1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
20 #include "xfs_inode.h"
23 kmem_zone_t
*xfs_buf_item_zone
;
25 static inline struct xfs_buf_log_item
*BUF_ITEM(struct xfs_log_item
*lip
)
27 return container_of(lip
, struct xfs_buf_log_item
, bli_item
);
30 STATIC
void xfs_buf_do_callbacks(struct xfs_buf
*bp
);
33 xfs_buf_log_format_size(
34 struct xfs_buf_log_format
*blfp
)
36 return offsetof(struct xfs_buf_log_format
, blf_data_map
) +
37 (blfp
->blf_map_size
* sizeof(blfp
->blf_data_map
[0]));
41 * This returns the number of log iovecs needed to log the
44 * It calculates this as 1 iovec for the buf log format structure
45 * and 1 for each stretch of non-contiguous chunks to be logged.
46 * Contiguous chunks are logged in a single iovec.
48 * If the XFS_BLI_STALE flag has been set, then log nothing.
51 xfs_buf_item_size_segment(
52 struct xfs_buf_log_item
*bip
,
53 struct xfs_buf_log_format
*blfp
,
57 struct xfs_buf
*bp
= bip
->bli_buf
;
61 last_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
, 0);
66 * initial count for a dirty buffer is 2 vectors - the format structure
67 * and the first dirty region.
70 *nbytes
+= xfs_buf_log_format_size(blfp
) + XFS_BLF_CHUNK
;
72 while (last_bit
!= -1) {
74 * This takes the bit number to start looking from and
75 * returns the next set bit from there. It returns -1
76 * if there are no more bits set or the start bit is
77 * beyond the end of the bitmap.
79 next_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
,
82 * If we run out of bits, leave the loop,
83 * else if we find a new set of bits bump the number of vecs,
84 * else keep scanning the current set of bits.
88 } else if (next_bit
!= last_bit
+ 1) {
91 } else if (xfs_buf_offset(bp
, next_bit
* XFS_BLF_CHUNK
) !=
92 (xfs_buf_offset(bp
, last_bit
* XFS_BLF_CHUNK
) +
99 *nbytes
+= XFS_BLF_CHUNK
;
104 * This returns the number of log iovecs needed to log the given buf log item.
106 * It calculates this as 1 iovec for the buf log format structure and 1 for each
107 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
110 * Discontiguous buffers need a format structure per region that that is being
111 * logged. This makes the changes in the buffer appear to log recovery as though
112 * they came from separate buffers, just like would occur if multiple buffers
113 * were used instead of a single discontiguous buffer. This enables
114 * discontiguous buffers to be in-memory constructs, completely transparent to
115 * what ends up on disk.
117 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
122 struct xfs_log_item
*lip
,
126 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
129 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
130 if (bip
->bli_flags
& XFS_BLI_STALE
) {
132 * The buffer is stale, so all we need to log
133 * is the buf log format structure with the
136 trace_xfs_buf_item_size_stale(bip
);
137 ASSERT(bip
->__bli_format
.blf_flags
& XFS_BLF_CANCEL
);
138 *nvecs
+= bip
->bli_format_count
;
139 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
140 *nbytes
+= xfs_buf_log_format_size(&bip
->bli_formats
[i
]);
145 ASSERT(bip
->bli_flags
& XFS_BLI_LOGGED
);
147 if (bip
->bli_flags
& XFS_BLI_ORDERED
) {
149 * The buffer has been logged just to order it.
150 * It is not being included in the transaction
151 * commit, so no vectors are used at all.
