4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_inode
*nfsi
= NFS_I(dir
);
73 struct nfs_open_dir_context
*ctx
;
74 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
77 ctx
->attr_gencount
= nfsi
->attr_gencount
;
80 ctx
->cred
= get_rpccred(cred
);
81 spin_lock(&dir
->i_lock
);
82 list_add(&ctx
->list
, &nfsi
->open_files
);
83 spin_unlock(&dir
->i_lock
);
86 return ERR_PTR(-ENOMEM
);
89 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
91 spin_lock(&dir
->i_lock
);
93 spin_unlock(&dir
->i_lock
);
94 put_rpccred(ctx
->cred
);
102 nfs_opendir(struct inode
*inode
, struct file
*filp
)
105 struct nfs_open_dir_context
*ctx
;
106 struct rpc_cred
*cred
;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
110 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
112 cred
= rpc_lookup_cred();
114 return PTR_ERR(cred
);
115 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
120 filp
->private_data
= ctx
;
127 nfs_closedir(struct inode
*inode
, struct file
*filp
)
129 put_nfs_open_dir_context(file_inode(filp
), filp
->private_data
);
133 struct nfs_cache_array_entry
{
137 unsigned char d_type
;
140 struct nfs_cache_array
{
144 struct nfs_cache_array_entry array
[0];
147 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, bool);
151 struct dir_context
*ctx
;
152 unsigned long page_index
;
155 loff_t current_index
;
156 decode_dirent_t decode
;
158 unsigned long timestamp
;
159 unsigned long gencount
;
160 unsigned int cache_entry_index
;
163 } nfs_readdir_descriptor_t
;
166 * we are freeing strings created by nfs_add_to_readdir_array()
169 void nfs_readdir_clear_array(struct page
*page
)
171 struct nfs_cache_array
*array
;
174 array
= kmap_atomic(page
);
175 for (i
= 0; i
< array
->size
; i
++)
176 kfree(array
->array
[i
].string
.name
);
177 kunmap_atomic(array
);
181 * the caller is responsible for freeing qstr.name
182 * when called by nfs_readdir_add_to_array, the strings will be freed in
183 * nfs_clear_readdir_array()
186 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
189 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
190 if (string
->name
== NULL
)
193 * Avoid a kmemleak false positive. The pointer to the name is stored
194 * in a page cache page which kmemleak does not scan.
196 kmemleak_not_leak(string
->name
);
197 string
->hash
= full_name_hash(NULL
, name
, len
);
202 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
204 struct nfs_cache_array
*array
= kmap(page
);
205 struct nfs_cache_array_entry
*cache_entry
;
208 cache_entry
= &array
->array
[array
->size
];
210 /* Check that this entry lies within the page bounds */
212 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
215 cache_entry
->cookie
= entry
->prev_cookie
;
216 cache_entry
->ino
= entry
->ino
;
217 cache_entry
->d_type
= entry
->d_type
;
218 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
221 array
->last_cookie
= entry
->cookie
;
224 array
->eof_index
= array
->size
;
231 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
233 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
238 if (diff
>= array
->size
) {
239 if (array
->eof_index
>= 0)
244 index
= (unsigned int)diff
;
245 *desc
->dir_cookie
= array
->array
[index
].cookie
;
246 desc
->cache_entry_index
= index
;
254 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
256 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
259 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
263 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
267 int status
= -EAGAIN
;
269 for (i
= 0; i
< array
->size
; i
++) {
270 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
271 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
272 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
274 new_pos
= desc
->current_index
+ i
;
275 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
276 !nfs_readdir_inode_mapping_valid(nfsi
)) {
278 ctx
->attr_gencount
= nfsi
->attr_gencount
;
279 } else if (new_pos
< desc
->ctx
->pos
) {
281 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
282 if (printk_ratelimit()) {
283 pr_notice("NFS: directory %pD2 contains a readdir loop."
284 "Please contact your server vendor. "
285 "The file: %.*s has duplicate cookie %llu\n",
286 desc
->file
, array
->array
[i
].string
.len
,
287 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
292 ctx
->dup_cookie
= *desc
->dir_cookie
;
295 desc
->ctx
->pos
= new_pos
;
296 desc
->cache_entry_index
= i
;
300 if (array
->eof_index
>= 0) {
301 status
= -EBADCOOKIE
;
302 if (*desc
->dir_cookie
== array
->last_cookie
)
310 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
312 struct nfs_cache_array
*array
;
315 array
= kmap(desc
->page
);
317 if (*desc
->dir_cookie
== 0)
318 status
= nfs_readdir_search_for_pos(array
, desc
);
320 status
= nfs_readdir_search_for_cookie(array
, desc
);
322 if (status
== -EAGAIN
) {
323 desc
->last_cookie
= array
->last_cookie
;
324 desc
->current_index
+= array
->size
;
331 /* Fill a page with xdr information before transferring to the cache page */
333 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
334 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
336 struct nfs_open_dir_context
*ctx
= file
->private_data
;
337 struct rpc_cred
*cred
= ctx
->cred
;
338 unsigned long timestamp
, gencount
;
343 gencount
= nfs_inc_attr_generation_counter();
344 error
= NFS_PROTO(inode
)->readdir(file_dentry(file
), cred
, entry
->cookie
, pages
,
345 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
347 /* We requested READDIRPLUS, but the server doesn't grok it */
348 if (error
== -ENOTSUPP
&& desc
->plus
) {
349 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
350 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
356 desc
->timestamp
= timestamp
;
357 desc
->gencount
= gencount
;
362 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
363 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
367 error
= desc
->decode(xdr
, entry
, desc
->plus
);
370 entry
->fattr
->time_start
= desc
->timestamp
;
371 entry
->fattr
->gencount
= desc
->gencount
;
375 /* Match file and dirent using either filehandle or fileid
376 * Note: caller is responsible for checking the fsid
379 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
382 struct nfs_inode
*nfsi
;
384 if (d_really_is_negative(dentry
))
387 inode
= d_inode(dentry
);
388 if (is_bad_inode(inode
) || NFS_STALE(inode
))
392 if (entry
->fattr
->fileid
!= nfsi
->fileid
)
394 if (entry
->fh
->size
&& nfs_compare_fh(entry
->fh
, &nfsi
->fh
) != 0)
400 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
402 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
412 * This function is called by the lookup and getattr code to request the
413 * use of readdirplus to accelerate any future lookups in the same
416 void nfs_advise_use_readdirplus(struct inode
*dir
)
418 struct nfs_inode
*nfsi
= NFS_I(dir
);
420 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
421 !list_empty(&nfsi
->open_files
))
422 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
426 * This function is mainly for use by nfs_getattr().
