netfilter: nft_set_rbtree: fix panic when destroying set by GC
[linux/fpc-iii.git] / fs / ext4 / extents.c
blob0057fe3f248d195736ee58ec40131dadd98d59bb
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
6 * Architecture independence:
7 * Copyright (c) 2005, Bull S.A.
8 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 */
12 * Extents support for EXT4
14 * TODO:
15 * - ext4*_error() should be used in some situations
16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
17 * - smart tree reduction
20 #include <linux/fs.h>
21 #include <linux/time.h>
22 #include <linux/jbd2.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/fiemap.h>
30 #include <linux/backing-dev.h>
31 #include "ext4_jbd2.h"
32 #include "ext4_extents.h"
33 #include "xattr.h"
35 #include <trace/events/ext4.h>
38 * used by extent splitting.
40 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
41 due to ENOSPC */
42 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
43 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
45 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
46 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
48 static __le32 ext4_extent_block_csum(struct inode *inode,
49 struct ext4_extent_header *eh)
51 struct ext4_inode_info *ei = EXT4_I(inode);
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 __u32 csum;
55 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
56 EXT4_EXTENT_TAIL_OFFSET(eh));
57 return cpu_to_le32(csum);
60 static int ext4_extent_block_csum_verify(struct inode *inode,
61 struct ext4_extent_header *eh)
63 struct ext4_extent_tail *et;
65 if (!ext4_has_metadata_csum(inode->i_sb))
66 return 1;
68 et = find_ext4_extent_tail(eh);
69 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
70 return 0;
71 return 1;
74 static void ext4_extent_block_csum_set(struct inode *inode,
75 struct ext4_extent_header *eh)
77 struct ext4_extent_tail *et;
79 if (!ext4_has_metadata_csum(inode->i_sb))
80 return;
82 et = find_ext4_extent_tail(eh);
83 et->et_checksum = ext4_extent_block_csum(inode, eh);
86 static int ext4_split_extent(handle_t *handle,
87 struct inode *inode,
88 struct ext4_ext_path **ppath,
89 struct ext4_map_blocks *map,
90 int split_flag,
91 int flags);
93 static int ext4_split_extent_at(handle_t *handle,
94 struct inode *inode,
95 struct ext4_ext_path **ppath,
96 ext4_lblk_t split,
97 int split_flag,
98 int flags);
100 static int ext4_find_delayed_extent(struct inode *inode,
101 struct extent_status *newes);
103 static int ext4_ext_truncate_extend_restart(handle_t *handle,
104 struct inode *inode,
105 int needed)
107 int err;
109 if (!ext4_handle_valid(handle))
110 return 0;
111 if (handle->h_buffer_credits >= needed)
112 return 0;
114 * If we need to extend the journal get a few extra blocks
115 * while we're at it for efficiency's sake.
117 needed += 3;
118 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
119 if (err <= 0)
120 return err;
121 err = ext4_truncate_restart_trans(handle, inode, needed);
122 if (err == 0)
123 err = -EAGAIN;
125 return err;
129 * could return:
130 * - EROFS
131 * - ENOMEM
133 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
134 struct ext4_ext_path *path)
136 if (path->p_bh) {
137 /* path points to block */
138 BUFFER_TRACE(path->p_bh, "get_write_access");
139 return ext4_journal_get_write_access(handle, path->p_bh);
141 /* path points to leaf/index in inode body */
142 /* we use in-core data, no need to protect them */
143 return 0;
147 * could return:
148 * - EROFS
149 * - ENOMEM
150 * - EIO
152 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
153 struct inode *inode, struct ext4_ext_path *path)
155 int err;
157 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
158 if (path->p_bh) {
159 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
160 /* path points to block */
161 err = __ext4_handle_dirty_metadata(where, line, handle,
162 inode, path->p_bh);
163 } else {
164 /* path points to leaf/index in inode body */
165 err = ext4_mark_inode_dirty(handle, inode);
167 return err;
170 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
171 struct ext4_ext_path *path,
172 ext4_lblk_t block)
174 if (path) {
175 int depth = path->p_depth;
176 struct ext4_extent *ex;
179 * Try to predict block placement assuming that we are
180 * filling in a file which will eventually be
181 * non-sparse --- i.e., in the case of libbfd writing
182 * an ELF object sections out-of-order but in a way
183 * the eventually results in a contiguous object or
184 * executable file, or some database extending a table
185 * space file. However, this is actually somewhat
186 * non-ideal if we are writing a sparse file such as
187 * qemu or KVM writing a raw image file that is going
188 * to stay fairly sparse, since it will end up
189 * fragmenting the file system's free space. Maybe we
190 * should have some hueristics or some way to allow
191 * userspace to pass a hint to file system,
192 * especially if the latter case turns out to be
193 * common.
195 ex = path[depth].p_ext;
196 if (ex) {
197 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
198 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
200 if (block > ext_block)
201 return ext_pblk + (block - ext_block);
202 else
203 return ext_pblk - (ext_block - block);
206 /* it looks like index is empty;
207 * try to find starting block from index itself */
208 if (path[depth].p_bh)
209 return path[depth].p_bh->b_blocknr;
212 /* OK. use inode's group */
213 return ext4_inode_to_goal_block(inode);
217 * Allocation for a meta data block
219 static ext4_fsblk_t
220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
221 struct ext4_ext_path *path,
222 struct ext4_extent *ex, int *err, unsigned int flags)
224 ext4_fsblk_t goal, newblock;
226 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
227 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
228 NULL, err);
229 return newblock;
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
234 int size;
236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 / sizeof(struct ext4_extent);
238 #ifdef AGGRESSIVE_TEST
239 if (!check && size > 6)
240 size = 6;
241 #endif
242 return size;
245 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
247 int size;
249 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250 / sizeof(struct ext4_extent_idx);
251 #ifdef AGGRESSIVE_TEST
252 if (!check && size > 5)
253 size = 5;
254 #endif
255 return size;
258 static inline int ext4_ext_space_root(struct inode *inode, int check)
260 int size;
262 size = sizeof(EXT4_I(inode)->i_data);
263 size -= sizeof(struct ext4_extent_header);
264 size /= sizeof(struct ext4_extent);
265 #ifdef AGGRESSIVE_TEST
266 if (!check && size > 3)
267 size = 3;
268 #endif
269 return size;
272 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
274 int size;
276 size = sizeof(EXT4_I(inode)->i_data);
277 size -= sizeof(struct ext4_extent_header);
278 size /= sizeof(struct ext4_extent_idx);
279 #ifdef AGGRESSIVE_TEST
280 if (!check && size > 4)
281 size = 4;
282 #endif
283 return size;
286 static inline int
287 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
288 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
289 int nofail)
291 struct ext4_ext_path *path = *ppath;
292 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
294 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
295 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
296 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
297 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
301 * Calculate the number of metadata blocks needed
302 * to allocate @blocks
303 * Worse case is one block per extent
305 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
307 struct ext4_inode_info *ei = EXT4_I(inode);
308 int idxs;
310 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
311 / sizeof(struct ext4_extent_idx));
314 * If the new delayed allocation block is contiguous with the
315 * previous da block, it can share index blocks with the
316 * previous block, so we only need to allocate a new index
317 * block every idxs leaf blocks. At ldxs**2 blocks, we need
318 * an additional index block, and at ldxs**3 blocks, yet
319 * another index blocks.
321 if (ei->i_da_metadata_calc_len &&
322 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
323 int num = 0;
325 if ((ei->i_da_metadata_calc_len % idxs) == 0)
326 num++;
327 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
328 num++;
329 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
330 num++;
331 ei->i_da_metadata_calc_len = 0;
332 } else
333 ei->i_da_metadata_calc_len++;
334 ei->i_da_metadata_calc_last_lblock++;
335 return num;
339 * In the worst case we need a new set of index blocks at
340 * every level of the inode's extent tree.
342 ei->i_da_metadata_calc_len = 1;
343 ei->i_da_metadata_calc_last_lblock = lblock;
344 return ext_depth(inode) + 1;
347 static int
348 ext4_ext_max_entries(struct inode *inode, int depth)
350 int max;
352 if (depth == ext_depth(inode)) {
353 if (depth == 0)
354 max = ext4_ext_space_root(inode, 1);
355 else
356 max = ext4_ext_space_root_idx(inode, 1);
357 } else {
358 if (depth == 0)
359 max = ext4_ext_space_block(inode, 1);
360 else
361 max = ext4_ext_space_block_idx(inode, 1);
364 return max;
367 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
369 ext4_fsblk_t block = ext4_ext_pblock(ext);
370 int len = ext4_ext_get_actual_len(ext);
371 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
374 * We allow neither:
375 * - zero length
376 * - overflow/wrap-around
378 if (lblock + len <= lblock)
379 return 0;
380 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
383 static int ext4_valid_extent_idx(struct inode *inode,
384 struct ext4_extent_idx *ext_idx)
386 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
388 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
391 static int ext4_valid_extent_entries(struct inode *inode,
392 struct ext4_extent_header *eh,
393 int depth)
395 unsigned short entries;
396 if (eh->eh_entries == 0)
397 return 1;
399 entries = le16_to_cpu(eh->eh_entries);
401 if (depth == 0) {
402 /* leaf entries */
403 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
404 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
405 ext4_fsblk_t pblock = 0;
406 ext4_lblk_t lblock = 0;
407 ext4_lblk_t prev = 0;
408 int len = 0;
409 while (entries) {
410 if (!ext4_valid_extent(inode, ext))
411 return 0;
413 /* Check for overlapping extents */
414 lblock = le32_to_cpu(ext->ee_block);
415 len = ext4_ext_get_actual_len(ext);
416 if ((lblock <= prev) && prev) {
417 pblock = ext4_ext_pblock(ext);
418 es->s_last_error_block = cpu_to_le64(pblock);
419 return 0;
421 ext++;
422 entries--;
423 prev = lblock + len - 1;
425 } else {
426 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
427 while (entries) {
428 if (!ext4_valid_extent_idx(inode, ext_idx))
429 return 0;
430 ext_idx++;
431 entries--;
434 return 1;
437 static int __ext4_ext_check(const char *function, unsigned int line,
438 struct inode *inode, struct ext4_extent_header *eh,
439 int depth, ext4_fsblk_t pblk)
441 const char *error_msg;
442 int max = 0, err = -EFSCORRUPTED;
444 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
445 error_msg = "invalid magic";
446 goto corrupted;
448 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
449 error_msg = "unexpected eh_depth";
450 goto corrupted;
452 if (unlikely(eh->eh_max == 0)) {
453 error_msg = "invalid eh_max";
454 goto corrupted;
456 max = ext4_ext_max_entries(inode, depth);
457 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
458 error_msg = "too large eh_max";
459 goto corrupted;
461 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
462 error_msg = "invalid eh_entries";
463 goto corrupted;
465 if (!ext4_valid_extent_entries(inode, eh, depth)) {
466 error_msg = "invalid extent entries";
467 goto corrupted;
469 if (unlikely(depth > 32)) {
470 error_msg = "too large eh_depth";
471 goto corrupted;
473 /* Verify checksum on non-root extent tree nodes */
474 if (ext_depth(inode) != depth &&
475 !ext4_extent_block_csum_verify(inode, eh)) {
476 error_msg = "extent tree corrupted";
477 err = -EFSBADCRC;
478 goto corrupted;
480 return 0;
482 corrupted:
483 ext4_error_inode(inode, function, line, 0,
484 "pblk %llu bad header/extent: %s - magic %x, "
485 "entries %u, max %u(%u), depth %u(%u)",
486 (unsigned long long) pblk, error_msg,
487 le16_to_cpu(eh->eh_magic),
488 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
489 max, le16_to_cpu(eh->eh_depth), depth);
490 return err;
493 #define ext4_ext_check(inode, eh, depth, pblk) \
494 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
496 int ext4_ext_check_inode(struct inode *inode)
498 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
501 static struct buffer_head *
502 __read_extent_tree_block(const char *function, unsigned int line,
503 struct inode *inode, ext4_fsblk_t pblk, int depth,
504 int flags)
506 struct buffer_head *bh;
507 int err;
509 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
510 if (unlikely(!bh))
511 return ERR_PTR(-ENOMEM);
513 if (!bh_uptodate_or_lock(bh)) {
514 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
515 err = bh_submit_read(bh);
516 if (err < 0)
517 goto errout;
519 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
520 return bh;
521 err = __ext4_ext_check(function, line, inode,
522 ext_block_hdr(bh), depth, pblk);
523 if (err)
524 goto errout;
525 set_buffer_verified(bh);
527 * If this is a leaf block, cache all of its entries
529 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
530 struct ext4_extent_header *eh = ext_block_hdr(bh);
531 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
532 ext4_lblk_t prev = 0;
533 int i;
535 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
536 unsigned int status = EXTENT_STATUS_WRITTEN;
537 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
538 int len = ext4_ext_get_actual_len(ex);
540 if (prev && (prev != lblk))
541 ext4_es_cache_extent(inode, prev,
542 lblk - prev, ~0,
543 EXTENT_STATUS_HOLE);
545 if (ext4_ext_is_unwritten(ex))
546 status = EXTENT_STATUS_UNWRITTEN;
547 ext4_es_cache_extent(inode, lblk, len,
548 ext4_ext_pblock(ex), status);
549 prev = lblk + len;
552 return bh;
553 errout:
554 put_bh(bh);
555 return ERR_PTR(err);
559 #define read_extent_tree_block(inode, pblk, depth, flags) \
560 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
561 (depth), (flags))
564 * This function is called to cache a file's extent information in the
565 * extent status tree
567 int ext4_ext_precache(struct inode *inode)
569 struct ext4_inode_info *ei = EXT4_I(inode);
570 struct ext4_ext_path *path = NULL;
571 struct buffer_head *bh;
572 int i = 0, depth, ret = 0;
574 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
575 return 0; /* not an extent-mapped inode */
577 down_read(&ei->i_data_sem);
578 depth = ext_depth(inode);
580 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
581 GFP_NOFS);
582 if (path == NULL) {
583 up_read(&ei->i_data_sem);
584 return -ENOMEM;
587 /* Don't cache anything if there are no external extent blocks */
588 if (depth == 0)
589 goto out;
590 path[0].p_hdr = ext_inode_hdr(inode);
591 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
592 if (ret)
593 goto out;
594 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
595 while (i >= 0) {
597 * If this is a leaf block or we've reached the end of
598 * the index block, go up
600 if ((i == depth) ||
601 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
602 brelse(path[i].p_bh);
603 path[i].p_bh = NULL;
604 i--;
605 continue;
607 bh = read_extent_tree_block(inode,
608 ext4_idx_pblock(path[i].p_idx++),
609 depth - i - 1,
610 EXT4_EX_FORCE_CACHE);
611 if (IS_ERR(bh)) {
612 ret = PTR_ERR(bh);
613 break;
615 i++;
616 path[i].p_bh = bh;
617 path[i].p_hdr = ext_block_hdr(bh);
618 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
620 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
621 out:
622 up_read(&ei->i_data_sem);
623 ext4_ext_drop_refs(path);
624 kfree(path);
625 return ret;
628 #ifdef EXT_DEBUG
629 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
631 int k, l = path->p_depth;
633 ext_debug("path:");
634 for (k = 0; k <= l; k++, path++) {
635 if (path->p_idx) {
636 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
637 ext4_idx_pblock(path->p_idx));
638 } else if (path->p_ext) {
639 ext_debug(" %d:[%d]%d:%llu ",
640 le32_to_cpu(path->p_ext->ee_block),
641 ext4_ext_is_unwritten(path->p_ext),
642 ext4_ext_get_actual_len(path->p_ext),
643 ext4_ext_pblock(path->p_ext));
644 } else
645 ext_debug(" []");
647 ext_debug("\n");
650 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
652 int depth = ext_depth(inode);
653 struct ext4_extent_header *eh;
654 struct ext4_extent *ex;
655 int i;
657 if (!path)
658 return;
660 eh = path[depth].p_hdr;
661 ex = EXT_FIRST_EXTENT(eh);
663 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
665 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
666 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
667 ext4_ext_is_unwritten(ex),
668 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
670 ext_debug("\n");
673 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
674 ext4_fsblk_t newblock, int level)
676 int depth = ext_depth(inode);
677 struct ext4_extent *ex;
679 if (depth != level) {
680 struct ext4_extent_idx *idx;
681 idx = path[level].p_idx;
682 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
683 ext_debug("%d: move %d:%llu in new index %llu\n", level,
684 le32_to_cpu(idx->ei_block),
685 ext4_idx_pblock(idx),
686 newblock);
687 idx++;
690 return;
693 ex = path[depth].p_ext;
694 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
695 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
696 le32_to_cpu(ex->ee_block),
697 ext4_ext_pblock(ex),
698 ext4_ext_is_unwritten(ex),
699 ext4_ext_get_actual_len(ex),
700 newblock);
701 ex++;
705 #else
706 #define ext4_ext_show_path(inode, path)
707 #define ext4_ext_show_leaf(inode, path)
708 #define ext4_ext_show_move(inode, path, newblock, level)
709 #endif
711 void ext4_ext_drop_refs(struct ext4_ext_path *path)
713 int depth, i;
715 if (!path)
716 return;
717 depth = path->p_depth;
718 for (i = 0; i <= depth; i++, path++)
719 if (path->p_bh) {
720 brelse(path->p_bh);
721 path->p_bh = NULL;
726 * ext4_ext_binsearch_idx:
727 * binary search for the closest index of the given block
728 * the header must be checked before calling this
730 static void
731 ext4_ext_binsearch_idx(struct inode *inode,
732 struct ext4_ext_path *path, ext4_lblk_t block)
734 struct ext4_extent_header *eh = path->p_hdr;
735 struct ext4_extent_idx *r, *l, *m;
738 ext_debug("binsearch for %u(idx): ", block);
740 l = EXT_FIRST_INDEX(eh) + 1;
741 r = EXT_LAST_INDEX(eh);
742 while (l <= r) {
743 m = l + (r - l) / 2;
744 if (block < le32_to_cpu(m->ei_block))
745 r = m - 1;
746 else
747 l = m + 1;
748 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
749 m, le32_to_cpu(m->ei_block),
750 r, le32_to_cpu(r->ei_block));
753 path->p_idx = l - 1;
754 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
755 ext4_idx_pblock(path->p_idx));
757 #ifdef CHECK_BINSEARCH
759 struct ext4_extent_idx *chix, *ix;
760 int k;
762 chix = ix = EXT_FIRST_INDEX(eh);
763 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
764 if (k != 0 &&
765 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
766 printk(KERN_DEBUG "k=%d, ix=0x%p, "
767 "first=0x%p\n", k,
768 ix, EXT_FIRST_INDEX(eh));
769 printk(KERN_DEBUG "%u <= %u\n",
770 le32_to_cpu(ix->ei_block),
771 le32_to_cpu(ix[-1].ei_block));
773 BUG_ON(k && le32_to_cpu(ix->ei_block)
774 <= le32_to_cpu(ix[-1].ei_block));
775 if (block < le32_to_cpu(ix->ei_block))
776 break;
777 chix = ix;
779 BUG_ON(chix != path->p_idx);
781 #endif
786 * ext4_ext_binsearch:
787 * binary search for closest extent of the given block
788 * the header must be checked before calling this
790 static void
791 ext4_ext_binsearch(struct inode *inode,
792 struct ext4_ext_path *path, ext4_lblk_t block)
794 struct ext4_extent_header *eh = path->p_hdr;
795 struct ext4_extent *r, *l, *m;
797 if (eh->eh_entries == 0) {
799 * this leaf is empty:
800 * we get such a leaf in split/add case
802 return;
805 ext_debug("binsearch for %u: ", block);
807 l = EXT_FIRST_EXTENT(eh) + 1;
808 r = EXT_LAST_EXTENT(eh);
810 while (l <= r) {
811 m = l + (r - l) / 2;
812 if (block < le32_to_cpu(m->ee_block))
813 r = m - 1;
814 else
815 l = m + 1;
816 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
817 m, le32_to_cpu(m->ee_block),
818 r, le32_to_cpu(r->ee_block));
821 path->p_ext = l - 1;
822 ext_debug(" -> %d:%llu:[%d]%d ",
823 le32_to_cpu(path->p_ext->ee_block),
824 ext4_ext_pblock(path->p_ext),
825 ext4_ext_is_unwritten(path->p_ext),
826 ext4_ext_get_actual_len(path->p_ext));
828 #ifdef CHECK_BINSEARCH
830 struct ext4_extent *chex, *ex;
831 int k;
833 chex = ex = EXT_FIRST_EXTENT(eh);
834 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
835 BUG_ON(k && le32_to_cpu(ex->ee_block)
836 <= le32_to_cpu(ex[-1].ee_block));
837 if (block < le32_to_cpu(ex->ee_block))
838 break;
839 chex = ex;
841 BUG_ON(chex != path->p_ext);
843 #endif
847 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
849 struct ext4_extent_header *eh;
851 eh = ext_inode_hdr(inode);
852 eh->eh_depth = 0;
853 eh->eh_entries = 0;
854 eh->eh_magic = EXT4_EXT_MAGIC;
855 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
856 ext4_mark_inode_dirty(handle, inode);
857 return 0;
860 struct ext4_ext_path *
861 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
862 struct ext4_ext_path **orig_path, int flags)
864 struct ext4_extent_header *eh;
865 struct buffer_head *bh;
866 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
867 short int depth, i, ppos = 0;
868 int ret;
870 eh = ext_inode_hdr(inode);
871 depth = ext_depth(inode);
873 if (path) {
874 ext4_ext_drop_refs(path);
875 if (depth > path[0].p_maxdepth) {
876 kfree(path);
877 *orig_path = path = NULL;
880 if (!path) {
881 /* account possible depth increase */
882 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path),
883 GFP_NOFS);
884 if (unlikely(!path))
885 return ERR_PTR(-ENOMEM);
886 path[0].p_maxdepth = depth + 1;
888 path[0].p_hdr = eh;
889 path[0].p_bh = NULL;
891 i = depth;
892 /* walk through the tree */
893 while (i) {
894 ext_debug("depth %d: num %d, max %d\n",
895 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
897 ext4_ext_binsearch_idx(inode, path + ppos, block);
898 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
899 path[ppos].p_depth = i;
900 path[ppos].p_ext = NULL;
902 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
903 flags);
904 if (IS_ERR(bh)) {
905 ret = PTR_ERR(bh);
906 goto err;
909 eh = ext_block_hdr(bh);
910 ppos++;
911 path[ppos].p_bh = bh;
912 path[ppos].p_hdr = eh;
915 path[ppos].p_depth = i;
916 path[ppos].p_ext = NULL;
917 path[ppos].p_idx = NULL;
919 /* find extent */
920 ext4_ext_binsearch(inode, path + ppos, block);
921 /* if not an empty leaf */
922 if (path[ppos].p_ext)
923 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
925 ext4_ext_show_path(inode, path);
927 return path;
929 err:
930 ext4_ext_drop_refs(path);
931 kfree(path);
932 if (orig_path)
933 *orig_path = NULL;
934 return ERR_PTR(ret);
938 * ext4_ext_insert_index:
939 * insert new index [@logical;@ptr] into the block at @curp;
940 * check where to insert: before @curp or after @curp
942 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
943 struct ext4_ext_path *curp,
944 int logical, ext4_fsblk_t ptr)
946 struct ext4_extent_idx *ix;
947 int len, err;
949 err = ext4_ext_get_access(handle, inode, curp);
950 if (err)
951 return err;
953 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
954 EXT4_ERROR_INODE(inode,
955 "logical %d == ei_block %d!",
956 logical, le32_to_cpu(curp->p_idx->ei_block));
957 return -EFSCORRUPTED;
960 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
961 >= le16_to_cpu(curp->p_hdr->eh_max))) {
962 EXT4_ERROR_INODE(inode,
963 "eh_entries %d >= eh_max %d!",
964 le16_to_cpu(curp->p_hdr->eh_entries),
965 le16_to_cpu(curp->p_hdr->eh_max));
966 return -EFSCORRUPTED;
969 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
970 /* insert after */
971 ext_debug("insert new index %d after: %llu\n", logical, ptr);
972 ix = curp->p_idx + 1;
973 } else {
974 /* insert before */
975 ext_debug("insert new index %d before: %llu\n", logical, ptr);
976 ix = curp->p_idx;
979 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
980 BUG_ON(len < 0);
981 if (len > 0) {
982 ext_debug("insert new index %d: "
983 "move %d indices from 0x%p to 0x%p\n",
984 logical, len, ix, ix + 1);
985 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
988 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
989 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
990 return -EFSCORRUPTED;
993 ix->ei_block = cpu_to_le32(logical);
994 ext4_idx_store_pblock(ix, ptr);
995 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
997 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
998 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
999 return -EFSCORRUPTED;
1002 err = ext4_ext_dirty(handle, inode, curp);
1003 ext4_std_error(inode->i_sb, err);
1005 return err;
1009 * ext4_ext_split:
1010 * inserts new subtree into the path, using free index entry
1011 * at depth @at:
1012 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1013 * - makes decision where to split
1014 * - moves remaining extents and index entries (right to the split point)
1015 * into the newly allocated blocks
1016 * - initializes subtree
1018 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1019 unsigned int flags,
1020 struct ext4_ext_path *path,
1021 struct ext4_extent *newext, int at)
1023 struct buffer_head *bh = NULL;
1024 int depth = ext_depth(inode);
1025 struct ext4_extent_header *neh;
1026 struct ext4_extent_idx *fidx;
1027 int i = at, k, m, a;
1028 ext4_fsblk_t newblock, oldblock;
1029 __le32 border;
1030 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1031 int err = 0;
1033 /* make decision: where to split? */
1034 /* FIXME: now decision is simplest: at current extent */
1036 /* if current leaf will be split, then we should use
1037 * border from split point */
1038 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1039 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1040 return -EFSCORRUPTED;
1042 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1043 border = path[depth].p_ext[1].ee_block;
1044 ext_debug("leaf will be split."
