netfilter: nft_set_rbtree: fix panic when destroying set by GC
[linux/fpc-iii.git] / fs / xfs / xfs_buf_item.c
blob1c9d1398980b6562969ab03a38e5158aeafc6c07
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
19 #include "xfs_log.h"
20 #include "xfs_inode.h"
23 kmem_zone_t *xfs_buf_item_zone;
25 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
27 return container_of(lip, struct xfs_buf_log_item, bli_item);
30 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
32 static inline int
33 xfs_buf_log_format_size(
34 struct xfs_buf_log_format *blfp)
36 return offsetof(struct xfs_buf_log_format, blf_data_map) +
37 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
41 * This returns the number of log iovecs needed to log the
42 * given buf log item.
44 * It calculates this as 1 iovec for the buf log format structure
45 * and 1 for each stretch of non-contiguous chunks to be logged.
46 * Contiguous chunks are logged in a single iovec.
48 * If the XFS_BLI_STALE flag has been set, then log nothing.
50 STATIC void
51 xfs_buf_item_size_segment(
52 struct xfs_buf_log_item *bip,
53 struct xfs_buf_log_format *blfp,
54 int *nvecs,
55 int *nbytes)
57 struct xfs_buf *bp = bip->bli_buf;
58 int next_bit;
59 int last_bit;
61 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
62 if (last_bit == -1)
63 return;
66 * initial count for a dirty buffer is 2 vectors - the format structure
67 * and the first dirty region.
69 *nvecs += 2;
70 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
72 while (last_bit != -1) {
74 * This takes the bit number to start looking from and
75 * returns the next set bit from there. It returns -1
76 * if there are no more bits set or the start bit is
77 * beyond the end of the bitmap.
79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 last_bit + 1);
82 * If we run out of bits, leave the loop,
83 * else if we find a new set of bits bump the number of vecs,
84 * else keep scanning the current set of bits.
86 if (next_bit == -1) {
87 break;
88 } else if (next_bit != last_bit + 1) {
89 last_bit = next_bit;
90 (*nvecs)++;
91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 XFS_BLF_CHUNK)) {
94 last_bit = next_bit;
95 (*nvecs)++;
96 } else {
97 last_bit++;
99 *nbytes += XFS_BLF_CHUNK;
104 * This returns the number of log iovecs needed to log the given buf log item.
106 * It calculates this as 1 iovec for the buf log format structure and 1 for each
107 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
108 * in a single iovec.
110 * Discontiguous buffers need a format structure per region that that is being
111 * logged. This makes the changes in the buffer appear to log recovery as though
112 * they came from separate buffers, just like would occur if multiple buffers
113 * were used instead of a single discontiguous buffer. This enables
114 * discontiguous buffers to be in-memory constructs, completely transparent to
115 * what ends up on disk.
117 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
118 * format structures.
120 STATIC void
121 xfs_buf_item_size(
122 struct xfs_log_item *lip,
123 int *nvecs,
124 int *nbytes)
126 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
127 int i;
129 ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 if (bip->bli_flags & XFS_BLI_STALE) {
132 * The buffer is stale, so all we need to log
133 * is the buf log format structure with the
134 * cancel flag in it.
136 trace_xfs_buf_item_size_stale(bip);
137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 *nvecs += bip->bli_format_count;
139 for (i = 0; i < bip->bli_format_count; i++) {
140 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
142 return;
145 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
147 if (bip->bli_flags & XFS_BLI_ORDERED) {
149 * The buffer has been logged just to order it.
150 * It is not being included in the transaction
151 * commit, so no vectors are used at all.
153 trace_xfs_buf_item_size_ordered(bip);
154 *nvecs = XFS_LOG_VEC_ORDERED;
155 return;
159 * the vector count is based on the number of buffer vectors we have
160 * dirty bits in. This will only be greater than one when we have a
161 * compound buffer with more than one segment dirty. Hence for compound
162 * buffers we need to track which segment the dirty bits correspond to,
163 * and when we move from one segment to the next increment the vector
164 * count for the extra buf log format structure that will need to be
165 * written.