153 trace_xfs_buf_item_size_ordered(bip
);
154 *nvecs
= XFS_LOG_VEC_ORDERED
;
159 * the vector count is based on the number of buffer vectors we have
160 * dirty bits in. This will only be greater than one when we have a
161 * compound buffer with more than one segment dirty. Hence for compound
162 * buffers we need to track which segment the dirty bits correspond to,
163 * and when we move from one segment to the next increment the vector
164 * count for the extra buf log format structure that will need to be
167 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
168 xfs_buf_item_size_segment(bip
, &bip
->bli_formats
[i
],
171 trace_xfs_buf_item_size(bip
);
175 xfs_buf_item_copy_iovec(
176 struct xfs_log_vec
*lv
,
177 struct xfs_log_iovec
**vecp
,
183 offset
+= first_bit
* XFS_BLF_CHUNK
;
184 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_BCHUNK
,
185 xfs_buf_offset(bp
, offset
),
186 nbits
* XFS_BLF_CHUNK
);
190 xfs_buf_item_straddle(
196 return xfs_buf_offset(bp
, offset
+ (next_bit
<< XFS_BLF_SHIFT
)) !=
197 (xfs_buf_offset(bp
, offset
+ (last_bit
<< XFS_BLF_SHIFT
)) +
202 xfs_buf_item_format_segment(
203 struct xfs_buf_log_item
*bip
,
204 struct xfs_log_vec
*lv
,
205 struct xfs_log_iovec
**vecp
,
207 struct xfs_buf_log_format
*blfp
)
209 struct xfs_buf
*bp
= bip
->bli_buf
;
216 /* copy the flags across from the base format item */
217 blfp
->blf_flags
= bip
->__bli_format
.blf_flags
;
220 * Base size is the actual size of the ondisk structure - it reflects
221 * the actual size of the dirty bitmap rather than the size of the in
224 base_size
= xfs_buf_log_format_size(blfp
);
226 first_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
, 0);
227 if (!(bip
->bli_flags
& XFS_BLI_STALE
) && first_bit
== -1) {
229 * If the map is not be dirty in the transaction, mark
230 * the size as zero and do not advance the vector pointer.
235 blfp
= xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_BFORMAT
, blfp
, base_size
);
238 if (bip
->bli_flags
& XFS_BLI_STALE
) {
240 * The buffer is stale, so all we need to log
241 * is the buf log format structure with the
244 trace_xfs_buf_item_format_stale(bip
);
245 ASSERT(blfp
->blf_flags
& XFS_BLF_CANCEL
);
251 * Fill in an iovec for each set of contiguous chunks.
253 last_bit
= first_bit
;
257 * This takes the bit number to start looking from and
258 * returns the next set bit from there. It returns -1
259 * if there are no more bits set or the start bit is
260 * beyond the end of the bitmap.
262 next_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
,
265 * If we run out of bits fill in the last iovec and get out of
266 * the loop. Else if we start a new set of bits then fill in
267 * the iovec for the series we were looking at and start
268 * counting the bits in the new one. Else we're still in the
269 * same set of bits so just keep counting and scanning.
271 if (next_bit
== -1) {
272 xfs_buf_item_copy_iovec(lv
, vecp
, bp
, offset
,
276 } else if (next_bit
!= last_bit
+ 1 ||
277 xfs_buf_item_straddle(bp
, offset
, next_bit
, last_bit
)) {
278 xfs_buf_item_copy_iovec(lv
, vecp
, bp
, offset
,
281 first_bit
= next_bit
;
292 * This is called to fill in the vector of log iovecs for the
293 * given log buf item. It fills the first entry with a buf log
294 * format structure, and the rest point to contiguous chunks
299 struct xfs_log_item
*lip
,
300 struct xfs_log_vec
*lv
)
302 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
303 struct xfs_buf
*bp
= bip
->bli_buf
;
304 struct xfs_log_iovec
*vecp
= NULL
;
308 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
309 ASSERT((bip
->bli_flags
& XFS_BLI_LOGGED
) ||
310 (bip
->bli_flags
& XFS_BLI_STALE
));
311 ASSERT((bip
->bli_flags
& XFS_BLI_STALE
) ||
312 (xfs_blft_from_flags(&bip
->__bli_format
) > XFS_BLFT_UNKNOWN_BUF
313 && xfs_blft_from_flags(&bip
->__bli_format
) < XFS_BLFT_MAX_BUF
));
314 ASSERT(!(bip
->bli_flags
& XFS_BLI_ORDERED
) ||
315 (bip
->bli_flags
& XFS_BLI_STALE
));
319 * If it is an inode buffer, transfer the in-memory state to the
320 * format flags and clear the in-memory state.
322 * For buffer based inode allocation, we do not transfer
323 * this state if the inode buffer allocation has not yet been committed
324 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
325 * correct replay of the inode allocation.
327 * For icreate item based inode allocation, the buffers aren't written
328 * to the journal during allocation, and hence we should always tag the
329 * buffer as an inode buffer so that the correct unlinked list replay
330 * occurs during recovery.
332 if (bip
->bli_flags
& XFS_BLI_INODE_BUF
) {
333 if (xfs_sb_version_hascrc(&lip
->li_mountp
->m_sb
) ||
334 !((bip
->bli_flags
& XFS_BLI_INODE_ALLOC_BUF
) &&
335 xfs_log_item_in_current_chkpt(lip
)))
336 bip
->__bli_format
.blf_flags
|= XFS_BLF_INODE_BUF
;
337 bip
->bli_flags
&= ~XFS_BLI_INODE_BUF
;
340 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
341 xfs_buf_item_format_segment(bip
, lv
, &vecp
, offset
,
342 &bip
->bli_formats
[i
]);
343 offset
+= BBTOB(bp
->b_maps
[i
].bm_len
);
347 * Check to make sure everything is consistent.
