epi
)
1378 struct wakeup_source
*ws
;
1381 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1386 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1387 ws
= wakeup_source_register(name
);
1391 rcu_assign_pointer(epi
->ws
, ws
);
1396 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1397 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1399 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1401 RCU_INIT_POINTER(epi
->ws
, NULL
);
1404 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1405 * used internally by wakeup_source_remove, too (called by
1406 * wakeup_source_unregister), so we cannot use call_rcu
1409 wakeup_source_unregister(ws
);
1413 * Must be called with "mtx" held.
1415 static int ep_insert(struct eventpoll
*ep
, const struct epoll_event
*event
,
1416 struct file
*tfile
, int fd
, int full_check
)
1418 int error
, pwake
= 0;
1420 unsigned long flags
;
1423 struct ep_pqueue epq
;
1425 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1426 if (unlikely(user_watches
>= max_user_watches
))
1428 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1431 /* Item initialization follow here ... */
1432 INIT_LIST_HEAD(&epi
->rdllink
);
1433 INIT_LIST_HEAD(&epi
->fllink
);
1434 INIT_LIST_HEAD(&epi
->pwqlist
);
1436 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1437 epi
->event
= *event
;
1439 epi
->next
= EP_UNACTIVE_PTR
;
1440 if (epi
->event
.events
& EPOLLWAKEUP
) {
1441 error
= ep_create_wakeup_source(epi
);
1443 goto error_create_wakeup_source
;
1445 RCU_INIT_POINTER(epi
->ws
, NULL
);
1448 /* Initialize the poll table using the queue callback */
1450 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1453 * Attach the item to the poll hooks and get current event bits.
1454 * We can safely use the file* here because its usage count has
1455 * been increased by the caller of this function. Note that after
1456 * this operation completes, the poll callback can start hitting
1459 revents
= ep_item_poll(epi
, &epq
.pt
, 1);
1462 * We have to check if something went wrong during the poll wait queue
1463 * install process. Namely an allocation for a wait queue failed due
1464 * high memory pressure.
1468 goto error_unregister
;
1470 /* Add the current item to the list of active epoll hook for this file */
1471 spin_lock(&tfile
->f_lock
);
1472 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1473 spin_unlock(&tfile
->f_lock
);
1476 * Add the current item to the RB tree. All RB tree operations are
1477 * protected by "mtx", and ep_insert() is called with "mtx" held.
1479 ep_rbtree_insert(ep
, epi
);
1481 /* now check if we've created too many backpaths */
1483 if (full_check
&& reverse_path_check())
1484 goto error_remove_epi
;
1486 /* We have to drop the new item inside our item list to keep track of it */
1487 spin_lock_irqsave(&ep
->lock
, flags
);
1489 /* record NAPI ID of new item if present */
1490 ep_set_busy_poll_napi_id(epi
);
1492 /* If the file is already "ready" we drop it inside the ready list */
1493 if (revents
&& !ep_is_linked(&epi
->rdllink
)) {
1494 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1495 ep_pm_stay_awake(epi
);
1497 /* Notify waiting tasks that events are available */
1498 if (waitqueue_active(&ep
->wq
))
1499 wake_up_locked(&ep
->wq
);
1500 if (waitqueue_active(&ep
->poll_wait
))
1504 spin_unlock_irqrestore(&ep
->lock
, flags
);
1506 atomic_long_inc(&ep
->user
->epoll_watches
);
1508 /* We have to call this outside the lock */
1510 ep_poll_safewake(&ep
->poll_wait
);
1515 spin_lock(&tfile
->f_lock
);
1516 list_del_rcu(&epi
->fllink
);
1517 spin_unlock(&tfile
->f_lock
);
1519 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
1522 ep_unregister_pollwait(ep
, epi
);
1525 * We need to do this because an event could have been arrived on some
1526 * allocated wait queue. Note that we don't care about the ep->ovflist
1527 * list, since that is used/cleaned only inside a section bound by "mtx".