1045 " next leaf starts at %d\n",
1046 le32_to_cpu(border));
1047 } else {
1048 border = newext->ee_block;
1049 ext_debug("leaf will be added."
1050 " next leaf starts at %d\n",
1051 le32_to_cpu(border));
1055 * If error occurs, then we break processing
1056 * and mark filesystem read-only. index won't
1057 * be inserted and tree will be in consistent
1058 * state. Next mount will repair buffers too.
1062 * Get array to track all allocated blocks.
1063 * We need this to handle errors and free blocks
1064 * upon them.
1066 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS);
1067 if (!ablocks)
1068 return -ENOMEM;
1070 /* allocate all needed blocks */
1071 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1072 for (a = 0; a < depth - at; a++) {
1073 newblock = ext4_ext_new_meta_block(handle, inode, path,
1074 newext, &err, flags);
1075 if (newblock == 0)
1076 goto cleanup;
1077 ablocks[a] = newblock;
1080 /* initialize new leaf */
1081 newblock = ablocks[--a];
1082 if (unlikely(newblock == 0)) {
1083 EXT4_ERROR_INODE(inode, "newblock == 0!");
1084 err = -EFSCORRUPTED;
1085 goto cleanup;
1087 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1088 if (unlikely(!bh)) {
1089 err = -ENOMEM;
1090 goto cleanup;
1092 lock_buffer(bh);
1094 err = ext4_journal_get_create_access(handle, bh);
1095 if (err)
1096 goto cleanup;
1098 neh = ext_block_hdr(bh);
1099 neh->eh_entries = 0;
1100 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1101 neh->eh_magic = EXT4_EXT_MAGIC;
1102 neh->eh_depth = 0;
1104 /* move remainder of path[depth] to the new leaf */
1105 if (unlikely(path[depth].p_hdr->eh_entries !=
1106 path[depth].p_hdr->eh_max)) {
1107 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1108 path[depth].p_hdr->eh_entries,
1109 path[depth].p_hdr->eh_max);
1110 err = -EFSCORRUPTED;
1111 goto cleanup;
1113 /* start copy from next extent */
1114 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1115 ext4_ext_show_move(inode, path, newblock, depth);
1116 if (m) {
1117 struct ext4_extent *ex;
1118 ex = EXT_FIRST_EXTENT(neh);
1119 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1120 le16_add_cpu(&neh->eh_entries, m);
1123 ext4_extent_block_csum_set(inode, neh);
1124 set_buffer_uptodate(bh);
1125 unlock_buffer(bh);
1127 err = ext4_handle_dirty_metadata(handle, inode, bh);
1128 if (err)
1129 goto cleanup;
1130 brelse(bh);
1131 bh = NULL;
1133 /* correct old leaf */
1134 if (m) {
1135 err = ext4_ext_get_access(handle, inode, path + depth);
1136 if (err)
1137 goto cleanup;
1138 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1139 err = ext4_ext_dirty(handle, inode, path + depth);
1140 if (err)
1141 goto cleanup;
1145 /* create intermediate indexes */
1146 k = depth - at - 1;
1147 if (unlikely(k < 0)) {
1148 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1149 err = -EFSCORRUPTED;
1150 goto cleanup;
1152 if (k)
1153 ext_debug("create %d intermediate indices\n", k);
1154 /* insert new index into current index block */
1155 /* current depth stored in i var */
1156 i = depth - 1;
1157 while (k--) {
1158 oldblock = newblock;
1159 newblock = ablocks[--a];
1160 bh = sb_getblk(inode->i_sb, newblock);
1161 if (unlikely(!bh)) {
1162 err = -ENOMEM;
1163 goto cleanup;
1165 lock_buffer(bh);
1167 err = ext4_journal_get_create_access(handle, bh);
1168 if (err)
1169 goto cleanup;
1171 neh = ext_block_hdr(bh);
1172 neh->eh_entries = cpu_to_le16(1);
1173 neh->eh_magic = EXT4_EXT_MAGIC;
1174 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1175 neh->eh_depth = cpu_to_le16(depth - i);
1176 fidx = EXT_FIRST_INDEX(neh);
1177 fidx->ei_block = border;
1178 ext4_idx_store_pblock(fidx, oldblock);
1180 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1181 i, newblock, le32_to_cpu(border), oldblock);
1183 /* move remainder of path[i] to the new index block */
1184 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1185 EXT_LAST_INDEX(path[i].p_hdr))) {
1186 EXT4_ERROR_INODE(inode,
1187 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1188 le32_to_cpu(path[i].p_ext->ee_block));
1189 err = -EFSCORRUPTED;
1190 goto cleanup;
1192 /* start copy indexes */
1193 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1194 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1195 EXT_MAX_INDEX(path[i].p_hdr));
1196 ext4_ext_show_move(inode, path, newblock, i);
1197 if (m) {
1198 memmove(++fidx, path[i].p_idx,
1199 sizeof(struct ext4_extent_idx) * m);
1200 le16_add_cpu(&neh->eh_entries, m);
1202 ext4_extent_block_csum_set(inode, neh);
1203 set_buffer_uptodate(bh);
1204 unlock_buffer(bh);
1206 err = ext4_handle_dirty_metadata(handle, inode, bh);
1207 if (err)
1208 goto cleanup;
1209 brelse(bh);
1210 bh = NULL;
1212 /* correct old index */
1213 if (m) {
1214 err = ext4_ext_get_access(handle, inode, path + i);
1215 if (err)
1216 goto cleanup;
1217 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1218 err = ext4_ext_dirty(handle, inode, path + i);
1219 if (err)
1220 goto cleanup;
1223 i--;
1226 /* insert new index */
1227 err = ext4_ext_insert_index(handle, inode, path + at,
1228 le32_to_cpu(border), newblock);
1230 cleanup:
1231 if (bh) {
1232 if (buffer_locked(bh))
1233 unlock_buffer(bh);
1234 brelse(bh);
1237 if (err) {
1238 /* free all allocated blocks in error case */
1239 for (i = 0; i < depth; i++) {
1240 if (!ablocks[i])
1241 continue;
1242 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1243 EXT4_FREE_BLOCKS_METADATA);
1246 kfree(ablocks);
1248 return err;
1252 * ext4_ext_grow_indepth:
1253 * implements tree growing procedure:
1254 * - allocates new block
1255 * - moves top-level data (index block or leaf) into the new block
1256 * - initializes new top-level, creating index that points to the
1257 * just created block
1259 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1260 unsigned int flags)
1262 struct ext4_extent_header *neh;
1263 struct buffer_head *bh;
1264 ext4_fsblk_t newblock, goal = 0;
1265 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1266 int err = 0;
1268 /* Try to prepend new index to old one */
1269 if (ext_depth(inode))
1270 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1271 if (goal > le32_to_cpu(es->s_first_data_block)) {
1272 flags |= EXT4_MB_HINT_TRY_GOAL;
1273 goal--;
1274 } else
1275 goal = ext4_inode_to_goal_block(inode);
1276 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1277 NULL, &err);
1278 if (newblock == 0)
1279 return err;
1281 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1282 if (unlikely(!bh))
1283 return -ENOMEM;
1284 lock_buffer(bh);
1286 err = ext4_journal_get_create_access(handle, bh);
1287 if (err) {
1288 unlock_buffer(bh);
1289 goto out;
1292 /* move top-level index/leaf into new block */
1293 memmove(bh->b_data, EXT4_I(inode)->i_data,
1294 sizeof(EXT4_I(inode)->i_data));
1296 /* set size of new block */
1297 neh = ext_block_hdr(bh);
1298 /* old root could have indexes or leaves
1299 * so calculate e_max right way */
1300 if (ext_depth(inode))
1301 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1302 else
1303 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1304 neh->eh_magic = EXT4_EXT_MAGIC;
1305 ext4_extent_block_csum_set(inode, neh);
1306 set_buffer_uptodate(bh);
1307 unlock_buffer(bh);
1309 err = ext4_handle_dirty_metadata(handle, inode, bh);
1310 if (err)
1311 goto out;
1313 /* Update top-level index: num,max,pointer */
1314 neh = ext_inode_hdr(inode);
1315 neh->eh_entries = cpu_to_le16(1);
1316 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1317 if (neh->eh_depth == 0) {
1318 /* Root extent block becomes index block */
1319 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1320 EXT_FIRST_INDEX(neh)->ei_block =
1321 EXT_FIRST_EXTENT(neh)->ee_block;
1323 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1324 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1325 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1326 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1328 le16_add_cpu(&neh->eh_depth, 1);
1329 ext4_mark_inode_dirty(handle, inode);
1330 out:
1331 brelse(bh);
1333 return err;
1337 * ext4_ext_create_new_leaf:
1338 * finds empty index and adds new leaf.
1339 * if no free index is found, then it requests in-depth growing.
1341 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1342 unsigned int mb_flags,
1343 unsigned int gb_flags,
1344 struct ext4_ext_path **ppath,
1345 struct ext4_extent *newext)
1347 struct ext4_ext_path *path = *ppath;
1348 struct ext4_ext_path *curp;
1349 int depth, i, err = 0;
1351 repeat:
1352 i = depth = ext_depth(inode);
1354 /* walk up to the tree and look for free index entry */
1355 curp = path + depth;
1356 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1357 i--;
1358 curp--;
1361 /* we use already allocated block for index block,
1362 * so subsequent data blocks should be contiguous */
1363 if (EXT_HAS_FREE_INDEX(curp)) {
1364 /* if we found index with free entry, then use that
1365 * entry: create all needed subtree and add new leaf */
1366 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1367 if (err)
1368 goto out;
1370 /* refill path */
1371 path = ext4_find_extent(inode,
1372 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1373 ppath, gb_flags);
1374 if (IS_ERR(path))
1375 err = PTR_ERR(path);
1376 } else {
1377 /* tree is full, time to grow in depth */
1378 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1379 if (err)
1380 goto out;
1382 /* refill path */
1383 path = ext4_find_extent(inode,
1384 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1385 ppath, gb_flags);
1386 if (IS_ERR(path)) {
1387 err = PTR_ERR(path);
1388 goto out;
1392 * only first (depth 0 -> 1) produces free space;
1393 * in all other cases we have to split the grown tree
1395 depth = ext_depth(inode);
1396 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1397 /* now we need to split */
1398 goto repeat;
1402 out:
1403 return err;
1407 * search the closest allocated block to the left for *logical
1408 * and returns it at @logical + it's physical address at @phys
1409 * if *logical is the smallest allocated block, the function
1410 * returns 0 at @phys
1411 * return value contains 0 (success) or error code
1413 static int ext4_ext_search_left(struct inode *inode,
1414 struct ext4_ext_path *path,
1415 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1417 struct ext4_extent_idx *ix;
1418 struct ext4_extent *ex;
1419 int depth, ee_len;
1421 if (unlikely(path == NULL)) {
1422 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1423 return -EFSCORRUPTED;
1425 depth = path->p_depth;
1426 *phys = 0;
1428 if (depth == 0 && path->p_ext == NULL)
1429 return 0;
1431 /* usually extent in the path covers blocks smaller
1432 * then *logical, but it can be that extent is the
1433 * first one in the file */
1435 ex = path[depth].p_ext;
1436 ee_len = ext4_ext_get_actual_len(ex);
1437 if (*logical < le32_to_cpu(ex->ee_block)) {
1438 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1439 EXT4_ERROR_INODE(inode,
1440 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1441 *logical, le32_to_cpu(ex->ee_block));
1442 return -EFSCORRUPTED;
1444 while (--depth >= 0) {
1445 ix = path[depth].p_idx;
1446 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1447 EXT4_ERROR_INODE(inode,
1448 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1449 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1450 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1451 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1452 depth);
1453 return -EFSCORRUPTED;
1456 return 0;
1459 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1460 EXT4_ERROR_INODE(inode,
1461 "logical %d < ee_block %d + ee_len %d!",
1462 *logical, le32_to_cpu(ex->ee_block), ee_len);
1463 return -EFSCORRUPTED;
1466 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1467 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1468 return 0;
1472 * search the closest allocated block to the right for *logical
1473 * and returns it at @logical + it's physical address at @phys
1474 * if *logical is the largest allocated block, the function
1475 * returns 0 at @phys
1476 * return value contains 0 (success) or error code
1478 static int ext4_ext_search_right(struct inode *inode,
1479 struct ext4_ext_path *path,
1480 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1481 struct ext4_extent **ret_ex)
1483 struct buffer_head *bh = NULL;
1484 struct ext4_extent_header *eh;
1485 struct ext4_extent_idx *ix;
1486 struct ext4_extent *ex;
1487 ext4_fsblk_t block;
1488 int depth; /* Note, NOT eh_depth; depth from top of tree */
1489 int ee_len;
1491 if (unlikely(path == NULL)) {
1492 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1493 return -EFSCORRUPTED;
1495 depth = path->p_depth;
1496 *phys = 0;
1498 if (depth == 0 && path->p_ext == NULL)
1499 return 0;
1501 /* usually extent in the path covers blocks smaller
1502 * then *logical, but it can be that extent is the
1503 * first one in the file */
1505 ex = path[depth].p_ext;
1506 ee_len = ext4_ext_get_actual_len(ex);
1507 if (*logical < le32_to_cpu(ex->ee_block)) {
1508 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1509 EXT4_ERROR_INODE(inode,
1510 "first_extent(path[%d].p_hdr) != ex",
1511 depth);
1512 return -EFSCORRUPTED;
1514 while (--depth >= 0) {
1515 ix = path[depth].p_idx;
1516 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1517 EXT4_ERROR_INODE(inode,
1518 "ix != EXT_FIRST_INDEX *logical %d!",
1519 *logical);
1520 return -EFSCORRUPTED;
1523 goto found_extent;
1526 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1527 EXT4_ERROR_INODE(inode,
1528 "logical %d < ee_block %d + ee_len %d!",
1529 *logical, le32_to_cpu(ex->ee_block), ee_len);
1530 return -EFSCORRUPTED;
1533 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1534 /* next allocated block in this leaf */
1535 ex++;
1536 goto found_extent;
1539 /* go up and search for index to the right */
1540 while (--depth >= 0) {
1541 ix = path[depth].p_idx;
1542 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1543 goto got_index;
1546 /* we've gone up to the root and found no index to the right */
1547 return 0;
1549 got_index:
1550 /* we've found index to the right, let's
1551 * follow it and find the closest allocated
1552 * block to the right */
1553 ix++;
1554 block = ext4_idx_pblock(ix);
1555 while (++depth < path->p_depth) {
1556 /* subtract from p_depth to get proper eh_depth */
1557 bh = read_extent_tree_block(inode, block,
1558 path->p_depth - depth, 0);
1559 if (IS_ERR(bh))
1560 return PTR_ERR(bh);
1561 eh = ext_block_hdr(bh);
1562 ix = EXT_FIRST_INDEX(eh);
1563 block = ext4_idx_pblock(ix);
1564 put_bh(bh);
1567 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1568 if (IS_ERR(bh))
1569 return PTR_ERR(bh);
1570 eh = ext_block_hdr(bh);
1571 ex = EXT_FIRST_EXTENT(eh);
1572 found_extent:
1573 *logical = le32_to_cpu(ex->ee_block);
1574 *phys = ext4_ext_pblock(ex);
1575 *ret_ex = ex;
1576 if (bh)
1577 put_bh(bh);
1578 return 0;
1582 * ext4_ext_next_allocated_block:
1583 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1584 * NOTE: it considers block number from index entry as
1585 * allocated block. Thus, index entries have to be consistent
1586 * with leaves.
1588 ext4_lblk_t
1589 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1591 int depth;
1593 BUG_ON(path == NULL);
1594 depth = path->p_depth;
1596 if (depth == 0 && path->p_ext == NULL)
1597 return EXT_MAX_BLOCKS;
1599 while (depth >= 0) {
1600 if (depth == path->p_depth) {
1601 /* leaf */
1602 if (path[depth].p_ext &&
1603 path[depth].p_ext !=
1604 EXT_LAST_EXTENT(path[depth].p_hdr))
1605 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1606 } else {
1607 /* index */
1608 if (path[depth].p_idx !=
1609 EXT_LAST_INDEX(path[depth].p_hdr))
1610 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1612 depth--;
1615 return EXT_MAX_BLOCKS;
1619 * ext4_ext_next_leaf_block:
1620 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1622 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1624 int depth;
1626 BUG_ON(path == NULL);
1627 depth = path->p_depth;
1629 /* zero-tree has no leaf blocks at all */
1630 if (depth == 0)
1631 return EXT_MAX_BLOCKS;
1633 /* go to index block */
1634 depth--;
1636 while (depth >= 0) {
1637 if (path[depth].p_idx !=
1638 EXT_LAST_INDEX(path[depth].p_hdr))
1639 return (ext4_lblk_t)
1640 le32_to_cpu(path[depth].p_idx[1].ei_block);
1641 depth--;
1644 return EXT_MAX_BLOCKS;
1648 * ext4_ext_correct_indexes:
1649 * if leaf gets modified and modified extent is first in the leaf,
1650 * then we have to correct all indexes above.