167 for (i = 0; i < bip->bli_format_count; i++) {
168 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
169 nvecs, nbytes);
171 trace_xfs_buf_item_size(bip);
174 static inline void
175 xfs_buf_item_copy_iovec(
176 struct xfs_log_vec *lv,
177 struct xfs_log_iovec **vecp,
178 struct xfs_buf *bp,
179 uint offset,
180 int first_bit,
181 uint nbits)
183 offset += first_bit * XFS_BLF_CHUNK;
184 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
185 xfs_buf_offset(bp, offset),
186 nbits * XFS_BLF_CHUNK);
189 static inline bool
190 xfs_buf_item_straddle(
191 struct xfs_buf *bp,
192 uint offset,
193 int next_bit,
194 int last_bit)
196 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
197 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
198 XFS_BLF_CHUNK);
201 static void
202 xfs_buf_item_format_segment(
203 struct xfs_buf_log_item *bip,
204 struct xfs_log_vec *lv,
205 struct xfs_log_iovec **vecp,
206 uint offset,
207 struct xfs_buf_log_format *blfp)
209 struct xfs_buf *bp = bip->bli_buf;
210 uint base_size;
211 int first_bit;
212 int last_bit;
213 int next_bit;
214 uint nbits;
216 /* copy the flags across from the base format item */
217 blfp->blf_flags = bip->__bli_format.blf_flags;
220 * Base size is the actual size of the ondisk structure - it reflects
221 * the actual size of the dirty bitmap rather than the size of the in
222 * memory structure.
224 base_size = xfs_buf_log_format_size(blfp);
226 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
227 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
229 * If the map is not be dirty in the transaction, mark
230 * the size as zero and do not advance the vector pointer.
232 return;
235 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
236 blfp->blf_size = 1;
238 if (bip->bli_flags & XFS_BLI_STALE) {
240 * The buffer is stale, so all we need to log
241 * is the buf log format structure with the
242 * cancel flag in it.
244 trace_xfs_buf_item_format_stale(bip);
245 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
246 return;
251 * Fill in an iovec for each set of contiguous chunks.
253 last_bit = first_bit;
254 nbits = 1;
255 for (;;) {
257 * This takes the bit number to start looking from and
258 * returns the next set bit from there. It returns -1
259 * if there are no more bits set or the start bit is
260 * beyond the end of the bitmap.
262 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
263 (uint)last_bit + 1);
265 * If we run out of bits fill in the last iovec and get out of
266 * the loop. Else if we start a new set of bits then fill in
267 * the iovec for the series we were looking at and start
268 * counting the bits in the new one. Else we're still in the
269 * same set of bits so just keep counting and scanning.
271 if (next_bit == -1) {
272 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
273 first_bit, nbits);
274 blfp->blf_size++;
275 break;
276 } else if (next_bit != last_bit + 1 ||
277 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
278 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
279 first_bit, nbits);
280 blfp->blf_size++;
281 first_bit = next_bit;
282 last_bit = next_bit;
283 nbits = 1;
284 } else {
285 last_bit++;
286 nbits++;
292 * This is called to fill in the vector of log iovecs for the
293 * given log buf item. It fills the first entry with a buf log
294 * format structure, and the rest point to contiguous chunks
295 * within the buffer.
297 STATIC void
298 xfs_buf_item_format(
299 struct xfs_log_item *lip,
300 struct xfs_log_vec *lv)
302 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
303 struct xfs_buf *bp = bip->bli_buf;
304 struct xfs_log_iovec *vecp = NULL;
305 uint offset = 0;
306 int i;
308 ASSERT(atomic_read(&bip->bli_refcount) > 0);
309 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
310 (bip->bli_flags & XFS_BLI_STALE));
311 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
312 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
313 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
314 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
315 (bip->bli_flags & XFS_BLI_STALE));
319 * If it is an inode buffer, transfer the in-memory state to the
320 * format flags and clear the in-memory state.
322 * For buffer based inode allocation, we do not transfer
323 * this state if the inode buffer allocation has not yet been committed
324 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
325 * correct replay of the inode allocation.
327 * For icreate item based inode allocation, the buffers aren't written
328 * to the journal during allocation, and hence we should always tag the
329 * buffer as an inode buffer so that the correct unlinked list replay
330 * occurs during recovery.
332 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
333 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
334 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
335 xfs_log_item_in_current_chkpt(lip)))
336 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
337 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
340 for (i = 0; i < bip->bli_format_count; i++) {
341 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
342 &bip->bli_formats[i]);
343 offset += BBTOB(bp->b_maps[i].bm_len);
347 * Check to make sure everything is consistent.
349 trace_xfs_buf_item_format(bip);
353 * This is called to pin the buffer associated with the buf log item in memory
354 * so it cannot be written out.