428 * If this is an 'ls -l', we want to force use of readdirplus.
429 * Do this by checking if there is an active file descriptor
430 * and calling nfs_advise_use_readdirplus, then forcing a
433 void nfs_force_use_readdirplus(struct inode
*dir
)
435 struct nfs_inode
*nfsi
= NFS_I(dir
);
437 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
438 !list_empty(&nfsi
->open_files
)) {
439 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
440 invalidate_mapping_pages(dir
->i_mapping
, 0, -1);
445 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
447 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
449 struct dentry
*dentry
;
450 struct dentry
*alias
;
451 struct inode
*dir
= d_inode(parent
);
455 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FILEID
))
457 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FSID
))
459 if (filename
.len
== 0)
461 /* Validate that the name doesn't contain any illegal '\0' */
462 if (strnlen(filename
.name
, filename
.len
) != filename
.len
)
465 if (strnchr(filename
.name
, filename
.len
, '/'))
467 if (filename
.name
[0] == '.') {
468 if (filename
.len
== 1)
470 if (filename
.len
== 2 && filename
.name
[1] == '.')
473 filename
.hash
= full_name_hash(parent
, filename
.name
, filename
.len
);
475 dentry
= d_lookup(parent
, &filename
);
478 dentry
= d_alloc_parallel(parent
, &filename
, &wq
);
482 if (!d_in_lookup(dentry
)) {
483 /* Is there a mountpoint here? If so, just exit */
484 if (!nfs_fsid_equal(&NFS_SB(dentry
->d_sb
)->fsid
,
485 &entry
->fattr
->fsid
))
487 if (nfs_same_file(dentry
, entry
)) {
488 if (!entry
->fh
->size
)
490 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
491 status
= nfs_refresh_inode(d_inode(dentry
), entry
->fattr
);
493 nfs_setsecurity(d_inode(dentry
), entry
->fattr
, entry
->label
);
496 d_invalidate(dentry
);
502 if (!entry
->fh
->size
) {
503 d_lookup_done(dentry
);
507 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
508 alias
= d_splice_alias(inode
, dentry
);
509 d_lookup_done(dentry
);
516 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
521 /* Perform conversion from xdr to cache array */
523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
524 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
526 struct xdr_stream stream
;
528 struct page
*scratch
;
529 struct nfs_cache_array
*array
;
530 unsigned int count
= 0;
533 scratch
= alloc_page(GFP_KERNEL
);
540 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
541 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
544 status
= xdr_decode(desc
, entry
, &stream
);
546 if (status
== -EAGAIN
)
554 nfs_prime_dcache(file_dentry(desc
->file
), entry
);
556 status
= nfs_readdir_add_to_array(entry
, page
);
559 } while (!entry
->eof
);
562 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
564 array
->eof_index
= array
->size
;
574 void nfs_readdir_free_pages(struct page
**pages
, unsigned int npages
)
577 for (i
= 0; i
< npages
; i
++)
582 * nfs_readdir_large_page will allocate pages that must be freed with a call
583 * to nfs_readdir_free_pagearray
586 int nfs_readdir_alloc_pages(struct page
**pages
, unsigned int npages
)
590 for (i
= 0; i
< npages
; i
++) {
591 struct page
*page
= alloc_page(GFP_KERNEL
);
599 nfs_readdir_free_pages(pages
, i
);
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
606 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
607 struct nfs_entry entry
;
608 struct file
*file
= desc
->file
;
609 struct nfs_cache_array
*array
;
610 int status
= -ENOMEM
;
611 unsigned int array_size
= ARRAY_SIZE(pages
);
613 entry
.prev_cookie
= 0;
614 entry
.cookie
= desc
->last_cookie
;
616 entry
.fh
= nfs_alloc_fhandle();
617 entry
.fattr
= nfs_alloc_fattr();
618 entry
.server
= NFS_SERVER(inode
);
619 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
622 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
623 if (IS_ERR(entry
.label
)) {
624 status
= PTR_ERR(entry
.label
);
629 memset(array
, 0, sizeof(struct nfs_cache_array
));
630 array
->eof_index
= -1;
632 status
= nfs_readdir_alloc_pages(pages
, array_size
);
634 goto out_release_array
;
637 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
642 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
644 if (status
== -ENOSPC
)
648 } while (array
->eof_index
< 0);
650 nfs_readdir_free_pages(pages
, array_size
);
653 nfs4_label_free(entry
.label
);
655 nfs_free_fattr(entry
.fattr
);
656 nfs_free_fhandle(entry
.fh
);
661 * Now we cache directories properly, by converting xdr information
662 * to an array that can be used for lookups later. This results in
663 * fewer cache pages, since we can store more information on each page.
664 * We only need to convert from xdr once so future lookups are much simpler
667 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
669 struct inode
*inode
= file_inode(desc
->file
);
672 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
675 SetPageUptodate(page
);
677 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
678 /* Should never happen */
679 nfs_zap_mapping(inode
, inode
->i_mapping
);
689 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
691 if (!desc
->page
->mapping
)
692 nfs_readdir_clear_array(desc
->page
);
693 put_page(desc
->page
);
698 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
700 return read_cache_page(desc
->file
->f_mapping
,
701 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
705 * Returns 0 if desc->dir_cookie was found on page desc->page_index
708 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
712 desc
->page
= get_cache_page(desc
);
713 if (IS_ERR(desc
->page
))
714 return PTR_ERR(desc
->page
);
716 res
= nfs_readdir_search_array(desc
);
718 cache_page_release(desc
);
722 /* Search for desc->dir_cookie from the beginning of the page cache */
724 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
728 if (desc
->page_index
== 0) {
729 desc
->current_index
= 0;
730 desc
->last_cookie
= 0;
733 res
= find_cache_page(desc
);
734 } while (res
== -EAGAIN
);
739 * Once we've found the start of the dirent within a page: fill 'er up...
742 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
744 struct file
*file
= desc
->file
;
747 struct nfs_cache_array
*array
= NULL
;
748 struct nfs_open_dir_context
*ctx
= file
->private_data
;
750 array
= kmap(desc
->page
);
751 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
752 struct nfs_cache_array_entry
*ent
;
754 ent
= &array
->array
[i
];
755 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
756 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
761 if (i
< (array
->size
-1))
762 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
764 *desc
->dir_cookie
= array
->last_cookie
;
768 if (array
->eof_index
>= 0)
772 cache_page_release(desc
);
773 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 (unsigned long long)*desc
->dir_cookie
, res
);
779 * If we cannot find a cookie in our cache, we suspect that this is
780 * because it points to a deleted file, so we ask the server to return
781 * whatever it thinks is the next entry. We then feed this to filldir.
