2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
62 * GC may need to move more than one LEB to make progress. The below constants
63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
70 * switch_gc_head - switch the garbage collection journal head.
71 * @c: UBIFS file-system description object
72 * @buf: buffer to write
73 * @len: length of the buffer to write
74 * @lnum: LEB number written is returned here
75 * @offs: offset written is returned here
77 * This function switch the GC head to the next LEB which is reserved in
78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79 * and other negative error code in case of failures.
81 static int switch_gc_head(struct ubifs_info
*c
)
83 int err
, gc_lnum
= c
->gc_lnum
;
84 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
86 ubifs_assert(gc_lnum
!= -1);
87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
, gc_lnum
,
89 c
->leb_size
- wbuf
->offs
- wbuf
->used
);
91 err
= ubifs_wbuf_sync_nolock(wbuf
);
96 * The GC write-buffer was synchronized, we may safely unmap
99 err
= ubifs_leb_unmap(c
, gc_lnum
);
103 err
= ubifs_add_bud_to_log(c
, GCHD
, gc_lnum
, 0);
108 err
= ubifs_wbuf_seek_nolock(wbuf
, gc_lnum
, 0);
113 * data_nodes_cmp - compare 2 data nodes.
114 * @priv: UBIFS file-system description object
115 * @a: first data node
116 * @b: second data node
118 * This function compares data nodes @a and @b. Returns %1 if @a has greater
119 * inode or block number, and %-1 otherwise.
121 static int data_nodes_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
124 struct ubifs_info
*c
= priv
;
125 struct ubifs_scan_node
*sa
, *sb
;
131 sa
= list_entry(a
, struct ubifs_scan_node
, list
);
132 sb
= list_entry(b
, struct ubifs_scan_node
, list
);
134 ubifs_assert(key_type(c
, &sa
->key
) == UBIFS_DATA_KEY
);
135 ubifs_assert(key_type(c
, &sb
->key
) == UBIFS_DATA_KEY
);
136 ubifs_assert(sa
->type
== UBIFS_DATA_NODE
);
137 ubifs_assert(sb
->type
== UBIFS_DATA_NODE
);
139 inuma
= key_inum(c
, &sa
->key
);
140 inumb
= key_inum(c
, &sb
->key
);
142 if (inuma
== inumb
) {
143 unsigned int blka
= key_block(c
, &sa
->key
);
144 unsigned int blkb
= key_block(c
, &sb
->key
);
148 } else if (inuma
<= inumb
)
155 * nondata_nodes_cmp - compare 2 non-data nodes.
156 * @priv: UBIFS file-system description object
160 * This function compares nodes @a and @b. It makes sure that inode nodes go
161 * first and sorted by length in descending order. Directory entry nodes go
162 * after inode nodes and are sorted in ascending hash valuer order.
164 static int nondata_nodes_cmp(void *priv
, struct list_head
*a
,
168 struct ubifs_info
*c
= priv
;
169 struct ubifs_scan_node
*sa
, *sb
;
175 sa
= list_entry(a
, struct ubifs_scan_node
, list
);
176 sb
= list_entry(b
, struct ubifs_scan_node
, list
);
178 ubifs_assert(key_type(c
, &sa
->key
) != UBIFS_DATA_KEY
&&
179 key_type(c
, &sb
->key
) != UBIFS_DATA_KEY
);
180 ubifs_assert(sa
->type
!= UBIFS_DATA_NODE
&&
181 sb
->type
!= UBIFS_DATA_NODE
);
183 /* Inodes go before directory entries */
184 if (sa
->type
== UBIFS_INO_NODE
) {
185 if (sb
->type
== UBIFS_INO_NODE
)
186 return sb
->len
- sa
->len
;
189 if (sb
->type
== UBIFS_INO_NODE
)
192 ubifs_assert(key_type(c
, &sa
->key
) == UBIFS_DENT_KEY
||
193 key_type(c
, &sa
->key
) == UBIFS_XENT_KEY
);
194 ubifs_assert(key_type(c
, &sb
->key
) == UBIFS_DENT_KEY
||
195 key_type(c
, &sb
->key
) == UBIFS_XENT_KEY
);
196 ubifs_assert(sa
->type
== UBIFS_DENT_NODE
||
197 sa
->type
== UBIFS_XENT_NODE
);
198 ubifs_assert(sb
->type
== UBIFS_DENT_NODE
||
199 sb
->type
== UBIFS_XENT_NODE
);
201 inuma
= key_inum(c
, &sa
->key
);
202 inumb
= key_inum(c
, &sb
->key
);
204 if (inuma
== inumb
) {
205 uint32_t hasha
= key_hash(c
, &sa
->key
);
206 uint32_t hashb
= key_hash(c
, &sb
->key
);
210 } else if (inuma
<= inumb
)
217 * sort_nodes - sort nodes for GC.