349 trace_xfs_buf_item_format(bip
);
353 * This is called to pin the buffer associated with the buf log item in memory
354 * so it cannot be written out.
356 * We also always take a reference to the buffer log item here so that the bli
357 * is held while the item is pinned in memory. This means that we can
358 * unconditionally drop the reference count a transaction holds when the
359 * transaction is completed.
363 struct xfs_log_item
*lip
)
365 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
367 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
368 ASSERT((bip
->bli_flags
& XFS_BLI_LOGGED
) ||
369 (bip
->bli_flags
& XFS_BLI_ORDERED
) ||
370 (bip
->bli_flags
& XFS_BLI_STALE
));
372 trace_xfs_buf_item_pin(bip
);
374 atomic_inc(&bip
->bli_refcount
);
375 atomic_inc(&bip
->bli_buf
->b_pin_count
);
379 * This is called to unpin the buffer associated with the buf log
380 * item which was previously pinned with a call to xfs_buf_item_pin().
382 * Also drop the reference to the buf item for the current transaction.
383 * If the XFS_BLI_STALE flag is set and we are the last reference,
384 * then free up the buf log item and unlock the buffer.
386 * If the remove flag is set we are called from uncommit in the
387 * forced-shutdown path. If that is true and the reference count on
388 * the log item is going to drop to zero we need to free the item's
389 * descriptor in the transaction.
393 struct xfs_log_item
*lip
,
396 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
397 xfs_buf_t
*bp
= bip
->bli_buf
;
398 struct xfs_ail
*ailp
= lip
->li_ailp
;
399 int stale
= bip
->bli_flags
& XFS_BLI_STALE
;
402 ASSERT(bp
->b_log_item
== bip
);
403 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
405 trace_xfs_buf_item_unpin(bip
);
407 freed
= atomic_dec_and_test(&bip
->bli_refcount
);
409 if (atomic_dec_and_test(&bp
->b_pin_count
))
410 wake_up_all(&bp
->b_waiters
);
412 if (freed
&& stale
) {
413 ASSERT(bip
->bli_flags
& XFS_BLI_STALE
);
414 ASSERT(xfs_buf_islocked(bp
));
415 ASSERT(bp
->b_flags
& XBF_STALE
);
416 ASSERT(bip
->__bli_format
.blf_flags
& XFS_BLF_CANCEL
);
418 trace_xfs_buf_item_unpin_stale(bip
);
422 * If we are in a transaction context, we have to
423 * remove the log item from the transaction as we are
424 * about to release our reference to the buffer. If we
425 * don't, the unlock that occurs later in
426 * xfs_trans_uncommit() will try to reference the
427 * buffer which we no longer have a hold on.
429 if (!list_empty(&lip
->li_trans
))
430 xfs_trans_del_item(lip
);
433 * Since the transaction no longer refers to the buffer,
434 * the buffer should no longer refer to the transaction.
440 * If we get called here because of an IO error, we may
441 * or may not have the item on the AIL. xfs_trans_ail_delete()
442 * will take care of that situation.
443 * xfs_trans_ail_delete() drops the AIL lock.
445 if (bip
->bli_flags
& XFS_BLI_STALE_INODE
) {
446 xfs_buf_do_callbacks(bp
);
447 bp
->b_log_item
= NULL
;
448 list_del_init(&bp
->b_li_list
);
451 spin_lock(&ailp
->ail_lock
);
452 xfs_trans_ail_delete(ailp
, lip
, SHUTDOWN_LOG_IO_ERROR
);
453 xfs_buf_item_relse(bp
);
454 ASSERT(bp
->b_log_item
== NULL
);
457 } else if (freed
&& remove
) {
459 * There are currently two references to the buffer - the active
460 * LRU reference and the buf log item. What we are about to do
461 * here - simulate a failed IO completion - requires 3
464 * The LRU reference is removed by the xfs_buf_stale() call. The
465 * buf item reference is removed by the xfs_buf_iodone()
466 * callback that is run by xfs_buf_do_callbacks() during ioend
467 * processing (via the bp->b_iodone callback), and then finally
468 * the ioend processing will drop the IO reference if the buffer
469 * is marked XBF_ASYNC.
471 * Hence we need to take an additional reference here so that IO
472 * completion processing doesn't free the buffer prematurely.
