1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_inode.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode_item.h"
15 #include "xfs_alloc.h"
16 #include "xfs_error.h"
17 #include "xfs_iomap.h"
18 #include "xfs_trace.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_bmap_btree.h"
22 #include "xfs_reflink.h"
23 #include <linux/gfp.h>
24 #include <linux/mpage.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
29 * structure owned by writepages passed to individual writepage calls
31 struct xfs_writepage_ctx
{
32 struct xfs_bmbt_irec imap
;
35 struct xfs_ioend
*ioend
;
45 struct buffer_head
*bh
, *head
;
47 *delalloc
= *unwritten
= 0;
49 bh
= head
= page_buffers(page
);
51 if (buffer_unwritten(bh
))
53 else if (buffer_delay(bh
))
55 } while ((bh
= bh
->b_this_page
) != head
);
59 xfs_find_bdev_for_inode(
62 struct xfs_inode
*ip
= XFS_I(inode
);
63 struct xfs_mount
*mp
= ip
->i_mount
;
65 if (XFS_IS_REALTIME_INODE(ip
))
66 return mp
->m_rtdev_targp
->bt_bdev
;
68 return mp
->m_ddev_targp
->bt_bdev
;
72 xfs_find_daxdev_for_inode(
75 struct xfs_inode
*ip
= XFS_I(inode
);
76 struct xfs_mount
*mp
= ip
->i_mount
;
78 if (XFS_IS_REALTIME_INODE(ip
))
79 return mp
->m_rtdev_targp
->bt_daxdev
;
81 return mp
->m_ddev_targp
->bt_daxdev
;
85 * We're now finished for good with this page. Update the page state via the
86 * associated buffer_heads, paying attention to the start and end offsets that
87 * we need to process on the page.
89 * Note that we open code the action in end_buffer_async_write here so that we
90 * only have to iterate over the buffers attached to the page once. This is not
91 * only more efficient, but also ensures that we only calls end_page_writeback
92 * at the end of the iteration, and thus avoids the pitfall of having the page
93 * and buffers potentially freed after every call to end_buffer_async_write.
96 xfs_finish_page_writeback(
101 struct buffer_head
*head
= page_buffers(bvec
->bv_page
), *bh
= head
;
103 unsigned int off
= 0;
106 ASSERT(bvec
->bv_offset
< PAGE_SIZE
);
107 ASSERT((bvec
->bv_offset
& (i_blocksize(inode
) - 1)) == 0);
108 ASSERT(bvec
->bv_offset
+ bvec
->bv_len
<= PAGE_SIZE
);
109 ASSERT((bvec
->bv_len
& (i_blocksize(inode
) - 1)) == 0);
111 local_irq_save(flags
);
112 bit_spin_lock(BH_Uptodate_Lock
, &head
->b_state
);
114 if (off
>= bvec
->bv_offset
&&
115 off
< bvec
->bv_offset
+ bvec
->bv_len
) {
116 ASSERT(buffer_async_write(bh
));
117 ASSERT(bh
->b_end_io
== NULL
);
120 mark_buffer_write_io_error(bh
);
121 clear_buffer_uptodate(bh
);
122 SetPageError(bvec
->bv_page
);
124 set_buffer_uptodate(bh
);
126 clear_buffer_async_write(bh
);
128 } else if (buffer_async_write(bh
)) {
129 ASSERT(buffer_locked(bh
));
133 } while ((bh
= bh
->b_this_page
) != head
);
134 bit_spin_unlock(BH_Uptodate_Lock
, &head
->b_state
);
135 local_irq_restore(flags
);
138 end_page_writeback(bvec
->bv_page
);
142 * We're now finished for good with this ioend structure. Update the page
143 * state, release holds on bios, and finally free up memory. Do not use the
148 struct xfs_ioend
*ioend
,
151 struct inode
*inode
= ioend
->io_inode
;
152 struct bio
*bio
= &ioend
->io_inline_bio
;
153 struct bio
*last
= ioend
->io_bio
, *next
;
154 u64 start
= bio
->bi_iter
.bi_sector
;
155 bool quiet
= bio_flagged(bio
, BIO_QUIET
);
157 for (bio
= &ioend
->io_inline_bio
; bio
; bio
= next
) {
158 struct bio_vec
*bvec
;
162 * For the last bio, bi_private points to the ioend, so we
163 * need to explicitly end the iteration here.
168 next
= bio
->bi_private
;
170 /* walk each page on bio, ending page IO on them */
171 bio_for_each_segment_all(bvec
, bio
, i
)
172 xfs_finish_page_writeback(inode
, bvec
, error
);
177 if (unlikely(error
&& !quiet
)) {
178 xfs_err_ratelimited(XFS_I(inode
)->i_mount
,
179 "writeback error on sector %llu", start
);
184 * Fast and loose check if this write could update the on-disk inode size.