1651 * TODO: do we need to correct tree in all cases?
1653 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1654 struct ext4_ext_path *path)
1656 struct ext4_extent_header *eh;
1657 int depth = ext_depth(inode);
1658 struct ext4_extent *ex;
1659 __le32 border;
1660 int k, err = 0;
1662 eh = path[depth].p_hdr;
1663 ex = path[depth].p_ext;
1665 if (unlikely(ex == NULL || eh == NULL)) {
1666 EXT4_ERROR_INODE(inode,
1667 "ex %p == NULL or eh %p == NULL", ex, eh);
1668 return -EFSCORRUPTED;
1671 if (depth == 0) {
1672 /* there is no tree at all */
1673 return 0;
1676 if (ex != EXT_FIRST_EXTENT(eh)) {
1677 /* we correct tree if first leaf got modified only */
1678 return 0;
1682 * TODO: we need correction if border is smaller than current one
1684 k = depth - 1;
1685 border = path[depth].p_ext->ee_block;
1686 err = ext4_ext_get_access(handle, inode, path + k);
1687 if (err)
1688 return err;
1689 path[k].p_idx->ei_block = border;
1690 err = ext4_ext_dirty(handle, inode, path + k);
1691 if (err)
1692 return err;
1694 while (k--) {
1695 /* change all left-side indexes */
1696 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1697 break;
1698 err = ext4_ext_get_access(handle, inode, path + k);
1699 if (err)
1700 break;
1701 path[k].p_idx->ei_block = border;
1702 err = ext4_ext_dirty(handle, inode, path + k);
1703 if (err)
1704 break;
1707 return err;
1711 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1712 struct ext4_extent *ex2)
1714 unsigned short ext1_ee_len, ext2_ee_len;
1716 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1717 return 0;
1719 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1720 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1722 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1723 le32_to_cpu(ex2->ee_block))
1724 return 0;
1727 * To allow future support for preallocated extents to be added
1728 * as an RO_COMPAT feature, refuse to merge to extents if
1729 * this can result in the top bit of ee_len being set.
1731 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1732 return 0;
1734 * The check for IO to unwritten extent is somewhat racy as we
1735 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1736 * dropping i_data_sem. But reserved blocks should save us in that
1737 * case.
1739 if (ext4_ext_is_unwritten(ex1) &&
1740 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1741 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1742 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1743 return 0;
1744 #ifdef AGGRESSIVE_TEST
1745 if (ext1_ee_len >= 4)
1746 return 0;
1747 #endif
1749 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1750 return 1;
1751 return 0;
1755 * This function tries to merge the "ex" extent to the next extent in the tree.
1756 * It always tries to merge towards right. If you want to merge towards
1757 * left, pass "ex - 1" as argument instead of "ex".
1758 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1759 * 1 if they got merged.
1761 static int ext4_ext_try_to_merge_right(struct inode *inode,
1762 struct ext4_ext_path *path,
1763 struct ext4_extent *ex)
1765 struct ext4_extent_header *eh;
1766 unsigned int depth, len;
1767 int merge_done = 0, unwritten;
1769 depth = ext_depth(inode);
1770 BUG_ON(path[depth].p_hdr == NULL);
1771 eh = path[depth].p_hdr;
1773 while (ex < EXT_LAST_EXTENT(eh)) {
1774 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1775 break;
1776 /* merge with next extent! */
1777 unwritten = ext4_ext_is_unwritten(ex);
1778 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1779 + ext4_ext_get_actual_len(ex + 1));
1780 if (unwritten)
1781 ext4_ext_mark_unwritten(ex);
1783 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1784 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1785 * sizeof(struct ext4_extent);
1786 memmove(ex + 1, ex + 2, len);
1788 le16_add_cpu(&eh->eh_entries, -1);
1789 merge_done = 1;
1790 WARN_ON(eh->eh_entries == 0);
1791 if (!eh->eh_entries)
1792 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1795 return merge_done;
1799 * This function does a very simple check to see if we can collapse
1800 * an extent tree with a single extent tree leaf block into the inode.
1802 static void ext4_ext_try_to_merge_up(handle_t *handle,
1803 struct inode *inode,
1804 struct ext4_ext_path *path)
1806 size_t s;
1807 unsigned max_root = ext4_ext_space_root(inode, 0);
1808 ext4_fsblk_t blk;
1810 if ((path[0].p_depth != 1) ||
1811 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1812 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1813 return;
1816 * We need to modify the block allocation bitmap and the block
1817 * group descriptor to release the extent tree block. If we
1818 * can't get the journal credits, give up.
1820 if (ext4_journal_extend(handle, 2))
1821 return;
1824 * Copy the extent data up to the inode
1826 blk = ext4_idx_pblock(path[0].p_idx);
1827 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1828 sizeof(struct ext4_extent_idx);
1829 s += sizeof(struct ext4_extent_header);
1831 path[1].p_maxdepth = path[0].p_maxdepth;
1832 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1833 path[0].p_depth = 0;
1834 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1835 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1836 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1838 brelse(path[1].p_bh);
1839 ext4_free_blocks(handle, inode, NULL, blk, 1,
1840 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1844 * This function tries to merge the @ex extent to neighbours in the tree.
1845 * return 1 if merge left else 0.
1847 static void ext4_ext_try_to_merge(handle_t *handle,
1848 struct inode *inode,
1849 struct ext4_ext_path *path,
1850 struct ext4_extent *ex) {
1851 struct ext4_extent_header *eh;
1852 unsigned int depth;
1853 int merge_done = 0;
1855 depth = ext_depth(inode);
1856 BUG_ON(path[depth].p_hdr == NULL);
1857 eh = path[depth].p_hdr;
1859 if (ex > EXT_FIRST_EXTENT(eh))
1860 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1862 if (!merge_done)
1863 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1865 ext4_ext_try_to_merge_up(handle, inode, path);
1869 * check if a portion of the "newext" extent overlaps with an
1870 * existing extent.
1872 * If there is an overlap discovered, it updates the length of the newext
1873 * such that there will be no overlap, and then returns 1.
1874 * If there is no overlap found, it returns 0.
1876 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1877 struct inode *inode,
1878 struct ext4_extent *newext,
1879 struct ext4_ext_path *path)
1881 ext4_lblk_t b1, b2;
1882 unsigned int depth, len1;
1883 unsigned int ret = 0;
1885 b1 = le32_to_cpu(newext->ee_block);
1886 len1 = ext4_ext_get_actual_len(newext);
1887 depth = ext_depth(inode);
1888 if (!path[depth].p_ext)
1889 goto out;
1890 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1893 * get the next allocated block if the extent in the path
1894 * is before the requested block(s)
1896 if (b2 < b1) {
1897 b2 = ext4_ext_next_allocated_block(path);
1898 if (b2 == EXT_MAX_BLOCKS)
1899 goto out;
1900 b2 = EXT4_LBLK_CMASK(sbi, b2);
1903 /* check for wrap through zero on extent logical start block*/
1904 if (b1 + len1 < b1) {
1905 len1 = EXT_MAX_BLOCKS - b1;
1906 newext->ee_len = cpu_to_le16(len1);
1907 ret = 1;
1910 /* check for overlap */
1911 if (b1 + len1 > b2) {
1912 newext->ee_len = cpu_to_le16(b2 - b1);
1913 ret = 1;
1915 out:
1916 return ret;
1920 * ext4_ext_insert_extent:
1921 * tries to merge requsted extent into the existing extent or
1922 * inserts requested extent as new one into the tree,
1923 * creating new leaf in the no-space case.
1925 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1926 struct ext4_ext_path **ppath,
1927 struct ext4_extent *newext, int gb_flags)
1929 struct ext4_ext_path *path = *ppath;
1930 struct ext4_extent_header *eh;
1931 struct ext4_extent *ex, *fex;
1932 struct ext4_extent *nearex; /* nearest extent */
1933 struct ext4_ext_path *npath = NULL;
1934 int depth, len, err;
1935 ext4_lblk_t next;
1936 int mb_flags = 0, unwritten;
1938 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1939 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1940 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1941 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1942 return -EFSCORRUPTED;
1944 depth = ext_depth(inode);
1945 ex = path[depth].p_ext;
1946 eh = path[depth].p_hdr;
1947 if (unlikely(path[depth].p_hdr == NULL)) {
1948 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1949 return -EFSCORRUPTED;
1952 /* try to insert block into found extent and return */
1953 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1956 * Try to see whether we should rather test the extent on
1957 * right from ex, or from the left of ex. This is because
1958 * ext4_find_extent() can return either extent on the
1959 * left, or on the right from the searched position. This
1960 * will make merging more effective.
1962 if (ex < EXT_LAST_EXTENT(eh) &&
1963 (le32_to_cpu(ex->ee_block) +
1964 ext4_ext_get_actual_len(ex) <
1965 le32_to_cpu(newext->ee_block))) {
1966 ex += 1;
1967 goto prepend;
1968 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1969 (le32_to_cpu(newext->ee_block) +
1970 ext4_ext_get_actual_len(newext) <
1971 le32_to_cpu(ex->ee_block)))
1972 ex -= 1;
1974 /* Try to append newex to the ex */
1975 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1976 ext_debug("append [%d]%d block to %u:[%d]%d"
1977 "(from %llu)\n",
1978 ext4_ext_is_unwritten(newext),
1979 ext4_ext_get_actual_len(newext),
1980 le32_to_cpu(ex->ee_block),
1981 ext4_ext_is_unwritten(ex),
1982 ext4_ext_get_actual_len(ex),
1983 ext4_ext_pblock(ex));
1984 err = ext4_ext_get_access(handle, inode,
1985 path + depth);
1986 if (err)
1987 return err;
1988 unwritten = ext4_ext_is_unwritten(ex);
1989 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1990 + ext4_ext_get_actual_len(newext));
1991 if (unwritten)
1992 ext4_ext_mark_unwritten(ex);
1993 eh = path[depth].p_hdr;
1994 nearex = ex;
1995 goto merge;
1998 prepend:
1999 /* Try to prepend newex to the ex */
2000 if (ext4_can_extents_be_merged(inode, newext, ex)) {
2001 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2002 "(from %llu)\n",
2003 le32_to_cpu(newext->ee_block),
2004 ext4_ext_is_unwritten(newext),
2005 ext4_ext_get_actual_len(newext),
2006 le32_to_cpu(ex->ee_block),
2007 ext4_ext_is_unwritten(ex),
2008 ext4_ext_get_actual_len(ex),
2009 ext4_ext_pblock(ex));
2010 err = ext4_ext_get_access(handle, inode,
2011 path + depth);
2012 if (err)
2013 return err;
2015 unwritten = ext4_ext_is_unwritten(ex);
2016 ex->ee_block = newext->ee_block;
2017 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2018 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2019 + ext4_ext_get_actual_len(newext));
2020 if (unwritten)
2021 ext4_ext_mark_unwritten(ex);
2022 eh = path[depth].p_hdr;
2023 nearex = ex;
2024 goto merge;
2028 depth = ext_depth(inode);
2029 eh = path[depth].p_hdr;
2030 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2031 goto has_space;
2033 /* probably next leaf has space for us? */
2034 fex = EXT_LAST_EXTENT(eh);
2035 next = EXT_MAX_BLOCKS;
2036 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2037 next = ext4_ext_next_leaf_block(path);
2038 if (next != EXT_MAX_BLOCKS) {
2039 ext_debug("next leaf block - %u\n", next);
2040 BUG_ON(npath != NULL);
2041 npath = ext4_find_extent(inode, next, NULL, 0);
2042 if (IS_ERR(npath))
2043 return PTR_ERR(npath);
2044 BUG_ON(npath->p_depth != path->p_depth);
2045 eh = npath[depth].p_hdr;
2046 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2047 ext_debug("next leaf isn't full(%d)\n",
2048 le16_to_cpu(eh->eh_entries));
2049 path = npath;
2050 goto has_space;
2052 ext_debug("next leaf has no free space(%d,%d)\n",
2053 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2057 * There is no free space in the found leaf.
2058 * We're gonna add a new leaf in the tree.
2060 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2061 mb_flags |= EXT4_MB_USE_RESERVED;
2062 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2063 ppath, newext);
2064 if (err)
2065 goto cleanup;
2066 depth = ext_depth(inode);
2067 eh = path[depth].p_hdr;
2069 has_space:
2070 nearex = path[depth].p_ext;
2072 err = ext4_ext_get_access(handle, inode, path + depth);
2073 if (err)
2074 goto cleanup;
2076 if (!nearex) {
2077 /* there is no extent in this leaf, create first one */
2078 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2079 le32_to_cpu(newext->ee_block),
2080 ext4_ext_pblock(newext),
2081 ext4_ext_is_unwritten(newext),
2082 ext4_ext_get_actual_len(newext));
2083 nearex = EXT_FIRST_EXTENT(eh);
2084 } else {
2085 if (le32_to_cpu(newext->ee_block)
2086 > le32_to_cpu(nearex->ee_block)) {
2087 /* Insert after */
2088 ext_debug("insert %u:%llu:[%d]%d before: "
2089 "nearest %p\n",
2090 le32_to_cpu(newext->ee_block),
2091 ext4_ext_pblock(newext),
2092 ext4_ext_is_unwritten(newext),
2093 ext4_ext_get_actual_len(newext),
2094 nearex);
2095 nearex++;
2096 } else {
2097 /* Insert before */
2098 BUG_ON(newext->ee_block == nearex->ee_block);
2099 ext_debug("insert %u:%llu:[%d]%d after: "
2100 "nearest %p\n",
2101 le32_to_cpu(newext->ee_block),
2102 ext4_ext_pblock(newext),
2103 ext4_ext_is_unwritten(newext),
2104 ext4_ext_get_actual_len(newext),
2105 nearex);
2107 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2108 if (len > 0) {
2109 ext_debug("insert %u:%llu:[%d]%d: "
2110 "move %d extents from 0x%p to 0x%p\n",
2111 le32_to_cpu(newext->ee_block),
2112 ext4_ext_pblock(newext),
2113 ext4_ext_is_unwritten(newext),
2114 ext4_ext_get_actual_len(newext),
2115 len, nearex, nearex + 1);
2116 memmove(nearex + 1, nearex,
2117 len * sizeof(struct ext4_extent));
2121 le16_add_cpu(&eh->eh_entries, 1);
2122 path[depth].p_ext = nearex;
2123 nearex->ee_block = newext->ee_block;
2124 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2125 nearex->ee_len = newext->ee_len;
2127 merge:
2128 /* try to merge extents */
2129 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2130 ext4_ext_try_to_merge(handle, inode, path, nearex);
2133 /* time to correct all indexes above */
2134 err = ext4_ext_correct_indexes(handle, inode, path);
2135 if (err)
2136 goto cleanup;
2138 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2140 cleanup:
2141 ext4_ext_drop_refs(npath);
2142 kfree(npath);
2143 return err;
2146 static int ext4_fill_fiemap_extents(struct inode *inode,
2147 ext4_lblk_t block, ext4_lblk_t num,
2148 struct fiemap_extent_info *fieinfo)
2150 struct ext4_ext_path *path = NULL;
2151 struct ext4_extent *ex;
2152 struct extent_status es;
2153 ext4_lblk_t next, next_del, start = 0, end = 0;
2154 ext4_lblk_t last = block + num;
2155 int exists, depth = 0, err = 0;
2156 unsigned int flags = 0;
2157 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2159 while (block < last && block != EXT_MAX_BLOCKS) {
2160 num = last - block;
2161 /* find extent for this block */
2162 down_read(&EXT4_I(inode)->i_data_sem);
2164 path = ext4_find_extent(inode, block, &path, 0);
2165 if (IS_ERR(path)) {
2166 up_read(&EXT4_I(inode)->i_data_sem);
2167 err = PTR_ERR(path);
2168 path = NULL;
2169 break;
2172 depth = ext_depth(inode);
2173 if (unlikely(path[depth].p_hdr == NULL)) {
2174 up_read(&EXT4_I(inode)->i_data_sem);
2175 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2176 err = -EFSCORRUPTED;
2177 break;
2179 ex = path[depth].p_ext;
2180 next = ext4_ext_next_allocated_block(path);
2182 flags = 0;
2183 exists = 0;
2184 if (!ex) {
2185 /* there is no extent yet, so try to allocate
2186 * all requested space */
2187 start = block;
2188 end = block + num;
2189 } else if (le32_to_cpu(ex->ee_block) > block) {
2190 /* need to allocate space before found extent */
2191 start = block;
2192 end = le32_to_cpu(ex->ee_block);
2193 if (block + num < end)
2194 end = block + num;
2195 } else if (block >= le32_to_cpu(ex->ee_block)
2196 + ext4_ext_get_actual_len(ex)) {
2197 /* need to allocate space after found extent */
2198 start = block;
2199 end = block + num;
2200 if (end >= next)
2201 end = next;
2202 } else if (block >= le32_to_cpu(ex->ee_block)) {
2204 * some part of requested space is covered
2205 * by found extent
2207 start = block;
2208 end = le32_to_cpu(ex->ee_block)
2209 + ext4_ext_get_actual_len(ex);
2210 if (block + num < end)
2211 end = block + num;
2212 exists = 1;
2213 } else {
2214 BUG();
2216 BUG_ON(end <= start);
2218 if (!exists) {
2219 es.es_lblk = start;
2220 es.es_len = end - start;
2221 es.es_pblk = 0;
2222 } else {
2223 es.es_lblk = le32_to_cpu(ex->ee_block);
2224 es.es_len = ext4_ext_get_actual_len(ex);
2225 es.es_pblk = ext4_ext_pblock(ex);
2226 if (ext4_ext_is_unwritten(ex))
2227 flags |= FIEMAP_EXTENT_UNWRITTEN;
2231 * Find delayed extent and update es accordingly. We call
2232 * it even in !exists case to find out whether es is the
2233 * last existing extent or not.
2235 next_del = ext4_find_delayed_extent(inode, &es);
2236 if (!exists && next_del) {
2237 exists = 1;
2238 flags |= (FIEMAP_EXTENT_DELALLOC |
2239 FIEMAP_EXTENT_UNKNOWN);
2241 up_read(&EXT4_I(inode)->i_data_sem);
2243 if (unlikely(es.es_len == 0)) {
2244 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2245 err = -EFSCORRUPTED;
2246 break;
2250 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2251 * we need to check next == EXT_MAX_BLOCKS because it is
2252 * possible that an extent is with unwritten and delayed
2253 * status due to when an extent is delayed allocated and
2254 * is allocated by fallocate status tree will track both of
2255 * them in a extent.
2257 * So we could return a unwritten and delayed extent, and
2258 * its block is equal to 'next'.
2260 if (next == next_del && next == EXT_MAX_BLOCKS) {
2261 flags |= FIEMAP_EXTENT_LAST;
2262 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2263 next != EXT_MAX_BLOCKS)) {
2264 EXT4_ERROR_INODE(inode,
2265 "next extent == %u, next "
2266 "delalloc extent = %u",
2267 next, next_del);
2268 err = -EFSCORRUPTED;
2269 break;
2273 if (exists) {
2274 err = fiemap_fill_next_extent(fieinfo,
2275 (__u64)es.es_lblk << blksize_bits,
2276 (__u64)es.es_pblk << blksize_bits,
2277 (__u64)es.es_len << blksize_bits,
2278 flags);
2279 if (err < 0)
2280 break;
2281 if (err == 1) {
2282 err = 0;
2283 break;
2287 block = es.es_lblk + es.es_len;
2290 ext4_ext_drop_refs(path);
2291 kfree(path);
2292 return err;
2296 * ext4_ext_determine_hole - determine hole around given block
2297 * @inode: inode we lookup in
2298 * @path: path in extent tree to @lblk
2299 * @lblk: pointer to logical block around which we want to determine hole
2301 * Determine hole length (and start if easily possible) around given logical
2302 * block. We don't try too hard to find the beginning of the hole but @path
2303 * actually points to extent before @lblk, we provide it.
2305 * The function returns the length of a hole starting at @lblk. We update @lblk
2306 * to the beginning of the hole if we managed to find it.
2308 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2309 struct ext4_ext_path *path,
2310 ext4_lblk_t *lblk)
2312 int depth = ext_depth(inode);
2313 struct ext4_extent *ex;
2314 ext4_lblk_t len;
2316 ex = path[depth].p_ext;
2317 if (ex == NULL) {
2318 /* there is no extent yet, so gap is [0;-] */
2319 *lblk = 0;
2320 len = EXT_MAX_BLOCKS;
2321 } else if (*lblk < le32_to_cpu(ex->ee_block)) {
2322 len = le32_to_cpu(ex->ee_block) - *lblk;
2323 } else if (*lblk >= le32_to_cpu(ex->ee_block)
2324 + ext4_ext_get_actual_len(ex)) {
2325 ext4_lblk_t next;
2327 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2328 next = ext4_ext_next_allocated_block(path);
2329 BUG_ON(next == *lblk);
2330 len = next - *lblk;
2331 } else {
2332 BUG();
2334 return len;
2338 * ext4_ext_put_gap_in_cache:
2339 * calculate boundaries of the gap that the requested block fits into
2340 * and cache this gap
2342 static void
2343 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2344 ext4_lblk_t hole_len)
2346 struct extent_status es;
2348 ext4_es_find_delayed_extent_range(inode, hole_start,
2349 hole_start + hole_len - 1, &es);
2350 if (es.es_len) {
2351 /* There's delayed extent containing lblock? */
2352 if (es.es_lblk <= hole_start)
2353 return;
2354 hole_len = min(es.es_lblk - hole_start, hole_len);
2356 ext_debug(" -> %u:%u\n", hole_start, hole_len);
2357 ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2358 EXTENT_STATUS_HOLE);
2362 * ext4_ext_rm_idx:
2363 * removes index from the index block.