782 * If all goes well, we should then be able to find our way round the
783 * cache on the next call to readdir_search_pagecache();
785 * NOTE: we cannot add the anonymous page to the pagecache because
786 * the data it contains might not be page aligned. Besides,
787 * we should already have a complete representation of the
788 * directory in the page cache by the time we get here.
791 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
793 struct page
*page
= NULL
;
795 struct inode
*inode
= file_inode(desc
->file
);
796 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
798 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 (unsigned long long)*desc
->dir_cookie
);
801 page
= alloc_page(GFP_HIGHUSER
);
807 desc
->page_index
= 0;
808 desc
->last_cookie
= *desc
->dir_cookie
;
812 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
816 status
= nfs_do_filldir(desc
);
819 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
823 cache_page_release(desc
);
827 /* The file offset position represents the dirent entry number. A
828 last cookie cache takes care of the common case of reading the
831 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
833 struct dentry
*dentry
= file_dentry(file
);
834 struct inode
*inode
= d_inode(dentry
);
835 nfs_readdir_descriptor_t my_desc
,
837 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 file
, (long long)ctx
->pos
);
842 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
845 * ctx->pos points to the dirent entry number.
846 * *desc->dir_cookie has the cookie for the next entry. We have
847 * to either find the entry with the appropriate number or
848 * revalidate the cookie.
850 memset(desc
, 0, sizeof(*desc
));
854 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
855 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
856 desc
->plus
= nfs_use_readdirplus(inode
, ctx
);
858 if (ctx
->pos
== 0 || nfs_attribute_cache_expired(inode
))
859 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
864 res
= readdir_search_pagecache(desc
);
866 if (res
== -EBADCOOKIE
) {
868 /* This means either end of directory */
869 if (*desc
->dir_cookie
&& !desc
->eof
) {
870 /* Or that the server has 'lost' a cookie */
871 res
= uncached_readdir(desc
);
877 if (res
== -ETOOSMALL
&& desc
->plus
) {
878 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
879 nfs_zap_caches(inode
);
880 desc
->page_index
= 0;
888 res
= nfs_do_filldir(desc
);
891 } while (!desc
->eof
);
895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
899 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
901 struct inode
*inode
= file_inode(filp
);
902 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 filp
, offset
, whence
);
910 offset
+= filp
->f_pos
;
918 if (offset
!= filp
->f_pos
) {
919 filp
->f_pos
= offset
;
920 dir_ctx
->dir_cookie
= 0;
929 * All directory operations under NFS are synchronous, so fsync()
930 * is a dummy operation.
932 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
935 struct inode
*inode
= file_inode(filp
);
937 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
940 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
946 * nfs_force_lookup_revalidate - Mark the directory as having changed
947 * @dir - pointer to directory inode
949 * This forces the revalidation code in nfs_lookup_revalidate() to do a
950 * full lookup on all child dentries of 'dir' whenever a change occurs
951 * on the server that might have invalidated our dcache.
953 * The caller should be holding dir->i_lock
955 void nfs_force_lookup_revalidate(struct inode
*dir
)
957 NFS_I(dir
)->cache_change_attribute
++;
959 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
962 * A check for whether or not the parent directory has changed.
963 * In the case it has, we assume that the dentries are untrustworthy
964 * and may need to be looked up again.
965 * If rcu_walk prevents us from performing a full check, return 0.
967 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
,
972 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
974 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
976 /* Revalidate nfsi->cache_change_attribute before we declare a match */
977 if (nfs_mapping_need_revalidate_inode(dir
)) {
980 if (__nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
983 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
989 * Use intent information to check whether or not we're going to do
990 * an O_EXCL create using this path component.
992 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
994 if (NFS_PROTO(dir
)->version
== 2)
996 return flags
& LOOKUP_EXCL
;
1000 * Inode and filehandle revalidation for lookups.
1002 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1003 * or if the intent information indicates that we're about to open this
1004 * particular file and the "nocto" mount flag is not set.
1008 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1010 struct nfs_server
*server
= NFS_SERVER(inode
);
1013 if (IS_AUTOMOUNT(inode
))
1016 if (flags
& LOOKUP_OPEN
) {
1017 switch (inode
->i_mode
& S_IFMT
) {
1019 /* A NFSv4 OPEN will revalidate later */
1020 if (server
->caps
& NFS_CAP_ATOMIC_OPEN
)
1024 if (server
->flags
& NFS_MOUNT_NOCTO
)
1026 /* NFS close-to-open cache consistency validation */
1031 /* VFS wants an on-the-wire revalidation */
1032 if (flags
& LOOKUP_REVAL
)
1035 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1037 if (flags
& LOOKUP_RCU
)
1039 ret
= __nfs_revalidate_inode(server
, inode
);
1046 * We judge how long we want to trust negative
1047 * dentries by looking at the parent inode mtime.
1049 * If parent mtime has changed, we revalidate, else we wait for a
1050 * period corresponding to the parent's attribute cache timeout value.
1052 * If LOOKUP_RCU prevents us from performing a full check, return 1
1053 * suggesting a reval is needed.
1055 * Note that when creating a new file, or looking up a rename target,
1056 * then it shouldn't be necessary to revalidate a negative dentry.
1059 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1062 if (flags
& (LOOKUP_CREATE
| LOOKUP_RENAME_TARGET
))
1064 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1066 return !nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
);
1070 * This is called every time the dcache has a lookup hit,
1071 * and we should check whether we can really trust that
1074 * NOTE! The hit can be a negative hit too, don't assume
1077 * If the parent directory is seen to have changed, we throw out the
1078 * cached dentry and do a new lookup.