186 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
188 return ioend
->io_offset
+ ioend
->io_size
>
189 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
193 xfs_setfilesize_trans_alloc(
194 struct xfs_ioend
*ioend
)
196 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
197 struct xfs_trans
*tp
;
200 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0,
201 XFS_TRANS_NOFS
, &tp
);
205 ioend
->io_append_trans
= tp
;
208 * We may pass freeze protection with a transaction. So tell lockdep
211 __sb_writers_release(ioend
->io_inode
->i_sb
, SB_FREEZE_FS
);
213 * We hand off the transaction to the completion thread now, so
214 * clear the flag here.
216 current_restore_flags_nested(&tp
->t_pflags
, PF_MEMALLOC_NOFS
);
221 * Update on-disk file size now that data has been written to disk.
225 struct xfs_inode
*ip
,
226 struct xfs_trans
*tp
,
232 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
233 isize
= xfs_new_eof(ip
, offset
+ size
);
235 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
236 xfs_trans_cancel(tp
);
240 trace_xfs_setfilesize(ip
, offset
, size
);
242 ip
->i_d
.di_size
= isize
;
243 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
244 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
246 return xfs_trans_commit(tp
);
251 struct xfs_inode
*ip
,
255 struct xfs_mount
*mp
= ip
->i_mount
;
256 struct xfs_trans
*tp
;
259 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0, &tp
);
263 return __xfs_setfilesize(ip
, tp
, offset
, size
);
267 xfs_setfilesize_ioend(
268 struct xfs_ioend
*ioend
,
271 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
272 struct xfs_trans
*tp
= ioend
->io_append_trans
;
275 * The transaction may have been allocated in the I/O submission thread,
276 * thus we need to mark ourselves as being in a transaction manually.
277 * Similarly for freeze protection.
279 current_set_flags_nested(&tp
->t_pflags
, PF_MEMALLOC_NOFS
);
280 __sb_writers_acquired(VFS_I(ip
)->i_sb
, SB_FREEZE_FS
);
282 /* we abort the update if there was an IO error */
284 xfs_trans_cancel(tp
);
288 return __xfs_setfilesize(ip
, tp
, ioend
->io_offset
, ioend
->io_size
);
292 * IO write completion.
296 struct work_struct
*work
)
298 struct xfs_ioend
*ioend
=
299 container_of(work
, struct xfs_ioend
, io_work
);
300 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
301 xfs_off_t offset
= ioend
->io_offset
;
302 size_t size
= ioend
->io_size
;
306 * Just clean up the in-memory strutures if the fs has been shut down.
308 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
314 * Clean up any COW blocks on an I/O error.
316 error
= blk_status_to_errno(ioend
->io_bio
->bi_status
);
317 if (unlikely(error
)) {
318 switch (ioend
->io_type
) {
320 xfs_reflink_cancel_cow_range(ip
, offset
, size
, true);
328 * Success: commit the COW or unwritten blocks if needed.
330 switch (ioend
->io_type
) {
332 error
= xfs_reflink_end_cow(ip
, offset
, size
);
334 case XFS_IO_UNWRITTEN
:
335 /* writeback should never update isize */
336 error
= xfs_iomap_write_unwritten(ip
, offset
, size
, false);
339 ASSERT(!xfs_ioend_is_append(ioend
) || ioend
->io_append_trans
);
344 if (ioend
->io_append_trans
)
345 error
= xfs_setfilesize_ioend(ioend
, error
);
346 xfs_destroy_ioend(ioend
, error
);
353 struct xfs_ioend
*ioend
= bio
->bi_private
;
354 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
356 if (ioend
->io_type
== XFS_IO_UNWRITTEN
|| ioend
->io_type
== XFS_IO_COW
)
357 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
358 else if (ioend
->io_append_trans
)
359 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
361 xfs_destroy_ioend(ioend
, blk_status_to_errno(bio
->bi_status
));
368 struct xfs_bmbt_irec
*imap
,
371 struct xfs_inode
*ip
= XFS_I(inode
);
372 struct xfs_mount
*mp
= ip
->i_mount
;
373 ssize_t count
= i_blocksize(inode
);
374 xfs_fileoff_t offset_fsb
, end_fsb
;
376 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
379 if (XFS_FORCED_SHUTDOWN(mp
))
383 * Truncate can race with writeback since writeback doesn't take the
384 * iolock and truncate decreases the file size before it starts
385 * truncating the pages between new_size and old_size. Therefore, we
386 * can end up in the situation where writeback gets a CoW fork mapping
387 * but the truncate makes the mapping invalid and we end up in here
388 * trying to get a new mapping. Bail out here so that we simply never
389 * get a valid mapping and so we drop the write altogether. The page
390 * truncation will kill the contents anyway.
392 if (type
== XFS_IO_COW
&& offset
> i_size_read(inode
))
395 ASSERT(type
!= XFS_IO_COW
);
396 if (type
== XFS_IO_UNWRITTEN
)
397 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
399 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
400 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
401 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
402 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
404 if (offset
> mp
->m_super
->s_maxbytes
- count
)
405 count
= mp
->m_super
->s_maxbytes
- offset
;
406 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
407 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
408 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
409 imap
, &nimaps
, bmapi_flags
);
411 * Truncate an overwrite extent if there's a pending CoW
412 * reservation before the end of this extent. This forces us
413 * to come back to writepage to take care of the CoW.