218 * @c: UBIFS file-system description object
219 * @sleb: describes nodes to sort and contains the result on exit
220 * @nondata: contains non-data nodes on exit
221 * @min: minimum node size is returned here
223 * This function sorts the list of inodes to garbage collect. First of all, it
224 * kills obsolete nodes and separates data and non-data nodes to the
225 * @sleb->nodes and @nondata lists correspondingly.
227 * Data nodes are then sorted in block number order - this is important for
228 * bulk-read; data nodes with lower inode number go before data nodes with
229 * higher inode number, and data nodes with lower block number go before data
230 * nodes with higher block number;
232 * Non-data nodes are sorted as follows.
233 * o First go inode nodes - they are sorted in descending length order.
234 * o Then go directory entry nodes - they are sorted in hash order, which
235 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
236 * inode number go before direntry nodes with higher parent inode number,
237 * and direntry nodes with lower name hash values go before direntry nodes
238 * with higher name hash values.
240 * This function returns zero in case of success and a negative error code in
243 static int sort_nodes(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
244 struct list_head
*nondata
, int *min
)
247 struct ubifs_scan_node
*snod
, *tmp
;
251 /* Separate data nodes and non-data nodes */
252 list_for_each_entry_safe(snod
, tmp
, &sleb
->nodes
, list
) {
253 ubifs_assert(snod
->type
== UBIFS_INO_NODE
||
254 snod
->type
== UBIFS_DATA_NODE
||
255 snod
->type
== UBIFS_DENT_NODE
||
256 snod
->type
== UBIFS_XENT_NODE
||
257 snod
->type
== UBIFS_TRUN_NODE
);
259 if (snod
->type
!= UBIFS_INO_NODE
&&
260 snod
->type
!= UBIFS_DATA_NODE
&&
261 snod
->type
!= UBIFS_DENT_NODE
&&
262 snod
->type
!= UBIFS_XENT_NODE
) {
263 /* Probably truncation node, zap it */
264 list_del(&snod
->list
);
269 ubifs_assert(key_type(c
, &snod
->key
) == UBIFS_DATA_KEY
||
270 key_type(c
, &snod
->key
) == UBIFS_INO_KEY
||
271 key_type(c
, &snod
->key
) == UBIFS_DENT_KEY
||
272 key_type(c
, &snod
->key
) == UBIFS_XENT_KEY
);
274 err
= ubifs_tnc_has_node(c
, &snod
->key
, 0, sleb
->lnum
,
280 /* The node is obsolete, remove it from the list */
281 list_del(&snod
->list
);
286 if (snod
->len
< *min
)
289 if (key_type(c
, &snod
->key
) != UBIFS_DATA_KEY
)
290 list_move_tail(&snod
->list
, nondata
);
293 /* Sort data and non-data nodes */
294 list_sort(c
, &sleb
->nodes
, &data_nodes_cmp
);
295 list_sort(c
, nondata
, &nondata_nodes_cmp
);
297 err
= dbg_check_data_nodes_order(c
, &sleb
->nodes
);
300 err
= dbg_check_nondata_nodes_order(c
, nondata
);
307 * move_node - move a node.