1080 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1083 struct inode
*inode
;
1084 struct dentry
*parent
;
1085 struct nfs_fh
*fhandle
= NULL
;
1086 struct nfs_fattr
*fattr
= NULL
;
1087 struct nfs4_label
*label
= NULL
;
1090 if (flags
& LOOKUP_RCU
) {
1091 parent
= READ_ONCE(dentry
->d_parent
);
1092 dir
= d_inode_rcu(parent
);
1096 parent
= dget_parent(dentry
);
1097 dir
= d_inode(parent
);
1099 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1100 inode
= d_inode(dentry
);
1103 if (nfs_neg_need_reval(dir
, dentry
, flags
)) {
1104 if (flags
& LOOKUP_RCU
)
1111 if (is_bad_inode(inode
)) {
1112 if (flags
& LOOKUP_RCU
)
1114 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1119 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1120 goto out_set_verifier
;
1122 /* Force a full look up iff the parent directory has changed */
1123 if (!(flags
& (LOOKUP_EXCL
| LOOKUP_REVAL
)) &&
1124 nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
)) {
1125 error
= nfs_lookup_verify_inode(inode
, flags
);
1127 if (flags
& LOOKUP_RCU
)
1129 if (error
== -ESTALE
)
1130 goto out_zap_parent
;
1133 nfs_advise_use_readdirplus(dir
);
1137 if (flags
& LOOKUP_RCU
)
1140 if (NFS_STALE(inode
))
1144 fhandle
= nfs_alloc_fhandle();
1145 fattr
= nfs_alloc_fattr();
1146 if (fhandle
== NULL
|| fattr
== NULL
)
1149 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1153 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1154 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1155 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1156 if (error
== -ESTALE
|| error
== -ENOENT
)
1160 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1162 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1165 nfs_setsecurity(inode
, fattr
, label
);
1167 nfs_free_fattr(fattr
);
1168 nfs_free_fhandle(fhandle
);
1169 nfs4_label_free(label
);
1171 /* set a readdirplus hint that we had a cache miss */
1172 nfs_force_use_readdirplus(dir
);
1175 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1177 if (flags
& LOOKUP_RCU
) {
1178 if (parent
!= READ_ONCE(dentry
->d_parent
))
1182 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1186 nfs_zap_caches(dir
);
1188 WARN_ON(flags
& LOOKUP_RCU
);
1189 nfs_free_fattr(fattr
);
1190 nfs_free_fhandle(fhandle
);
1191 nfs4_label_free(label
);
1192 nfs_mark_for_revalidate(dir
);
1193 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1194 /* Purge readdir caches. */
1195 nfs_zap_caches(inode
);
1197 * We can't d_drop the root of a disconnected tree:
1198 * its d_hash is on the s_anon list and d_drop() would hide
1199 * it from shrink_dcache_for_unmount(), leading to busy
1200 * inodes on unmount and further oopses.
1202 if (IS_ROOT(dentry
))
1206 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1210 WARN_ON(flags
& LOOKUP_RCU
);
1211 nfs_free_fattr(fattr
);
1212 nfs_free_fhandle(fhandle
);
1213 nfs4_label_free(label
);
1215 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1216 __func__
, dentry
, error
);
1221 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1222 * when we don't really care about the dentry name. This is called when a
1223 * pathwalk ends on a dentry that was not found via a normal lookup in the
1224 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1226 * In this situation, we just want to verify that the inode itself is OK
1227 * since the dentry might have changed on the server.
1229 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1231 struct inode
*inode
= d_inode(dentry
);
1235 * I believe we can only get a negative dentry here in the case of a
1236 * procfs-style symlink. Just assume it's correct for now, but we may
1237 * eventually need to do something more here.
1240 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1245 if (is_bad_inode(inode
)) {
1246 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1251 error
= nfs_lookup_verify_inode(inode
, flags
);
1252 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1253 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1258 * This is called from dput() when d_count is going to 0.
1260 static int nfs_dentry_delete(const struct dentry
*dentry
)
1262 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1263 dentry
, dentry
->d_flags
);
1265 /* Unhash any dentry with a stale inode */
1266 if (d_really_is_positive(dentry
) && NFS_STALE(d_inode(dentry
)))
1269 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1270 /* Unhash it, so that ->d_iput() would be called */
1273 if (!(dentry
->d_sb
->s_flags
& SB_ACTIVE
)) {
1274 /* Unhash it, so that ancestors of killed async unlink
1275 * files will be cleaned up during umount */
1282 /* Ensure that we revalidate inode->i_nlink */
1283 static void nfs_drop_nlink(struct inode
*inode
)
1285 spin_lock(&inode
->i_lock
);
1286 /* drop the inode if we're reasonably sure this is the last link */
1287 if (inode
->i_nlink
> 0)
1289 NFS_I(inode
)->attr_gencount
= nfs_inc_attr_generation_counter();
1290 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_CHANGE
1291 | NFS_INO_INVALID_CTIME
1292 | NFS_INO_INVALID_OTHER
1293 | NFS_INO_REVAL_FORCED
;
1294 spin_unlock(&inode
->i_lock
);
1298 * Called when the dentry loses inode.
1299 * We use it to clean up silly-renamed files.
1301 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1303 if (S_ISDIR(inode
->i_mode
))
1304 /* drop any readdir cache as it could easily be old */
1305 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1307 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1308 nfs_complete_unlink(dentry
, inode
);
1309 nfs_drop_nlink(inode
);
1314 static void nfs_d_release(struct dentry
*dentry
)
1316 /* free cached devname value, if it survived that far */
1317 if (unlikely(dentry
->d_fsdata
)) {
1318 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1321 kfree(dentry
->d_fsdata
);
1325 const struct dentry_operations nfs_dentry_operations
= {
1326 .d_revalidate
= nfs_lookup_revalidate
,
1327 .d_weak_revalidate
= nfs_weak_revalidate
,
1328 .d_delete
= nfs_dentry_delete
,
1329 .d_iput
= nfs_dentry_iput
,
1330 .d_automount
= nfs_d_automount
,
1331 .d_release
= nfs_d_release
,
1333 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1335 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1338 struct inode
*inode
= NULL
;
1339 struct nfs_fh
*fhandle
= NULL
;
1340 struct nfs_fattr
*fattr
= NULL
;
1341 struct nfs4_label
*label
= NULL
;
1344 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1345 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1347 if (unlikely(dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
))
1348 return ERR_PTR(-ENAMETOOLONG
);
1351 * If we're doing an exclusive create, optimize away the lookup
1352 * but don't hash the dentry.