356 * We also always take a reference to the buffer log item here so that the bli
357 * is held while the item is pinned in memory. This means that we can
358 * unconditionally drop the reference count a transaction holds when the
359 * transaction is completed.
361 STATIC void
362 xfs_buf_item_pin(
363 struct xfs_log_item *lip)
365 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
367 ASSERT(atomic_read(&bip->bli_refcount) > 0);
368 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
369 (bip->bli_flags & XFS_BLI_ORDERED) ||
370 (bip->bli_flags & XFS_BLI_STALE));
372 trace_xfs_buf_item_pin(bip);
374 atomic_inc(&bip->bli_refcount);
375 atomic_inc(&bip->bli_buf->b_pin_count);
379 * This is called to unpin the buffer associated with the buf log
380 * item which was previously pinned with a call to xfs_buf_item_pin().
382 * Also drop the reference to the buf item for the current transaction.
383 * If the XFS_BLI_STALE flag is set and we are the last reference,
384 * then free up the buf log item and unlock the buffer.
386 * If the remove flag is set we are called from uncommit in the
387 * forced-shutdown path. If that is true and the reference count on
388 * the log item is going to drop to zero we need to free the item's
389 * descriptor in the transaction.
391 STATIC void
392 xfs_buf_item_unpin(
393 struct xfs_log_item *lip,
394 int remove)
396 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
397 xfs_buf_t *bp = bip->bli_buf;
398 struct xfs_ail *ailp = lip->li_ailp;
399 int stale = bip->bli_flags & XFS_BLI_STALE;
400 int freed;
402 ASSERT(bp->b_log_item == bip);
403 ASSERT(atomic_read(&bip->bli_refcount) > 0);
405 trace_xfs_buf_item_unpin(bip);
407 freed = atomic_dec_and_test(&bip->bli_refcount);
409 if (atomic_dec_and_test(&bp->b_pin_count))
410 wake_up_all(&bp->b_waiters);
412 if (freed && stale) {
413 ASSERT(bip->bli_flags & XFS_BLI_STALE);
414 ASSERT(xfs_buf_islocked(bp));
415 ASSERT(bp->b_flags & XBF_STALE);
416 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
418 trace_xfs_buf_item_unpin_stale(bip);
420 if (remove) {
422 * If we are in a transaction context, we have to
423 * remove the log item from the transaction as we are
424 * about to release our reference to the buffer. If we
425 * don't, the unlock that occurs later in
426 * xfs_trans_uncommit() will try to reference the
427 * buffer which we no longer have a hold on.
429 if (!list_empty(&lip->li_trans))
430 xfs_trans_del_item(lip);
433 * Since the transaction no longer refers to the buffer,
434 * the buffer should no longer refer to the transaction.
436 bp->b_transp = NULL;
440 * If we get called here because of an IO error, we may
441 * or may not have the item on the AIL. xfs_trans_ail_delete()
442 * will take care of that situation.
443 * xfs_trans_ail_delete() drops the AIL lock.
445 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
446 xfs_buf_do_callbacks(bp);
447 bp->b_log_item = NULL;
448 list_del_init(&bp->b_li_list);
449 bp->b_iodone = NULL;
450 } else {
451 spin_lock(&ailp->ail_lock);
452 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
453 xfs_buf_item_relse(bp);
454 ASSERT(bp->b_log_item == NULL);
456 xfs_buf_relse(bp);
457 } else if (freed && remove) {
459 * There are currently two references to the buffer - the active
460 * LRU reference and the buf log item. What we are about to do
461 * here - simulate a failed IO completion - requires 3
462 * references.
464 * The LRU reference is removed by the xfs_buf_stale() call. The
465 * buf item reference is removed by the xfs_buf_iodone()
466 * callback that is run by xfs_buf_do_callbacks() during ioend
467 * processing (via the bp->b_iodone callback), and then finally
468 * the ioend processing will drop the IO reference if the buffer
469 * is marked XBF_ASYNC.
471 * Hence we need to take an additional reference here so that IO
472 * completion processing doesn't free the buffer prematurely.
474 xfs_buf_lock(bp);
475 xfs_buf_hold(bp);
476 bp->b_flags |= XBF_ASYNC;
477 xfs_buf_ioerror(bp, -EIO);
478 bp->b_flags &= ~XBF_DONE;
479 xfs_buf_stale(bp);
480 xfs_buf_ioend(bp);
485 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
486 * seconds so as to not spam logs too much on repeated detection of the same
487 * buffer being bad..