308 * @c: UBIFS file-system description object
309 * @sleb: describes the LEB to move nodes from
310 * @snod: the mode to move
311 * @wbuf: write-buffer to move node to
313 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
314 * destroys @snod. Returns zero in case of success and a negative error code in
317 static int move_node(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
318 struct ubifs_scan_node
*snod
, struct ubifs_wbuf
*wbuf
)
320 int err
, new_lnum
= wbuf
->lnum
, new_offs
= wbuf
->offs
+ wbuf
->used
;
323 err
= ubifs_wbuf_write_nolock(wbuf
, snod
->node
, snod
->len
);
327 err
= ubifs_tnc_replace(c
, &snod
->key
, sleb
->lnum
,
328 snod
->offs
, new_lnum
, new_offs
,
330 list_del(&snod
->list
);
336 * move_nodes - move nodes.
337 * @c: UBIFS file-system description object
338 * @sleb: describes the LEB to move nodes from
340 * This function moves valid nodes from data LEB described by @sleb to the GC
341 * journal head. This function returns zero in case of success, %-EAGAIN if
342 * commit is required, and other negative error codes in case of other
345 static int move_nodes(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
)
349 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
351 if (wbuf
->lnum
== -1) {
353 * The GC journal head is not set, because it is the first GC
354 * invocation since mount.
356 err
= switch_gc_head(c
);
361 err
= sort_nodes(c
, sleb
, &nondata
, &min
);
365 /* Write nodes to their new location. Use the first-fit strategy */
368 struct ubifs_scan_node
*snod
, *tmp
;
370 /* Move data nodes */
371 list_for_each_entry_safe(snod
, tmp
, &sleb
->nodes
, list
) {
372 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
373 if (snod
->len
> avail
)
375 * Do not skip data nodes in order to optimize
380 err
= move_node(c
, sleb
, snod
, wbuf
);
385 /* Move non-data nodes */
386 list_for_each_entry_safe(snod
, tmp
, &nondata
, list
) {
387 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
391 if (snod
->len
> avail
) {
393 * Keep going only if this is an inode with
394 * some data. Otherwise stop and switch the GC
395 * head. IOW, we assume that data-less inode
396 * nodes and direntry nodes are roughly of the
399 if (key_type(c
, &snod
->key
) == UBIFS_DENT_KEY
||
400 snod
->len
== UBIFS_INO_NODE_SZ
)
405 err
= move_node(c
, sleb
, snod
, wbuf
);
410 if (list_empty(&sleb
->nodes
) && list_empty(&nondata
))
414 * Waste the rest of the space in the LEB and switch to the
417 err
= switch_gc_head(c
);
425 list_splice_tail(&nondata
, &sleb
->nodes
);
430 * gc_sync_wbufs - sync write-buffers for GC.
431 * @c: UBIFS file-system description object
433 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
434 * be in a write-buffer instead. That is, a node could be written to a
435 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
436 * erased before the write-buffer is sync'd and then there is an unclean
437 * unmount, then an existing node is lost. To avoid this, we sync all
440 * This function returns %0 on success or a negative error code on failure.
442 static int gc_sync_wbufs(struct ubifs_info
*c
)
446 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
449 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
457 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
458 * @c: UBIFS file-system description object
459 * @lp: describes the LEB to garbage collect
461 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
462 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
463 * required, and other negative error codes in case of failures.
465 int ubifs_garbage_collect_leb(struct ubifs_info
*c
, struct ubifs_lprops
*lp
)
467 struct ubifs_scan_leb
*sleb
;
468 struct ubifs_scan_node
*snod
;
469 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
470 int err
= 0, lnum
= lp
->lnum
;
472 ubifs_assert(c
->gc_lnum
!= -1 || wbuf
->offs
+ wbuf
->used
== 0 ||
474 ubifs_assert(c
->gc_lnum
!= lnum
);
475 ubifs_assert(wbuf
->lnum
!= lnum
);
477 if (lp
->free
+ lp
->dirty
== c
->leb_size
) {
478 /* Special case - a free LEB */
479 dbg_gc("LEB %d is free, return it", lp
->lnum
);
480 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
482 if (lp
->free
!= c
->leb_size
) {
484 * Write buffers must be sync'd before unmapping
485 * freeable LEBs, because one of them may contain data
486 * which obsoletes something in 'lp->pnum'.