415 if (nimaps
&& type
== XFS_IO_OVERWRITE
)
416 xfs_reflink_trim_irec_to_next_cow(ip
, offset_fsb
, imap
);
417 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
422 if (type
== XFS_IO_DELALLOC
&&
423 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
424 error
= xfs_iomap_write_allocate(ip
, XFS_DATA_FORK
, offset
,
427 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
432 if (type
== XFS_IO_UNWRITTEN
) {
434 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
435 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
439 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
446 struct xfs_bmbt_irec
*imap
,
449 offset
>>= inode
->i_blkbits
;
452 * We have to make sure the cached mapping is within EOF to protect
453 * against eofblocks trimming on file release leaving us with a stale
454 * mapping. Otherwise, a page for a subsequent file extending buffered
455 * write could get picked up by this writeback cycle and written to the
458 * Note that what we really want here is a generic mapping invalidation
459 * mechanism to protect us from arbitrary extent modifying contexts, not
462 xfs_trim_extent_eof(imap
, XFS_I(inode
));
464 return offset
>= imap
->br_startoff
&&
465 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
469 xfs_start_buffer_writeback(
470 struct buffer_head
*bh
)
472 ASSERT(buffer_mapped(bh
));
473 ASSERT(buffer_locked(bh
));
474 ASSERT(!buffer_delay(bh
));
475 ASSERT(!buffer_unwritten(bh
));
478 set_buffer_async_write(bh
);
479 set_buffer_uptodate(bh
);
480 clear_buffer_dirty(bh
);
484 xfs_start_page_writeback(
488 ASSERT(PageLocked(page
));
489 ASSERT(!PageWriteback(page
));
492 * if the page was not fully cleaned, we need to ensure that the higher
493 * layers come back to it correctly. That means we need to keep the page
494 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
495 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
496 * write this page in this writeback sweep will be made.
499 clear_page_dirty_for_io(page
);
500 set_page_writeback(page
);
502 set_page_writeback_keepwrite(page
);
507 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
509 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
513 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
514 * it, and we submit that bio. The ioend may be used for multiple bio
515 * submissions, so we only want to allocate an append transaction for the ioend
516 * once. In the case of multiple bio submission, each bio will take an IO
517 * reference to the ioend to ensure that the ioend completion is only done once
518 * all bios have been submitted and the ioend is really done.
520 * If @fail is non-zero, it means that we have a situation where some part of
521 * the submission process has failed after we have marked paged for writeback
522 * and unlocked them. In this situation, we need to fail the bio and ioend
523 * rather than submit it to IO. This typically only happens on a filesystem
528 struct writeback_control
*wbc
,
529 struct xfs_ioend
*ioend
,
532 /* Convert CoW extents to regular */
533 if (!status
&& ioend
->io_type
== XFS_IO_COW
) {
535 * Yuk. This can do memory allocation, but is not a
536 * transactional operation so everything is done in GFP_KERNEL
537 * context. That can deadlock, because we hold pages in
538 * writeback state and GFP_KERNEL allocations can block on them.
539 * Hence we must operate in nofs conditions here.
543 nofs_flag
= memalloc_nofs_save();
544 status
= xfs_reflink_convert_cow(XFS_I(ioend
->io_inode
),
545 ioend
->io_offset
, ioend
->io_size
);
546 memalloc_nofs_restore(nofs_flag
);
549 /* Reserve log space if we might write beyond the on-disk inode size. */
551 ioend
->io_type
!= XFS_IO_UNWRITTEN
&&
552 xfs_ioend_is_append(ioend
) &&
553 !ioend
->io_append_trans
)
554 status
= xfs_setfilesize_trans_alloc(ioend
);
556 ioend
->io_bio
->bi_private
= ioend
;
557 ioend
->io_bio
->bi_end_io
= xfs_end_bio
;
558 ioend
->io_bio
->bi_opf
= REQ_OP_WRITE
| wbc_to_write_flags(wbc
);
561 * If we are failing the IO now, just mark the ioend with an
562 * error and finish it. This will run IO completion immediately
563 * as there is only one reference to the ioend at this point in
567 ioend
->io_bio
->bi_status
= errno_to_blk_status(status
);
568 bio_endio(ioend
->io_bio
);
572 ioend
->io_bio
->bi_write_hint
= ioend
->io_inode
->i_write_hint
;
573 submit_bio(ioend
->io_bio
);
578 xfs_init_bio_from_bh(
580 struct buffer_head
*bh
)
582 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
583 bio_set_dev(bio
, bh
->b_bdev
);
586 static struct xfs_ioend
*
591 struct buffer_head
*bh
)
593 struct xfs_ioend
*ioend
;
596 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, &xfs_ioend_bioset
);
597 xfs_init_bio_from_bh(bio
, bh
);
599 ioend
= container_of(bio
, struct xfs_ioend
, io_inline_bio
);
600 INIT_LIST_HEAD(&ioend
->io_list
);
601 ioend
->io_type
= type
;
602 ioend
->io_inode
= inode
;
604 ioend
->io_offset
= offset
;
605 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
606 ioend
->io_append_trans
= NULL
;
612 * Allocate a new bio, and chain the old bio to the new one.