1528 * And ep_insert() is called with "mtx" held.
1530 spin_lock_irqsave(&ep
->lock
, flags
);
1531 if (ep_is_linked(&epi
->rdllink
))
1532 list_del_init(&epi
->rdllink
);
1533 spin_unlock_irqrestore(&ep
->lock
, flags
);
1535 wakeup_source_unregister(ep_wakeup_source(epi
));
1537 error_create_wakeup_source
:
1538 kmem_cache_free(epi_cache
, epi
);
1544 * Modify the interest event mask by dropping an event if the new mask
1545 * has a match in the current file status. Must be called with "mtx" held.
1547 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
,
1548 const struct epoll_event
*event
)
1553 init_poll_funcptr(&pt
, NULL
);
1556 * Set the new event interest mask before calling f_op->poll();
1557 * otherwise we might miss an event that happens between the
1558 * f_op->poll() call and the new event set registering.
1560 epi
->event
.events
= event
->events
; /* need barrier below */
1561 epi
->event
.data
= event
->data
; /* protected by mtx */
1562 if (epi
->event
.events
& EPOLLWAKEUP
) {
1563 if (!ep_has_wakeup_source(epi
))
1564 ep_create_wakeup_source(epi
);
1565 } else if (ep_has_wakeup_source(epi
)) {
1566 ep_destroy_wakeup_source(epi
);
1570 * The following barrier has two effects:
1572 * 1) Flush epi changes above to other CPUs. This ensures
1573 * we do not miss events from ep_poll_callback if an
1574 * event occurs immediately after we call f_op->poll().
1575 * We need this because we did not take ep->lock while
1576 * changing epi above (but ep_poll_callback does take
1579 * 2) We also need to ensure we do not miss _past_ events
1580 * when calling f_op->poll(). This barrier also
1581 * pairs with the barrier in wq_has_sleeper (see
1582 * comments for wq_has_sleeper).
1584 * This barrier will now guarantee ep_poll_callback or f_op->poll
1585 * (or both) will notice the readiness of an item.
1590 * Get current event bits. We can safely use the file* here because
1591 * its usage count has been increased by the caller of this function.
1592 * If the item is "hot" and it is not registered inside the ready
1593 * list, push it inside.
1595 if (ep_item_poll(epi
, &pt
, 1)) {
1596 spin_lock_irq(&ep
->lock
);
1597 if (!ep_is_linked(&epi
->rdllink
)) {
1598 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1599 ep_pm_stay_awake(epi
);
1601 /* Notify waiting tasks that events are available */
1602 if (waitqueue_active(&ep
->wq
))
1603 wake_up_locked(&ep
->wq
);
1604 if (waitqueue_active(&ep
->poll_wait
))
1607 spin_unlock_irq(&ep
->lock
);
1610 /* We have to call this outside the lock */
1612 ep_poll_safewake(&ep
->poll_wait
);
1617 static __poll_t
ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1620 struct ep_send_events_data
*esed
= priv
;
1623 struct epoll_event __user
*uevent
;
1624 struct wakeup_source
*ws
;
1627 init_poll_funcptr(&pt
, NULL
);
1630 * We can loop without lock because we are passed a task private list.
1631 * Items cannot vanish during the loop because ep_scan_ready_list() is
1632 * holding "mtx" during this call.
1634 for (esed
->res
= 0, uevent
= esed
->events
;
1635 !list_empty(head
) && esed
->res
< esed
->maxevents
;) {
1636 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1639 * Activate ep->ws before deactivating epi->ws to prevent
1640 * triggering auto-suspend here (in case we reactive epi->ws
1643 * This could be rearranged to delay the deactivation of epi->ws
1644 * instead, but then epi->ws would temporarily be out of sync
1645 * with ep_is_linked().