490 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
492 STATIC uint
493 xfs_buf_item_push(
494 struct xfs_log_item *lip,
495 struct list_head *buffer_list)
497 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
498 struct xfs_buf *bp = bip->bli_buf;
499 uint rval = XFS_ITEM_SUCCESS;
501 if (xfs_buf_ispinned(bp))
502 return XFS_ITEM_PINNED;
503 if (!xfs_buf_trylock(bp)) {
505 * If we have just raced with a buffer being pinned and it has
506 * been marked stale, we could end up stalling until someone else
507 * issues a log force to unpin the stale buffer. Check for the
508 * race condition here so xfsaild recognizes the buffer is pinned
509 * and queues a log force to move it along.
511 if (xfs_buf_ispinned(bp))
512 return XFS_ITEM_PINNED;
513 return XFS_ITEM_LOCKED;
516 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
518 trace_xfs_buf_item_push(bip);
520 /* has a previous flush failed due to IO errors? */
521 if ((bp->b_flags & XBF_WRITE_FAIL) &&
522 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
523 xfs_warn(bp->b_target->bt_mount,
524 "Failing async write on buffer block 0x%llx. Retrying async write.",
525 (long long)bp->b_bn);
528 if (!xfs_buf_delwri_queue(bp, buffer_list))
529 rval = XFS_ITEM_FLUSHING;
530 xfs_buf_unlock(bp);
531 return rval;
535 * Release the buffer associated with the buf log item. If there is no dirty
536 * logged data associated with the buffer recorded in the buf log item, then
537 * free the buf log item and remove the reference to it in the buffer.
539 * This call ignores the recursion count. It is only called when the buffer
540 * should REALLY be unlocked, regardless of the recursion count.
542 * We unconditionally drop the transaction's reference to the log item. If the
543 * item was logged, then another reference was taken when it was pinned, so we
544 * can safely drop the transaction reference now. This also allows us to avoid
545 * potential races with the unpin code freeing the bli by not referencing the
546 * bli after we've dropped the reference count.
548 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
549 * if necessary but do not unlock the buffer. This is for support of
550 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
551 * free the item.
553 STATIC void
554 xfs_buf_item_unlock(
555 struct xfs_log_item *lip)
557 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
558 struct xfs_buf *bp = bip->bli_buf;
559 bool aborted;
560 bool hold = !!(bip->bli_flags & XFS_BLI_HOLD);
561 bool dirty = !!(bip->bli_flags & XFS_BLI_DIRTY);
562 #if defined(DEBUG) || defined(XFS_WARN)
563 bool ordered = !!(bip->bli_flags & XFS_BLI_ORDERED);
564 #endif
566 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags);
568 /* Clear the buffer's association with this transaction. */
569 bp->b_transp = NULL;
572 * The per-transaction state has been copied above so clear it from the
573 * bli.
575 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
578 * If the buf item is marked stale, then don't do anything. We'll
579 * unlock the buffer and free the buf item when the buffer is unpinned
580 * for the last time.
582 if (bip->bli_flags & XFS_BLI_STALE) {
583 trace_xfs_buf_item_unlock_stale(bip);
584 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
585 if (!aborted) {
586 atomic_dec(&bip->bli_refcount);
587 return;
591 trace_xfs_buf_item_unlock(bip);
594 * If the buf item isn't tracking any data, free it, otherwise drop the
595 * reference we hold to it. If we are aborting the transaction, this may
596 * be the only reference to the buf item, so we free it anyway
597 * regardless of whether it is dirty or not. A dirty abort implies a
598 * shutdown, anyway.
600 * The bli dirty state should match whether the blf has logged segments
601 * except for ordered buffers, where only the bli should be dirty.
603 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
604 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
607 * Clean buffers, by definition, cannot be in the AIL. However, aborted
608 * buffers may be in the AIL regardless of dirty state. An aborted
609 * transaction that invalidates a buffer already in the AIL may have
610 * marked it stale and cleared the dirty state, for example.
612 * Therefore if we are aborting a buffer and we've just taken the last
613 * reference away, we have to check if it is in the AIL before freeing
614 * it. We need to free it in this case, because an aborted transaction
615 * has already shut the filesystem down and this is the last chance we
616 * will have to do so.