614 * Note that we have to do perform the chaining in this unintuitive order
615 * so that the bi_private linkage is set up in the right direction for the
616 * traversal in xfs_destroy_ioend().
620 struct xfs_ioend
*ioend
,
621 struct writeback_control
*wbc
,
622 struct buffer_head
*bh
)
626 new = bio_alloc(GFP_NOFS
, BIO_MAX_PAGES
);
627 xfs_init_bio_from_bh(new, bh
);
629 bio_chain(ioend
->io_bio
, new);
630 bio_get(ioend
->io_bio
); /* for xfs_destroy_ioend */
631 ioend
->io_bio
->bi_opf
= REQ_OP_WRITE
| wbc_to_write_flags(wbc
);
632 ioend
->io_bio
->bi_write_hint
= ioend
->io_inode
->i_write_hint
;
633 submit_bio(ioend
->io_bio
);
638 * Test to see if we've been building up a completion structure for
639 * earlier buffers -- if so, we try to append to this ioend if we
640 * can, otherwise we finish off any current ioend and start another.
641 * Return the ioend we finished off so that the caller can submit it
642 * once it has finished processing the dirty page.
647 struct buffer_head
*bh
,
649 struct xfs_writepage_ctx
*wpc
,
650 struct writeback_control
*wbc
,
651 struct list_head
*iolist
)
653 if (!wpc
->ioend
|| wpc
->io_type
!= wpc
->ioend
->io_type
||
654 bh
->b_blocknr
!= wpc
->last_block
+ 1 ||
655 offset
!= wpc
->ioend
->io_offset
+ wpc
->ioend
->io_size
) {
657 list_add(&wpc
->ioend
->io_list
, iolist
);
658 wpc
->ioend
= xfs_alloc_ioend(inode
, wpc
->io_type
, offset
, bh
);
662 * If the buffer doesn't fit into the bio we need to allocate a new
663 * one. This shouldn't happen more than once for a given buffer.
665 while (xfs_bio_add_buffer(wpc
->ioend
->io_bio
, bh
) != bh
->b_size
)
666 xfs_chain_bio(wpc
->ioend
, wbc
, bh
);
668 wpc
->ioend
->io_size
+= bh
->b_size
;
669 wpc
->last_block
= bh
->b_blocknr
;
670 xfs_start_buffer_writeback(bh
);
676 struct buffer_head
*bh
,
677 struct xfs_bmbt_irec
*imap
,
681 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
682 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
683 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
685 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
686 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
688 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
689 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
691 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
694 set_buffer_mapped(bh
);
700 struct buffer_head
*bh
,
701 struct xfs_bmbt_irec
*imap
,
704 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
705 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
707 xfs_map_buffer(inode
, bh
, imap
, offset
);
708 set_buffer_mapped(bh
);
709 clear_buffer_delay(bh
);
710 clear_buffer_unwritten(bh
);
714 * Test if a given page contains at least one buffer of a given @type.
715 * If @check_all_buffers is true, then we walk all the buffers in the page to
716 * try to find one of the type passed in. If it is not set, then the caller only
717 * needs to check the first buffer on the page for a match.
723 bool check_all_buffers
)
725 struct buffer_head
*bh
;
726 struct buffer_head
*head
;
728 if (PageWriteback(page
))
732 if (!page_has_buffers(page
))
735 bh
= head
= page_buffers(page
);
737 if (buffer_unwritten(bh
)) {
738 if (type
== XFS_IO_UNWRITTEN
)
740 } else if (buffer_delay(bh
)) {
741 if (type
== XFS_IO_DELALLOC
)
743 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
744 if (type
== XFS_IO_OVERWRITE
)
748 /* If we are only checking the first buffer, we are done now. */
749 if (!check_all_buffers
)
751 } while ((bh
= bh
->b_this_page
) != head
);
757 xfs_vm_invalidatepage(
762 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
766 * If we are invalidating the entire page, clear the dirty state from it
767 * so that we can check for attempts to release dirty cached pages in
768 * xfs_vm_releasepage().
770 if (offset
== 0 && length
>= PAGE_SIZE
)
771 cancel_dirty_page(page
);
772 block_invalidatepage(page
, offset
, length
);
776 * If the page has delalloc buffers on it, we need to punch them out before we
777 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
778 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
779 * is done on that same region - the delalloc extent is returned when none is
780 * supposed to be there.
782 * We prevent this by truncating away the delalloc regions on the page before
783 * invalidating it. Because they are delalloc, we can do this without needing a
784 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
785 * truncation without a transaction as there is no space left for block
786 * reservation (typically why we see a ENOSPC in writeback).