476 bp
->b_flags
|= XBF_ASYNC
;
477 xfs_buf_ioerror(bp
, -EIO
);
478 bp
->b_flags
&= ~XBF_DONE
;
485 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
486 * seconds so as to not spam logs too much on repeated detection of the same
490 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state
, 30 * HZ
, 10);
494 struct xfs_log_item
*lip
,
495 struct list_head
*buffer_list
)
497 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
498 struct xfs_buf
*bp
= bip
->bli_buf
;
499 uint rval
= XFS_ITEM_SUCCESS
;
501 if (xfs_buf_ispinned(bp
))
502 return XFS_ITEM_PINNED
;
503 if (!xfs_buf_trylock(bp
)) {
505 * If we have just raced with a buffer being pinned and it has
506 * been marked stale, we could end up stalling until someone else
507 * issues a log force to unpin the stale buffer. Check for the
508 * race condition here so xfsaild recognizes the buffer is pinned
509 * and queues a log force to move it along.
511 if (xfs_buf_ispinned(bp
))
512 return XFS_ITEM_PINNED
;
513 return XFS_ITEM_LOCKED
;
516 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
518 trace_xfs_buf_item_push(bip
);
520 /* has a previous flush failed due to IO errors? */
521 if ((bp
->b_flags
& XBF_WRITE_FAIL
) &&
522 ___ratelimit(&xfs_buf_write_fail_rl_state
, "XFS: Failing async write")) {
523 xfs_warn(bp
->b_target
->bt_mount
,
524 "Failing async write on buffer block 0x%llx. Retrying async write.",
525 (long long)bp
->b_bn
);
528 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
529 rval
= XFS_ITEM_FLUSHING
;
535 * Release the buffer associated with the buf log item. If there is no dirty
536 * logged data associated with the buffer recorded in the buf log item, then
537 * free the buf log item and remove the reference to it in the buffer.
539 * This call ignores the recursion count. It is only called when the buffer
540 * should REALLY be unlocked, regardless of the recursion count.
542 * We unconditionally drop the transaction's reference to the log item. If the
543 * item was logged, then another reference was taken when it was pinned, so we
544 * can safely drop the transaction reference now. This also allows us to avoid
545 * potential races with the unpin code freeing the bli by not referencing the
546 * bli after we've dropped the reference count.
548 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
549 * if necessary but do not unlock the buffer. This is for support of
550 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
555 struct xfs_log_item
*lip
)
557 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
558 struct xfs_buf
*bp
= bip
->bli_buf
;
560 bool hold
= !!(bip
->bli_flags
& XFS_BLI_HOLD
);
561 bool dirty
= !!(bip
->bli_flags
& XFS_BLI_DIRTY
);
562 #if defined(DEBUG) || defined(XFS_WARN)
563 bool ordered
= !!(bip
->bli_flags
& XFS_BLI_ORDERED
);
566 aborted
= test_bit(XFS_LI_ABORTED
, &lip
->li_flags
);
568 /* Clear the buffer's association with this transaction. */
572 * The per-transaction state has been copied above so clear it from the
575 bip
->bli_flags
&= ~(XFS_BLI_LOGGED
| XFS_BLI_HOLD
| XFS_BLI_ORDERED
);
578 * If the buf item is marked stale, then don't do anything. We'll
579 * unlock the buffer and free the buf item when the buffer is unpinned
582 if (bip
->bli_flags
& XFS_BLI_STALE
) {
583 trace_xfs_buf_item_unlock_stale(bip
);
584 ASSERT(bip
->__bli_format
.blf_flags
& XFS_BLF_CANCEL
);
586 atomic_dec(&bip
->bli_refcount
);
591 trace_xfs_buf_item_unlock(bip
);
594 * If the buf item isn't tracking any data, free it, otherwise drop the
595 * reference we hold to it. If we are aborting the transaction, this may
596 * be the only reference to the buf item, so we free it anyway
597 * regardless of whether it is dirty or not. A dirty abort implies a
600 * The bli dirty state should match whether the blf has logged segments
601 * except for ordered buffers, where only the bli should be dirty.
603 ASSERT((!ordered
&& dirty
== xfs_buf_item_dirty_format(bip
)) ||
604 (ordered
&& dirty
&& !xfs_buf_item_dirty_format(bip
)));
607 * Clean buffers, by definition, cannot be in the AIL. However, aborted
608 * buffers may be in the AIL regardless of dirty state. An aborted
609 * transaction that invalidates a buffer already in the AIL may have
610 * marked it stale and cleared the dirty state, for example.