488 err
= gc_sync_wbufs(c
);
491 err
= ubifs_change_one_lp(c
, lp
->lnum
, c
->leb_size
,
496 err
= ubifs_leb_unmap(c
, lp
->lnum
);
500 if (c
->gc_lnum
== -1) {
509 * We scan the entire LEB even though we only really need to scan up to
510 * (c->leb_size - lp->free).
512 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
, 0);
514 return PTR_ERR(sleb
);
516 ubifs_assert(!list_empty(&sleb
->nodes
));
517 snod
= list_entry(sleb
->nodes
.next
, struct ubifs_scan_node
, list
);
519 if (snod
->type
== UBIFS_IDX_NODE
) {
520 struct ubifs_gced_idx_leb
*idx_gc
;
522 dbg_gc("indexing LEB %d (free %d, dirty %d)",
523 lnum
, lp
->free
, lp
->dirty
);
524 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
525 struct ubifs_idx_node
*idx
= snod
->node
;
526 int level
= le16_to_cpu(idx
->level
);
528 ubifs_assert(snod
->type
== UBIFS_IDX_NODE
);
529 key_read(c
, ubifs_idx_key(c
, idx
), &snod
->key
);
530 err
= ubifs_dirty_idx_node(c
, &snod
->key
, level
, lnum
,
536 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
544 list_add(&idx_gc
->list
, &c
->idx_gc
);
547 * Don't release the LEB until after the next commit, because
548 * it may contain data which is needed for recovery. So
549 * although we freed this LEB, it will become usable only after
552 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0,
558 dbg_gc("data LEB %d (free %d, dirty %d)",
559 lnum
, lp
->free
, lp
->dirty
);
561 err
= move_nodes(c
, sleb
);
565 err
= gc_sync_wbufs(c
);
569 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0, 0, 0);
573 /* Allow for races with TNC */
579 if (c
->gc_lnum
== -1) {
583 err
= ubifs_wbuf_sync_nolock(wbuf
);
587 err
= ubifs_leb_unmap(c
, lnum
);
596 ubifs_scan_destroy(sleb
);
600 /* We may have moved at least some nodes so allow for races with TNC */
609 * ubifs_garbage_collect - UBIFS garbage collector.
610 * @c: UBIFS file-system description object
611 * @anyway: do GC even if there are free LEBs
613 * This function does out-of-place garbage collection. The return codes are:
614 * o positive LEB number if the LEB has been freed and may be used;
615 * o %-EAGAIN if the caller has to run commit;
616 * o %-ENOSPC if GC failed to make any progress;
617 * o other negative error codes in case of other errors.
619 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
620 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
621 * commit may be required. But commit cannot be run from inside GC, because the
622 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
623 * And this error code means that the caller has to run commit, and re-run GC
624 * if there is still no free space.
626 * There are many reasons why this function may return %-EAGAIN:
627 * o the log is full and there is no space to write an LEB reference for
629 * o the journal is too large and exceeds size limitations;
630 * o GC moved indexing LEBs, but they can be used only after the commit;
631 * o the shrinker fails to find clean znodes to free and requests the commit;
634 * Note, if the file-system is close to be full, this function may return
635 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
636 * the function. E.g., this happens if the limits on the journal size are too
637 * tough and GC writes too much to the journal before an LEB is freed. This
638 * might also mean that the journal is too large, and the TNC becomes to big,
639 * so that the shrinker is constantly called, finds not clean znodes to free,
640 * and requests commit. Well, this may also happen if the journal is all right,
641 * but another kernel process consumes too much memory. Anyway, infinite
642 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
644 int ubifs_garbage_collect(struct ubifs_info
*c
, int anyway
)
646 int i
, err
, ret
, min_space
= c
->dead_wm
;
647 struct ubifs_lprops lp
;
648 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
650 ubifs_assert_cmt_locked(c
);
651 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
653 if (ubifs_gc_should_commit(c
))
656 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
663 /* We expect the write-buffer to be empty on entry */
664 ubifs_assert(!wbuf
->used
);
667 int space_before
, space_after
;
671 /* Give the commit an opportunity to run */
672 if (ubifs_gc_should_commit(c
)) {
677 if (i
> SOFT_LEBS_LIMIT
&& !list_empty(&c
->idx_gc
)) {
679 * We've done enough iterations. Indexing LEBs were
680 * moved and will be available after the commit.