2365 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2366 struct ext4_ext_path *path, int depth)
2368 int err;
2369 ext4_fsblk_t leaf;
2371 /* free index block */
2372 depth--;
2373 path = path + depth;
2374 leaf = ext4_idx_pblock(path->p_idx);
2375 if (unlikely(path->p_hdr->eh_entries == 0)) {
2376 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2377 return -EFSCORRUPTED;
2379 err = ext4_ext_get_access(handle, inode, path);
2380 if (err)
2381 return err;
2383 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2384 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2385 len *= sizeof(struct ext4_extent_idx);
2386 memmove(path->p_idx, path->p_idx + 1, len);
2389 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2390 err = ext4_ext_dirty(handle, inode, path);
2391 if (err)
2392 return err;
2393 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2394 trace_ext4_ext_rm_idx(inode, leaf);
2396 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2397 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2399 while (--depth >= 0) {
2400 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2401 break;
2402 path--;
2403 err = ext4_ext_get_access(handle, inode, path);
2404 if (err)
2405 break;
2406 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2407 err = ext4_ext_dirty(handle, inode, path);
2408 if (err)
2409 break;
2411 return err;
2415 * ext4_ext_calc_credits_for_single_extent:
2416 * This routine returns max. credits that needed to insert an extent
2417 * to the extent tree.
2418 * When pass the actual path, the caller should calculate credits
2419 * under i_data_sem.
2421 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2422 struct ext4_ext_path *path)
2424 if (path) {
2425 int depth = ext_depth(inode);
2426 int ret = 0;
2428 /* probably there is space in leaf? */
2429 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2430 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2433 * There are some space in the leaf tree, no
2434 * need to account for leaf block credit
2436 * bitmaps and block group descriptor blocks
2437 * and other metadata blocks still need to be
2438 * accounted.
2440 /* 1 bitmap, 1 block group descriptor */
2441 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2442 return ret;
2446 return ext4_chunk_trans_blocks(inode, nrblocks);
2450 * How many index/leaf blocks need to change/allocate to add @extents extents?
2452 * If we add a single extent, then in the worse case, each tree level
2453 * index/leaf need to be changed in case of the tree split.
2455 * If more extents are inserted, they could cause the whole tree split more
2456 * than once, but this is really rare.
2458 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2460 int index;
2461 int depth;
2463 /* If we are converting the inline data, only one is needed here. */
2464 if (ext4_has_inline_data(inode))
2465 return 1;
2467 depth = ext_depth(inode);
2469 if (extents <= 1)
2470 index = depth * 2;
2471 else
2472 index = depth * 3;
2474 return index;
2477 static inline int get_default_free_blocks_flags(struct inode *inode)
2479 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2480 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2481 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2482 else if (ext4_should_journal_data(inode))
2483 return EXT4_FREE_BLOCKS_FORGET;
2484 return 0;
2487 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2488 struct ext4_extent *ex,
2489 long long *partial_cluster,
2490 ext4_lblk_t from, ext4_lblk_t to)
2492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2493 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2494 ext4_fsblk_t pblk;
2495 int flags = get_default_free_blocks_flags(inode);
2498 * For bigalloc file systems, we never free a partial cluster
2499 * at the beginning of the extent. Instead, we make a note
2500 * that we tried freeing the cluster, and check to see if we
2501 * need to free it on a subsequent call to ext4_remove_blocks,
2502 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2504 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2506 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2508 * If we have a partial cluster, and it's different from the
2509 * cluster of the last block, we need to explicitly free the
2510 * partial cluster here.
2512 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2513 if (*partial_cluster > 0 &&
2514 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2515 ext4_free_blocks(handle, inode, NULL,
2516 EXT4_C2B(sbi, *partial_cluster),
2517 sbi->s_cluster_ratio, flags);
2518 *partial_cluster = 0;
2521 #ifdef EXTENTS_STATS
2523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2524 spin_lock(&sbi->s_ext_stats_lock);
2525 sbi->s_ext_blocks += ee_len;
2526 sbi->s_ext_extents++;
2527 if (ee_len < sbi->s_ext_min)
2528 sbi->s_ext_min = ee_len;
2529 if (ee_len > sbi->s_ext_max)
2530 sbi->s_ext_max = ee_len;
2531 if (ext_depth(inode) > sbi->s_depth_max)
2532 sbi->s_depth_max = ext_depth(inode);
2533 spin_unlock(&sbi->s_ext_stats_lock);
2535 #endif
2536 if (from >= le32_to_cpu(ex->ee_block)
2537 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2538 /* tail removal */
2539 ext4_lblk_t num;
2540 long long first_cluster;
2542 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2543 pblk = ext4_ext_pblock(ex) + ee_len - num;
2545 * Usually we want to free partial cluster at the end of the
2546 * extent, except for the situation when the cluster is still
2547 * used by any other extent (partial_cluster is negative).
2549 if (*partial_cluster < 0 &&
2550 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2551 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2553 ext_debug("free last %u blocks starting %llu partial %lld\n",
2554 num, pblk, *partial_cluster);
2555 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2557 * If the block range to be freed didn't start at the
2558 * beginning of a cluster, and we removed the entire
2559 * extent and the cluster is not used by any other extent,
2560 * save the partial cluster here, since we might need to
2561 * delete if we determine that the truncate or punch hole
2562 * operation has removed all of the blocks in the cluster.
2563 * If that cluster is used by another extent, preserve its
2564 * negative value so it isn't freed later on.
2566 * If the whole extent wasn't freed, we've reached the
2567 * start of the truncated/punched region and have finished
2568 * removing blocks. If there's a partial cluster here it's
2569 * shared with the remainder of the extent and is no longer
2570 * a candidate for removal.
2572 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2573 first_cluster = (long long) EXT4_B2C(sbi, pblk);
2574 if (first_cluster != -*partial_cluster)
2575 *partial_cluster = first_cluster;
2576 } else {
2577 *partial_cluster = 0;
2579 } else
2580 ext4_error(sbi->s_sb, "strange request: removal(2) "
2581 "%u-%u from %u:%u",
2582 from, to, le32_to_cpu(ex->ee_block), ee_len);
2583 return 0;
2588 * ext4_ext_rm_leaf() Removes the extents associated with the
2589 * blocks appearing between "start" and "end". Both "start"
2590 * and "end" must appear in the same extent or EIO is returned.
2592 * @handle: The journal handle
2593 * @inode: The files inode
2594 * @path: The path to the leaf
2595 * @partial_cluster: The cluster which we'll have to free if all extents
2596 * has been released from it. However, if this value is
2597 * negative, it's a cluster just to the right of the
2598 * punched region and it must not be freed.
2599 * @start: The first block to remove
2600 * @end: The last block to remove
2602 static int
2603 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2604 struct ext4_ext_path *path,
2605 long long *partial_cluster,
2606 ext4_lblk_t start, ext4_lblk_t end)
2608 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2609 int err = 0, correct_index = 0;
2610 int depth = ext_depth(inode), credits;
2611 struct ext4_extent_header *eh;
2612 ext4_lblk_t a, b;
2613 unsigned num;
2614 ext4_lblk_t ex_ee_block;
2615 unsigned short ex_ee_len;
2616 unsigned unwritten = 0;
2617 struct ext4_extent *ex;
2618 ext4_fsblk_t pblk;
2620 /* the header must be checked already in ext4_ext_remove_space() */
2621 ext_debug("truncate since %u in leaf to %u\n", start, end);
2622 if (!path[depth].p_hdr)
2623 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2624 eh = path[depth].p_hdr;
2625 if (unlikely(path[depth].p_hdr == NULL)) {
2626 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2627 return -EFSCORRUPTED;
2629 /* find where to start removing */
2630 ex = path[depth].p_ext;
2631 if (!ex)
2632 ex = EXT_LAST_EXTENT(eh);
2634 ex_ee_block = le32_to_cpu(ex->ee_block);
2635 ex_ee_len = ext4_ext_get_actual_len(ex);
2637 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2639 while (ex >= EXT_FIRST_EXTENT(eh) &&
2640 ex_ee_block + ex_ee_len > start) {
2642 if (ext4_ext_is_unwritten(ex))
2643 unwritten = 1;
2644 else
2645 unwritten = 0;
2647 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2648 unwritten, ex_ee_len);
2649 path[depth].p_ext = ex;
2651 a = ex_ee_block > start ? ex_ee_block : start;
2652 b = ex_ee_block+ex_ee_len - 1 < end ?
2653 ex_ee_block+ex_ee_len - 1 : end;
2655 ext_debug(" border %u:%u\n", a, b);
2657 /* If this extent is beyond the end of the hole, skip it */
2658 if (end < ex_ee_block) {
2660 * We're going to skip this extent and move to another,
2661 * so note that its first cluster is in use to avoid
2662 * freeing it when removing blocks. Eventually, the
2663 * right edge of the truncated/punched region will
2664 * be just to the left.
2666 if (sbi->s_cluster_ratio > 1) {
2667 pblk = ext4_ext_pblock(ex);
2668 *partial_cluster =
2669 -(long long) EXT4_B2C(sbi, pblk);
2671 ex--;
2672 ex_ee_block = le32_to_cpu(ex->ee_block);
2673 ex_ee_len = ext4_ext_get_actual_len(ex);
2674 continue;
2675 } else if (b != ex_ee_block + ex_ee_len - 1) {
2676 EXT4_ERROR_INODE(inode,
2677 "can not handle truncate %u:%u "
2678 "on extent %u:%u",
2679 start, end, ex_ee_block,
2680 ex_ee_block + ex_ee_len - 1);
2681 err = -EFSCORRUPTED;
2682 goto out;
2683 } else if (a != ex_ee_block) {
2684 /* remove tail of the extent */
2685 num = a - ex_ee_block;
2686 } else {
2687 /* remove whole extent: excellent! */
2688 num = 0;
2691 * 3 for leaf, sb, and inode plus 2 (bmap and group
2692 * descriptor) for each block group; assume two block
2693 * groups plus ex_ee_len/blocks_per_block_group for
2694 * the worst case
2696 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2697 if (ex == EXT_FIRST_EXTENT(eh)) {
2698 correct_index = 1;
2699 credits += (ext_depth(inode)) + 1;
2701 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2703 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2704 if (err)
2705 goto out;
2707 err = ext4_ext_get_access(handle, inode, path + depth);
2708 if (err)
2709 goto out;
2711 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2712 a, b);
2713 if (err)
2714 goto out;
2716 if (num == 0)
2717 /* this extent is removed; mark slot entirely unused */
2718 ext4_ext_store_pblock(ex, 0);
2720 ex->ee_len = cpu_to_le16(num);
2722 * Do not mark unwritten if all the blocks in the
2723 * extent have been removed.
2725 if (unwritten && num)
2726 ext4_ext_mark_unwritten(ex);
2728 * If the extent was completely released,
2729 * we need to remove it from the leaf
2731 if (num == 0) {
2732 if (end != EXT_MAX_BLOCKS - 1) {
2734 * For hole punching, we need to scoot all the
2735 * extents up when an extent is removed so that
2736 * we dont have blank extents in the middle
2738 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2739 sizeof(struct ext4_extent));
2741 /* Now get rid of the one at the end */
2742 memset(EXT_LAST_EXTENT(eh), 0,
2743 sizeof(struct ext4_extent));
2745 le16_add_cpu(&eh->eh_entries, -1);
2748 err = ext4_ext_dirty(handle, inode, path + depth);
2749 if (err)
2750 goto out;
2752 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2753 ext4_ext_pblock(ex));
2754 ex--;
2755 ex_ee_block = le32_to_cpu(ex->ee_block);
2756 ex_ee_len = ext4_ext_get_actual_len(ex);
2759 if (correct_index && eh->eh_entries)
2760 err = ext4_ext_correct_indexes(handle, inode, path);
2763 * If there's a partial cluster and at least one extent remains in
2764 * the leaf, free the partial cluster if it isn't shared with the
2765 * current extent. If it is shared with the current extent
2766 * we zero partial_cluster because we've reached the start of the
2767 * truncated/punched region and we're done removing blocks.
2769 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2770 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2771 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2772 ext4_free_blocks(handle, inode, NULL,
2773 EXT4_C2B(sbi, *partial_cluster),
2774 sbi->s_cluster_ratio,
2775 get_default_free_blocks_flags(inode));
2777 *partial_cluster = 0;
2780 /* if this leaf is free, then we should
2781 * remove it from index block above */
2782 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2783 err = ext4_ext_rm_idx(handle, inode, path, depth);
2785 out:
2786 return err;
2790 * ext4_ext_more_to_rm:
2791 * returns 1 if current index has to be freed (even partial)
2793 static int
2794 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2796 BUG_ON(path->p_idx == NULL);
2798 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2799 return 0;
2802 * if truncate on deeper level happened, it wasn't partial,
2803 * so we have to consider current index for truncation
2805 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2806 return 0;
2807 return 1;
2810 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2811 ext4_lblk_t end)
2813 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2814 int depth = ext_depth(inode);
2815 struct ext4_ext_path *path = NULL;
2816 long long partial_cluster = 0;
2817 handle_t *handle;
2818 int i = 0, err = 0;
2820 ext_debug("truncate since %u to %u\n", start, end);
2822 /* probably first extent we're gonna free will be last in block */
2823 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2824 if (IS_ERR(handle))
2825 return PTR_ERR(handle);
2827 again:
2828 trace_ext4_ext_remove_space(inode, start, end, depth);
2831 * Check if we are removing extents inside the extent tree. If that
2832 * is the case, we are going to punch a hole inside the extent tree
2833 * so we have to check whether we need to split the extent covering
2834 * the last block to remove so we can easily remove the part of it
2835 * in ext4_ext_rm_leaf().
2837 if (end < EXT_MAX_BLOCKS - 1) {
2838 struct ext4_extent *ex;
2839 ext4_lblk_t ee_block, ex_end, lblk;
2840 ext4_fsblk_t pblk;
2842 /* find extent for or closest extent to this block */
2843 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2844 if (IS_ERR(path)) {
2845 ext4_journal_stop(handle);
2846 return PTR_ERR(path);
2848 depth = ext_depth(inode);
2849 /* Leaf not may not exist only if inode has no blocks at all */
2850 ex = path[depth].p_ext;
2851 if (!ex) {
2852 if (depth) {
2853 EXT4_ERROR_INODE(inode,
2854 "path[%d].p_hdr == NULL",
2855 depth);
2856 err = -EFSCORRUPTED;
2858 goto out;
2861 ee_block = le32_to_cpu(ex->ee_block);
2862 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2865 * See if the last block is inside the extent, if so split
2866 * the extent at 'end' block so we can easily remove the
2867 * tail of the first part of the split extent in
2868 * ext4_ext_rm_leaf().
2870 if (end >= ee_block && end < ex_end) {
2873 * If we're going to split the extent, note that
2874 * the cluster containing the block after 'end' is
2875 * in use to avoid freeing it when removing blocks.
2877 if (sbi->s_cluster_ratio > 1) {
2878 pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2879 partial_cluster =
2880 -(long long) EXT4_B2C(sbi, pblk);
2884 * Split the extent in two so that 'end' is the last
2885 * block in the first new extent. Also we should not
2886 * fail removing space due to ENOSPC so try to use
2887 * reserved block if that happens.
2889 err = ext4_force_split_extent_at(handle, inode, &path,
2890 end + 1, 1);
2891 if (err < 0)
2892 goto out;
2894 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2896 * If there's an extent to the right its first cluster
2897 * contains the immediate right boundary of the
2898 * truncated/punched region. Set partial_cluster to
2899 * its negative value so it won't be freed if shared
2900 * with the current extent. The end < ee_block case
2901 * is handled in ext4_ext_rm_leaf().
2903 lblk = ex_end + 1;
2904 err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2905 &ex);
2906 if (err)
2907 goto out;
2908 if (pblk)
2909 partial_cluster =
2910 -(long long) EXT4_B2C(sbi, pblk);
2914 * We start scanning from right side, freeing all the blocks
2915 * after i_size and walking into the tree depth-wise.
2917 depth = ext_depth(inode);
2918 if (path) {
2919 int k = i = depth;
2920 while (--k > 0)
2921 path[k].p_block =
2922 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2923 } else {
2924 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
2925 GFP_NOFS);
2926 if (path == NULL) {
2927 ext4_journal_stop(handle);
2928 return -ENOMEM;
2930 path[0].p_maxdepth = path[0].p_depth = depth;
2931 path[0].p_hdr = ext_inode_hdr(inode);
2932 i = 0;
2934 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2935 err = -EFSCORRUPTED;
2936 goto out;
2939 err = 0;
2941 while (i >= 0 && err == 0) {
2942 if (i == depth) {
2943 /* this is leaf block */
2944 err = ext4_ext_rm_leaf(handle, inode, path,
2945 &partial_cluster, start,
2946 end);
2947 /* root level has p_bh == NULL, brelse() eats this */
2948 brelse(path[i].p_bh);
2949 path[i].p_bh = NULL;
2950 i--;
2951 continue;
2954 /* this is index block */
2955 if (!path[i].p_hdr) {
2956 ext_debug("initialize header\n");
2957 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2960 if (!path[i].p_idx) {
2961 /* this level hasn't been touched yet */
2962 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2963 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2964 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2965 path[i].p_hdr,
2966 le16_to_cpu(path[i].p_hdr->eh_entries));
2967 } else {
2968 /* we were already here, see at next index */
2969 path[i].p_idx--;
2972 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2973 i, EXT_FIRST_INDEX(path[i].p_hdr),
2974 path[i].p_idx);
2975 if (ext4_ext_more_to_rm(path + i)) {
2976 struct buffer_head *bh;
2977 /* go to the next level */
2978 ext_debug("move to level %d (block %llu)\n",
2979 i + 1, ext4_idx_pblock(path[i].p_idx));
2980 memset(path + i + 1, 0, sizeof(*path));
2981 bh = read_extent_tree_block(inode,
2982 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2983 EXT4_EX_NOCACHE);
2984 if (IS_ERR(bh)) {
2985 /* should we reset i_size? */
2986 err = PTR_ERR(bh);
2987 break;
2989 /* Yield here to deal with large extent trees.
2990 * Should be a no-op if we did IO above. */
2991 cond_resched();
2992 if (WARN_ON(i + 1 > depth)) {
2993 err = -EFSCORRUPTED;
2994 break;
2996 path[i + 1].p_bh = bh;
2998 /* save actual number of indexes since this
2999 * number is changed at the next iteration */
3000 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3001 i++;
3002 } else {
3003 /* we finished processing this index, go up */
3004 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3005 /* index is empty, remove it;
3006 * handle must be already prepared by the
3007 * truncatei_leaf() */
3008 err = ext4_ext_rm_idx(handle, inode, path, i);
3010 /* root level has p_bh == NULL, brelse() eats this */
3011 brelse(path[i].p_bh);
3012 path[i].p_bh = NULL;
3013 i--;
3014 ext_debug("return to level %d\n", i);
3018 trace_ext4_ext_remove_space_done(inode, start, end, depth,
3019 partial_cluster, path->p_hdr->eh_entries);
3022 * If we still have something in the partial cluster and we have removed
3023 * even the first extent, then we should free the blocks in the partial
3024 * cluster as well. (This code will only run when there are no leaves
3025 * to the immediate left of the truncated/punched region.)