788 * This is not a performance critical path, so for now just do the punching a
789 * buffer head at a time.
792 xfs_aops_discard_page(
795 struct inode
*inode
= page
->mapping
->host
;
796 struct xfs_inode
*ip
= XFS_I(inode
);
797 struct buffer_head
*bh
, *head
;
798 loff_t offset
= page_offset(page
);
800 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
803 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
806 xfs_alert(ip
->i_mount
,
807 "page discard on page "PTR_FMT
", inode 0x%llx, offset %llu.",
808 page
, ip
->i_ino
, offset
);
810 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
811 bh
= head
= page_buffers(page
);
814 xfs_fileoff_t start_fsb
;
816 if (!buffer_delay(bh
))
819 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
820 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
822 /* something screwed, just bail */
823 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
824 xfs_alert(ip
->i_mount
,
825 "page discard unable to remove delalloc mapping.");
830 offset
+= i_blocksize(inode
);
832 } while ((bh
= bh
->b_this_page
) != head
);
834 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
836 xfs_vm_invalidatepage(page
, 0, PAGE_SIZE
);
842 struct xfs_writepage_ctx
*wpc
,
845 unsigned int *new_type
)
847 struct xfs_inode
*ip
= XFS_I(inode
);
848 struct xfs_bmbt_irec imap
;
853 * If we already have a valid COW mapping keep using it.
855 if (wpc
->io_type
== XFS_IO_COW
) {
856 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
, offset
);
857 if (wpc
->imap_valid
) {
858 *new_type
= XFS_IO_COW
;
864 * Else we need to check if there is a COW mapping at this offset.
866 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
867 is_cow
= xfs_reflink_find_cow_mapping(ip
, offset
, &imap
);
868 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
874 * And if the COW mapping has a delayed extent here we need to
875 * allocate real space for it now.
877 if (isnullstartblock(imap
.br_startblock
)) {
878 error
= xfs_iomap_write_allocate(ip
, XFS_COW_FORK
, offset
,
884 wpc
->io_type
= *new_type
= XFS_IO_COW
;
885 wpc
->imap_valid
= true;
891 * We implement an immediate ioend submission policy here to avoid needing to
892 * chain multiple ioends and hence nest mempool allocations which can violate
893 * forward progress guarantees we need to provide. The current ioend we are
894 * adding buffers to is cached on the writepage context, and if the new buffer
895 * does not append to the cached ioend it will create a new ioend and cache that
898 * If a new ioend is created and cached, the old ioend is returned and queued
899 * locally for submission once the entire page is processed or an error has been
900 * detected. While ioends are submitted immediately after they are completed,
901 * batching optimisations are provided by higher level block plugging.
903 * At the end of a writeback pass, there will be a cached ioend remaining on the
904 * writepage context that the caller will need to submit.
908 struct xfs_writepage_ctx
*wpc
,
909 struct writeback_control
*wbc
,
914 LIST_HEAD(submit_list
);
915 struct xfs_ioend
*ioend
, *next
;
916 struct buffer_head
*bh
, *head
;
917 ssize_t len
= i_blocksize(inode
);
922 unsigned int new_type
;
924 bh
= head
= page_buffers(page
);
925 offset
= page_offset(page
);
927 if (offset
>= end_offset
)
929 if (!buffer_uptodate(bh
))
933 * set_page_dirty dirties all buffers in a page, independent
934 * of their state. The dirty state however is entirely
935 * meaningless for holes (!mapped && uptodate), so skip
936 * buffers covering holes here.
938 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
939 wpc
->imap_valid
= false;
943 if (buffer_unwritten(bh
))
944 new_type
= XFS_IO_UNWRITTEN
;
945 else if (buffer_delay(bh
))
946 new_type
= XFS_IO_DELALLOC
;
947 else if (buffer_uptodate(bh
))
948 new_type
= XFS_IO_OVERWRITE
;
950 if (PageUptodate(page
))
951 ASSERT(buffer_mapped(bh
));
953 * This buffer is not uptodate and will not be
954 * written to disk. Ensure that we will put any
955 * subsequent writeable buffers into a new
958 wpc
->imap_valid
= false;
962 if (xfs_is_reflink_inode(XFS_I(inode
))) {
963 error
= xfs_map_cow(wpc
, inode
, offset
, &new_type
);
968 if (wpc
->io_type
!= new_type
) {
969 wpc
->io_type
= new_type
;
970 wpc
->imap_valid
= false;
974 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
976 if (!wpc
->imap_valid
) {
977 error
= xfs_map_blocks(inode
, offset
, &wpc
->imap
,
981 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
984 if (wpc
->imap_valid
) {
986 if (wpc
->io_type
!= XFS_IO_OVERWRITE
)
987 xfs_map_at_offset(inode
, bh
, &wpc
->imap
, offset
);
988 xfs_add_to_ioend(inode
, bh
, offset
, wpc
, wbc
, &submit_list
);
992 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
994 if (uptodate
&& bh
== head
)
995 SetPageUptodate(page
);
997 ASSERT(wpc
->ioend
|| list_empty(&submit_list
));
1001 * On error, we have to fail the ioend here because we have locked
1002 * buffers in the ioend. If we don't do this, we'll deadlock
1003 * invalidating the page as that tries to lock the buffers on the page.