682 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
683 ubifs_commit_required(c
);
688 if (i
> HARD_LEBS_LIMIT
) {
690 * We've moved too many LEBs and have not made
693 dbg_gc("hard limit, -ENOSPC");
699 * Empty and freeable LEBs can turn up while we waited for
700 * the wbuf lock, or while we have been running GC. In that
701 * case, we should just return one of those instead of
702 * continuing to GC dirty LEBs. Hence we request
703 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
705 ret
= ubifs_find_dirty_leb(c
, &lp
, min_space
, anyway
? 0 : 1);
708 dbg_gc("no more dirty LEBs");
712 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
713 lp
.lnum
, lp
.free
, lp
.dirty
, lp
.free
+ lp
.dirty
,
716 space_before
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
717 if (wbuf
->lnum
== -1)
720 ret
= ubifs_garbage_collect_leb(c
, &lp
);
722 if (ret
== -EAGAIN
) {
724 * This is not error, so we have to return the
725 * LEB to lprops. But if 'ubifs_return_leb()'
726 * fails, its failure code is propagated to the
727 * caller instead of the original '-EAGAIN'.
729 err
= ubifs_return_leb(c
, lp
.lnum
);
737 if (ret
== LEB_FREED
) {
738 /* An LEB has been freed and is ready for use */
739 dbg_gc("LEB %d freed, return", lp
.lnum
);
744 if (ret
== LEB_FREED_IDX
) {
746 * This was an indexing LEB and it cannot be
747 * immediately used. And instead of requesting the
748 * commit straight away, we try to garbage collect some
751 dbg_gc("indexing LEB %d freed, continue", lp
.lnum
);
755 ubifs_assert(ret
== LEB_RETAINED
);
756 space_after
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
757 dbg_gc("LEB %d retained, freed %d bytes", lp
.lnum
,
758 space_after
- space_before
);
760 if (space_after
> space_before
) {
761 /* GC makes progress, keep working */
763 if (min_space
< c
->dead_wm
)
764 min_space
= c
->dead_wm
;
768 dbg_gc("did not make progress");
771 * GC moved an LEB bud have not done any progress. This means
772 * that the previous GC head LEB contained too few free space
773 * and the LEB which was GC'ed contained only large nodes which
774 * did not fit that space.
776 * We can do 2 things:
777 * 1. pick another LEB in a hope it'll contain a small node
778 * which will fit the space we have at the end of current GC
779 * head LEB, but there is no guarantee, so we try this out
780 * unless we have already been working for too long;
781 * 2. request an LEB with more dirty space, which will force
782 * 'ubifs_find_dirty_leb()' to start scanning the lprops
783 * table, instead of just picking one from the heap
784 * (previously it already picked the dirtiest LEB).
786 if (i
< SOFT_LEBS_LIMIT
) {
792 if (min_space
> c
->dark_wm
)
793 min_space
= c
->dark_wm
;
794 dbg_gc("set min. space to %d", min_space
);
797 if (ret
== -ENOSPC
&& !list_empty(&c
->idx_gc
)) {
798 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
799 ubifs_commit_required(c
);
803 err
= ubifs_wbuf_sync_nolock(wbuf
);
805 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
811 mutex_unlock(&wbuf
->io_mutex
);
815 ubifs_assert(ret
< 0);
816 ubifs_assert(ret
!= -ENOSPC
&& ret
!= -EAGAIN
);
817 ubifs_wbuf_sync_nolock(wbuf
);
818 ubifs_ro_mode(c
, ret
);
819 mutex_unlock(&wbuf
->io_mutex
);
820 ubifs_return_leb(c
, lp
.lnum
);
825 * ubifs_gc_start_commit - garbage collection at start of commit.