3027 if (partial_cluster > 0 && err == 0) {
3028 /* don't zero partial_cluster since it's not used afterwards */
3029 ext4_free_blocks(handle, inode, NULL,
3030 EXT4_C2B(sbi, partial_cluster),
3031 sbi->s_cluster_ratio,
3032 get_default_free_blocks_flags(inode));
3035 /* TODO: flexible tree reduction should be here */
3036 if (path->p_hdr->eh_entries == 0) {
3038 * truncate to zero freed all the tree,
3039 * so we need to correct eh_depth
3041 err = ext4_ext_get_access(handle, inode, path);
3042 if (err == 0) {
3043 ext_inode_hdr(inode)->eh_depth = 0;
3044 ext_inode_hdr(inode)->eh_max =
3045 cpu_to_le16(ext4_ext_space_root(inode, 0));
3046 err = ext4_ext_dirty(handle, inode, path);
3049 out:
3050 ext4_ext_drop_refs(path);
3051 kfree(path);
3052 path = NULL;
3053 if (err == -EAGAIN)
3054 goto again;
3055 ext4_journal_stop(handle);
3057 return err;
3061 * called at mount time
3063 void ext4_ext_init(struct super_block *sb)
3066 * possible initialization would be here
3069 if (ext4_has_feature_extents(sb)) {
3070 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3071 printk(KERN_INFO "EXT4-fs: file extents enabled"
3072 #ifdef AGGRESSIVE_TEST
3073 ", aggressive tests"
3074 #endif
3075 #ifdef CHECK_BINSEARCH
3076 ", check binsearch"
3077 #endif
3078 #ifdef EXTENTS_STATS
3079 ", stats"
3080 #endif
3081 "\n");
3082 #endif
3083 #ifdef EXTENTS_STATS
3084 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3085 EXT4_SB(sb)->s_ext_min = 1 << 30;
3086 EXT4_SB(sb)->s_ext_max = 0;
3087 #endif
3092 * called at umount time
3094 void ext4_ext_release(struct super_block *sb)
3096 if (!ext4_has_feature_extents(sb))
3097 return;
3099 #ifdef EXTENTS_STATS
3100 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3101 struct ext4_sb_info *sbi = EXT4_SB(sb);
3102 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3103 sbi->s_ext_blocks, sbi->s_ext_extents,
3104 sbi->s_ext_blocks / sbi->s_ext_extents);
3105 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3106 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3108 #endif
3111 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3113 ext4_lblk_t ee_block;
3114 ext4_fsblk_t ee_pblock;
3115 unsigned int ee_len;
3117 ee_block = le32_to_cpu(ex->ee_block);
3118 ee_len = ext4_ext_get_actual_len(ex);
3119 ee_pblock = ext4_ext_pblock(ex);
3121 if (ee_len == 0)
3122 return 0;
3124 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3125 EXTENT_STATUS_WRITTEN);
3128 /* FIXME!! we need to try to merge to left or right after zero-out */
3129 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3131 ext4_fsblk_t ee_pblock;
3132 unsigned int ee_len;
3134 ee_len = ext4_ext_get_actual_len(ex);
3135 ee_pblock = ext4_ext_pblock(ex);
3136 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3137 ee_len);
3141 * ext4_split_extent_at() splits an extent at given block.
3143 * @handle: the journal handle
3144 * @inode: the file inode
3145 * @path: the path to the extent
3146 * @split: the logical block where the extent is splitted.
3147 * @split_flags: indicates if the extent could be zeroout if split fails, and
3148 * the states(init or unwritten) of new extents.
3149 * @flags: flags used to insert new extent to extent tree.
3152 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3153 * of which are deterimined by split_flag.
3155 * There are two cases:
3156 * a> the extent are splitted into two extent.
3157 * b> split is not needed, and just mark the extent.
3159 * return 0 on success.
3161 static int ext4_split_extent_at(handle_t *handle,
3162 struct inode *inode,
3163 struct ext4_ext_path **ppath,
3164 ext4_lblk_t split,
3165 int split_flag,
3166 int flags)
3168 struct ext4_ext_path *path = *ppath;
3169 ext4_fsblk_t newblock;
3170 ext4_lblk_t ee_block;
3171 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3172 struct ext4_extent *ex2 = NULL;
3173 unsigned int ee_len, depth;
3174 int err = 0;
3176 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3177 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3179 ext_debug("ext4_split_extents_at: inode %lu, logical"
3180 "block %llu\n", inode->i_ino, (unsigned long long)split);
3182 ext4_ext_show_leaf(inode, path);
3184 depth = ext_depth(inode);
3185 ex = path[depth].p_ext;
3186 ee_block = le32_to_cpu(ex->ee_block);
3187 ee_len = ext4_ext_get_actual_len(ex);
3188 newblock = split - ee_block + ext4_ext_pblock(ex);
3190 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3191 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3192 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3193 EXT4_EXT_MARK_UNWRIT1 |
3194 EXT4_EXT_MARK_UNWRIT2));
3196 err = ext4_ext_get_access(handle, inode, path + depth);
3197 if (err)
3198 goto out;
3200 if (split == ee_block) {
3202 * case b: block @split is the block that the extent begins with
3203 * then we just change the state of the extent, and splitting
3204 * is not needed.
3206 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3207 ext4_ext_mark_unwritten(ex);
3208 else
3209 ext4_ext_mark_initialized(ex);
3211 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3212 ext4_ext_try_to_merge(handle, inode, path, ex);
3214 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3215 goto out;
3218 /* case a */
3219 memcpy(&orig_ex, ex, sizeof(orig_ex));
3220 ex->ee_len = cpu_to_le16(split - ee_block);
3221 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3222 ext4_ext_mark_unwritten(ex);
3225 * path may lead to new leaf, not to original leaf any more
3226 * after ext4_ext_insert_extent() returns,
3228 err = ext4_ext_dirty(handle, inode, path + depth);
3229 if (err)
3230 goto fix_extent_len;
3232 ex2 = &newex;
3233 ex2->ee_block = cpu_to_le32(split);
3234 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3235 ext4_ext_store_pblock(ex2, newblock);
3236 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3237 ext4_ext_mark_unwritten(ex2);
3239 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3240 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3241 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3242 if (split_flag & EXT4_EXT_DATA_VALID1) {
3243 err = ext4_ext_zeroout(inode, ex2);
3244 zero_ex.ee_block = ex2->ee_block;
3245 zero_ex.ee_len = cpu_to_le16(
3246 ext4_ext_get_actual_len(ex2));
3247 ext4_ext_store_pblock(&zero_ex,
3248 ext4_ext_pblock(ex2));
3249 } else {
3250 err = ext4_ext_zeroout(inode, ex);
3251 zero_ex.ee_block = ex->ee_block;
3252 zero_ex.ee_len = cpu_to_le16(
3253 ext4_ext_get_actual_len(ex));
3254 ext4_ext_store_pblock(&zero_ex,
3255 ext4_ext_pblock(ex));
3257 } else {
3258 err = ext4_ext_zeroout(inode, &orig_ex);
3259 zero_ex.ee_block = orig_ex.ee_block;
3260 zero_ex.ee_len = cpu_to_le16(
3261 ext4_ext_get_actual_len(&orig_ex));
3262 ext4_ext_store_pblock(&zero_ex,
3263 ext4_ext_pblock(&orig_ex));
3266 if (err)
3267 goto fix_extent_len;
3268 /* update the extent length and mark as initialized */
3269 ex->ee_len = cpu_to_le16(ee_len);
3270 ext4_ext_try_to_merge(handle, inode, path, ex);
3271 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3272 if (err)
3273 goto fix_extent_len;
3275 /* update extent status tree */
3276 err = ext4_zeroout_es(inode, &zero_ex);
3278 goto out;
3279 } else if (err)
3280 goto fix_extent_len;
3282 out:
3283 ext4_ext_show_leaf(inode, path);
3284 return err;
3286 fix_extent_len:
3287 ex->ee_len = orig_ex.ee_len;
3288 ext4_ext_dirty(handle, inode, path + path->p_depth);
3289 return err;
3293 * ext4_split_extents() splits an extent and mark extent which is covered
3294 * by @map as split_flags indicates
3296 * It may result in splitting the extent into multiple extents (up to three)
3297 * There are three possibilities:
3298 * a> There is no split required
3299 * b> Splits in two extents: Split is happening at either end of the extent
3300 * c> Splits in three extents: Somone is splitting in middle of the extent
3303 static int ext4_split_extent(handle_t *handle,
3304 struct inode *inode,
3305 struct ext4_ext_path **ppath,
3306 struct ext4_map_blocks *map,
3307 int split_flag,
3308 int flags)
3310 struct ext4_ext_path *path = *ppath;
3311 ext4_lblk_t ee_block;
3312 struct ext4_extent *ex;
3313 unsigned int ee_len, depth;
3314 int err = 0;
3315 int unwritten;
3316 int split_flag1, flags1;
3317 int allocated = map->m_len;
3319 depth = ext_depth(inode);
3320 ex = path[depth].p_ext;
3321 ee_block = le32_to_cpu(ex->ee_block);
3322 ee_len = ext4_ext_get_actual_len(ex);
3323 unwritten = ext4_ext_is_unwritten(ex);
3325 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3326 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3327 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3328 if (unwritten)
3329 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3330 EXT4_EXT_MARK_UNWRIT2;
3331 if (split_flag & EXT4_EXT_DATA_VALID2)
3332 split_flag1 |= EXT4_EXT_DATA_VALID1;
3333 err = ext4_split_extent_at(handle, inode, ppath,
3334 map->m_lblk + map->m_len, split_flag1, flags1);
3335 if (err)
3336 goto out;
3337 } else {
3338 allocated = ee_len - (map->m_lblk - ee_block);
3341 * Update path is required because previous ext4_split_extent_at() may
3342 * result in split of original leaf or extent zeroout.
3344 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3345 if (IS_ERR(path))
3346 return PTR_ERR(path);
3347 depth = ext_depth(inode);
3348 ex = path[depth].p_ext;
3349 if (!ex) {
3350 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3351 (unsigned long) map->m_lblk);
3352 return -EFSCORRUPTED;
3354 unwritten = ext4_ext_is_unwritten(ex);
3355 split_flag1 = 0;
3357 if (map->m_lblk >= ee_block) {
3358 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3359 if (unwritten) {
3360 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3361 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3362 EXT4_EXT_MARK_UNWRIT2);
3364 err = ext4_split_extent_at(handle, inode, ppath,
3365 map->m_lblk, split_flag1, flags);
3366 if (err)
3367 goto out;
3370 ext4_ext_show_leaf(inode, path);
3371 out:
3372 return err ? err : allocated;
3376 * This function is called by ext4_ext_map_blocks() if someone tries to write
3377 * to an unwritten extent. It may result in splitting the unwritten
3378 * extent into multiple extents (up to three - one initialized and two
3379 * unwritten).
3380 * There are three possibilities:
3381 * a> There is no split required: Entire extent should be initialized
3382 * b> Splits in two extents: Write is happening at either end of the extent
3383 * c> Splits in three extents: Somone is writing in middle of the extent
3385 * Pre-conditions:
3386 * - The extent pointed to by 'path' is unwritten.
3387 * - The extent pointed to by 'path' contains a superset
3388 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3390 * Post-conditions on success:
3391 * - the returned value is the number of blocks beyond map->l_lblk
3392 * that are allocated and initialized.
3393 * It is guaranteed to be >= map->m_len.
3395 static int ext4_ext_convert_to_initialized(handle_t *handle,
3396 struct inode *inode,
3397 struct ext4_map_blocks *map,
3398 struct ext4_ext_path **ppath,
3399 int flags)
3401 struct ext4_ext_path *path = *ppath;
3402 struct ext4_sb_info *sbi;
3403 struct ext4_extent_header *eh;
3404 struct ext4_map_blocks split_map;
3405 struct ext4_extent zero_ex1, zero_ex2;
3406 struct ext4_extent *ex, *abut_ex;
3407 ext4_lblk_t ee_block, eof_block;
3408 unsigned int ee_len, depth, map_len = map->m_len;
3409 int allocated = 0, max_zeroout = 0;
3410 int err = 0;
3411 int split_flag = EXT4_EXT_DATA_VALID2;
3413 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3414 "block %llu, max_blocks %u\n", inode->i_ino,
3415 (unsigned long long)map->m_lblk, map_len);
3417 sbi = EXT4_SB(inode->i_sb);
3418 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3419 inode->i_sb->s_blocksize_bits;
3420 if (eof_block < map->m_lblk + map_len)
3421 eof_block = map->m_lblk + map_len;
3423 depth = ext_depth(inode);
3424 eh = path[depth].p_hdr;
3425 ex = path[depth].p_ext;
3426 ee_block = le32_to_cpu(ex->ee_block);
3427 ee_len = ext4_ext_get_actual_len(ex);
3428 zero_ex1.ee_len = 0;
3429 zero_ex2.ee_len = 0;
3431 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3433 /* Pre-conditions */
3434 BUG_ON(!ext4_ext_is_unwritten(ex));
3435 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3438 * Attempt to transfer newly initialized blocks from the currently
3439 * unwritten extent to its neighbor. This is much cheaper
3440 * than an insertion followed by a merge as those involve costly
3441 * memmove() calls. Transferring to the left is the common case in
3442 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3443 * followed by append writes.
3445 * Limitations of the current logic:
3446 * - L1: we do not deal with writes covering the whole extent.
3447 * This would require removing the extent if the transfer
3448 * is possible.
3449 * - L2: we only attempt to merge with an extent stored in the
3450 * same extent tree node.
3452 if ((map->m_lblk == ee_block) &&
3453 /* See if we can merge left */
3454 (map_len < ee_len) && /*L1*/
3455 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3456 ext4_lblk_t prev_lblk;
3457 ext4_fsblk_t prev_pblk, ee_pblk;
3458 unsigned int prev_len;
3460 abut_ex = ex - 1;
3461 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3462 prev_len = ext4_ext_get_actual_len(abut_ex);
3463 prev_pblk = ext4_ext_pblock(abut_ex);
3464 ee_pblk = ext4_ext_pblock(ex);
3467 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3468 * upon those conditions:
3469 * - C1: abut_ex is initialized,
3470 * - C2: abut_ex is logically abutting ex,
3471 * - C3: abut_ex is physically abutting ex,
3472 * - C4: abut_ex can receive the additional blocks without
3473 * overflowing the (initialized) length limit.
3475 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3476 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3477 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3478 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3479 err = ext4_ext_get_access(handle, inode, path + depth);
3480 if (err)
3481 goto out;
3483 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3484 map, ex, abut_ex);
3486 /* Shift the start of ex by 'map_len' blocks */
3487 ex->ee_block = cpu_to_le32(ee_block + map_len);
3488 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3489 ex->ee_len = cpu_to_le16(ee_len - map_len);
3490 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3492 /* Extend abut_ex by 'map_len' blocks */
3493 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3495 /* Result: number of initialized blocks past m_lblk */
3496 allocated = map_len;
3498 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3499 (map_len < ee_len) && /*L1*/
3500 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3501 /* See if we can merge right */
3502 ext4_lblk_t next_lblk;
3503 ext4_fsblk_t next_pblk, ee_pblk;
3504 unsigned int next_len;
3506 abut_ex = ex + 1;
3507 next_lblk = le32_to_cpu(abut_ex->ee_block);
3508 next_len = ext4_ext_get_actual_len(abut_ex);
3509 next_pblk = ext4_ext_pblock(abut_ex);
3510 ee_pblk = ext4_ext_pblock(ex);
3513 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3514 * upon those conditions:
3515 * - C1: abut_ex is initialized,
3516 * - C2: abut_ex is logically abutting ex,
3517 * - C3: abut_ex is physically abutting ex,
3518 * - C4: abut_ex can receive the additional blocks without
3519 * overflowing the (initialized) length limit.
3521 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3522 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3523 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3524 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3525 err = ext4_ext_get_access(handle, inode, path + depth);
3526 if (err)
3527 goto out;
3529 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3530 map, ex, abut_ex);
3532 /* Shift the start of abut_ex by 'map_len' blocks */
3533 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3534 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3535 ex->ee_len = cpu_to_le16(ee_len - map_len);
3536 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3538 /* Extend abut_ex by 'map_len' blocks */
3539 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3541 /* Result: number of initialized blocks past m_lblk */
3542 allocated = map_len;
3545 if (allocated) {
3546 /* Mark the block containing both extents as dirty */
3547 ext4_ext_dirty(handle, inode, path + depth);
3549 /* Update path to point to the right extent */
3550 path[depth].p_ext = abut_ex;
3551 goto out;
3552 } else
3553 allocated = ee_len - (map->m_lblk - ee_block);
3555 WARN_ON(map->m_lblk < ee_block);
3557 * It is safe to convert extent to initialized via explicit
3558 * zeroout only if extent is fully inside i_size or new_size.
3560 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3562 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3563 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3564 (inode->i_sb->s_blocksize_bits - 10);
3566 if (ext4_encrypted_inode(inode))
3567 max_zeroout = 0;
3570 * five cases:
3571 * 1. split the extent into three extents.
3572 * 2. split the extent into two extents, zeroout the head of the first
3573 * extent.
3574 * 3. split the extent into two extents, zeroout the tail of the second
3575 * extent.
3576 * 4. split the extent into two extents with out zeroout.
3577 * 5. no splitting needed, just possibly zeroout the head and / or the
3578 * tail of the extent.
3580 split_map.m_lblk = map->m_lblk;
3581 split_map.m_len = map->m_len;
3583 if (max_zeroout && (allocated > split_map.m_len)) {
3584 if (allocated <= max_zeroout) {
3585 /* case 3 or 5 */
3586 zero_ex1.ee_block =
3587 cpu_to_le32(split_map.m_lblk +
3588 split_map.m_len);
3589 zero_ex1.ee_len =
3590 cpu_to_le16(allocated - split_map.m_len);
3591 ext4_ext_store_pblock(&zero_ex1,
3592 ext4_ext_pblock(ex) + split_map.m_lblk +
3593 split_map.m_len - ee_block);
3594 err = ext4_ext_zeroout(inode, &zero_ex1);
3595 if (err)
3596 goto out;
3597 split_map.m_len = allocated;
3599 if (split_map.m_lblk - ee_block + split_map.m_len <
3600 max_zeroout) {
3601 /* case 2 or 5 */
3602 if (split_map.m_lblk != ee_block) {
3603 zero_ex2.ee_block = ex->ee_block;
3604 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3605 ee_block);
3606 ext4_ext_store_pblock(&zero_ex2,
3607 ext4_ext_pblock(ex));
3608 err = ext4_ext_zeroout(inode, &zero_ex2);
3609 if (err)
3610 goto out;
3613 split_map.m_len += split_map.m_lblk - ee_block;
3614 split_map.m_lblk = ee_block;
3615 allocated = map->m_len;
3619 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3620 flags);
3621 if (err > 0)
3622 err = 0;
3623 out:
3624 /* If we have gotten a failure, don't zero out status tree */
3625 if (!err) {
3626 err = ext4_zeroout_es(inode, &zero_ex1);
3627 if (!err)
3628 err = ext4_zeroout_es(inode, &zero_ex2);
3630 return err ? err : allocated;
3634 * This function is called by ext4_ext_map_blocks() from
3635 * ext4_get_blocks_dio_write() when DIO to write
3636 * to an unwritten extent.
3638 * Writing to an unwritten extent may result in splitting the unwritten
3639 * extent into multiple initialized/unwritten extents (up to three)
3640 * There are three possibilities:
3641 * a> There is no split required: Entire extent should be unwritten
3642 * b> Splits in two extents: Write is happening at either end of the extent
3643 * c> Splits in three extents: Somone is writing in middle of the extent
3645 * This works the same way in the case of initialized -> unwritten conversion.
3647 * One of more index blocks maybe needed if the extent tree grow after
3648 * the unwritten extent split. To prevent ENOSPC occur at the IO
3649 * complete, we need to split the unwritten extent before DIO submit
3650 * the IO. The unwritten extent called at this time will be split
3651 * into three unwritten extent(at most). After IO complete, the part
3652 * being filled will be convert to initialized by the end_io callback function
3653 * via ext4_convert_unwritten_extents().
3655 * Returns the size of unwritten extent to be written on success.
3657 static int ext4_split_convert_extents(handle_t *handle,
3658 struct inode *inode,
3659 struct ext4_map_blocks *map,
3660 struct ext4_ext_path **ppath,
3661 int flags)
3663 struct ext4_ext_path *path = *ppath;
3664 ext4_lblk_t eof_block;
3665 ext4_lblk_t ee_block;
3666 struct ext4_extent *ex;
3667 unsigned int ee_len;
3668 int split_flag = 0, depth;
3670 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3671 __func__, inode->i_ino,
3672 (unsigned long long)map->m_lblk, map->m_len);
3674 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3675 inode->i_sb->s_blocksize_bits;
3676 if (eof_block < map->m_lblk + map->m_len)
3677 eof_block = map->m_lblk + map->m_len;
3679 * It is safe to convert extent to initialized via explicit
3680 * zeroout only if extent is fully insde i_size or new_size.
3682 depth = ext_depth(inode);
3683 ex = path[depth].p_ext;
3684 ee_block = le32_to_cpu(ex->ee_block);
3685 ee_len = ext4_ext_get_actual_len(ex);
3687 /* Convert to unwritten */
3688 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3689 split_flag |= EXT4_EXT_DATA_VALID1;
3690 /* Convert to initialized */
3691 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3692 split_flag |= ee_block + ee_len <= eof_block ?
3693 EXT4_EXT_MAY_ZEROOUT : 0;
3694 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3696 flags |= EXT4_GET_BLOCKS_PRE_IO;
3697 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3700 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3701 struct inode *inode,
3702 struct ext4_map_blocks *map,
3703 struct ext4_ext_path **ppath)
3705 struct ext4_ext_path *path = *ppath;
3706 struct ext4_extent *ex;
3707 ext4_lblk_t ee_block;
3708 unsigned int ee_len;
3709 int depth;
3710 int err = 0;
3712 depth = ext_depth(inode);
3713 ex = path[depth].p_ext;
3714 ee_block = le32_to_cpu(ex->ee_block);
3715 ee_len = ext4_ext_get_actual_len(ex);
3717 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3718 "block %llu, max_blocks %u\n", inode->i_ino,
3719 (unsigned long long)ee_block, ee_len);
3721 /* If extent is larger than requested it is a clear sign that we still
3722 * have some extent state machine issues left. So extent_split is still
3723 * required.
3724 * TODO: Once all related issues will be fixed this situation should be
3725 * illegal.