1004 * Also, because we may have set pages under writeback, we have to make
1005 * sure we run IO completion to mark the error state of the IO
1006 * appropriately, so we can't cancel the ioend directly here. That means
1007 * we have to mark this page as under writeback if we included any
1008 * buffers from it in the ioend chain so that completion treats it
1011 * If we didn't include the page in the ioend, the on error we can
1012 * simply discard and unlock it as there are no other users of the page
1013 * or it's buffers right now. The caller will still need to trigger
1014 * submission of outstanding ioends on the writepage context so they are
1015 * treated correctly on error.
1018 xfs_start_page_writeback(page
, !error
);
1021 * Preserve the original error if there was one, otherwise catch
1022 * submission errors here and propagate into subsequent ioend
1025 list_for_each_entry_safe(ioend
, next
, &submit_list
, io_list
) {
1028 list_del_init(&ioend
->io_list
);
1029 error2
= xfs_submit_ioend(wbc
, ioend
, error
);
1030 if (error2
&& !error
)
1034 xfs_aops_discard_page(page
);
1035 ClearPageUptodate(page
);
1039 * We can end up here with no error and nothing to write if we
1040 * race with a partial page truncate on a sub-page block sized
1041 * filesystem. In that case we need to mark the page clean.
1043 xfs_start_page_writeback(page
, 1);
1044 end_page_writeback(page
);
1047 mapping_set_error(page
->mapping
, error
);
1052 * Write out a dirty page.
1054 * For delalloc space on the page we need to allocate space and flush it.
1055 * For unwritten space on the page we need to start the conversion to
1056 * regular allocated space.
1057 * For any other dirty buffer heads on the page we should flush them.
1062 struct writeback_control
*wbc
,
1065 struct xfs_writepage_ctx
*wpc
= data
;
1066 struct inode
*inode
= page
->mapping
->host
;
1068 uint64_t end_offset
;
1071 trace_xfs_writepage(inode
, page
, 0, 0);
1073 ASSERT(page_has_buffers(page
));
1076 * Refuse to write the page out if we are called from reclaim context.
1078 * This avoids stack overflows when called from deeply used stacks in
1079 * random callers for direct reclaim or memcg reclaim. We explicitly
1080 * allow reclaim from kswapd as the stack usage there is relatively low.
1082 * This should never happen except in the case of a VM regression so
1085 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
1090 * Given that we do not allow direct reclaim to call us, we should
1091 * never be called while in a filesystem transaction.
1093 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC_NOFS
))
1097 * Is this page beyond the end of the file?
1099 * The page index is less than the end_index, adjust the end_offset
1100 * to the highest offset that this page should represent.
1101 * -----------------------------------------------------
1102 * | file mapping | <EOF> |
1103 * -----------------------------------------------------
1104 * | Page ... | Page N-2 | Page N-1 | Page N | |
1105 * ^--------------------------------^----------|--------
1106 * | desired writeback range | see else |
1107 * ---------------------------------^------------------|
1109 offset
= i_size_read(inode
);
1110 end_index
= offset
>> PAGE_SHIFT
;
1111 if (page
->index
< end_index
)
1112 end_offset
= (xfs_off_t
)(page
->index
+ 1) << PAGE_SHIFT
;
1115 * Check whether the page to write out is beyond or straddles
1117 * -------------------------------------------------------
1118 * | file mapping | <EOF> |
1119 * -------------------------------------------------------
1120 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1121 * ^--------------------------------^-----------|---------
1123 * ---------------------------------^-----------|--------|
1125 unsigned offset_into_page
= offset
& (PAGE_SIZE
- 1);
1128 * Skip the page if it is fully outside i_size, e.g. due to a
1129 * truncate operation that is in progress. We must redirty the
1130 * page so that reclaim stops reclaiming it. Otherwise
1131 * xfs_vm_releasepage() is called on it and gets confused.
1133 * Note that the end_index is unsigned long, it would overflow
1134 * if the given offset is greater than 16TB on 32-bit system
1135 * and if we do check the page is fully outside i_size or not
1136 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1137 * will be evaluated to 0. Hence this page will be redirtied
1138 * and be written out repeatedly which would result in an
1139 * infinite loop, the user program that perform this operation
1140 * will hang. Instead, we can verify this situation by checking
1141 * if the page to write is totally beyond the i_size or if it's
1142 * offset is just equal to the EOF.
1144 if (page
->index
> end_index
||
1145 (page
->index
== end_index
&& offset_into_page
== 0))
1149 * The page straddles i_size. It must be zeroed out on each
1150 * and every writepage invocation because it may be mmapped.