826 * @c: UBIFS file-system description object
828 * If a LEB has only dirty and free space, then we may safely unmap it and make
829 * it free. Note, we cannot do this with indexing LEBs because dirty space may
830 * correspond index nodes that are required for recovery. In that case, the
831 * LEB cannot be unmapped until after the next commit.
833 * This function returns %0 upon success and a negative error code upon failure.
835 int ubifs_gc_start_commit(struct ubifs_info
*c
)
837 struct ubifs_gced_idx_leb
*idx_gc
;
838 const struct ubifs_lprops
*lp
;
844 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
845 * wbufs are sync'd before this, which is done in 'do_commit()'.
848 lp
= ubifs_fast_find_freeable(c
);
851 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
852 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
853 err
= ubifs_leb_unmap(c
, lp
->lnum
);
856 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, lp
->flags
, 0);
861 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
862 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
865 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
866 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
869 /* Record index freeable LEBs for unmapping after commit */
871 lp
= ubifs_fast_find_frdi_idx(c
);
878 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
883 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
884 ubifs_assert(lp
->flags
& LPROPS_INDEX
);
885 /* Don't release the LEB until after the next commit */
886 flags
= (lp
->flags
| LPROPS_TAKEN
) ^ LPROPS_INDEX
;
887 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, flags
, 1);
893 ubifs_assert(lp
->flags
& LPROPS_TAKEN
);
894 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
895 idx_gc
->lnum
= lp
->lnum
;
897 list_add(&idx_gc
->list
, &c
->idx_gc
);
900 ubifs_release_lprops(c
);
905 * ubifs_gc_end_commit - garbage collection at end of commit.
906 * @c: UBIFS file-system description object
908 * This function completes out-of-place garbage collection of index LEBs.
910 int ubifs_gc_end_commit(struct ubifs_info
*c
)
912 struct ubifs_gced_idx_leb
*idx_gc
, *tmp
;
913 struct ubifs_wbuf
*wbuf
;
916 wbuf
= &c
->jheads
[GCHD
].wbuf
;
917 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
918 list_for_each_entry_safe(idx_gc
, tmp
, &c
->idx_gc
, list
)
920 dbg_gc("LEB %d", idx_gc
->lnum
);
921 err
= ubifs_leb_unmap(c
, idx_gc
->lnum
);
924 err
= ubifs_change_one_lp(c
, idx_gc
->lnum
, LPROPS_NC
,
925 LPROPS_NC
, 0, LPROPS_TAKEN
, -1);
928 list_del(&idx_gc
->list
);
932 mutex_unlock(&wbuf
->io_mutex
);
937 * ubifs_destroy_idx_gc - destroy idx_gc list.
938 * @c: UBIFS file-system description object
940 * This function destroys the @c->idx_gc list. It is called when unmounting
941 * so locks are not needed. Returns zero in case of success and a negative
942 * error code in case of failure.
944 void ubifs_destroy_idx_gc(struct ubifs_info
*c
)
946 while (!list_empty(&c
->idx_gc
)) {
947 struct ubifs_gced_idx_leb
*idx_gc
;
949 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
,
952 list_del(&idx_gc
->list
);
958 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
959 * @c: UBIFS file-system description object
961 * Called during start commit so locks are not needed.
963 int ubifs_get_idx_gc_leb(struct ubifs_info
*c
)
965 struct ubifs_gced_idx_leb
*idx_gc
;
968 if (list_empty(&c
->idx_gc
))
970 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
, list
);
972 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
973 list_del(&idx_gc
->list
);