612 * Therefore if we are aborting a buffer and we've just taken the last
613 * reference away, we have to check if it is in the AIL before freeing
614 * it. We need to free it in this case, because an aborted transaction
615 * has already shut the filesystem down and this is the last chance we
616 * will have to do so.
618 if (atomic_dec_and_test(&bip
->bli_refcount
)) {
620 ASSERT(XFS_FORCED_SHUTDOWN(lip
->li_mountp
));
621 xfs_trans_ail_remove(lip
, SHUTDOWN_LOG_IO_ERROR
);
622 xfs_buf_item_relse(bp
);
624 xfs_buf_item_relse(bp
);
632 * This is called to find out where the oldest active copy of the
633 * buf log item in the on disk log resides now that the last log
634 * write of it completed at the given lsn.
635 * We always re-log all the dirty data in a buffer, so usually the
636 * latest copy in the on disk log is the only one that matters. For
637 * those cases we simply return the given lsn.
639 * The one exception to this is for buffers full of newly allocated
640 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
641 * flag set, indicating that only the di_next_unlinked fields from the
642 * inodes in the buffers will be replayed during recovery. If the
643 * original newly allocated inode images have not yet been flushed
644 * when the buffer is so relogged, then we need to make sure that we
645 * keep the old images in the 'active' portion of the log. We do this
646 * by returning the original lsn of that transaction here rather than
650 xfs_buf_item_committed(
651 struct xfs_log_item
*lip
,
654 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
656 trace_xfs_buf_item_committed(bip
);
658 if ((bip
->bli_flags
& XFS_BLI_INODE_ALLOC_BUF
) && lip
->li_lsn
!= 0)
664 xfs_buf_item_committing(
665 struct xfs_log_item
*lip
,
666 xfs_lsn_t commit_lsn
)
671 * This is the ops vector shared by all buf log items.
673 static const struct xfs_item_ops xfs_buf_item_ops
= {
674 .iop_size
= xfs_buf_item_size
,
675 .iop_format
= xfs_buf_item_format
,
676 .iop_pin
= xfs_buf_item_pin
,
677 .iop_unpin
= xfs_buf_item_unpin
,
678 .iop_unlock
= xfs_buf_item_unlock
,
679 .iop_committed
= xfs_buf_item_committed
,
680 .iop_push
= xfs_buf_item_push
,
681 .iop_committing
= xfs_buf_item_committing
685 xfs_buf_item_get_format(
686 struct xfs_buf_log_item
*bip
,
689 ASSERT(bip
->bli_formats
== NULL
);
690 bip
->bli_format_count
= count
;
693 bip
->bli_formats
= &bip
->__bli_format
;
697 bip
->bli_formats
= kmem_zalloc(count
* sizeof(struct xfs_buf_log_format
),
699 if (!bip
->bli_formats
)
705 xfs_buf_item_free_format(
706 struct xfs_buf_log_item
*bip
)
708 if (bip
->bli_formats
!= &bip
->__bli_format
) {
709 kmem_free(bip
->bli_formats
);
710 bip
->bli_formats
= NULL
;
715 * Allocate a new buf log item to go with the given buffer.
716 * Set the buffer's b_log_item field to point to the new
722 struct xfs_mount
*mp
)
724 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
731 * Check to see if there is already a buf log item for
732 * this buffer. If we do already have one, there is
733 * nothing to do here so return.
735 ASSERT(bp
->b_target
->bt_mount
== mp
);
737 ASSERT(bip
->bli_item
.li_type
== XFS_LI_BUF
);
738 ASSERT(!bp
->b_transp
);
739 ASSERT(bip
->bli_buf
== bp
);
743 bip
= kmem_zone_zalloc(xfs_buf_item_zone
, KM_SLEEP
);
744 xfs_log_item_init(mp
, &bip
->bli_item
, XFS_LI_BUF
, &xfs_buf_item_ops
);
748 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
749 * can be divided into. Make sure not to truncate any pieces.
750 * map_size is the size of the bitmap needed to describe the
751 * chunks of the buffer.
753 * Discontiguous buffer support follows the layout of the underlying
754 * buffer. This makes the implementation as simple as possible.