618 if (atomic_dec_and_test(&bip->bli_refcount)) {
619 if (aborted) {
620 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
621 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
622 xfs_buf_item_relse(bp);
623 } else if (!dirty)
624 xfs_buf_item_relse(bp);
627 if (!hold)
628 xfs_buf_relse(bp);
632 * This is called to find out where the oldest active copy of the
633 * buf log item in the on disk log resides now that the last log
634 * write of it completed at the given lsn.
635 * We always re-log all the dirty data in a buffer, so usually the
636 * latest copy in the on disk log is the only one that matters. For
637 * those cases we simply return the given lsn.
639 * The one exception to this is for buffers full of newly allocated
640 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
641 * flag set, indicating that only the di_next_unlinked fields from the
642 * inodes in the buffers will be replayed during recovery. If the
643 * original newly allocated inode images have not yet been flushed
644 * when the buffer is so relogged, then we need to make sure that we
645 * keep the old images in the 'active' portion of the log. We do this
646 * by returning the original lsn of that transaction here rather than
647 * the current one.
649 STATIC xfs_lsn_t
650 xfs_buf_item_committed(
651 struct xfs_log_item *lip,
652 xfs_lsn_t lsn)
654 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
656 trace_xfs_buf_item_committed(bip);
658 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
659 return lip->li_lsn;
660 return lsn;
663 STATIC void
664 xfs_buf_item_committing(
665 struct xfs_log_item *lip,
666 xfs_lsn_t commit_lsn)
671 * This is the ops vector shared by all buf log items.
673 static const struct xfs_item_ops xfs_buf_item_ops = {
674 .iop_size = xfs_buf_item_size,
675 .iop_format = xfs_buf_item_format,
676 .iop_pin = xfs_buf_item_pin,
677 .iop_unpin = xfs_buf_item_unpin,
678 .iop_unlock = xfs_buf_item_unlock,
679 .iop_committed = xfs_buf_item_committed,
680 .iop_push = xfs_buf_item_push,
681 .iop_committing = xfs_buf_item_committing
684 STATIC int
685 xfs_buf_item_get_format(
686 struct xfs_buf_log_item *bip,
687 int count)
689 ASSERT(bip->bli_formats == NULL);
690 bip->bli_format_count = count;
692 if (count == 1) {
693 bip->bli_formats = &bip->__bli_format;
694 return 0;
697 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
698 KM_SLEEP);
699 if (!bip->bli_formats)
700 return -ENOMEM;
701 return 0;
704 STATIC void
705 xfs_buf_item_free_format(
706 struct xfs_buf_log_item *bip)
708 if (bip->bli_formats != &bip->__bli_format) {
709 kmem_free(bip->bli_formats);
710 bip->bli_formats = NULL;
715 * Allocate a new buf log item to go with the given buffer.
716 * Set the buffer's b_log_item field to point to the new
717 * buf log item.
720 xfs_buf_item_init(
721 struct xfs_buf *bp,
722 struct xfs_mount *mp)
724 struct xfs_buf_log_item *bip = bp->b_log_item;
725 int chunks;
726 int map_size;
727 int error;
728 int i;
731 * Check to see if there is already a buf log item for
732 * this buffer. If we do already have one, there is
733 * nothing to do here so return.
735 ASSERT(bp->b_target->bt_mount == mp);
736 if (bip) {
737 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
738 ASSERT(!bp->b_transp);
739 ASSERT(bip->bli_buf == bp);
740 return 0;
743 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
744 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
745 bip->bli_buf = bp;
748 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
749 * can be divided into. Make sure not to truncate any pieces.
750 * map_size is the size of the bitmap needed to describe the
751 * chunks of the buffer.
753 * Discontiguous buffer support follows the layout of the underlying
754 * buffer. This makes the implementation as simple as possible.
756 error = xfs_buf_item_get_format(bip, bp->b_map_count);
757 ASSERT(error == 0);
758 if (error) { /* to stop gcc throwing set-but-unused warnings */
759 kmem_zone_free(xfs_buf_item_zone, bip);
760 return error;
764 for (i = 0; i < bip->bli_format_count; i++) {
765 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
766 XFS_BLF_CHUNK);
767 map_size = DIV_ROUND_UP(chunks, NBWORD);
769 bip->bli_formats[i].blf_type = XFS_LI_BUF;
770 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
771 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
772 bip->bli_formats[i].blf_map_size = map_size;
775 bp->b_log_item = bip;
776 xfs_buf_hold(bp);
777 return 0;
782 * Mark bytes first through last inclusive as dirty in the buf
783 * item's bitmap.