1354 if (nfs_is_exclusive_create(dir
, flags
) || flags
& LOOKUP_RENAME_TARGET
)
1357 res
= ERR_PTR(-ENOMEM
);
1358 fhandle
= nfs_alloc_fhandle();
1359 fattr
= nfs_alloc_fattr();
1360 if (fhandle
== NULL
|| fattr
== NULL
)
1363 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1367 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1368 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1369 if (error
== -ENOENT
)
1372 res
= ERR_PTR(error
);
1375 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1376 res
= ERR_CAST(inode
);
1380 /* Notify readdir to use READDIRPLUS */
1381 nfs_force_use_readdirplus(dir
);
1384 res
= d_splice_alias(inode
, dentry
);
1390 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1392 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1393 nfs4_label_free(label
);
1395 nfs_free_fattr(fattr
);
1396 nfs_free_fhandle(fhandle
);
1399 EXPORT_SYMBOL_GPL(nfs_lookup
);
1401 #if IS_ENABLED(CONFIG_NFS_V4)
1402 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1404 const struct dentry_operations nfs4_dentry_operations
= {
1405 .d_revalidate
= nfs4_lookup_revalidate
,
1406 .d_weak_revalidate
= nfs_weak_revalidate
,
1407 .d_delete
= nfs_dentry_delete
,
1408 .d_iput
= nfs_dentry_iput
,
1409 .d_automount
= nfs_d_automount
,
1410 .d_release
= nfs_d_release
,
1412 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1414 static fmode_t
flags_to_mode(int flags
)
1416 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1417 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1419 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1424 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
, struct file
*filp
)
1426 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
), filp
);
1429 static int do_open(struct inode
*inode
, struct file
*filp
)
1431 nfs_fscache_open_file(inode
, filp
);
1435 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1436 struct dentry
*dentry
,
1437 struct file
*file
, unsigned open_flags
,
1442 err
= finish_open(file
, dentry
, do_open
, opened
);
1445 if (S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
1446 nfs_file_set_open_context(file
, ctx
);
1453 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1454 struct file
*file
, unsigned open_flags
,
1455 umode_t mode
, int *opened
)
1457 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1458 struct nfs_open_context
*ctx
;
1460 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1461 struct inode
*inode
;
1462 unsigned int lookup_flags
= 0;
1463 bool switched
= false;
1466 /* Expect a negative dentry */
1467 BUG_ON(d_inode(dentry
));
1469 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1470 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1472 err
= nfs_check_flags(open_flags
);
1476 /* NFS only supports OPEN on regular files */
1477 if ((open_flags
& O_DIRECTORY
)) {
1478 if (!d_in_lookup(dentry
)) {
1480 * Hashed negative dentry with O_DIRECTORY: dentry was
1481 * revalidated and is fine, no need to perform lookup
1486 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1490 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1491 return -ENAMETOOLONG
;
1493 if (open_flags
& O_CREAT
) {
1494 struct nfs_server
*server
= NFS_SERVER(dir
);
1496 if (!(server
->attr_bitmask
[2] & FATTR4_WORD2_MODE_UMASK
))
1497 mode
&= ~current_umask();
1499 attr
.ia_valid
|= ATTR_MODE
;
1500 attr
.ia_mode
= mode
;
1502 if (open_flags
& O_TRUNC
) {
1503 attr
.ia_valid
|= ATTR_SIZE
;
1507 if (!(open_flags
& O_CREAT
) && !d_in_lookup(dentry
)) {
1510 dentry
= d_alloc_parallel(dentry
->d_parent
,
1511 &dentry
->d_name
, &wq
);
1513 return PTR_ERR(dentry
);
1514 if (unlikely(!d_in_lookup(dentry
)))
1515 return finish_no_open(file
, dentry
);
1518 ctx
= create_nfs_open_context(dentry
, open_flags
, file
);
1523 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1524 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1525 if (IS_ERR(inode
)) {
1526 err
= PTR_ERR(inode
);
1527 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1528 put_nfs_open_context(ctx
);
1532 d_splice_alias(NULL
, dentry
);
1533 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1539 if (!(open_flags
& O_NOFOLLOW
))
1549 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1550 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1551 put_nfs_open_context(ctx
);
1553 if (unlikely(switched
)) {
1554 d_lookup_done(dentry
);
1560 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1562 d_lookup_done(dentry
);
1569 return PTR_ERR(res
);
1570 return finish_no_open(file
, res
);
1572 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1574 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1576 struct inode
*inode
;
1579 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1581 if (d_mountpoint(dentry
))
1583 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1586 inode
= d_inode(dentry
);
1588 /* We can't create new files in nfs_open_revalidate(), so we
1589 * optimize away revalidation of negative dentries.
1591 if (inode
== NULL
) {
1592 struct dentry
*parent
;
1595 if (flags
& LOOKUP_RCU
) {
1596 parent
= READ_ONCE(dentry
->d_parent
);
1597 dir
= d_inode_rcu(parent
);
1601 parent
= dget_parent(dentry
);
1602 dir
= d_inode(parent
);
1604 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1606 else if (flags
& LOOKUP_RCU
)
1608 if (!(flags
& LOOKUP_RCU
))
1610 else if (parent
!= READ_ONCE(dentry
->d_parent
))
1615 /* NFS only supports OPEN on regular files */
1616 if (!S_ISREG(inode
->i_mode
))
1618 /* We cannot do exclusive creation on a positive dentry */
1619 if (flags
& LOOKUP_EXCL
)
1622 /* Let f_op->open() actually open (and revalidate) the file */
1629 return nfs_lookup_revalidate(dentry
, flags
);
1632 #endif /* CONFIG_NFSV4 */
1635 * Code common to create, mkdir, and mknod.
1637 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1638 struct nfs_fattr
*fattr
,
1639 struct nfs4_label
*label
)
1641 struct dentry
*parent
= dget_parent(dentry
);
1642 struct inode
*dir
= d_inode(parent
);
1643 struct inode
*inode
;
1644 int error
= -EACCES
;
1648 /* We may have been initialized further down */
1649 if (d_really_is_positive(dentry
))
1651 if (fhandle
->size
== 0) {
1652 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1656 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1657 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1658 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1659 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
,
1664 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1665 error
= PTR_ERR(inode
);
1668 d_add(dentry
, inode
);
1673 nfs_mark_for_revalidate(dir
);
1677 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1680 * Following a failed create operation, we drop the dentry rather
1681 * than retain a negative dentry. This avoids a problem in the event
1682 * that the operation succeeded on the server, but an error in the
1683 * reply path made it appear to have failed.
1685 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1686 umode_t mode
, bool excl
)
1689 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1692 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1693 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1695 attr
.ia_mode
= mode
;
1696 attr
.ia_valid
= ATTR_MODE
;
1698 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1699 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1700 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1708 EXPORT_SYMBOL_GPL(nfs_create
);
1711 * See comments for nfs_proc_create regarding failed operations.
1714 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1719 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1720 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1722 attr
.ia_mode
= mode
;
1723 attr
.ia_valid
= ATTR_MODE
;
1725 trace_nfs_mknod_enter(dir
, dentry
);
1726 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1727 trace_nfs_mknod_exit(dir
, dentry
, status
);
1735 EXPORT_SYMBOL_GPL(nfs_mknod
);
1738 * See comments for nfs_proc_create regarding failed operations.