1647 ws
= ep_wakeup_source(epi
);
1650 __pm_stay_awake(ep
->ws
);
1654 list_del_init(&epi
->rdllink
);
1656 revents
= ep_item_poll(epi
, &pt
, 1);
1659 * If the event mask intersect the caller-requested one,
1660 * deliver the event to userspace. Again, ep_scan_ready_list()
1661 * is holding "mtx", so no operations coming from userspace
1662 * can change the item.
1665 if (__put_user(revents
, &uevent
->events
) ||
1666 __put_user(epi
->event
.data
, &uevent
->data
)) {
1667 list_add(&epi
->rdllink
, head
);
1668 ep_pm_stay_awake(epi
);
1670 esed
->res
= -EFAULT
;
1675 if (epi
->event
.events
& EPOLLONESHOT
)
1676 epi
->event
.events
&= EP_PRIVATE_BITS
;
1677 else if (!(epi
->event
.events
& EPOLLET
)) {
1679 * If this file has been added with Level
1680 * Trigger mode, we need to insert back inside
1681 * the ready list, so that the next call to
1682 * epoll_wait() will check again the events
1683 * availability. At this point, no one can insert
1684 * into ep->rdllist besides us. The epoll_ctl()
1685 * callers are locked out by
1686 * ep_scan_ready_list() holding "mtx" and the
1687 * poll callback will queue them in ep->ovflist.
1689 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1690 ep_pm_stay_awake(epi
);
1698 static int ep_send_events(struct eventpoll
*ep
,
1699 struct epoll_event __user
*events
, int maxevents
)
1701 struct ep_send_events_data esed
;
1703 esed
.maxevents
= maxevents
;
1704 esed
.events
= events
;
1706 ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1710 static inline struct timespec64
ep_set_mstimeout(long ms
)
1712 struct timespec64 now
, ts
= {
1713 .tv_sec
= ms
/ MSEC_PER_SEC
,
1714 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1717 ktime_get_ts64(&now
);
1718 return timespec64_add_safe(now
, ts
);
1722 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1725 * @ep: Pointer to the eventpoll context.
1726 * @events: Pointer to the userspace buffer where the ready events should be
1728 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1729 * @timeout: Maximum timeout for the ready events fetch operation, in
1730 * milliseconds. If the @timeout is zero, the function will not block,
1731 * while if the @timeout is less than zero, the function will block
1732 * until at least one event has been retrieved (or an error
1735 * Returns: Returns the number of ready events which have been fetched, or an
1736 * error code, in case of error.
1738 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1739 int maxevents
, long timeout
)
1741 int res
= 0, eavail
, timed_out
= 0;
1742 unsigned long flags
;
1744 wait_queue_entry_t wait
;
1745 ktime_t expires
, *to
= NULL
;
1748 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1750 slack
= select_estimate_accuracy(&end_time
);
1752 *to
= timespec64_to_ktime(end_time
);
1753 } else if (timeout
== 0) {
1755 * Avoid the unnecessary trip to the wait queue loop, if the
1756 * caller specified a non blocking operation.
1759 spin_lock_irqsave(&ep
->lock
, flags
);
1765 if (!ep_events_available(ep
))
1766 ep_busy_loop(ep
, timed_out
);
1768 spin_lock_irqsave(&ep
->lock
, flags
);
1770 if (!ep_events_available(ep
)) {
1772 * Busy poll timed out. Drop NAPI ID for now, we can add
1773 * it back in when we have moved a socket with a valid NAPI
1774 * ID onto the ready list.
1776 ep_reset_busy_poll_napi_id(ep
);
1779 * We don't have any available event to return to the caller.
1780 * We need to sleep here, and we will be wake up by
1781 * ep_poll_callback() when events will become available.
1783 init_waitqueue_entry(&wait
, current
);
1784 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1788 * We don't want to sleep if the ep_poll_callback() sends us
1789 * a wakeup in between. That's why we set the task state
1790 * to TASK_INTERRUPTIBLE before doing the checks.