3727 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3728 #ifdef EXT4_DEBUG
3729 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3730 " len %u; IO logical block %llu, len %u",
3731 inode->i_ino, (unsigned long long)ee_block, ee_len,
3732 (unsigned long long)map->m_lblk, map->m_len);
3733 #endif
3734 err = ext4_split_convert_extents(handle, inode, map, ppath,
3735 EXT4_GET_BLOCKS_CONVERT);
3736 if (err < 0)
3737 return err;
3738 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3739 if (IS_ERR(path))
3740 return PTR_ERR(path);
3741 depth = ext_depth(inode);
3742 ex = path[depth].p_ext;
3745 err = ext4_ext_get_access(handle, inode, path + depth);
3746 if (err)
3747 goto out;
3748 /* first mark the extent as initialized */
3749 ext4_ext_mark_initialized(ex);
3751 /* note: ext4_ext_correct_indexes() isn't needed here because
3752 * borders are not changed
3754 ext4_ext_try_to_merge(handle, inode, path, ex);
3756 /* Mark modified extent as dirty */
3757 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3758 out:
3759 ext4_ext_show_leaf(inode, path);
3760 return err;
3764 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3766 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3767 ext4_lblk_t lblk,
3768 struct ext4_ext_path *path,
3769 unsigned int len)
3771 int i, depth;
3772 struct ext4_extent_header *eh;
3773 struct ext4_extent *last_ex;
3775 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3776 return 0;
3778 depth = ext_depth(inode);
3779 eh = path[depth].p_hdr;
3782 * We're going to remove EOFBLOCKS_FL entirely in future so we
3783 * do not care for this case anymore. Simply remove the flag
3784 * if there are no extents.
3786 if (unlikely(!eh->eh_entries))
3787 goto out;
3788 last_ex = EXT_LAST_EXTENT(eh);
3790 * We should clear the EOFBLOCKS_FL flag if we are writing the
3791 * last block in the last extent in the file. We test this by
3792 * first checking to see if the caller to
3793 * ext4_ext_get_blocks() was interested in the last block (or
3794 * a block beyond the last block) in the current extent. If
3795 * this turns out to be false, we can bail out from this
3796 * function immediately.
3798 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3799 ext4_ext_get_actual_len(last_ex))
3800 return 0;
3802 * If the caller does appear to be planning to write at or
3803 * beyond the end of the current extent, we then test to see
3804 * if the current extent is the last extent in the file, by
3805 * checking to make sure it was reached via the rightmost node
3806 * at each level of the tree.
3808 for (i = depth-1; i >= 0; i--)
3809 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3810 return 0;
3811 out:
3812 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3813 return ext4_mark_inode_dirty(handle, inode);
3817 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3819 * Return 1 if there is a delalloc block in the range, otherwise 0.
3821 int ext4_find_delalloc_range(struct inode *inode,
3822 ext4_lblk_t lblk_start,
3823 ext4_lblk_t lblk_end)
3825 struct extent_status es;
3827 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3828 if (es.es_len == 0)
3829 return 0; /* there is no delay extent in this tree */
3830 else if (es.es_lblk <= lblk_start &&
3831 lblk_start < es.es_lblk + es.es_len)
3832 return 1;
3833 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3834 return 1;
3835 else
3836 return 0;
3839 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3841 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3842 ext4_lblk_t lblk_start, lblk_end;
3843 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3844 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3846 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3850 * Determines how many complete clusters (out of those specified by the 'map')
3851 * are under delalloc and were reserved quota for.
3852 * This function is called when we are writing out the blocks that were
3853 * originally written with their allocation delayed, but then the space was
3854 * allocated using fallocate() before the delayed allocation could be resolved.
3855 * The cases to look for are:
3856 * ('=' indicated delayed allocated blocks
3857 * '-' indicates non-delayed allocated blocks)
3858 * (a) partial clusters towards beginning and/or end outside of allocated range
3859 * are not delalloc'ed.
3860 * Ex:
3861 * |----c---=|====c====|====c====|===-c----|
3862 * |++++++ allocated ++++++|
3863 * ==> 4 complete clusters in above example
3865 * (b) partial cluster (outside of allocated range) towards either end is
3866 * marked for delayed allocation. In this case, we will exclude that
3867 * cluster.
3868 * Ex:
3869 * |----====c========|========c========|
3870 * |++++++ allocated ++++++|
3871 * ==> 1 complete clusters in above example
3873 * Ex:
3874 * |================c================|
3875 * |++++++ allocated ++++++|
3876 * ==> 0 complete clusters in above example
3878 * The ext4_da_update_reserve_space will be called only if we
3879 * determine here that there were some "entire" clusters that span
3880 * this 'allocated' range.
3881 * In the non-bigalloc case, this function will just end up returning num_blks
3882 * without ever calling ext4_find_delalloc_range.
3884 static unsigned int
3885 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3886 unsigned int num_blks)
3888 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3889 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3890 ext4_lblk_t lblk_from, lblk_to, c_offset;
3891 unsigned int allocated_clusters = 0;
3893 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3894 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3896 /* max possible clusters for this allocation */
3897 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3899 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3901 /* Check towards left side */
3902 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3903 if (c_offset) {
3904 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3905 lblk_to = lblk_from + c_offset - 1;
3907 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3908 allocated_clusters--;
3911 /* Now check towards right. */
3912 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3913 if (allocated_clusters && c_offset) {
3914 lblk_from = lblk_start + num_blks;
3915 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3917 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3918 allocated_clusters--;
3921 return allocated_clusters;
3924 static int
3925 convert_initialized_extent(handle_t *handle, struct inode *inode,
3926 struct ext4_map_blocks *map,
3927 struct ext4_ext_path **ppath,
3928 unsigned int allocated)
3930 struct ext4_ext_path *path = *ppath;
3931 struct ext4_extent *ex;
3932 ext4_lblk_t ee_block;
3933 unsigned int ee_len;
3934 int depth;
3935 int err = 0;
3938 * Make sure that the extent is no bigger than we support with
3939 * unwritten extent
3941 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3942 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3944 depth = ext_depth(inode);
3945 ex = path[depth].p_ext;
3946 ee_block = le32_to_cpu(ex->ee_block);
3947 ee_len = ext4_ext_get_actual_len(ex);
3949 ext_debug("%s: inode %lu, logical"
3950 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3951 (unsigned long long)ee_block, ee_len);
3953 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3954 err = ext4_split_convert_extents(handle, inode, map, ppath,
3955 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3956 if (err < 0)
3957 return err;
3958 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3959 if (IS_ERR(path))
3960 return PTR_ERR(path);
3961 depth = ext_depth(inode);
3962 ex = path[depth].p_ext;
3963 if (!ex) {
3964 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3965 (unsigned long) map->m_lblk);
3966 return -EFSCORRUPTED;
3970 err = ext4_ext_get_access(handle, inode, path + depth);
3971 if (err)
3972 return err;
3973 /* first mark the extent as unwritten */
3974 ext4_ext_mark_unwritten(ex);
3976 /* note: ext4_ext_correct_indexes() isn't needed here because
3977 * borders are not changed
3979 ext4_ext_try_to_merge(handle, inode, path, ex);
3981 /* Mark modified extent as dirty */
3982 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3983 if (err)
3984 return err;
3985 ext4_ext_show_leaf(inode, path);
3987 ext4_update_inode_fsync_trans(handle, inode, 1);
3988 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3989 if (err)
3990 return err;
3991 map->m_flags |= EXT4_MAP_UNWRITTEN;
3992 if (allocated > map->m_len)
3993 allocated = map->m_len;
3994 map->m_len = allocated;
3995 return allocated;
3998 static int
3999 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4000 struct ext4_map_blocks *map,
4001 struct ext4_ext_path **ppath, int flags,
4002 unsigned int allocated, ext4_fsblk_t newblock)
4004 struct ext4_ext_path *path = *ppath;
4005 int ret = 0;
4006 int err = 0;
4008 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4009 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4010 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4011 flags, allocated);
4012 ext4_ext_show_leaf(inode, path);
4015 * When writing into unwritten space, we should not fail to
4016 * allocate metadata blocks for the new extent block if needed.
4018 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4020 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4021 allocated, newblock);
4023 /* get_block() before submit the IO, split the extent */
4024 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4025 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4026 flags | EXT4_GET_BLOCKS_CONVERT);
4027 if (ret <= 0)
4028 goto out;
4029 map->m_flags |= EXT4_MAP_UNWRITTEN;
4030 goto out;
4032 /* IO end_io complete, convert the filled extent to written */
4033 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4034 if (flags & EXT4_GET_BLOCKS_ZERO) {
4035 if (allocated > map->m_len)
4036 allocated = map->m_len;
4037 err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4038 allocated);
4039 if (err < 0)
4040 goto out2;
4042 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4043 ppath);
4044 if (ret >= 0) {
4045 ext4_update_inode_fsync_trans(handle, inode, 1);
4046 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4047 path, map->m_len);
4048 } else
4049 err = ret;
4050 map->m_flags |= EXT4_MAP_MAPPED;
4051 map->m_pblk = newblock;
4052 if (allocated > map->m_len)
4053 allocated = map->m_len;
4054 map->m_len = allocated;
4055 goto out2;
4057 /* buffered IO case */
4059 * repeat fallocate creation request
4060 * we already have an unwritten extent
4062 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4063 map->m_flags |= EXT4_MAP_UNWRITTEN;
4064 goto map_out;
4067 /* buffered READ or buffered write_begin() lookup */
4068 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4070 * We have blocks reserved already. We
4071 * return allocated blocks so that delalloc
4072 * won't do block reservation for us. But
4073 * the buffer head will be unmapped so that
4074 * a read from the block returns 0s.
4076 map->m_flags |= EXT4_MAP_UNWRITTEN;
4077 goto out1;
4080 /* buffered write, writepage time, convert*/
4081 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4082 if (ret >= 0)
4083 ext4_update_inode_fsync_trans(handle, inode, 1);
4084 out:
4085 if (ret <= 0) {
4086 err = ret;
4087 goto out2;
4088 } else
4089 allocated = ret;
4090 map->m_flags |= EXT4_MAP_NEW;
4092 * if we allocated more blocks than requested
4093 * we need to make sure we unmap the extra block
4094 * allocated. The actual needed block will get
4095 * unmapped later when we find the buffer_head marked
4096 * new.
4098 if (allocated > map->m_len) {
4099 clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4100 allocated - map->m_len);
4101 allocated = map->m_len;
4103 map->m_len = allocated;
4106 * If we have done fallocate with the offset that is already
4107 * delayed allocated, we would have block reservation
4108 * and quota reservation done in the delayed write path.
4109 * But fallocate would have already updated quota and block
4110 * count for this offset. So cancel these reservation
4112 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4113 unsigned int reserved_clusters;
4114 reserved_clusters = get_reserved_cluster_alloc(inode,
4115 map->m_lblk, map->m_len);
4116 if (reserved_clusters)
4117 ext4_da_update_reserve_space(inode,
4118 reserved_clusters,
4122 map_out:
4123 map->m_flags |= EXT4_MAP_MAPPED;
4124 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4125 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4126 map->m_len);
4127 if (err < 0)
4128 goto out2;
4130 out1:
4131 if (allocated > map->m_len)
4132 allocated = map->m_len;
4133 ext4_ext_show_leaf(inode, path);
4134 map->m_pblk = newblock;
4135 map->m_len = allocated;
4136 out2:
4137 return err ? err : allocated;
4141 * get_implied_cluster_alloc - check to see if the requested
4142 * allocation (in the map structure) overlaps with a cluster already
4143 * allocated in an extent.
4144 * @sb The filesystem superblock structure
4145 * @map The requested lblk->pblk mapping
4146 * @ex The extent structure which might contain an implied
4147 * cluster allocation
4149 * This function is called by ext4_ext_map_blocks() after we failed to
4150 * find blocks that were already in the inode's extent tree. Hence,
4151 * we know that the beginning of the requested region cannot overlap
4152 * the extent from the inode's extent tree. There are three cases we
4153 * want to catch. The first is this case:
4155 * |--- cluster # N--|
4156 * |--- extent ---| |---- requested region ---|
4157 * |==========|
4159 * The second case that we need to test for is this one:
4161 * |--------- cluster # N ----------------|
4162 * |--- requested region --| |------- extent ----|
4163 * |=======================|
4165 * The third case is when the requested region lies between two extents
4166 * within the same cluster:
4167 * |------------- cluster # N-------------|
4168 * |----- ex -----| |---- ex_right ----|
4169 * |------ requested region ------|
4170 * |================|
4172 * In each of the above cases, we need to set the map->m_pblk and
4173 * map->m_len so it corresponds to the return the extent labelled as
4174 * "|====|" from cluster #N, since it is already in use for data in
4175 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4176 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4177 * as a new "allocated" block region. Otherwise, we will return 0 and
4178 * ext4_ext_map_blocks() will then allocate one or more new clusters
4179 * by calling ext4_mb_new_blocks().
4181 static int get_implied_cluster_alloc(struct super_block *sb,
4182 struct ext4_map_blocks *map,
4183 struct ext4_extent *ex,
4184 struct ext4_ext_path *path)
4186 struct ext4_sb_info *sbi = EXT4_SB(sb);
4187 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4188 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4189 ext4_lblk_t rr_cluster_start;
4190 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4191 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4192 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4194 /* The extent passed in that we are trying to match */
4195 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4196 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4198 /* The requested region passed into ext4_map_blocks() */
4199 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4201 if ((rr_cluster_start == ex_cluster_end) ||
4202 (rr_cluster_start == ex_cluster_start)) {
4203 if (rr_cluster_start == ex_cluster_end)
4204 ee_start += ee_len - 1;
4205 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4206 map->m_len = min(map->m_len,
4207 (unsigned) sbi->s_cluster_ratio - c_offset);
4209 * Check for and handle this case:
4211 * |--------- cluster # N-------------|
4212 * |------- extent ----|
4213 * |--- requested region ---|
4214 * |===========|
4217 if (map->m_lblk < ee_block)
4218 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4221 * Check for the case where there is already another allocated
4222 * block to the right of 'ex' but before the end of the cluster.
4224 * |------------- cluster # N-------------|
4225 * |----- ex -----| |---- ex_right ----|
4226 * |------ requested region ------|
4227 * |================|
4229 if (map->m_lblk > ee_block) {
4230 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4231 map->m_len = min(map->m_len, next - map->m_lblk);
4234 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4235 return 1;
4238 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4239 return 0;
4244 * Block allocation/map/preallocation routine for extents based files
4247 * Need to be called with
4248 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4249 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4251 * return > 0, number of of blocks already mapped/allocated
4252 * if create == 0 and these are pre-allocated blocks
4253 * buffer head is unmapped
4254 * otherwise blocks are mapped
4256 * return = 0, if plain look up failed (blocks have not been allocated)
4257 * buffer head is unmapped
4259 * return < 0, error case.
4261 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4262 struct ext4_map_blocks *map, int flags)
4264 struct ext4_ext_path *path = NULL;
4265 struct ext4_extent newex, *ex, *ex2;
4266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4267 ext4_fsblk_t newblock = 0;
4268 int free_on_err = 0, err = 0, depth, ret;
4269 unsigned int allocated = 0, offset = 0;
4270 unsigned int allocated_clusters = 0;
4271 struct ext4_allocation_request ar;
4272 ext4_lblk_t cluster_offset;
4273 bool map_from_cluster = false;
4275 ext_debug("blocks %u/%u requested for inode %lu\n",
4276 map->m_lblk, map->m_len, inode->i_ino);
4277 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4279 /* find extent for this block */
4280 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4281 if (IS_ERR(path)) {
4282 err = PTR_ERR(path);
4283 path = NULL;
4284 goto out2;
4287 depth = ext_depth(inode);
4290 * consistent leaf must not be empty;
4291 * this situation is possible, though, _during_ tree modification;
4292 * this is why assert can't be put in ext4_find_extent()
4294 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4295 EXT4_ERROR_INODE(inode, "bad extent address "
4296 "lblock: %lu, depth: %d pblock %lld",
4297 (unsigned long) map->m_lblk, depth,
4298 path[depth].p_block);
4299 err = -EFSCORRUPTED;
4300 goto out2;
4303 ex = path[depth].p_ext;
4304 if (ex) {
4305 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4306 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4307 unsigned short ee_len;
4311 * unwritten extents are treated as holes, except that
4312 * we split out initialized portions during a write.
4314 ee_len = ext4_ext_get_actual_len(ex);
4316 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4318 /* if found extent covers block, simply return it */
4319 if (in_range(map->m_lblk, ee_block, ee_len)) {
4320 newblock = map->m_lblk - ee_block + ee_start;
4321 /* number of remaining blocks in the extent */
4322 allocated = ee_len - (map->m_lblk - ee_block);
4323 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4324 ee_block, ee_len, newblock);
4327 * If the extent is initialized check whether the
4328 * caller wants to convert it to unwritten.
4330 if ((!ext4_ext_is_unwritten(ex)) &&
4331 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4332 allocated = convert_initialized_extent(
4333 handle, inode, map, &path,
4334 allocated);
4335 goto out2;
4336 } else if (!ext4_ext_is_unwritten(ex))
4337 goto out;
4339 ret = ext4_ext_handle_unwritten_extents(
4340 handle, inode, map, &path, flags,
4341 allocated, newblock);
4342 if (ret < 0)
4343 err = ret;
4344 else
4345 allocated = ret;
4346 goto out2;
4351 * requested block isn't allocated yet;
4352 * we couldn't try to create block if create flag is zero
4354 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4355 ext4_lblk_t hole_start, hole_len;
4357 hole_start = map->m_lblk;
4358 hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4360 * put just found gap into cache to speed up
4361 * subsequent requests
4363 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4365 /* Update hole_len to reflect hole size after map->m_lblk */
4366 if (hole_start != map->m_lblk)
4367 hole_len -= map->m_lblk - hole_start;
4368 map->m_pblk = 0;
4369 map->m_len = min_t(unsigned int, map->m_len, hole_len);
4371 goto out2;
4375 * Okay, we need to do block allocation.
4377 newex.ee_block = cpu_to_le32(map->m_lblk);
4378 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4381 * If we are doing bigalloc, check to see if the extent returned
4382 * by ext4_find_extent() implies a cluster we can use.
4384 if (cluster_offset && ex &&
4385 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4386 ar.len = allocated = map->m_len;
4387 newblock = map->m_pblk;
4388 map_from_cluster = true;
4389 goto got_allocated_blocks;
4392 /* find neighbour allocated blocks */
4393 ar.lleft = map->m_lblk;
4394 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4395 if (err)
4396 goto out2;
4397 ar.lright = map->m_lblk;
4398 ex2 = NULL;
4399 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4400 if (err)
4401 goto out2;
4403 /* Check if the extent after searching to the right implies a
4404 * cluster we can use. */
4405 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4406 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4407 ar.len = allocated = map->m_len;
4408 newblock = map->m_pblk;
4409 map_from_cluster = true;
4410 goto got_allocated_blocks;
4414 * See if request is beyond maximum number of blocks we can have in
4415 * a single extent. For an initialized extent this limit is
4416 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4417 * EXT_UNWRITTEN_MAX_LEN.
4419 if (map->m_len > EXT_INIT_MAX_LEN &&
4420 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4421 map->m_len = EXT_INIT_MAX_LEN;
4422 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4423 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4424 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4426 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4427 newex.ee_len = cpu_to_le16(map->m_len);
4428 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4429 if (err)
4430 allocated = ext4_ext_get_actual_len(&newex);
4431 else
4432 allocated = map->m_len;
4434 /* allocate new block */
4435 ar.inode = inode;
4436 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4437 ar.logical = map->m_lblk;
4439 * We calculate the offset from the beginning of the cluster
4440 * for the logical block number, since when we allocate a
4441 * physical cluster, the physical block should start at the
4442 * same offset from the beginning of the cluster. This is
4443 * needed so that future calls to get_implied_cluster_alloc()
4444 * work correctly.
4446 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4447 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4448 ar.goal -= offset;
4449 ar.logical -= offset;
4450 if (S_ISREG(inode->i_mode))
4451 ar.flags = EXT4_MB_HINT_DATA;
4452 else
4453 /* disable in-core preallocation for non-regular files */
4454 ar.flags = 0;
4455 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4456 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4457 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4458 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4459 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4460 ar.flags |= EXT4_MB_USE_RESERVED;
4461 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4462 if (!newblock)
4463 goto out2;
4464 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4465 ar.goal, newblock, allocated);
4466 free_on_err = 1;
4467 allocated_clusters = ar.len;
4468 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4469 if (ar.len > allocated)
4470 ar.len = allocated;
4472 got_allocated_blocks:
4473 /* try to insert new extent into found leaf and return */
4474 ext4_ext_store_pblock(&newex, newblock + offset);
4475 newex.ee_len = cpu_to_le16(ar.len);
4476 /* Mark unwritten */
4477 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4478 ext4_ext_mark_unwritten(&newex);
4479 map->m_flags |= EXT4_MAP_UNWRITTEN;
4482 err = 0;
4483 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4484 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4485 path, ar.len);
4486 if (!err)
4487 err = ext4_ext_insert_extent(handle, inode, &path,
4488 &newex, flags);
4490 if (err && free_on_err) {
4491 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4492 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4493 /* free data blocks we just allocated */
4494 /* not a good idea to call discard here directly,
4495 * but otherwise we'd need to call it every free() */
4496 ext4_discard_preallocations(inode);
4497 ext4_free_blocks(handle, inode, NULL, newblock,
4498 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4499 goto out2;
4502 /* previous routine could use block we allocated */
4503 newblock = ext4_ext_pblock(&newex);
4504 allocated = ext4_ext_get_actual_len(&newex);
4505 if (allocated > map->m_len)
4506 allocated = map->m_len;
4507 map->m_flags |= EXT4_MAP_NEW;
4510 * Update reserved blocks/metadata blocks after successful
4511 * block allocation which had been deferred till now.