1740 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1745 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1746 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1748 attr
.ia_valid
= ATTR_MODE
;
1749 attr
.ia_mode
= mode
| S_IFDIR
;
1751 trace_nfs_mkdir_enter(dir
, dentry
);
1752 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1753 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1761 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1763 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1765 if (simple_positive(dentry
))
1769 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1773 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1774 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1776 trace_nfs_rmdir_enter(dir
, dentry
);
1777 if (d_really_is_positive(dentry
)) {
1778 down_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1779 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1780 /* Ensure the VFS deletes this inode */
1783 clear_nlink(d_inode(dentry
));
1786 nfs_dentry_handle_enoent(dentry
);
1788 up_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1790 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1791 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1795 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1798 * Remove a file after making sure there are no pending writes,
1799 * and after checking that the file has only one user.
1801 * We invalidate the attribute cache and free the inode prior to the operation
1802 * to avoid possible races if the server reuses the inode.
1804 static int nfs_safe_remove(struct dentry
*dentry
)
1806 struct inode
*dir
= d_inode(dentry
->d_parent
);
1807 struct inode
*inode
= d_inode(dentry
);
1810 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1812 /* If the dentry was sillyrenamed, we simply call d_delete() */
1813 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1818 trace_nfs_remove_enter(dir
, dentry
);
1819 if (inode
!= NULL
) {
1820 error
= NFS_PROTO(dir
)->remove(dir
, dentry
);
1822 nfs_drop_nlink(inode
);
1824 error
= NFS_PROTO(dir
)->remove(dir
, dentry
);
1825 if (error
== -ENOENT
)
1826 nfs_dentry_handle_enoent(dentry
);
1827 trace_nfs_remove_exit(dir
, dentry
, error
);
1832 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1833 * belongs to an active ".nfs..." file and we return -EBUSY.
1835 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1837 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1840 int need_rehash
= 0;
1842 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1843 dir
->i_ino
, dentry
);
1845 trace_nfs_unlink_enter(dir
, dentry
);
1846 spin_lock(&dentry
->d_lock
);
1847 if (d_count(dentry
) > 1) {
1848 spin_unlock(&dentry
->d_lock
);
1849 /* Start asynchronous writeout of the inode */
1850 write_inode_now(d_inode(dentry
), 0);
1851 error
= nfs_sillyrename(dir
, dentry
);
1854 if (!d_unhashed(dentry
)) {
1858 spin_unlock(&dentry
->d_lock
);
1859 error
= nfs_safe_remove(dentry
);
1860 if (!error
|| error
== -ENOENT
) {
1861 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1862 } else if (need_rehash
)
1865 trace_nfs_unlink_exit(dir
, dentry
, error
);
1868 EXPORT_SYMBOL_GPL(nfs_unlink
);
1871 * To create a symbolic link, most file systems instantiate a new inode,
1872 * add a page to it containing the path, then write it out to the disk
1873 * using prepare_write/commit_write.
1875 * Unfortunately the NFS client can't create the in-core inode first
1876 * because it needs a file handle to create an in-core inode (see
1877 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1878 * symlink request has completed on the server.
1880 * So instead we allocate a raw page, copy the symname into it, then do
1881 * the SYMLINK request with the page as the buffer. If it succeeds, we
1882 * now have a new file handle and can instantiate an in-core NFS inode
1883 * and move the raw page into its mapping.
1885 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1890 unsigned int pathlen
= strlen(symname
);
1893 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1894 dir
->i_ino
, dentry
, symname
);
1896 if (pathlen
> PAGE_SIZE
)
1897 return -ENAMETOOLONG
;
1899 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1900 attr
.ia_valid
= ATTR_MODE
;
1902 page
= alloc_page(GFP_USER
);
1906 kaddr
= page_address(page
);
1907 memcpy(kaddr
, symname
, pathlen
);
1908 if (pathlen
< PAGE_SIZE
)
1909 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1911 trace_nfs_symlink_enter(dir
, dentry
);
1912 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1913 trace_nfs_symlink_exit(dir
, dentry
, error
);
1915 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1916 dir
->i_sb
->s_id
, dir
->i_ino
,
1917 dentry
, symname
, error
);
1924 * No big deal if we can't add this page to the page cache here.
1925 * READLINK will get the missing page from the server if needed.
1927 if (!add_to_page_cache_lru(page
, d_inode(dentry
)->i_mapping
, 0,
1929 SetPageUptodate(page
);
1932 * add_to_page_cache_lru() grabs an extra page refcount.
1933 * Drop it here to avoid leaking this page later.
1941 EXPORT_SYMBOL_GPL(nfs_symlink
);
1944 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1946 struct inode
*inode
= d_inode(old_dentry
);
1949 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1950 old_dentry
, dentry
);
1952 trace_nfs_link_enter(inode
, dir
, dentry
);
1954 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1957 d_add(dentry
, inode
);
1959 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1962 EXPORT_SYMBOL_GPL(nfs_link
);
1966 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1967 * different file handle for the same inode after a rename (e.g. when
1968 * moving to a different directory). A fail-safe method to do so would
1969 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1970 * rename the old file using the sillyrename stuff. This way, the original
1971 * file in old_dir will go away when the last process iput()s the inode.
1975 * It actually works quite well. One needs to have the possibility for
1976 * at least one ".nfs..." file in each directory the file ever gets
1977 * moved or linked to which happens automagically with the new
1978 * implementation that only depends on the dcache stuff instead of
1979 * using the inode layer
1981 * Unfortunately, things are a little more complicated than indicated
1982 * above. For a cross-directory move, we want to make sure we can get
1983 * rid of the old inode after the operation. This means there must be
1984 * no pending writes (if it's a file), and the use count must be 1.
1985 * If these conditions are met, we can drop the dentries before doing
1988 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1989 struct inode
*new_dir
, struct dentry
*new_dentry
,
1992 struct inode
*old_inode
= d_inode(old_dentry
);
1993 struct inode
*new_inode
= d_inode(new_dentry
);
1994 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1995 struct rpc_task
*task
;
2001 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2002 old_dentry
, new_dentry
,
2003 d_count(new_dentry
));
2005 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
2007 * For non-directories, check whether the target is busy and if so,
2008 * make a copy of the dentry and then do a silly-rename. If the
2009 * silly-rename succeeds, the copied dentry is hashed and becomes
2012 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
2014 * To prevent any new references to the target during the
2015 * rename, we unhash the dentry in advance.