756 error
= xfs_buf_item_get_format(bip
, bp
->b_map_count
);
758 if (error
) { /* to stop gcc throwing set-but-unused warnings */
759 kmem_zone_free(xfs_buf_item_zone
, bip
);
764 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
765 chunks
= DIV_ROUND_UP(BBTOB(bp
->b_maps
[i
].bm_len
),
767 map_size
= DIV_ROUND_UP(chunks
, NBWORD
);
769 bip
->bli_formats
[i
].blf_type
= XFS_LI_BUF
;
770 bip
->bli_formats
[i
].blf_blkno
= bp
->b_maps
[i
].bm_bn
;
771 bip
->bli_formats
[i
].blf_len
= bp
->b_maps
[i
].bm_len
;
772 bip
->bli_formats
[i
].blf_map_size
= map_size
;
775 bp
->b_log_item
= bip
;
782 * Mark bytes first through last inclusive as dirty in the buf
786 xfs_buf_item_log_segment(
802 * Convert byte offsets to bit numbers.
804 first_bit
= first
>> XFS_BLF_SHIFT
;
805 last_bit
= last
>> XFS_BLF_SHIFT
;
808 * Calculate the total number of bits to be set.
810 bits_to_set
= last_bit
- first_bit
+ 1;
813 * Get a pointer to the first word in the bitmap
816 word_num
= first_bit
>> BIT_TO_WORD_SHIFT
;
817 wordp
= &map
[word_num
];
820 * Calculate the starting bit in the first word.
822 bit
= first_bit
& (uint
)(NBWORD
- 1);
825 * First set any bits in the first word of our range.
826 * If it starts at bit 0 of the word, it will be
827 * set below rather than here. That is what the variable
828 * bit tells us. The variable bits_set tracks the number
829 * of bits that have been set so far. End_bit is the number
830 * of the last bit to be set in this word plus one.
833 end_bit
= min(bit
+ bits_to_set
, (uint
)NBWORD
);
834 mask
= ((1U << (end_bit
- bit
)) - 1) << bit
;
837 bits_set
= end_bit
- bit
;
843 * Now set bits a whole word at a time that are between
844 * first_bit and last_bit.
846 while ((bits_to_set
- bits_set
) >= NBWORD
) {
847 *wordp
|= 0xffffffff;
853 * Finally, set any bits left to be set in one last partial word.
855 end_bit
= bits_to_set
- bits_set
;
857 mask
= (1U << end_bit
) - 1;
863 * Mark bytes first through last inclusive as dirty in the buf
868 struct xfs_buf_log_item
*bip
,
875 struct xfs_buf
*bp
= bip
->bli_buf
;
878 * walk each buffer segment and mark them dirty appropriately.
881 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
884 end
= start
+ BBTOB(bp
->b_maps
[i
].bm_len
) - 1;
886 /* skip to the map that includes the first byte to log */
888 start
+= BBTOB(bp
->b_maps
[i
].bm_len
);
893 * Trim the range to this segment and mark it in the bitmap.
894 * Note that we must convert buffer offsets to segment relative
895 * offsets (e.g., the first byte of each segment is byte 0 of
902 xfs_buf_item_log_segment(first
- start
, end
- start
,
903 &bip
->bli_formats
[i
].blf_data_map
[0]);
905 start
+= BBTOB(bp
->b_maps
[i
].bm_len
);
911 * Return true if the buffer has any ranges logged/dirtied by a transaction,
915 xfs_buf_item_dirty_format(
916 struct xfs_buf_log_item
*bip
)
920 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
921 if (!xfs_bitmap_empty(bip
->bli_formats
[i
].blf_data_map
,
922 bip
->bli_formats
[i
].blf_map_size
))
931 struct xfs_buf_log_item
*bip
)
933 xfs_buf_item_free_format(bip
);
934 kmem_free(bip
->bli_item
.li_lv_shadow
);
935 kmem_zone_free(xfs_buf_item_zone
, bip
);
939 * This is called when the buf log item is no longer needed. It should
940 * free the buf log item associated with the given buffer and clear
941 * the buffer's pointer to the buf log item. If there are no more
942 * items in the list, clear the b_iodone field of the buffer (see
943 * xfs_buf_attach_iodone() below).
949 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
951 trace_xfs_buf_item_relse(bp
, _RET_IP_
);
952 ASSERT(!(bip
->bli_item
.li_flags
& XFS_LI_IN_AIL
));
954 bp
->b_log_item
= NULL
;
955 if (list_empty(&bp
->b_li_list
))
959 xfs_buf_item_free(bip
);
964 * Add the given log item with its callback to the list of callbacks
965 * to be called when the buffer's I/O completes. If it is not set
966 * already, set the buffer's b_iodone() routine to be
967 * xfs_buf_iodone_callbacks() and link the log item into the list of
968 * items rooted at b_li_list.