4513 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4514 unsigned int reserved_clusters;
4516 * Check how many clusters we had reserved this allocated range
4518 reserved_clusters = get_reserved_cluster_alloc(inode,
4519 map->m_lblk, allocated);
4520 if (!map_from_cluster) {
4521 BUG_ON(allocated_clusters < reserved_clusters);
4522 if (reserved_clusters < allocated_clusters) {
4523 struct ext4_inode_info *ei = EXT4_I(inode);
4524 int reservation = allocated_clusters -
4525 reserved_clusters;
4527 * It seems we claimed few clusters outside of
4528 * the range of this allocation. We should give
4529 * it back to the reservation pool. This can
4530 * happen in the following case:
4532 * * Suppose s_cluster_ratio is 4 (i.e., each
4533 * cluster has 4 blocks. Thus, the clusters
4534 * are [0-3],[4-7],[8-11]...
4535 * * First comes delayed allocation write for
4536 * logical blocks 10 & 11. Since there were no
4537 * previous delayed allocated blocks in the
4538 * range [8-11], we would reserve 1 cluster
4539 * for this write.
4540 * * Next comes write for logical blocks 3 to 8.
4541 * In this case, we will reserve 2 clusters
4542 * (for [0-3] and [4-7]; and not for [8-11] as
4543 * that range has a delayed allocated blocks.
4544 * Thus total reserved clusters now becomes 3.
4545 * * Now, during the delayed allocation writeout
4546 * time, we will first write blocks [3-8] and
4547 * allocate 3 clusters for writing these
4548 * blocks. Also, we would claim all these
4549 * three clusters above.
4550 * * Now when we come here to writeout the
4551 * blocks [10-11], we would expect to claim
4552 * the reservation of 1 cluster we had made
4553 * (and we would claim it since there are no
4554 * more delayed allocated blocks in the range
4555 * [8-11]. But our reserved cluster count had
4556 * already gone to 0.
4558 * Thus, at the step 4 above when we determine
4559 * that there are still some unwritten delayed
4560 * allocated blocks outside of our current
4561 * block range, we should increment the
4562 * reserved clusters count so that when the
4563 * remaining blocks finally gets written, we
4564 * could claim them.
4566 dquot_reserve_block(inode,
4567 EXT4_C2B(sbi, reservation));
4568 spin_lock(&ei->i_block_reservation_lock);
4569 ei->i_reserved_data_blocks += reservation;
4570 spin_unlock(&ei->i_block_reservation_lock);
4573 * We will claim quota for all newly allocated blocks.
4574 * We're updating the reserved space *after* the
4575 * correction above so we do not accidentally free
4576 * all the metadata reservation because we might
4577 * actually need it later on.
4579 ext4_da_update_reserve_space(inode, allocated_clusters,
4585 * Cache the extent and update transaction to commit on fdatasync only
4586 * when it is _not_ an unwritten extent.
4588 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4589 ext4_update_inode_fsync_trans(handle, inode, 1);
4590 else
4591 ext4_update_inode_fsync_trans(handle, inode, 0);
4592 out:
4593 if (allocated > map->m_len)
4594 allocated = map->m_len;
4595 ext4_ext_show_leaf(inode, path);
4596 map->m_flags |= EXT4_MAP_MAPPED;
4597 map->m_pblk = newblock;
4598 map->m_len = allocated;
4599 out2:
4600 ext4_ext_drop_refs(path);
4601 kfree(path);
4603 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4604 err ? err : allocated);
4605 return err ? err : allocated;
4608 int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4610 struct super_block *sb = inode->i_sb;
4611 ext4_lblk_t last_block;
4612 int err = 0;
4615 * TODO: optimization is possible here.
4616 * Probably we need not scan at all,
4617 * because page truncation is enough.
4620 /* we have to know where to truncate from in crash case */
4621 EXT4_I(inode)->i_disksize = inode->i_size;
4622 err = ext4_mark_inode_dirty(handle, inode);
4623 if (err)
4624 return err;
4626 last_block = (inode->i_size + sb->s_blocksize - 1)
4627 >> EXT4_BLOCK_SIZE_BITS(sb);
4628 retry:
4629 err = ext4_es_remove_extent(inode, last_block,
4630 EXT_MAX_BLOCKS - last_block);
4631 if (err == -ENOMEM) {
4632 cond_resched();
4633 congestion_wait(BLK_RW_ASYNC, HZ/50);
4634 goto retry;
4636 if (err)
4637 return err;
4638 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4641 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4642 ext4_lblk_t len, loff_t new_size,
4643 int flags)
4645 struct inode *inode = file_inode(file);
4646 handle_t *handle;
4647 int ret = 0;
4648 int ret2 = 0;
4649 int retries = 0;
4650 int depth = 0;
4651 struct ext4_map_blocks map;
4652 unsigned int credits;
4653 loff_t epos;
4655 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4656 map.m_lblk = offset;
4657 map.m_len = len;
4659 * Don't normalize the request if it can fit in one extent so
4660 * that it doesn't get unnecessarily split into multiple
4661 * extents.
4663 if (len <= EXT_UNWRITTEN_MAX_LEN)
4664 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4667 * credits to insert 1 extent into extent tree
4669 credits = ext4_chunk_trans_blocks(inode, len);
4670 depth = ext_depth(inode);
4672 retry:
4673 while (ret >= 0 && len) {
4675 * Recalculate credits when extent tree depth changes.
4677 if (depth != ext_depth(inode)) {
4678 credits = ext4_chunk_trans_blocks(inode, len);
4679 depth = ext_depth(inode);
4682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4683 credits);
4684 if (IS_ERR(handle)) {
4685 ret = PTR_ERR(handle);
4686 break;
4688 ret = ext4_map_blocks(handle, inode, &map, flags);
4689 if (ret <= 0) {
4690 ext4_debug("inode #%lu: block %u: len %u: "
4691 "ext4_ext_map_blocks returned %d",
4692 inode->i_ino, map.m_lblk,
4693 map.m_len, ret);
4694 ext4_mark_inode_dirty(handle, inode);
4695 ret2 = ext4_journal_stop(handle);
4696 break;
4698 map.m_lblk += ret;
4699 map.m_len = len = len - ret;
4700 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4701 inode->i_ctime = current_time(inode);
4702 if (new_size) {
4703 if (epos > new_size)
4704 epos = new_size;
4705 if (ext4_update_inode_size(inode, epos) & 0x1)
4706 inode->i_mtime = inode->i_ctime;
4707 } else {
4708 if (epos > inode->i_size)
4709 ext4_set_inode_flag(inode,
4710 EXT4_INODE_EOFBLOCKS);
4712 ext4_mark_inode_dirty(handle, inode);
4713 ext4_update_inode_fsync_trans(handle, inode, 1);
4714 ret2 = ext4_journal_stop(handle);
4715 if (ret2)
4716 break;
4718 if (ret == -ENOSPC &&
4719 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4720 ret = 0;
4721 goto retry;
4724 return ret > 0 ? ret2 : ret;
4727 static long ext4_zero_range(struct file *file, loff_t offset,
4728 loff_t len, int mode)
4730 struct inode *inode = file_inode(file);
4731 handle_t *handle = NULL;
4732 unsigned int max_blocks;
4733 loff_t new_size = 0;
4734 int ret = 0;
4735 int flags;
4736 int credits;
4737 int partial_begin, partial_end;
4738 loff_t start, end;
4739 ext4_lblk_t lblk;
4740 unsigned int blkbits = inode->i_blkbits;
4742 trace_ext4_zero_range(inode, offset, len, mode);
4744 if (!S_ISREG(inode->i_mode))
4745 return -EINVAL;
4747 /* Call ext4_force_commit to flush all data in case of data=journal. */
4748 if (ext4_should_journal_data(inode)) {
4749 ret = ext4_force_commit(inode->i_sb);
4750 if (ret)
4751 return ret;
4755 * Round up offset. This is not fallocate, we neet to zero out
4756 * blocks, so convert interior block aligned part of the range to
4757 * unwritten and possibly manually zero out unaligned parts of the
4758 * range.
4760 start = round_up(offset, 1 << blkbits);
4761 end = round_down((offset + len), 1 << blkbits);
4763 if (start < offset || end > offset + len)
4764 return -EINVAL;
4765 partial_begin = offset & ((1 << blkbits) - 1);
4766 partial_end = (offset + len) & ((1 << blkbits) - 1);
4768 lblk = start >> blkbits;
4769 max_blocks = (end >> blkbits);
4770 if (max_blocks < lblk)
4771 max_blocks = 0;
4772 else
4773 max_blocks -= lblk;
4775 inode_lock(inode);
4778 * Indirect files do not support unwritten extnets
4780 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4781 ret = -EOPNOTSUPP;
4782 goto out_mutex;
4785 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4786 (offset + len > i_size_read(inode) ||
4787 offset + len > EXT4_I(inode)->i_disksize)) {
4788 new_size = offset + len;
4789 ret = inode_newsize_ok(inode, new_size);
4790 if (ret)
4791 goto out_mutex;
4794 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4795 if (mode & FALLOC_FL_KEEP_SIZE)
4796 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4798 /* Wait all existing dio workers, newcomers will block on i_mutex */
4799 inode_dio_wait(inode);
4801 /* Preallocate the range including the unaligned edges */
4802 if (partial_begin || partial_end) {
4803 ret = ext4_alloc_file_blocks(file,
4804 round_down(offset, 1 << blkbits) >> blkbits,
4805 (round_up((offset + len), 1 << blkbits) -
4806 round_down(offset, 1 << blkbits)) >> blkbits,
4807 new_size, flags);
4808 if (ret)
4809 goto out_mutex;
4813 /* Zero range excluding the unaligned edges */
4814 if (max_blocks > 0) {
4815 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4816 EXT4_EX_NOCACHE);
4819 * Prevent page faults from reinstantiating pages we have
4820 * released from page cache.
4822 down_write(&EXT4_I(inode)->i_mmap_sem);
4823 ret = ext4_update_disksize_before_punch(inode, offset, len);
4824 if (ret) {
4825 up_write(&EXT4_I(inode)->i_mmap_sem);
4826 goto out_mutex;
4828 /* Now release the pages and zero block aligned part of pages */
4829 truncate_pagecache_range(inode, start, end - 1);
4830 inode->i_mtime = inode->i_ctime = current_time(inode);
4832 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4833 flags);
4834 up_write(&EXT4_I(inode)->i_mmap_sem);
4835 if (ret)
4836 goto out_mutex;
4838 if (!partial_begin && !partial_end)
4839 goto out_mutex;
4842 * In worst case we have to writeout two nonadjacent unwritten
4843 * blocks and update the inode
4845 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4846 if (ext4_should_journal_data(inode))
4847 credits += 2;
4848 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4849 if (IS_ERR(handle)) {
4850 ret = PTR_ERR(handle);
4851 ext4_std_error(inode->i_sb, ret);
4852 goto out_mutex;
4855 inode->i_mtime = inode->i_ctime = current_time(inode);
4856 if (new_size) {
4857 ext4_update_inode_size(inode, new_size);
4858 } else {
4860 * Mark that we allocate beyond EOF so the subsequent truncate
4861 * can proceed even if the new size is the same as i_size.
4863 if ((offset + len) > i_size_read(inode))
4864 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4866 ext4_mark_inode_dirty(handle, inode);
4868 /* Zero out partial block at the edges of the range */
4869 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4870 if (ret >= 0)
4871 ext4_update_inode_fsync_trans(handle, inode, 1);
4873 if (file->f_flags & O_SYNC)
4874 ext4_handle_sync(handle);
4876 ext4_journal_stop(handle);
4877 out_mutex:
4878 inode_unlock(inode);
4879 return ret;
4883 * preallocate space for a file. This implements ext4's fallocate file
4884 * operation, which gets called from sys_fallocate system call.
4885 * For block-mapped files, posix_fallocate should fall back to the method
4886 * of writing zeroes to the required new blocks (the same behavior which is
4887 * expected for file systems which do not support fallocate() system call).
4889 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4891 struct inode *inode = file_inode(file);
4892 loff_t new_size = 0;
4893 unsigned int max_blocks;
4894 int ret = 0;
4895 int flags;
4896 ext4_lblk_t lblk;
4897 unsigned int blkbits = inode->i_blkbits;
4900 * Encrypted inodes can't handle collapse range or insert
4901 * range since we would need to re-encrypt blocks with a
4902 * different IV or XTS tweak (which are based on the logical
4903 * block number).
4905 * XXX It's not clear why zero range isn't working, but we'll
4906 * leave it disabled for encrypted inodes for now. This is a
4907 * bug we should fix....
4909 if (ext4_encrypted_inode(inode) &&
4910 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4911 FALLOC_FL_ZERO_RANGE)))
4912 return -EOPNOTSUPP;
4914 /* Return error if mode is not supported */
4915 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4916 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4917 FALLOC_FL_INSERT_RANGE))
4918 return -EOPNOTSUPP;
4920 if (mode & FALLOC_FL_PUNCH_HOLE)
4921 return ext4_punch_hole(inode, offset, len);
4923 ret = ext4_convert_inline_data(inode);
4924 if (ret)
4925 return ret;
4927 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4928 return ext4_collapse_range(inode, offset, len);
4930 if (mode & FALLOC_FL_INSERT_RANGE)
4931 return ext4_insert_range(inode, offset, len);
4933 if (mode & FALLOC_FL_ZERO_RANGE)
4934 return ext4_zero_range(file, offset, len, mode);
4936 trace_ext4_fallocate_enter(inode, offset, len, mode);
4937 lblk = offset >> blkbits;
4939 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4940 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4941 if (mode & FALLOC_FL_KEEP_SIZE)
4942 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4944 inode_lock(inode);
4947 * We only support preallocation for extent-based files only
4949 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4950 ret = -EOPNOTSUPP;
4951 goto out;
4954 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4955 (offset + len > i_size_read(inode) ||
4956 offset + len > EXT4_I(inode)->i_disksize)) {
4957 new_size = offset + len;
4958 ret = inode_newsize_ok(inode, new_size);
4959 if (ret)
4960 goto out;
4963 /* Wait all existing dio workers, newcomers will block on i_mutex */
4964 inode_dio_wait(inode);
4966 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
4967 if (ret)
4968 goto out;
4970 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4971 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4972 EXT4_I(inode)->i_sync_tid);
4974 out:
4975 inode_unlock(inode);
4976 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4977 return ret;
4981 * This function convert a range of blocks to written extents
4982 * The caller of this function will pass the start offset and the size.
4983 * all unwritten extents within this range will be converted to
4984 * written extents.
4986 * This function is called from the direct IO end io call back
4987 * function, to convert the fallocated extents after IO is completed.
4988 * Returns 0 on success.
4990 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4991 loff_t offset, ssize_t len)
4993 unsigned int max_blocks;
4994 int ret = 0;
4995 int ret2 = 0;
4996 struct ext4_map_blocks map;
4997 unsigned int credits, blkbits = inode->i_blkbits;
4999 map.m_lblk = offset >> blkbits;
5000 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5003 * This is somewhat ugly but the idea is clear: When transaction is
5004 * reserved, everything goes into it. Otherwise we rather start several
5005 * smaller transactions for conversion of each extent separately.
5007 if (handle) {
5008 handle = ext4_journal_start_reserved(handle,
5009 EXT4_HT_EXT_CONVERT);
5010 if (IS_ERR(handle))
5011 return PTR_ERR(handle);
5012 credits = 0;
5013 } else {
5015 * credits to insert 1 extent into extent tree
5017 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5019 while (ret >= 0 && ret < max_blocks) {
5020 map.m_lblk += ret;
5021 map.m_len = (max_blocks -= ret);
5022 if (credits) {
5023 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5024 credits);
5025 if (IS_ERR(handle)) {
5026 ret = PTR_ERR(handle);
5027 break;
5030 ret = ext4_map_blocks(handle, inode, &map,
5031 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5032 if (ret <= 0)
5033 ext4_warning(inode->i_sb,
5034 "inode #%lu: block %u: len %u: "
5035 "ext4_ext_map_blocks returned %d",
5036 inode->i_ino, map.m_lblk,
5037 map.m_len, ret);
5038 ext4_mark_inode_dirty(handle, inode);
5039 if (credits)
5040 ret2 = ext4_journal_stop(handle);
5041 if (ret <= 0 || ret2)
5042 break;
5044 if (!credits)
5045 ret2 = ext4_journal_stop(handle);
5046 return ret > 0 ? ret2 : ret;
5050 * If newes is not existing extent (newes->ec_pblk equals zero) find
5051 * delayed extent at start of newes and update newes accordingly and
5052 * return start of the next delayed extent.
5054 * If newes is existing extent (newes->ec_pblk is not equal zero)
5055 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5056 * extent found. Leave newes unmodified.
5058 static int ext4_find_delayed_extent(struct inode *inode,
5059 struct extent_status *newes)
5061 struct extent_status es;
5062 ext4_lblk_t block, next_del;
5064 if (newes->es_pblk == 0) {
5065 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5066 newes->es_lblk + newes->es_len - 1, &es);
5069 * No extent in extent-tree contains block @newes->es_pblk,
5070 * then the block may stay in 1)a hole or 2)delayed-extent.
5072 if (es.es_len == 0)
5073 /* A hole found. */
5074 return 0;
5076 if (es.es_lblk > newes->es_lblk) {
5077 /* A hole found. */
5078 newes->es_len = min(es.es_lblk - newes->es_lblk,
5079 newes->es_len);
5080 return 0;
5083 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5086 block = newes->es_lblk + newes->es_len;
5087 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5088 if (es.es_len == 0)
5089 next_del = EXT_MAX_BLOCKS;
5090 else
5091 next_del = es.es_lblk;
5093 return next_del;
5095 /* fiemap flags we can handle specified here */
5096 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5098 static int ext4_xattr_fiemap(struct inode *inode,
5099 struct fiemap_extent_info *fieinfo)
5101 __u64 physical = 0;
5102 __u64 length;
5103 __u32 flags = FIEMAP_EXTENT_LAST;
5104 int blockbits = inode->i_sb->s_blocksize_bits;
5105 int error = 0;
5107 /* in-inode? */
5108 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5109 struct ext4_iloc iloc;
5110 int offset; /* offset of xattr in inode */
5112 error = ext4_get_inode_loc(inode, &iloc);
5113 if (error)
5114 return error;
5115 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5116 offset = EXT4_GOOD_OLD_INODE_SIZE +
5117 EXT4_I(inode)->i_extra_isize;
5118 physical += offset;
5119 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5120 flags |= FIEMAP_EXTENT_DATA_INLINE;
5121 brelse(iloc.bh);
5122 } else { /* external block */
5123 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5124 length = inode->i_sb->s_blocksize;
5127 if (physical)
5128 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5129 length, flags);
5130 return (error < 0 ? error : 0);
5133 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5134 __u64 start, __u64 len)
5136 ext4_lblk_t start_blk;
5137 int error = 0;
5139 if (ext4_has_inline_data(inode)) {
5140 int has_inline = 1;
5142 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5143 start, len);
5145 if (has_inline)
5146 return error;
5149 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5150 error = ext4_ext_precache(inode);
5151 if (error)
5152 return error;
5155 /* fallback to generic here if not in extents fmt */
5156 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5157 return generic_block_fiemap(inode, fieinfo, start, len,
5158 ext4_get_block);
5160 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5161 return -EBADR;
5163 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5164 error = ext4_xattr_fiemap(inode, fieinfo);
5165 } else {
5166 ext4_lblk_t len_blks;
5167 __u64 last_blk;
5169 start_blk = start >> inode->i_sb->s_blocksize_bits;
5170 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5171 if (last_blk >= EXT_MAX_BLOCKS)
5172 last_blk = EXT_MAX_BLOCKS-1;
5173 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5176 * Walk the extent tree gathering extent information
5177 * and pushing extents back to the user.
5179 error = ext4_fill_fiemap_extents(inode, start_blk,
5180 len_blks, fieinfo);
5182 return error;
5186 * ext4_access_path:
5187 * Function to access the path buffer for marking it dirty.
5188 * It also checks if there are sufficient credits left in the journal handle
5189 * to update path.
5191 static int
5192 ext4_access_path(handle_t *handle, struct inode *inode,
5193 struct ext4_ext_path *path)
5195 int credits, err;
5197 if (!ext4_handle_valid(handle))
5198 return 0;
5201 * Check if need to extend journal credits
5202 * 3 for leaf, sb, and inode plus 2 (bmap and group
5203 * descriptor) for each block group; assume two block
5204 * groups
5206 if (handle->h_buffer_credits < 7) {
5207 credits = ext4_writepage_trans_blocks(inode);
5208 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5209 /* EAGAIN is success */
5210 if (err && err != -EAGAIN)
5211 return err;
5214 err = ext4_ext_get_access(handle, inode, path);
5215 return err;
5219 * ext4_ext_shift_path_extents:
5220 * Shift the extents of a path structure lying between path[depth].p_ext
5221 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5222 * if it is right shift or left shift operation.