785 static void
786 xfs_buf_item_log_segment(
787 uint first,
788 uint last,
789 uint *map)
791 uint first_bit;
792 uint last_bit;
793 uint bits_to_set;
794 uint bits_set;
795 uint word_num;
796 uint *wordp;
797 uint bit;
798 uint end_bit;
799 uint mask;
802 * Convert byte offsets to bit numbers.
804 first_bit = first >> XFS_BLF_SHIFT;
805 last_bit = last >> XFS_BLF_SHIFT;
808 * Calculate the total number of bits to be set.
810 bits_to_set = last_bit - first_bit + 1;
813 * Get a pointer to the first word in the bitmap
814 * to set a bit in.
816 word_num = first_bit >> BIT_TO_WORD_SHIFT;
817 wordp = &map[word_num];
820 * Calculate the starting bit in the first word.
822 bit = first_bit & (uint)(NBWORD - 1);
825 * First set any bits in the first word of our range.
826 * If it starts at bit 0 of the word, it will be
827 * set below rather than here. That is what the variable
828 * bit tells us. The variable bits_set tracks the number
829 * of bits that have been set so far. End_bit is the number
830 * of the last bit to be set in this word plus one.
832 if (bit) {
833 end_bit = min(bit + bits_to_set, (uint)NBWORD);
834 mask = ((1U << (end_bit - bit)) - 1) << bit;
835 *wordp |= mask;
836 wordp++;
837 bits_set = end_bit - bit;
838 } else {
839 bits_set = 0;
843 * Now set bits a whole word at a time that are between
844 * first_bit and last_bit.
846 while ((bits_to_set - bits_set) >= NBWORD) {
847 *wordp |= 0xffffffff;
848 bits_set += NBWORD;
849 wordp++;
853 * Finally, set any bits left to be set in one last partial word.
855 end_bit = bits_to_set - bits_set;
856 if (end_bit) {
857 mask = (1U << end_bit) - 1;
858 *wordp |= mask;
863 * Mark bytes first through last inclusive as dirty in the buf
864 * item's bitmap.
866 void
867 xfs_buf_item_log(
868 struct xfs_buf_log_item *bip,
869 uint first,
870 uint last)
872 int i;
873 uint start;
874 uint end;
875 struct xfs_buf *bp = bip->bli_buf;
878 * walk each buffer segment and mark them dirty appropriately.
880 start = 0;
881 for (i = 0; i < bip->bli_format_count; i++) {
882 if (start > last)
883 break;
884 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
886 /* skip to the map that includes the first byte to log */
887 if (first > end) {
888 start += BBTOB(bp->b_maps[i].bm_len);
889 continue;
893 * Trim the range to this segment and mark it in the bitmap.
894 * Note that we must convert buffer offsets to segment relative
895 * offsets (e.g., the first byte of each segment is byte 0 of
896 * that segment).
898 if (first < start)
899 first = start;
900 if (end > last)
901 end = last;
902 xfs_buf_item_log_segment(first - start, end - start,
903 &bip->bli_formats[i].blf_data_map[0]);
905 start += BBTOB(bp->b_maps[i].bm_len);
911 * Return true if the buffer has any ranges logged/dirtied by a transaction,
912 * false otherwise.
914 bool
915 xfs_buf_item_dirty_format(
916 struct xfs_buf_log_item *bip)
918 int i;
920 for (i = 0; i < bip->bli_format_count; i++) {
921 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
922 bip->bli_formats[i].blf_map_size))
923 return true;
926 return false;
929 STATIC void
930 xfs_buf_item_free(
931 struct xfs_buf_log_item *bip)
933 xfs_buf_item_free_format(bip);
934 kmem_free(bip->bli_item.li_lv_shadow);
935 kmem_zone_free(xfs_buf_item_zone, bip);
939 * This is called when the buf log item is no longer needed. It should
940 * free the buf log item associated with the given buffer and clear
941 * the buffer's pointer to the buf log item. If there are no more
942 * items in the list, clear the b_iodone field of the buffer (see
943 * xfs_buf_attach_iodone() below).