971 xfs_buf_attach_iodone(
973 void (*cb
)(xfs_buf_t
*, xfs_log_item_t
*),
976 ASSERT(xfs_buf_islocked(bp
));
979 list_add_tail(&lip
->li_bio_list
, &bp
->b_li_list
);
981 ASSERT(bp
->b_iodone
== NULL
||
982 bp
->b_iodone
== xfs_buf_iodone_callbacks
);
983 bp
->b_iodone
= xfs_buf_iodone_callbacks
;
987 * We can have many callbacks on a buffer. Running the callbacks individually
988 * can cause a lot of contention on the AIL lock, so we allow for a single
989 * callback to be able to scan the remaining items in bp->b_li_list for other
990 * items of the same type and callback to be processed in the first call.
992 * As a result, the loop walking the callback list below will also modify the
993 * list. it removes the first item from the list and then runs the callback.
994 * The loop then restarts from the new first item int the list. This allows the
995 * callback to scan and modify the list attached to the buffer and we don't
996 * have to care about maintaining a next item pointer.
999 xfs_buf_do_callbacks(
1002 struct xfs_buf_log_item
*blip
= bp
->b_log_item
;
1003 struct xfs_log_item
*lip
;
1005 /* If there is a buf_log_item attached, run its callback */
1007 lip
= &blip
->bli_item
;
1008 lip
->li_cb(bp
, lip
);
1011 while (!list_empty(&bp
->b_li_list
)) {
1012 lip
= list_first_entry(&bp
->b_li_list
, struct xfs_log_item
,
1016 * Remove the item from the list, so we don't have any
1017 * confusion if the item is added to another buf.
1018 * Don't touch the log item after calling its
1019 * callback, because it could have freed itself.
1021 list_del_init(&lip
->li_bio_list
);
1022 lip
->li_cb(bp
, lip
);
1027 * Invoke the error state callback for each log item affected by the failed I/O.
1029 * If a metadata buffer write fails with a non-permanent error, the buffer is
1030 * eventually resubmitted and so the completion callbacks are not run. The error
1031 * state may need to be propagated to the log items attached to the buffer,
1032 * however, so the next AIL push of the item knows hot to handle it correctly.
1035 xfs_buf_do_callbacks_fail(
1038 struct xfs_log_item
*lip
;
1039 struct xfs_ail
*ailp
;
1042 * Buffer log item errors are handled directly by xfs_buf_item_push()
1043 * and xfs_buf_iodone_callback_error, and they have no IO error
1044 * callbacks. Check only for items in b_li_list.
1046 if (list_empty(&bp
->b_li_list
))
1049 lip
= list_first_entry(&bp
->b_li_list
, struct xfs_log_item
,
1051 ailp
= lip
->li_ailp
;
1052 spin_lock(&ailp
->ail_lock
);
1053 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
) {
1054 if (lip
->li_ops
->iop_error
)
1055 lip
->li_ops
->iop_error(lip
, bp
);
1057 spin_unlock(&ailp
->ail_lock
);
1061 xfs_buf_iodone_callback_error(
1064 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
1065 struct xfs_log_item
*lip
;
1066 struct xfs_mount
*mp
;
1067 static ulong lasttime
;
1068 static xfs_buftarg_t
*lasttarg
;
1069 struct xfs_error_cfg
*cfg
;
1072 * The failed buffer might not have a buf_log_item attached or the
1073 * log_item list might be empty. Get the mp from the available
1076 lip
= list_first_entry_or_null(&bp
->b_li_list
, struct xfs_log_item
,
1078 mp
= lip
? lip
->li_mountp
: bip
->bli_item
.li_mountp
;
1081 * If we've already decided to shutdown the filesystem because of
1082 * I/O errors, there's no point in giving this a retry.
1084 if (XFS_FORCED_SHUTDOWN(mp
))
1087 if (bp
->b_target
!= lasttarg
||
1088 time_after(jiffies
, (lasttime
+ 5*HZ
))) {
1090 xfs_buf_ioerror_alert(bp
, __func__
);
1092 lasttarg
= bp
->b_target
;
1094 /* synchronous writes will have callers process the error */
1095 if (!(bp
->b_flags
& XBF_ASYNC
))
1098 trace_xfs_buf_item_iodone_async(bp
, _RET_IP_
);
1099 ASSERT(bp
->b_iodone
!= NULL
);
1101 cfg
= xfs_error_get_cfg(mp
, XFS_ERR_METADATA
, bp
->b_error
);
1104 * If the write was asynchronous then no one will be looking for the
1105 * error. If this is the first failure of this type, clear the error
1106 * state and write the buffer out again. This means we always retry an
1107 * async write failure at least once, but we also need to set the buffer
1108 * up to behave correctly now for repeated failures.