1151 * "A file is mapped in multiples of the page size. For a file
1152 * that is not a multiple of the page size, the remaining
1153 * memory is zeroed when mapped, and writes to that region are
1154 * not written out to the file."
1156 zero_user_segment(page
, offset_into_page
, PAGE_SIZE
);
1158 /* Adjust the end_offset to the end of file */
1159 end_offset
= offset
;
1162 return xfs_writepage_map(wpc
, wbc
, inode
, page
, end_offset
);
1165 redirty_page_for_writepage(wbc
, page
);
1173 struct writeback_control
*wbc
)
1175 struct xfs_writepage_ctx wpc
= {
1176 .io_type
= XFS_IO_INVALID
,
1180 ret
= xfs_do_writepage(page
, wbc
, &wpc
);
1182 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1188 struct address_space
*mapping
,
1189 struct writeback_control
*wbc
)
1191 struct xfs_writepage_ctx wpc
= {
1192 .io_type
= XFS_IO_INVALID
,
1196 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1197 ret
= write_cache_pages(mapping
, wbc
, xfs_do_writepage
, &wpc
);
1199 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1205 struct address_space
*mapping
,
1206 struct writeback_control
*wbc
)
1208 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1209 return dax_writeback_mapping_range(mapping
,
1210 xfs_find_bdev_for_inode(mapping
->host
), wbc
);
1214 * Called to move a page into cleanable state - and from there
1215 * to be released. The page should already be clean. We always
1216 * have buffer heads in this call.
1218 * Returns 1 if the page is ok to release, 0 otherwise.
1225 int delalloc
, unwritten
;
1227 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1230 * mm accommodates an old ext3 case where clean pages might not have had
1231 * the dirty bit cleared. Thus, it can send actual dirty pages to
1232 * ->releasepage() via shrink_active_list(). Conversely,
1233 * block_invalidatepage() can send pages that are still marked dirty but
1234 * otherwise have invalidated buffers.
1236 * We want to release the latter to avoid unnecessary buildup of the
1237 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1238 * that are entirely invalidated and need to be released. Hence the
1239 * only time we should get dirty pages here is through
1240 * shrink_active_list() and so we can simply skip those now.
1242 * warn if we've left any lingering delalloc/unwritten buffers on clean
1243 * or invalidated pages we are about to release.
1245 if (PageDirty(page
))
1248 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1250 if (WARN_ON_ONCE(delalloc
))
1252 if (WARN_ON_ONCE(unwritten
))
1255 return try_to_free_buffers(page
);
1259 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1260 * is, so that we can avoid repeated get_blocks calls.
1262 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1263 * for blocks beyond EOF must be marked new so that sub block regions can be
1264 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1265 * was just allocated or is unwritten, otherwise the callers would overwrite
1266 * existing data with zeros. Hence we have to split the mapping into a range up
1267 * to and including EOF, and a second mapping for beyond EOF.
1271 struct inode
*inode
,
1273 struct buffer_head
*bh_result
,
1274 struct xfs_bmbt_irec
*imap
,
1278 xfs_off_t mapping_size
;
1280 mapping_size
= imap
->br_startoff
+ imap
->br_blockcount
- iblock
;
1281 mapping_size
<<= inode
->i_blkbits
;
1283 ASSERT(mapping_size
> 0);
1284 if (mapping_size
> size
)
1285 mapping_size
= size
;
1286 if (offset
< i_size_read(inode
) &&
1287 (xfs_ufsize_t
)offset
+ mapping_size
>= i_size_read(inode
)) {
1288 /* limit mapping to block that spans EOF */
1289 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1290 i_blocksize(inode
));
1292 if (mapping_size
> LONG_MAX
)
1293 mapping_size
= LONG_MAX
;
1295 bh_result
->b_size
= mapping_size
;
1300 struct inode
*inode
,
1302 struct buffer_head
*bh_result
,
1305 struct xfs_inode
*ip
= XFS_I(inode
);
1306 struct xfs_mount
*mp
= ip
->i_mount
;
1307 xfs_fileoff_t offset_fsb
, end_fsb
;
1310 struct xfs_bmbt_irec imap
;
1317 if (XFS_FORCED_SHUTDOWN(mp
))
1320 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1321 ASSERT(bh_result
->b_size
>= i_blocksize(inode
));
1322 size
= bh_result
->b_size
;
1324 if (offset
>= i_size_read(inode
))
1328 * Direct I/O is usually done on preallocated files, so try getting
1329 * a block mapping without an exclusive lock first.
1331 lockmode
= xfs_ilock_data_map_shared(ip
);
1333 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1334 if (offset
> mp
->m_super
->s_maxbytes
- size
)
1335 size
= mp
->m_super
->s_maxbytes
- offset
;
1336 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1337 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1339 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
, &imap
,
1344 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1348 trace_xfs_get_blocks_found(ip
, offset
, size
,
1349 imap
.br_state
== XFS_EXT_UNWRITTEN
?