945 void
946 xfs_buf_item_relse(
947 xfs_buf_t *bp)
949 struct xfs_buf_log_item *bip = bp->b_log_item;
951 trace_xfs_buf_item_relse(bp, _RET_IP_);
952 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
954 bp->b_log_item = NULL;
955 if (list_empty(&bp->b_li_list))
956 bp->b_iodone = NULL;
958 xfs_buf_rele(bp);
959 xfs_buf_item_free(bip);
964 * Add the given log item with its callback to the list of callbacks
965 * to be called when the buffer's I/O completes. If it is not set
966 * already, set the buffer's b_iodone() routine to be
967 * xfs_buf_iodone_callbacks() and link the log item into the list of
968 * items rooted at b_li_list.
970 void
971 xfs_buf_attach_iodone(
972 xfs_buf_t *bp,
973 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
974 xfs_log_item_t *lip)
976 ASSERT(xfs_buf_islocked(bp));
978 lip->li_cb = cb;
979 list_add_tail(&lip->li_bio_list, &bp->b_li_list);
981 ASSERT(bp->b_iodone == NULL ||
982 bp->b_iodone == xfs_buf_iodone_callbacks);
983 bp->b_iodone = xfs_buf_iodone_callbacks;
987 * We can have many callbacks on a buffer. Running the callbacks individually
988 * can cause a lot of contention on the AIL lock, so we allow for a single
989 * callback to be able to scan the remaining items in bp->b_li_list for other
990 * items of the same type and callback to be processed in the first call.
992 * As a result, the loop walking the callback list below will also modify the
993 * list. it removes the first item from the list and then runs the callback.
994 * The loop then restarts from the new first item int the list. This allows the
995 * callback to scan and modify the list attached to the buffer and we don't
996 * have to care about maintaining a next item pointer.
998 STATIC void
999 xfs_buf_do_callbacks(
1000 struct xfs_buf *bp)
1002 struct xfs_buf_log_item *blip = bp->b_log_item;
1003 struct xfs_log_item *lip;
1005 /* If there is a buf_log_item attached, run its callback */
1006 if (blip) {
1007 lip = &blip->bli_item;
1008 lip->li_cb(bp, lip);
1011 while (!list_empty(&bp->b_li_list)) {
1012 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1013 li_bio_list);
1016 * Remove the item from the list, so we don't have any
1017 * confusion if the item is added to another buf.
1018 * Don't touch the log item after calling its
1019 * callback, because it could have freed itself.
1021 list_del_init(&lip->li_bio_list);
1022 lip->li_cb(bp, lip);
1027 * Invoke the error state callback for each log item affected by the failed I/O.
1029 * If a metadata buffer write fails with a non-permanent error, the buffer is
1030 * eventually resubmitted and so the completion callbacks are not run. The error
1031 * state may need to be propagated to the log items attached to the buffer,
1032 * however, so the next AIL push of the item knows hot to handle it correctly.
1034 STATIC void
1035 xfs_buf_do_callbacks_fail(
1036 struct xfs_buf *bp)
1038 struct xfs_log_item *lip;
1039 struct xfs_ail *ailp;
1042 * Buffer log item errors are handled directly by xfs_buf_item_push()
1043 * and xfs_buf_iodone_callback_error, and they have no IO error
1044 * callbacks. Check only for items in b_li_list.
1046 if (list_empty(&bp->b_li_list))
1047 return;
1049 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1050 li_bio_list);
1051 ailp = lip->li_ailp;
1052 spin_lock(&ailp->ail_lock);
1053 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1054 if (lip->li_ops->iop_error)
1055 lip->li_ops->iop_error(lip, bp);
1057 spin_unlock(&ailp->ail_lock);
1060 static bool
1061 xfs_buf_iodone_callback_error(
1062 struct xfs_buf *bp)
1064 struct xfs_buf_log_item *bip = bp->b_log_item;
1065 struct xfs_log_item *lip;
1066 struct xfs_mount *mp;
1067 static ulong lasttime;
1068 static xfs_buftarg_t *lasttarg;
1069 struct xfs_error_cfg *cfg;
1072 * The failed buffer might not have a buf_log_item attached or the
1073 * log_item list might be empty. Get the mp from the available
1074 * xfs_log_item
1076 lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1077 li_bio_list);
1078 mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1081 * If we've already decided to shutdown the filesystem because of
1082 * I/O errors, there's no point in giving this a retry.