1792 set_current_state(TASK_INTERRUPTIBLE
);
1794 * Always short-circuit for fatal signals to allow
1795 * threads to make a timely exit without the chance of
1796 * finding more events available and fetching
1799 if (fatal_signal_pending(current
)) {
1803 if (ep_events_available(ep
) || timed_out
)
1805 if (signal_pending(current
)) {
1810 spin_unlock_irqrestore(&ep
->lock
, flags
);
1811 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1814 spin_lock_irqsave(&ep
->lock
, flags
);
1817 __remove_wait_queue(&ep
->wq
, &wait
);
1818 __set_current_state(TASK_RUNNING
);
1821 /* Is it worth to try to dig for events ? */
1822 eavail
= ep_events_available(ep
);
1824 spin_unlock_irqrestore(&ep
->lock
, flags
);
1827 * Try to transfer events to user space. In case we get 0 events and
1828 * there's still timeout left over, we go trying again in search of
1831 if (!res
&& eavail
&&
1832 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1839 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1840 * API, to verify that adding an epoll file inside another
1841 * epoll structure, does not violate the constraints, in
1842 * terms of closed loops, or too deep chains (which can
1843 * result in excessive stack usage).
1845 * @priv: Pointer to the epoll file to be currently checked.
1846 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1847 * data structure pointer.
1848 * @call_nests: Current dept of the @ep_call_nested() call stack.
1850 * Returns: Returns zero if adding the epoll @file inside current epoll
1851 * structure @ep does not violate the constraints, or -1 otherwise.
1853 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1856 struct file
*file
= priv
;
1857 struct eventpoll
*ep
= file
->private_data
;
1858 struct eventpoll
*ep_tovisit
;
1859 struct rb_node
*rbp
;
1862 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1864 list_add(&ep
->visited_list_link
, &visited_list
);
1865 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1866 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1867 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1868 ep_tovisit
= epi
->ffd
.file
->private_data
;
1869 if (ep_tovisit
->visited
)
1871 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1872 ep_loop_check_proc
, epi
->ffd
.file
,
1873 ep_tovisit
, current
);
1878 * If we've reached a file that is not associated with
1879 * an ep, then we need to check if the newly added
1880 * links are going to add too many wakeup paths. We do
1881 * this by adding it to the tfile_check_list, if it's
1882 * not already there, and calling reverse_path_check()
1883 * during ep_insert().
1885 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1886 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1890 mutex_unlock(&ep
->mtx
);
1896 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1897 * another epoll file (represented by @ep) does not create
1898 * closed loops or too deep chains.
1900 * @ep: Pointer to the epoll private data structure.
1901 * @file: Pointer to the epoll file to be checked.
1903 * Returns: Returns zero if adding the epoll @file inside current epoll
1904 * structure @ep does not violate the constraints, or -1 otherwise.
1906 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1909 struct eventpoll
*ep_cur
, *ep_next
;
1911 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1912 ep_loop_check_proc
, file
, ep
, current
);
1913 /* clear visited list */
1914 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1915 visited_list_link
) {
1916 ep_cur
->visited
= 0;
1917 list_del(&ep_cur
->visited_list_link
);
1922 static void clear_tfile_check_list(void)
1926 /* first clear the tfile_check_list */
1927 while (!list_empty(&tfile_check_list
)) {
1928 file
= list_first_entry(&tfile_check_list
, struct file
,
1930 list_del_init(&file
->f_tfile_llink
);
1932 INIT_LIST_HEAD(&tfile_check_list
);
1936 * Open an eventpoll file descriptor.
1938 static int do_epoll_create(int flags
)
1941 struct eventpoll
*ep
= NULL
;
1944 /* Check the EPOLL_* constant for consistency. */
1945 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1947 if (flags
& ~EPOLL_CLOEXEC
)
1950 * Create the internal data structure ("struct eventpoll").