1350 XFS_IO_UNWRITTEN
: XFS_IO_OVERWRITE
, &imap
);
1351 xfs_iunlock(ip
, lockmode
);
1353 /* trim mapping down to size requested */
1354 xfs_map_trim_size(inode
, iblock
, bh_result
, &imap
, offset
, size
);
1357 * For unwritten extents do not report a disk address in the buffered
1358 * read case (treat as if we're reading into a hole).
1360 if (xfs_bmap_is_real_extent(&imap
))
1361 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1364 * If this is a realtime file, data may be on a different device.
1365 * to that pointed to from the buffer_head b_bdev currently.
1367 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1371 xfs_iunlock(ip
, lockmode
);
1377 struct address_space
*mapping
,
1380 struct xfs_inode
*ip
= XFS_I(mapping
->host
);
1382 trace_xfs_vm_bmap(ip
);
1385 * The swap code (ab-)uses ->bmap to get a block mapping and then
1386 * bypasses the file system for actual I/O. We really can't allow
1387 * that on reflinks inodes, so we have to skip out here. And yes,
1388 * 0 is the magic code for a bmap error.
1390 * Since we don't pass back blockdev info, we can't return bmap
1391 * information for rt files either.
1393 if (xfs_is_reflink_inode(ip
) || XFS_IS_REALTIME_INODE(ip
))
1395 return iomap_bmap(mapping
, block
, &xfs_iomap_ops
);
1400 struct file
*unused
,
1403 trace_xfs_vm_readpage(page
->mapping
->host
, 1);
1404 return mpage_readpage(page
, xfs_get_blocks
);
1409 struct file
*unused
,
1410 struct address_space
*mapping
,
1411 struct list_head
*pages
,
1414 trace_xfs_vm_readpages(mapping
->host
, nr_pages
);
1415 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1419 * This is basically a copy of __set_page_dirty_buffers() with one
1420 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1421 * dirty, we'll never be able to clean them because we don't write buffers
1422 * beyond EOF, and that means we can't invalidate pages that span EOF
1423 * that have been marked dirty. Further, the dirty state can leak into
1424 * the file interior if the file is extended, resulting in all sorts of
1425 * bad things happening as the state does not match the underlying data.
1427 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1428 * this only exist because of bufferheads and how the generic code manages them.
1431 xfs_vm_set_page_dirty(
1434 struct address_space
*mapping
= page
->mapping
;
1435 struct inode
*inode
= mapping
->host
;
1440 if (unlikely(!mapping
))
1441 return !TestSetPageDirty(page
);
1443 end_offset
= i_size_read(inode
);
1444 offset
= page_offset(page
);
1446 spin_lock(&mapping
->private_lock
);
1447 if (page_has_buffers(page
)) {
1448 struct buffer_head
*head
= page_buffers(page
);
1449 struct buffer_head
*bh
= head
;
1452 if (offset
< end_offset
)
1453 set_buffer_dirty(bh
);
1454 bh
= bh
->b_this_page
;
1455 offset
+= i_blocksize(inode
);
1456 } while (bh
!= head
);
1459 * Lock out page->mem_cgroup migration to keep PageDirty
1460 * synchronized with per-memcg dirty page counters.
1462 lock_page_memcg(page
);
1463 newly_dirty
= !TestSetPageDirty(page
);
1464 spin_unlock(&mapping
->private_lock
);
1467 __set_page_dirty(page
, mapping
, 1);
1468 unlock_page_memcg(page
);
1470 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1475 xfs_iomap_swapfile_activate(
1476 struct swap_info_struct
*sis
,
1477 struct file
*swap_file
,
1480 sis
->bdev
= xfs_find_bdev_for_inode(file_inode(swap_file
));
1481 return iomap_swapfile_activate(sis
, swap_file
, span
, &xfs_iomap_ops
);
1484 const struct address_space_operations xfs_address_space_operations
= {
1485 .readpage
= xfs_vm_readpage
,
1486 .readpages
= xfs_vm_readpages
,
1487 .writepage
= xfs_vm_writepage
,
1488 .writepages
= xfs_vm_writepages
,
1489 .set_page_dirty
= xfs_vm_set_page_dirty
,
1490 .releasepage
= xfs_vm_releasepage
,
1491 .invalidatepage
= xfs_vm_invalidatepage
,
1492 .bmap
= xfs_vm_bmap
,
1493 .direct_IO
= noop_direct_IO
,
1494 .migratepage
= buffer_migrate_page
,
1495 .is_partially_uptodate
= block_is_partially_uptodate
,
1496 .error_remove_page
= generic_error_remove_page
,
1497 .swap_activate
= xfs_iomap_swapfile_activate
,
1500 const struct address_space_operations xfs_dax_aops
= {
1501 .writepages
= xfs_dax_writepages
,
1502 .direct_IO
= noop_direct_IO
,
1503 .set_page_dirty
= noop_set_page_dirty
,
1504 .invalidatepage
= noop_invalidatepage
,
1505 .swap_activate
= xfs_iomap_swapfile_activate
,