1084 if (XFS_FORCED_SHUTDOWN(mp))
1085 goto out_stale;
1087 if (bp->b_target != lasttarg ||
1088 time_after(jiffies, (lasttime + 5*HZ))) {
1089 lasttime = jiffies;
1090 xfs_buf_ioerror_alert(bp, __func__);
1092 lasttarg = bp->b_target;
1094 /* synchronous writes will have callers process the error */
1095 if (!(bp->b_flags & XBF_ASYNC))
1096 goto out_stale;
1098 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1099 ASSERT(bp->b_iodone != NULL);
1101 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1104 * If the write was asynchronous then no one will be looking for the
1105 * error. If this is the first failure of this type, clear the error
1106 * state and write the buffer out again. This means we always retry an
1107 * async write failure at least once, but we also need to set the buffer
1108 * up to behave correctly now for repeated failures.
1110 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1111 bp->b_last_error != bp->b_error) {
1112 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1113 bp->b_last_error = bp->b_error;
1114 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1115 !bp->b_first_retry_time)
1116 bp->b_first_retry_time = jiffies;
1118 xfs_buf_ioerror(bp, 0);
1119 xfs_buf_submit(bp);
1120 return true;
1124 * Repeated failure on an async write. Take action according to the
1125 * error configuration we have been set up to use.
1128 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1129 ++bp->b_retries > cfg->max_retries)
1130 goto permanent_error;
1131 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1132 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1133 goto permanent_error;
1135 /* At unmount we may treat errors differently */
1136 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1137 goto permanent_error;
1140 * Still a transient error, run IO completion failure callbacks and let
1141 * the higher layers retry the buffer.
1143 xfs_buf_do_callbacks_fail(bp);
1144 xfs_buf_ioerror(bp, 0);
1145 xfs_buf_relse(bp);
1146 return true;
1149 * Permanent error - we need to trigger a shutdown if we haven't already
1150 * to indicate that inconsistency will result from this action.
1152 permanent_error:
1153 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1154 out_stale:
1155 xfs_buf_stale(bp);
1156 bp->b_flags |= XBF_DONE;
1157 trace_xfs_buf_error_relse(bp, _RET_IP_);
1158 return false;
1162 * This is the iodone() function for buffers which have had callbacks attached
1163 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1164 * callback list, mark the buffer as having no more callbacks and then push the
1165 * buffer through IO completion processing.
1167 void
1168 xfs_buf_iodone_callbacks(
1169 struct xfs_buf *bp)
1172 * If there is an error, process it. Some errors require us
1173 * to run callbacks after failure processing is done so we
1174 * detect that and take appropriate action.
1176 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1177 return;
1180 * Successful IO or permanent error. Either way, we can clear the
1181 * retry state here in preparation for the next error that may occur.
1183 bp->b_last_error = 0;
1184 bp->b_retries = 0;
1185 bp->b_first_retry_time = 0;
1187 xfs_buf_do_callbacks(bp);
1188 bp->b_log_item = NULL;
1189 list_del_init(&bp->b_li_list);
1190 bp->b_iodone = NULL;
1191 xfs_buf_ioend(bp);
1195 * This is the iodone() function for buffers which have been
1196 * logged. It is called when they are eventually flushed out.
1197 * It should remove the buf item from the AIL, and free the buf item.
1198 * It is called by xfs_buf_iodone_callbacks() above which will take
1199 * care of cleaning up the buffer itself.
1201 void
1202 xfs_buf_iodone(
1203 struct xfs_buf *bp,
1204 struct xfs_log_item *lip)
1206 struct xfs_ail *ailp = lip->li_ailp;
1208 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1210 xfs_buf_rele(bp);
1213 * If we are forcibly shutting down, this may well be
1214 * off the AIL already. That's because we simulate the
1215 * log-committed callbacks to unpin these buffers. Or we may never
1216 * have put this item on AIL because of the transaction was
1217 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1219 * Either way, AIL is useless if we're forcing a shutdown.
1221 spin_lock(&ailp->ail_lock);
1222 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1223 xfs_buf_item_free(BUF_ITEM(lip));
1227 * Requeue a failed buffer for writeback
1229 * Return true if the buffer has been re-queued properly, false otherwise
1231 bool
1232 xfs_buf_resubmit_failed_buffers(
1233 struct xfs_buf *bp,
1234 struct list_head *buffer_list)
1236 struct xfs_log_item *lip;
1239 * Clear XFS_LI_FAILED flag from all items before resubmit
1241 * XFS_LI_FAILED set/clear is protected by ail_lock, caller this
1242 * function already have it acquired
1244 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1245 xfs_clear_li_failed(lip);
1247 /* Add this buffer back to the delayed write list */
1248 return xfs_buf_delwri_queue(bp, buffer_list);