1952 error
= ep_alloc(&ep
);
1956 * Creates all the items needed to setup an eventpoll file. That is,
1957 * a file structure and a free file descriptor.
1959 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1964 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1965 O_RDWR
| (flags
& O_CLOEXEC
));
1967 error
= PTR_ERR(file
);
1971 fd_install(fd
, file
);
1981 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1983 return do_epoll_create(flags
);
1986 SYSCALL_DEFINE1(epoll_create
, int, size
)
1991 return do_epoll_create(0);
1995 * The following function implements the controller interface for
1996 * the eventpoll file that enables the insertion/removal/change of
1997 * file descriptors inside the interest set.
1999 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2000 struct epoll_event __user
*, event
)
2005 struct eventpoll
*ep
;
2007 struct epoll_event epds
;
2008 struct eventpoll
*tep
= NULL
;
2011 if (ep_op_has_event(op
) &&
2012 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2020 /* Get the "struct file *" for the target file */
2025 /* The target file descriptor must support poll */
2027 if (!file_can_poll(tf
.file
))
2028 goto error_tgt_fput
;
2030 /* Check if EPOLLWAKEUP is allowed */
2031 if (ep_op_has_event(op
))
2032 ep_take_care_of_epollwakeup(&epds
);
2035 * We have to check that the file structure underneath the file descriptor
2036 * the user passed to us _is_ an eventpoll file. And also we do not permit
2037 * adding an epoll file descriptor inside itself.
2040 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
2041 goto error_tgt_fput
;
2044 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2045 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2046 * Also, we do not currently supported nested exclusive wakeups.
2048 if (ep_op_has_event(op
) && (epds
.events
& EPOLLEXCLUSIVE
)) {
2049 if (op
== EPOLL_CTL_MOD
)
2050 goto error_tgt_fput
;
2051 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
2052 (epds
.events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2053 goto error_tgt_fput
;
2057 * At this point it is safe to assume that the "private_data" contains
2058 * our own data structure.
2060 ep
= f
.file
->private_data
;
2063 * When we insert an epoll file descriptor, inside another epoll file
2064 * descriptor, there is the change of creating closed loops, which are
2065 * better be handled here, than in more critical paths. While we are
2066 * checking for loops we also determine the list of files reachable
2067 * and hang them on the tfile_check_list, so we can check that we
2068 * haven't created too many possible wakeup paths.
2070 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2071 * the epoll file descriptor is attaching directly to a wakeup source,
2072 * unless the epoll file descriptor is nested. The purpose of taking the
2073 * 'epmutex' on add is to prevent complex toplogies such as loops and
2074 * deep wakeup paths from forming in parallel through multiple
2075 * EPOLL_CTL_ADD operations.
2077 mutex_lock_nested(&ep
->mtx
, 0);
2078 if (op
== EPOLL_CTL_ADD
) {
2079 if (!list_empty(&f
.file
->f_ep_links
) ||
2080 is_file_epoll(tf
.file
)) {
2082 mutex_unlock(&ep
->mtx
);
2083 mutex_lock(&epmutex
);
2084 if (is_file_epoll(tf
.file
)) {
2086 if (ep_loop_check(ep
, tf
.file
) != 0) {
2087 clear_tfile_check_list();
2088 goto error_tgt_fput
;
2091 list_add(&tf
.file
->f_tfile_llink
,
2093 mutex_lock_nested(&ep
->mtx
, 0);
2094 if (is_file_epoll(tf
.file
)) {
2095 tep
= tf
.file
->private_data
;
2096 mutex_lock_nested(&tep
->mtx
, 1);
2102 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2103 * above, we can be sure to be able to use the item looked up by
2104 * ep_find() till we release the mutex.