5224 static int
5225 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5226 struct inode *inode, handle_t *handle,
5227 enum SHIFT_DIRECTION SHIFT)
5229 int depth, err = 0;
5230 struct ext4_extent *ex_start, *ex_last;
5231 bool update = 0;
5232 depth = path->p_depth;
5234 while (depth >= 0) {
5235 if (depth == path->p_depth) {
5236 ex_start = path[depth].p_ext;
5237 if (!ex_start)
5238 return -EFSCORRUPTED;
5240 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5242 err = ext4_access_path(handle, inode, path + depth);
5243 if (err)
5244 goto out;
5246 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5247 update = 1;
5249 while (ex_start <= ex_last) {
5250 if (SHIFT == SHIFT_LEFT) {
5251 le32_add_cpu(&ex_start->ee_block,
5252 -shift);
5253 /* Try to merge to the left. */
5254 if ((ex_start >
5255 EXT_FIRST_EXTENT(path[depth].p_hdr))
5257 ext4_ext_try_to_merge_right(inode,
5258 path, ex_start - 1))
5259 ex_last--;
5260 else
5261 ex_start++;
5262 } else {
5263 le32_add_cpu(&ex_last->ee_block, shift);
5264 ext4_ext_try_to_merge_right(inode, path,
5265 ex_last);
5266 ex_last--;
5269 err = ext4_ext_dirty(handle, inode, path + depth);
5270 if (err)
5271 goto out;
5273 if (--depth < 0 || !update)
5274 break;
5277 /* Update index too */
5278 err = ext4_access_path(handle, inode, path + depth);
5279 if (err)
5280 goto out;
5282 if (SHIFT == SHIFT_LEFT)
5283 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5284 else
5285 le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5286 err = ext4_ext_dirty(handle, inode, path + depth);
5287 if (err)
5288 goto out;
5290 /* we are done if current index is not a starting index */
5291 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5292 break;
5294 depth--;
5297 out:
5298 return err;
5302 * ext4_ext_shift_extents:
5303 * All the extents which lies in the range from @start to the last allocated
5304 * block for the @inode are shifted either towards left or right (depending
5305 * upon @SHIFT) by @shift blocks.
5306 * On success, 0 is returned, error otherwise.
5308 static int
5309 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5310 ext4_lblk_t start, ext4_lblk_t shift,
5311 enum SHIFT_DIRECTION SHIFT)
5313 struct ext4_ext_path *path;
5314 int ret = 0, depth;
5315 struct ext4_extent *extent;
5316 ext4_lblk_t stop, *iterator, ex_start, ex_end;
5318 /* Let path point to the last extent */
5319 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5320 EXT4_EX_NOCACHE);
5321 if (IS_ERR(path))
5322 return PTR_ERR(path);
5324 depth = path->p_depth;
5325 extent = path[depth].p_ext;
5326 if (!extent)
5327 goto out;
5329 stop = le32_to_cpu(extent->ee_block);
5332 * For left shifts, make sure the hole on the left is big enough to
5333 * accommodate the shift. For right shifts, make sure the last extent
5334 * won't be shifted beyond EXT_MAX_BLOCKS.
5336 if (SHIFT == SHIFT_LEFT) {
5337 path = ext4_find_extent(inode, start - 1, &path,
5338 EXT4_EX_NOCACHE);
5339 if (IS_ERR(path))
5340 return PTR_ERR(path);
5341 depth = path->p_depth;
5342 extent = path[depth].p_ext;
5343 if (extent) {
5344 ex_start = le32_to_cpu(extent->ee_block);
5345 ex_end = le32_to_cpu(extent->ee_block) +
5346 ext4_ext_get_actual_len(extent);
5347 } else {
5348 ex_start = 0;
5349 ex_end = 0;
5352 if ((start == ex_start && shift > ex_start) ||
5353 (shift > start - ex_end)) {
5354 ret = -EINVAL;
5355 goto out;
5357 } else {
5358 if (shift > EXT_MAX_BLOCKS -
5359 (stop + ext4_ext_get_actual_len(extent))) {
5360 ret = -EINVAL;
5361 goto out;
5366 * In case of left shift, iterator points to start and it is increased
5367 * till we reach stop. In case of right shift, iterator points to stop
5368 * and it is decreased till we reach start.
5370 if (SHIFT == SHIFT_LEFT)
5371 iterator = &start;
5372 else
5373 iterator = &stop;
5376 * Its safe to start updating extents. Start and stop are unsigned, so
5377 * in case of right shift if extent with 0 block is reached, iterator
5378 * becomes NULL to indicate the end of the loop.
5380 while (iterator && start <= stop) {
5381 path = ext4_find_extent(inode, *iterator, &path,
5382 EXT4_EX_NOCACHE);
5383 if (IS_ERR(path))
5384 return PTR_ERR(path);
5385 depth = path->p_depth;
5386 extent = path[depth].p_ext;
5387 if (!extent) {
5388 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5389 (unsigned long) *iterator);
5390 return -EFSCORRUPTED;
5392 if (SHIFT == SHIFT_LEFT && *iterator >
5393 le32_to_cpu(extent->ee_block)) {
5394 /* Hole, move to the next extent */
5395 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5396 path[depth].p_ext++;
5397 } else {
5398 *iterator = ext4_ext_next_allocated_block(path);
5399 continue;
5403 if (SHIFT == SHIFT_LEFT) {
5404 extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5405 *iterator = le32_to_cpu(extent->ee_block) +
5406 ext4_ext_get_actual_len(extent);
5407 } else {
5408 extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5409 if (le32_to_cpu(extent->ee_block) > 0)
5410 *iterator = le32_to_cpu(extent->ee_block) - 1;
5411 else
5412 /* Beginning is reached, end of the loop */
5413 iterator = NULL;
5414 /* Update path extent in case we need to stop */
5415 while (le32_to_cpu(extent->ee_block) < start)
5416 extent++;
5417 path[depth].p_ext = extent;
5419 ret = ext4_ext_shift_path_extents(path, shift, inode,
5420 handle, SHIFT);
5421 if (ret)
5422 break;
5424 out:
5425 ext4_ext_drop_refs(path);
5426 kfree(path);
5427 return ret;
5431 * ext4_collapse_range:
5432 * This implements the fallocate's collapse range functionality for ext4
5433 * Returns: 0 and non-zero on error.
5435 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5437 struct super_block *sb = inode->i_sb;
5438 ext4_lblk_t punch_start, punch_stop;
5439 handle_t *handle;
5440 unsigned int credits;
5441 loff_t new_size, ioffset;
5442 int ret;
5445 * We need to test this early because xfstests assumes that a
5446 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5447 * system does not support collapse range.
5449 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5450 return -EOPNOTSUPP;
5452 /* Collapse range works only on fs block size aligned offsets. */
5453 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5454 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5455 return -EINVAL;
5457 if (!S_ISREG(inode->i_mode))
5458 return -EINVAL;
5460 trace_ext4_collapse_range(inode, offset, len);
5462 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5463 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5465 /* Call ext4_force_commit to flush all data in case of data=journal. */
5466 if (ext4_should_journal_data(inode)) {
5467 ret = ext4_force_commit(inode->i_sb);
5468 if (ret)
5469 return ret;
5472 inode_lock(inode);
5474 * There is no need to overlap collapse range with EOF, in which case
5475 * it is effectively a truncate operation
5477 if (offset + len >= i_size_read(inode)) {
5478 ret = -EINVAL;
5479 goto out_mutex;
5482 /* Currently just for extent based files */
5483 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5484 ret = -EOPNOTSUPP;
5485 goto out_mutex;
5488 /* Wait for existing dio to complete */
5489 inode_dio_wait(inode);
5492 * Prevent page faults from reinstantiating pages we have released from
5493 * page cache.
5495 down_write(&EXT4_I(inode)->i_mmap_sem);
5497 * Need to round down offset to be aligned with page size boundary
5498 * for page size > block size.
5500 ioffset = round_down(offset, PAGE_SIZE);
5502 * Write tail of the last page before removed range since it will get
5503 * removed from the page cache below.
5505 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5506 if (ret)
5507 goto out_mmap;
5509 * Write data that will be shifted to preserve them when discarding
5510 * page cache below. We are also protected from pages becoming dirty
5511 * by i_mmap_sem.
5513 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5514 LLONG_MAX);
5515 if (ret)
5516 goto out_mmap;
5517 truncate_pagecache(inode, ioffset);
5519 credits = ext4_writepage_trans_blocks(inode);
5520 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5521 if (IS_ERR(handle)) {
5522 ret = PTR_ERR(handle);
5523 goto out_mmap;
5526 down_write(&EXT4_I(inode)->i_data_sem);
5527 ext4_discard_preallocations(inode);
5529 ret = ext4_es_remove_extent(inode, punch_start,
5530 EXT_MAX_BLOCKS - punch_start);
5531 if (ret) {
5532 up_write(&EXT4_I(inode)->i_data_sem);
5533 goto out_stop;
5536 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5537 if (ret) {
5538 up_write(&EXT4_I(inode)->i_data_sem);
5539 goto out_stop;
5541 ext4_discard_preallocations(inode);
5543 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5544 punch_stop - punch_start, SHIFT_LEFT);
5545 if (ret) {
5546 up_write(&EXT4_I(inode)->i_data_sem);
5547 goto out_stop;
5550 new_size = i_size_read(inode) - len;
5551 i_size_write(inode, new_size);
5552 EXT4_I(inode)->i_disksize = new_size;
5554 up_write(&EXT4_I(inode)->i_data_sem);
5555 if (IS_SYNC(inode))
5556 ext4_handle_sync(handle);
5557 inode->i_mtime = inode->i_ctime = current_time(inode);
5558 ext4_mark_inode_dirty(handle, inode);
5559 ext4_update_inode_fsync_trans(handle, inode, 1);
5561 out_stop:
5562 ext4_journal_stop(handle);
5563 out_mmap:
5564 up_write(&EXT4_I(inode)->i_mmap_sem);
5565 out_mutex:
5566 inode_unlock(inode);
5567 return ret;
5571 * ext4_insert_range:
5572 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5573 * The data blocks starting from @offset to the EOF are shifted by @len
5574 * towards right to create a hole in the @inode. Inode size is increased
5575 * by len bytes.
5576 * Returns 0 on success, error otherwise.
5578 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5580 struct super_block *sb = inode->i_sb;
5581 handle_t *handle;
5582 struct ext4_ext_path *path;
5583 struct ext4_extent *extent;
5584 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5585 unsigned int credits, ee_len;
5586 int ret = 0, depth, split_flag = 0;
5587 loff_t ioffset;
5590 * We need to test this early because xfstests assumes that an
5591 * insert range of (0, 1) will return EOPNOTSUPP if the file
5592 * system does not support insert range.
5594 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5595 return -EOPNOTSUPP;
5597 /* Insert range works only on fs block size aligned offsets. */
5598 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5599 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5600 return -EINVAL;
5602 if (!S_ISREG(inode->i_mode))
5603 return -EOPNOTSUPP;
5605 trace_ext4_insert_range(inode, offset, len);
5607 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5608 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5610 /* Call ext4_force_commit to flush all data in case of data=journal */
5611 if (ext4_should_journal_data(inode)) {
5612 ret = ext4_force_commit(inode->i_sb);
5613 if (ret)
5614 return ret;
5617 inode_lock(inode);
5618 /* Currently just for extent based files */
5619 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5620 ret = -EOPNOTSUPP;
5621 goto out_mutex;
5624 /* Check for wrap through zero */
5625 if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5626 ret = -EFBIG;
5627 goto out_mutex;
5630 /* Offset should be less than i_size */
5631 if (offset >= i_size_read(inode)) {
5632 ret = -EINVAL;
5633 goto out_mutex;
5636 /* Wait for existing dio to complete */
5637 inode_dio_wait(inode);
5640 * Prevent page faults from reinstantiating pages we have released from
5641 * page cache.
5643 down_write(&EXT4_I(inode)->i_mmap_sem);
5645 * Need to round down to align start offset to page size boundary
5646 * for page size > block size.
5648 ioffset = round_down(offset, PAGE_SIZE);
5649 /* Write out all dirty pages */
5650 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5651 LLONG_MAX);
5652 if (ret)
5653 goto out_mmap;
5654 truncate_pagecache(inode, ioffset);
5656 credits = ext4_writepage_trans_blocks(inode);
5657 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5658 if (IS_ERR(handle)) {
5659 ret = PTR_ERR(handle);
5660 goto out_mmap;
5663 /* Expand file to avoid data loss if there is error while shifting */
5664 inode->i_size += len;
5665 EXT4_I(inode)->i_disksize += len;
5666 inode->i_mtime = inode->i_ctime = current_time(inode);
5667 ret = ext4_mark_inode_dirty(handle, inode);
5668 if (ret)
5669 goto out_stop;
5671 down_write(&EXT4_I(inode)->i_data_sem);
5672 ext4_discard_preallocations(inode);
5674 path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5675 if (IS_ERR(path)) {
5676 up_write(&EXT4_I(inode)->i_data_sem);
5677 goto out_stop;
5680 depth = ext_depth(inode);
5681 extent = path[depth].p_ext;
5682 if (extent) {
5683 ee_start_lblk = le32_to_cpu(extent->ee_block);
5684 ee_len = ext4_ext_get_actual_len(extent);
5687 * If offset_lblk is not the starting block of extent, split
5688 * the extent @offset_lblk
5690 if ((offset_lblk > ee_start_lblk) &&
5691 (offset_lblk < (ee_start_lblk + ee_len))) {
5692 if (ext4_ext_is_unwritten(extent))
5693 split_flag = EXT4_EXT_MARK_UNWRIT1 |
5694 EXT4_EXT_MARK_UNWRIT2;
5695 ret = ext4_split_extent_at(handle, inode, &path,
5696 offset_lblk, split_flag,
5697 EXT4_EX_NOCACHE |
5698 EXT4_GET_BLOCKS_PRE_IO |
5699 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5702 ext4_ext_drop_refs(path);
5703 kfree(path);
5704 if (ret < 0) {
5705 up_write(&EXT4_I(inode)->i_data_sem);
5706 goto out_stop;
5708 } else {
5709 ext4_ext_drop_refs(path);
5710 kfree(path);
5713 ret = ext4_es_remove_extent(inode, offset_lblk,
5714 EXT_MAX_BLOCKS - offset_lblk);
5715 if (ret) {
5716 up_write(&EXT4_I(inode)->i_data_sem);
5717 goto out_stop;
5721 * if offset_lblk lies in a hole which is at start of file, use
5722 * ee_start_lblk to shift extents
5724 ret = ext4_ext_shift_extents(inode, handle,
5725 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5726 len_lblk, SHIFT_RIGHT);
5728 up_write(&EXT4_I(inode)->i_data_sem);
5729 if (IS_SYNC(inode))
5730 ext4_handle_sync(handle);
5731 if (ret >= 0)
5732 ext4_update_inode_fsync_trans(handle, inode, 1);
5734 out_stop:
5735 ext4_journal_stop(handle);
5736 out_mmap:
5737 up_write(&EXT4_I(inode)->i_mmap_sem);
5738 out_mutex:
5739 inode_unlock(inode);
5740 return ret;
5744 * ext4_swap_extents - Swap extents between two inodes
5746 * @inode1: First inode
5747 * @inode2: Second inode
5748 * @lblk1: Start block for first inode
5749 * @lblk2: Start block for second inode
5750 * @count: Number of blocks to swap
5751 * @unwritten: Mark second inode's extents as unwritten after swap
5752 * @erp: Pointer to save error value
5754 * This helper routine does exactly what is promise "swap extents". All other
5755 * stuff such as page-cache locking consistency, bh mapping consistency or
5756 * extent's data copying must be performed by caller.
5757 * Locking:
5758 * i_mutex is held for both inodes
5759 * i_data_sem is locked for write for both inodes
5760 * Assumptions:
5761 * All pages from requested range are locked for both inodes
5764 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5765 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5766 ext4_lblk_t count, int unwritten, int *erp)
5768 struct ext4_ext_path *path1 = NULL;
5769 struct ext4_ext_path *path2 = NULL;
5770 int replaced_count = 0;
5772 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5773 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5774 BUG_ON(!inode_is_locked(inode1));
5775 BUG_ON(!inode_is_locked(inode2));
5777 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5778 if (unlikely(*erp))
5779 return 0;
5780 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5781 if (unlikely(*erp))
5782 return 0;
5784 while (count) {
5785 struct ext4_extent *ex1, *ex2, tmp_ex;
5786 ext4_lblk_t e1_blk, e2_blk;
5787 int e1_len, e2_len, len;
5788 int split = 0;
5790 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5791 if (IS_ERR(path1)) {
5792 *erp = PTR_ERR(path1);
5793 path1 = NULL;
5794 finish:
5795 count = 0;
5796 goto repeat;
5798 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5799 if (IS_ERR(path2)) {
5800 *erp = PTR_ERR(path2);
5801 path2 = NULL;
5802 goto finish;
5804 ex1 = path1[path1->p_depth].p_ext;
5805 ex2 = path2[path2->p_depth].p_ext;
5806 /* Do we have somthing to swap ? */
5807 if (unlikely(!ex2 || !ex1))
5808 goto finish;
5810 e1_blk = le32_to_cpu(ex1->ee_block);
5811 e2_blk = le32_to_cpu(ex2->ee_block);
5812 e1_len = ext4_ext_get_actual_len(ex1);
5813 e2_len = ext4_ext_get_actual_len(ex2);
5815 /* Hole handling */
5816 if (!in_range(lblk1, e1_blk, e1_len) ||
5817 !in_range(lblk2, e2_blk, e2_len)) {
5818 ext4_lblk_t next1, next2;
5820 /* if hole after extent, then go to next extent */
5821 next1 = ext4_ext_next_allocated_block(path1);
5822 next2 = ext4_ext_next_allocated_block(path2);
5823 /* If hole before extent, then shift to that extent */
5824 if (e1_blk > lblk1)
5825 next1 = e1_blk;
5826 if (e2_blk > lblk2)
5827 next2 = e2_blk;
5828 /* Do we have something to swap */
5829 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5830 goto finish;
5831 /* Move to the rightest boundary */
5832 len = next1 - lblk1;
5833 if (len < next2 - lblk2)
5834 len = next2 - lblk2;
5835 if (len > count)
5836 len = count;
5837 lblk1 += len;
5838 lblk2 += len;
5839 count -= len;
5840 goto repeat;
5843 /* Prepare left boundary */
5844 if (e1_blk < lblk1) {
5845 split = 1;
5846 *erp = ext4_force_split_extent_at(handle, inode1,
5847 &path1, lblk1, 0);
5848 if (unlikely(*erp))
5849 goto finish;
5851 if (e2_blk < lblk2) {
5852 split = 1;
5853 *erp = ext4_force_split_extent_at(handle, inode2,
5854 &path2, lblk2, 0);
5855 if (unlikely(*erp))
5856 goto finish;
5858 /* ext4_split_extent_at() may result in leaf extent split,
5859 * path must to be revalidated. */
5860 if (split)
5861 goto repeat;
5863 /* Prepare right boundary */
5864 len = count;
5865 if (len > e1_blk + e1_len - lblk1)
5866 len = e1_blk + e1_len - lblk1;
5867 if (len > e2_blk + e2_len - lblk2)
5868 len = e2_blk + e2_len - lblk2;
5870 if (len != e1_len) {
5871 split = 1;
5872 *erp = ext4_force_split_extent_at(handle, inode1,
5873 &path1, lblk1 + len, 0);
5874 if (unlikely(*erp))
5875 goto finish;
5877 if (len != e2_len) {
5878 split = 1;
5879 *erp = ext4_force_split_extent_at(handle, inode2,
5880 &path2, lblk2 + len, 0);
5881 if (*erp)
5882 goto finish;
5884 /* ext4_split_extent_at() may result in leaf extent split,
5885 * path must to be revalidated. */
5886 if (split)
5887 goto repeat;
5889 BUG_ON(e2_len != e1_len);
5890 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5891 if (unlikely(*erp))
5892 goto finish;
5893 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5894 if (unlikely(*erp))
5895 goto finish;
5897 /* Both extents are fully inside boundaries. Swap it now */
5898 tmp_ex = *ex1;
5899 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5900 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5901 ex1->ee_len = cpu_to_le16(e2_len);
5902 ex2->ee_len = cpu_to_le16(e1_len);
5903 if (unwritten)
5904 ext4_ext_mark_unwritten(ex2);
5905 if (ext4_ext_is_unwritten(&tmp_ex))
5906 ext4_ext_mark_unwritten(ex1);
5908 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5909 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5910 *erp = ext4_ext_dirty(handle, inode2, path2 +
5911 path2->p_depth);
5912 if (unlikely(*erp))
5913 goto finish;
5914 *erp = ext4_ext_dirty(handle, inode1, path1 +
5915 path1->p_depth);
5917 * Looks scarry ah..? second inode already points to new blocks,
5918 * and it was successfully dirtied. But luckily error may happen
5919 * only due to journal error, so full transaction will be
5920 * aborted anyway.
5922 if (unlikely(*erp))
5923 goto finish;
5924 lblk1 += len;
5925 lblk2 += len;
5926 replaced_count += len;
5927 count -= len;
5929 repeat:
5930 ext4_ext_drop_refs(path1);
5931 kfree(path1);
5932 ext4_ext_drop_refs(path2);
5933 kfree(path2);
5934 path1 = path2 = NULL;
5936 return replaced_count;