1110 if (!(bp
->b_flags
& (XBF_STALE
| XBF_WRITE_FAIL
)) ||
1111 bp
->b_last_error
!= bp
->b_error
) {
1112 bp
->b_flags
|= (XBF_WRITE
| XBF_DONE
| XBF_WRITE_FAIL
);
1113 bp
->b_last_error
= bp
->b_error
;
1114 if (cfg
->retry_timeout
!= XFS_ERR_RETRY_FOREVER
&&
1115 !bp
->b_first_retry_time
)
1116 bp
->b_first_retry_time
= jiffies
;
1118 xfs_buf_ioerror(bp
, 0);
1124 * Repeated failure on an async write. Take action according to the
1125 * error configuration we have been set up to use.
1128 if (cfg
->max_retries
!= XFS_ERR_RETRY_FOREVER
&&
1129 ++bp
->b_retries
> cfg
->max_retries
)
1130 goto permanent_error
;
1131 if (cfg
->retry_timeout
!= XFS_ERR_RETRY_FOREVER
&&
1132 time_after(jiffies
, cfg
->retry_timeout
+ bp
->b_first_retry_time
))
1133 goto permanent_error
;
1135 /* At unmount we may treat errors differently */
1136 if ((mp
->m_flags
& XFS_MOUNT_UNMOUNTING
) && mp
->m_fail_unmount
)
1137 goto permanent_error
;
1140 * Still a transient error, run IO completion failure callbacks and let
1141 * the higher layers retry the buffer.
1143 xfs_buf_do_callbacks_fail(bp
);
1144 xfs_buf_ioerror(bp
, 0);
1149 * Permanent error - we need to trigger a shutdown if we haven't already
1150 * to indicate that inconsistency will result from this action.
1153 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1156 bp
->b_flags
|= XBF_DONE
;
1157 trace_xfs_buf_error_relse(bp
, _RET_IP_
);
1162 * This is the iodone() function for buffers which have had callbacks attached
1163 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1164 * callback list, mark the buffer as having no more callbacks and then push the
1165 * buffer through IO completion processing.
1168 xfs_buf_iodone_callbacks(
1172 * If there is an error, process it. Some errors require us
1173 * to run callbacks after failure processing is done so we
1174 * detect that and take appropriate action.
1176 if (bp
->b_error
&& xfs_buf_iodone_callback_error(bp
))
1180 * Successful IO or permanent error. Either way, we can clear the
1181 * retry state here in preparation for the next error that may occur.
1183 bp
->b_last_error
= 0;
1185 bp
->b_first_retry_time
= 0;
1187 xfs_buf_do_callbacks(bp
);
1188 bp
->b_log_item
= NULL
;
1189 list_del_init(&bp
->b_li_list
);
1190 bp
->b_iodone
= NULL
;
1195 * This is the iodone() function for buffers which have been
1196 * logged. It is called when they are eventually flushed out.
1197 * It should remove the buf item from the AIL, and free the buf item.
1198 * It is called by xfs_buf_iodone_callbacks() above which will take
1199 * care of cleaning up the buffer itself.
1204 struct xfs_log_item
*lip
)
1206 struct xfs_ail
*ailp
= lip
->li_ailp
;
1208 ASSERT(BUF_ITEM(lip
)->bli_buf
== bp
);
1213 * If we are forcibly shutting down, this may well be
1214 * off the AIL already. That's because we simulate the
1215 * log-committed callbacks to unpin these buffers. Or we may never
1216 * have put this item on AIL because of the transaction was
1217 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1219 * Either way, AIL is useless if we're forcing a shutdown.
1221 spin_lock(&ailp
->ail_lock
);
1222 xfs_trans_ail_delete(ailp
, lip
, SHUTDOWN_CORRUPT_INCORE
);
1223 xfs_buf_item_free(BUF_ITEM(lip
));
1227 * Requeue a failed buffer for writeback
1229 * Return true if the buffer has been re-queued properly, false otherwise
1232 xfs_buf_resubmit_failed_buffers(
1234 struct list_head
*buffer_list
)
1236 struct xfs_log_item
*lip
;
1239 * Clear XFS_LI_FAILED flag from all items before resubmit
1241 * XFS_LI_FAILED set/clear is protected by ail_lock, caller this
1242 * function already have it acquired
1244 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
)
1245 xfs_clear_li_failed(lip
);
1247 /* Add this buffer back to the delayed write list */
1248 return xfs_buf_delwri_queue(bp
, buffer_list
);