2017 if (!d_unhashed(new_dentry
)) {
2019 rehash
= new_dentry
;
2022 if (d_count(new_dentry
) > 2) {
2025 /* copy the target dentry's name */
2026 dentry
= d_alloc(new_dentry
->d_parent
,
2027 &new_dentry
->d_name
);
2031 /* silly-rename the existing target ... */
2032 err
= nfs_sillyrename(new_dir
, new_dentry
);
2036 new_dentry
= dentry
;
2042 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
2044 error
= PTR_ERR(task
);
2048 error
= rpc_wait_for_completion_task(task
);
2050 ((struct nfs_renamedata
*)task
->tk_calldata
)->cancelled
= 1;
2051 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2054 error
= task
->tk_status
;
2056 /* Ensure the inode attributes are revalidated */
2058 spin_lock(&old_inode
->i_lock
);
2059 NFS_I(old_inode
)->attr_gencount
= nfs_inc_attr_generation_counter();
2060 NFS_I(old_inode
)->cache_validity
|= NFS_INO_INVALID_CHANGE
2061 | NFS_INO_INVALID_CTIME
2062 | NFS_INO_REVAL_FORCED
;
2063 spin_unlock(&old_inode
->i_lock
);
2068 trace_nfs_rename_exit(old_dir
, old_dentry
,
2069 new_dir
, new_dentry
, error
);
2071 if (new_inode
!= NULL
)
2072 nfs_drop_nlink(new_inode
);
2074 * The d_move() should be here instead of in an async RPC completion
2075 * handler because we need the proper locks to move the dentry. If
2076 * we're interrupted by a signal, the async RPC completion handler
2077 * should mark the directories for revalidation.
2079 d_move(old_dentry
, new_dentry
);
2080 nfs_set_verifier(old_dentry
,
2081 nfs_save_change_attribute(new_dir
));
2082 } else if (error
== -ENOENT
)
2083 nfs_dentry_handle_enoent(old_dentry
);
2085 /* new dentry created? */
2090 EXPORT_SYMBOL_GPL(nfs_rename
);
2092 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2093 static LIST_HEAD(nfs_access_lru_list
);
2094 static atomic_long_t nfs_access_nr_entries
;
2096 static unsigned long nfs_access_max_cachesize
= ULONG_MAX
;
2097 module_param(nfs_access_max_cachesize
, ulong
, 0644);
2098 MODULE_PARM_DESC(nfs_access_max_cachesize
, "NFS access maximum total cache length");
2100 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2102 put_rpccred(entry
->cred
);
2103 kfree_rcu(entry
, rcu_head
);
2104 smp_mb__before_atomic();
2105 atomic_long_dec(&nfs_access_nr_entries
);
2106 smp_mb__after_atomic();
2109 static void nfs_access_free_list(struct list_head
*head
)
2111 struct nfs_access_entry
*cache
;
2113 while (!list_empty(head
)) {
2114 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2115 list_del(&cache
->lru
);
2116 nfs_access_free_entry(cache
);
2120 static unsigned long
2121 nfs_do_access_cache_scan(unsigned int nr_to_scan
)
2124 struct nfs_inode
*nfsi
, *next
;
2125 struct nfs_access_entry
*cache
;
2128 spin_lock(&nfs_access_lru_lock
);
2129 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2130 struct inode
*inode
;
2132 if (nr_to_scan
-- == 0)
2134 inode
= &nfsi
->vfs_inode
;
2135 spin_lock(&inode
->i_lock
);
2136 if (list_empty(&nfsi
->access_cache_entry_lru
))
2137 goto remove_lru_entry
;
2138 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2139 struct nfs_access_entry
, lru
);
2140 list_move(&cache
->lru
, &head
);
2141 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2143 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2144 list_move_tail(&nfsi
->access_cache_inode_lru
,
2145 &nfs_access_lru_list
);
2148 list_del_init(&nfsi
->access_cache_inode_lru
);
2149 smp_mb__before_atomic();
2150 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2151 smp_mb__after_atomic();
2153 spin_unlock(&inode
->i_lock
);
2155 spin_unlock(&nfs_access_lru_lock
);
2156 nfs_access_free_list(&head
);
2161 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2163 int nr_to_scan
= sc
->nr_to_scan
;
2164 gfp_t gfp_mask
= sc
->gfp_mask
;
2166 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2168 return nfs_do_access_cache_scan(nr_to_scan
);
2173 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2175 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2179 nfs_access_cache_enforce_limit(void)
2181 long nr_entries
= atomic_long_read(&nfs_access_nr_entries
);
2183 unsigned int nr_to_scan
;
2185 if (nr_entries
< 0 || nr_entries
<= nfs_access_max_cachesize
)
2188 diff
= nr_entries
- nfs_access_max_cachesize
;
2189 if (diff
< nr_to_scan
)
2191 nfs_do_access_cache_scan(nr_to_scan
);
2194 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2196 struct rb_root
*root_node
= &nfsi
->access_cache
;
2198 struct nfs_access_entry
*entry
;
2200 /* Unhook entries from the cache */
2201 while ((n
= rb_first(root_node
)) != NULL
) {
2202 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2203 rb_erase(n
, root_node
);
2204 list_move(&entry
->lru
, head
);
2206 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2209 void nfs_access_zap_cache(struct inode
*inode
)
2213 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2215 /* Remove from global LRU init */
2216 spin_lock(&nfs_access_lru_lock
);
2217 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2218 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2220 spin_lock(&inode
->i_lock
);
2221 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2222 spin_unlock(&inode
->i_lock
);
2223 spin_unlock(&nfs_access_lru_lock
);
2224 nfs_access_free_list(&head
);
2226 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2228 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2230 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2231 struct nfs_access_entry
*entry
;
2234 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2236 if (cred
< entry
->cred
)
2238 else if (cred
> entry
->cred
)
2246 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
, bool may_block
)
2248 struct nfs_inode
*nfsi
= NFS_I(inode
);
2249 struct nfs_access_entry
*cache
;
2253 spin_lock(&inode
->i_lock
);
2255 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2257 cache
= nfs_access_search_rbtree(inode
, cred
);
2261 /* Found an entry, is our attribute cache valid? */
2262 if (!nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2269 spin_unlock(&inode
->i_lock
);
2270 err
= __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2273 spin_lock(&inode
->i_lock
);
2276 res
->cred
= cache
->cred
;
2277 res
->mask
= cache
->mask
;
2278 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2281 spin_unlock(&inode
->i_lock
);
2284 spin_unlock(&inode
->i_lock
);
2285 nfs_access_zap_cache(inode
);
2289 static int nfs_access_get_cached_rcu(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2291 /* Only check the most recently returned cache entry,
2292 * but do it without locking.