2106 epi
= ep_find(ep
, tf
.file
, fd
);
2112 epds
.events
|= EPOLLERR
| EPOLLHUP
;
2113 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
2117 clear_tfile_check_list();
2121 error
= ep_remove(ep
, epi
);
2127 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2128 epds
.events
|= EPOLLERR
| EPOLLHUP
;
2129 error
= ep_modify(ep
, epi
, &epds
);
2136 mutex_unlock(&tep
->mtx
);
2137 mutex_unlock(&ep
->mtx
);
2141 mutex_unlock(&epmutex
);
2152 * Implement the event wait interface for the eventpoll file. It is the kernel
2153 * part of the user space epoll_wait(2).
2155 static int do_epoll_wait(int epfd
, struct epoll_event __user
*events
,
2156 int maxevents
, int timeout
)
2160 struct eventpoll
*ep
;
2162 /* The maximum number of event must be greater than zero */
2163 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2166 /* Verify that the area passed by the user is writeable */
2167 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
2170 /* Get the "struct file *" for the eventpoll file */
2176 * We have to check that the file structure underneath the fd
2177 * the user passed to us _is_ an eventpoll file.
2180 if (!is_file_epoll(f
.file
))
2184 * At this point it is safe to assume that the "private_data" contains
2185 * our own data structure.
2187 ep
= f
.file
->private_data
;
2189 /* Time to fish for events ... */
2190 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2197 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2198 int, maxevents
, int, timeout
)
2200 return do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2204 * Implement the event wait interface for the eventpoll file. It is the kernel
2205 * part of the user space epoll_pwait(2).
2207 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2208 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2212 sigset_t ksigmask
, sigsaved
;
2215 * If the caller wants a certain signal mask to be set during the wait,
2219 if (sigsetsize
!= sizeof(sigset_t
))
2221 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
2223 sigsaved
= current
->blocked
;
2224 set_current_blocked(&ksigmask
);
2227 error
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2230 * If we changed the signal mask, we need to restore the original one.
2231 * In case we've got a signal while waiting, we do not restore the
2232 * signal mask yet, and we allow do_signal() to deliver the signal on
2233 * the way back to userspace, before the signal mask is restored.
2236 if (error
== -EINTR
) {
2237 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2239 set_restore_sigmask();
2241 set_current_blocked(&sigsaved
);
2247 #ifdef CONFIG_COMPAT
2248 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2249 struct epoll_event __user
*, events
,
2250 int, maxevents
, int, timeout
,
2251 const compat_sigset_t __user
*, sigmask
,
2252 compat_size_t
, sigsetsize
)
2255 sigset_t ksigmask
, sigsaved
;
2258 * If the caller wants a certain signal mask to be set during the wait,
2262 if (sigsetsize
!= sizeof(compat_sigset_t
))
2264 if (get_compat_sigset(&ksigmask
, sigmask
))
2266 sigsaved
= current
->blocked
;
2267 set_current_blocked(&ksigmask
);
2270 err
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2273 * If we changed the signal mask, we need to restore the original one.
2274 * In case we've got a signal while waiting, we do not restore the
2275 * signal mask yet, and we allow do_signal() to deliver the signal on
2276 * the way back to userspace, before the signal mask is restored.
2279 if (err
== -EINTR
) {
2280 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2282 set_restore_sigmask();
2284 set_current_blocked(&sigsaved
);
2291 static int __init
eventpoll_init(void)
2297 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2299 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2301 BUG_ON(max_user_watches
< 0);
2304 * Initialize the structure used to perform epoll file descriptor
2305 * inclusion loops checks.
2307 ep_nested_calls_init(&poll_loop_ncalls
);
2309 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2310 /* Initialize the structure used to perform safe poll wait head wake ups */
2311 ep_nested_calls_init(&poll_safewake_ncalls
);
2315 * We can have many thousands of epitems, so prevent this from
2316 * using an extra cache line on 64-bit (and smaller) CPUs
2318 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2320 /* Allocates slab cache used to allocate "struct epitem" items */
2321 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2322 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2324 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2325 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2326 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2330 fs_initcall(eventpoll_init
);