2294 struct nfs_inode
*nfsi
= NFS_I(inode
);
2295 struct nfs_access_entry
*cache
;
2297 struct list_head
*lh
;
2300 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2302 lh
= rcu_dereference(nfsi
->access_cache_entry_lru
.prev
);
2303 cache
= list_entry(lh
, struct nfs_access_entry
, lru
);
2304 if (lh
== &nfsi
->access_cache_entry_lru
||
2305 cred
!= cache
->cred
)
2309 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2311 res
->cred
= cache
->cred
;
2312 res
->mask
= cache
->mask
;
2319 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2321 struct nfs_inode
*nfsi
= NFS_I(inode
);
2322 struct rb_root
*root_node
= &nfsi
->access_cache
;
2323 struct rb_node
**p
= &root_node
->rb_node
;
2324 struct rb_node
*parent
= NULL
;
2325 struct nfs_access_entry
*entry
;
2327 spin_lock(&inode
->i_lock
);
2328 while (*p
!= NULL
) {
2330 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2332 if (set
->cred
< entry
->cred
)
2333 p
= &parent
->rb_left
;
2334 else if (set
->cred
> entry
->cred
)
2335 p
= &parent
->rb_right
;
2339 rb_link_node(&set
->rb_node
, parent
, p
);
2340 rb_insert_color(&set
->rb_node
, root_node
);
2341 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2342 spin_unlock(&inode
->i_lock
);
2345 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2346 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2347 list_del(&entry
->lru
);
2348 spin_unlock(&inode
->i_lock
);
2349 nfs_access_free_entry(entry
);
2352 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2354 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2357 RB_CLEAR_NODE(&cache
->rb_node
);
2358 cache
->cred
= get_rpccred(set
->cred
);
2359 cache
->mask
= set
->mask
;
2361 /* The above field assignments must be visible
2362 * before this item appears on the lru. We cannot easily
2363 * use rcu_assign_pointer, so just force the memory barrier.
2366 nfs_access_add_rbtree(inode
, cache
);
2368 /* Update accounting */
2369 smp_mb__before_atomic();
2370 atomic_long_inc(&nfs_access_nr_entries
);
2371 smp_mb__after_atomic();
2373 /* Add inode to global LRU list */
2374 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2375 spin_lock(&nfs_access_lru_lock
);
2376 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2377 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2378 &nfs_access_lru_list
);
2379 spin_unlock(&nfs_access_lru_lock
);
2381 nfs_access_cache_enforce_limit();
2383 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2385 #define NFS_MAY_READ (NFS_ACCESS_READ)
2386 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2387 NFS_ACCESS_EXTEND | \
2389 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2391 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2392 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2393 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2395 nfs_access_calc_mask(u32 access_result
, umode_t umode
)
2399 if (access_result
& NFS_MAY_READ
)
2401 if (S_ISDIR(umode
)) {
2402 if ((access_result
& NFS_DIR_MAY_WRITE
) == NFS_DIR_MAY_WRITE
)
2404 if ((access_result
& NFS_MAY_LOOKUP
) == NFS_MAY_LOOKUP
)
2406 } else if (S_ISREG(umode
)) {
2407 if ((access_result
& NFS_FILE_MAY_WRITE
) == NFS_FILE_MAY_WRITE
)
2409 if ((access_result
& NFS_MAY_EXECUTE
) == NFS_MAY_EXECUTE
)
2411 } else if (access_result
& NFS_MAY_WRITE
)
2416 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2418 entry
->mask
= access_result
;
2420 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2422 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2424 struct nfs_access_entry cache
;
2425 bool may_block
= (mask
& MAY_NOT_BLOCK
) == 0;
2429 trace_nfs_access_enter(inode
);
2431 status
= nfs_access_get_cached_rcu(inode
, cred
, &cache
);
2433 status
= nfs_access_get_cached(inode
, cred
, &cache
, may_block
);
2442 * Determine which access bits we want to ask for...
2444 cache
.mask
= NFS_ACCESS_READ
| NFS_ACCESS_MODIFY
| NFS_ACCESS_EXTEND
;
2445 if (S_ISDIR(inode
->i_mode
))
2446 cache
.mask
|= NFS_ACCESS_DELETE
| NFS_ACCESS_LOOKUP
;
2448 cache
.mask
|= NFS_ACCESS_EXECUTE
;
2450 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2452 if (status
== -ESTALE
) {
2453 nfs_zap_caches(inode
);
2454 if (!S_ISDIR(inode
->i_mode
))
2455 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2459 nfs_access_add_cache(inode
, &cache
);
2461 cache_mask
= nfs_access_calc_mask(cache
.mask
, inode
->i_mode
);
2462 if ((mask
& ~cache_mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2465 trace_nfs_access_exit(inode
, status
);
2469 static int nfs_open_permission_mask(int openflags
)
2473 if (openflags
& __FMODE_EXEC
) {
2474 /* ONLY check exec rights */
2477 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2479 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2486 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2488 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2490 EXPORT_SYMBOL_GPL(nfs_may_open
);
2492 static int nfs_execute_ok(struct inode
*inode
, int mask
)
2494 struct nfs_server
*server
= NFS_SERVER(inode
);
2497 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
)) {
2498 if (mask
& MAY_NOT_BLOCK
)
2500 ret
= __nfs_revalidate_inode(server
, inode
);
2502 if (ret
== 0 && !execute_ok(inode
))
2507 int nfs_permission(struct inode
*inode
, int mask
)
2509 struct rpc_cred
*cred
;
2512 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2514 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2516 /* Is this sys_access() ? */
2517 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2520 switch (inode
->i_mode
& S_IFMT
) {
2524 if ((mask
& MAY_OPEN
) &&
2525 nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
))
2530 * Optimize away all write operations, since the server
2531 * will check permissions when we perform the op.
2533 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2538 if (!NFS_PROTO(inode
)->access
)
2541 /* Always try fast lookups first */
2543 cred
= rpc_lookup_cred_nonblock();
2545 res
= nfs_do_access(inode
, cred
, mask
|MAY_NOT_BLOCK
);
2547 res
= PTR_ERR(cred
);
2549 if (res
== -ECHILD
&& !(mask
& MAY_NOT_BLOCK
)) {
2550 /* Fast lookup failed, try the slow way */
2551 cred
= rpc_lookup_cred();
2552 if (!IS_ERR(cred
)) {
2553 res
= nfs_do_access(inode
, cred
, mask
);
2556 res
= PTR_ERR(cred
);
2559 if (!res
&& (mask
& MAY_EXEC
))
2560 res
= nfs_execute_ok(inode
, mask
);
2562 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2563 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2566 if (mask
& MAY_NOT_BLOCK
)
2569 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2571 res
= generic_permission(inode
, mask
);
2574 EXPORT_SYMBOL_GPL(nfs_permission
);
2578 * version-control: t
2579 * kept-new-versions: 5