1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_inode.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode_item.h"
15 #include "xfs_error.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
21 #include <linux/iversion.h>
23 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
25 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
27 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
31 xfs_inode_item_data_fork_size(
32 struct xfs_inode_log_item
*iip
,
36 struct xfs_inode
*ip
= iip
->ili_inode
;
38 switch (ip
->i_d
.di_format
) {
39 case XFS_DINODE_FMT_EXTENTS
:
40 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
41 ip
->i_d
.di_nextents
> 0 &&
42 ip
->i_df
.if_bytes
> 0) {
43 /* worst case, doesn't subtract delalloc extents */
44 *nbytes
+= XFS_IFORK_DSIZE(ip
);
48 case XFS_DINODE_FMT_BTREE
:
49 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
50 ip
->i_df
.if_broot_bytes
> 0) {
51 *nbytes
+= ip
->i_df
.if_broot_bytes
;
55 case XFS_DINODE_FMT_LOCAL
:
56 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
57 ip
->i_df
.if_bytes
> 0) {
58 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
63 case XFS_DINODE_FMT_DEV
:
72 xfs_inode_item_attr_fork_size(
73 struct xfs_inode_log_item
*iip
,
77 struct xfs_inode
*ip
= iip
->ili_inode
;
79 switch (ip
->i_d
.di_aformat
) {
80 case XFS_DINODE_FMT_EXTENTS
:
81 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
82 ip
->i_d
.di_anextents
> 0 &&
83 ip
->i_afp
->if_bytes
> 0) {
84 /* worst case, doesn't subtract unused space */
85 *nbytes
+= XFS_IFORK_ASIZE(ip
);
89 case XFS_DINODE_FMT_BTREE
:
90 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
91 ip
->i_afp
->if_broot_bytes
> 0) {
92 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
96 case XFS_DINODE_FMT_LOCAL
:
97 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
98 ip
->i_afp
->if_bytes
> 0) {
99 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
110 * This returns the number of iovecs needed to log the given inode item.
112 * We need one iovec for the inode log format structure, one for the
113 * inode core, and possibly one for the inode data/extents/b-tree root
114 * and one for the inode attribute data/extents/b-tree root.
118 struct xfs_log_item
*lip
,
122 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
123 struct xfs_inode
*ip
= iip
->ili_inode
;
126 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
127 xfs_log_dinode_size(ip
->i_d
.di_version
);
129 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
131 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
135 xfs_inode_item_format_data_fork(
136 struct xfs_inode_log_item
*iip
,
137 struct xfs_inode_log_format
*ilf
,
138 struct xfs_log_vec
*lv
,
139 struct xfs_log_iovec
**vecp
)
141 struct xfs_inode
*ip
= iip
->ili_inode
;
144 switch (ip
->i_d
.di_format
) {
145 case XFS_DINODE_FMT_EXTENTS
:
147 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
149 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
150 ip
->i_d
.di_nextents
> 0 &&
151 ip
->i_df
.if_bytes
> 0) {
152 struct xfs_bmbt_rec
*p
;
154 ASSERT(xfs_iext_count(&ip
->i_df
) > 0);
156 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
157 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
158 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
160 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
162 ilf
->ilf_dsize
= data_bytes
;
165 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
168 case XFS_DINODE_FMT_BTREE
:
170 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
172 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
173 ip
->i_df
.if_broot_bytes
> 0) {
174 ASSERT(ip
->i_df
.if_broot
!= NULL
);
175 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
177 ip
->i_df
.if_broot_bytes
);
178 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
181 ASSERT(!(iip
->ili_fields
&
183 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
186 case XFS_DINODE_FMT_LOCAL
:
188 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
189 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
190 ip
->i_df
.if_bytes
> 0) {
192 * Round i_bytes up to a word boundary.
193 * The underlying memory is guaranteed to
194 * to be there by xfs_idata_realloc().
196 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
197 ASSERT(ip
->i_df
.if_real_bytes
== 0 ||
198 ip
->i_df
.if_real_bytes
>= data_bytes
);
199 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
200 ASSERT(ip
->i_d
.di_size
> 0);
201 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
202 ip
->i_df
.if_u1
.if_data
, data_bytes
);
203 ilf
->ilf_dsize
= (unsigned)data_bytes
;
206 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
209 case XFS_DINODE_FMT_DEV
:
211 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
);
212 if (iip
->ili_fields
& XFS_ILOG_DEV
)
213 ilf
->ilf_u
.ilfu_rdev
= sysv_encode_dev(VFS_I(ip
)->i_rdev
);
222 xfs_inode_item_format_attr_fork(
223 struct xfs_inode_log_item
*iip
,
224 struct xfs_inode_log_format
*ilf
,
225 struct xfs_log_vec
*lv
,
226 struct xfs_log_iovec
**vecp
)
228 struct xfs_inode
*ip
= iip
->ili_inode
;
231 switch (ip
->i_d
.di_aformat
) {
232 case XFS_DINODE_FMT_EXTENTS
:
234 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
236 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
237 ip
->i_d
.di_anextents
> 0 &&
238 ip
->i_afp
->if_bytes
> 0) {
239 struct xfs_bmbt_rec
*p
;
241 ASSERT(xfs_iext_count(ip
->i_afp
) ==
242 ip
->i_d
.di_anextents
);
244 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
245 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
246 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
248 ilf
->ilf_asize
= data_bytes
;
251 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
254 case XFS_DINODE_FMT_BTREE
:
256 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
258 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
259 ip
->i_afp
->if_broot_bytes
> 0) {
260 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
262 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
264 ip
->i_afp
->if_broot_bytes
);
265 ilf
->ilf_asize
= ip
->i_afp
->if_broot_bytes
;
268 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
271 case XFS_DINODE_FMT_LOCAL
:
273 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
275 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
276 ip
->i_afp
->if_bytes
> 0) {
278 * Round i_bytes up to a word boundary.
279 * The underlying memory is guaranteed to
280 * to be there by xfs_idata_realloc().
282 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
283 ASSERT(ip
->i_afp
->if_real_bytes
== 0 ||
284 ip
->i_afp
->if_real_bytes
>= data_bytes
);
285 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
286 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
287 ip
->i_afp
->if_u1
.if_data
,
289 ilf
->ilf_asize
= (unsigned)data_bytes
;
292 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
302 xfs_inode_to_log_dinode(
303 struct xfs_inode
*ip
,
304 struct xfs_log_dinode
*to
,
307 struct xfs_icdinode
*from
= &ip
->i_d
;
308 struct inode
*inode
= VFS_I(ip
);
310 to
->di_magic
= XFS_DINODE_MAGIC
;
312 to
->di_version
= from
->di_version
;
313 to
->di_format
= from
->di_format
;
314 to
->di_uid
= from
->di_uid
;
315 to
->di_gid
= from
->di_gid
;
316 to
->di_projid_lo
= from
->di_projid_lo
;
317 to
->di_projid_hi
= from
->di_projid_hi
;
319 memset(to
->di_pad
, 0, sizeof(to
->di_pad
));
320 memset(to
->di_pad3
, 0, sizeof(to
->di_pad3
));
321 to
->di_atime
.t_sec
= inode
->i_atime
.tv_sec
;
322 to
->di_atime
.t_nsec
= inode
->i_atime
.tv_nsec
;
323 to
->di_mtime
.t_sec
= inode
->i_mtime
.tv_sec
;
324 to
->di_mtime
.t_nsec
= inode
->i_mtime
.tv_nsec
;
325 to
->di_ctime
.t_sec
= inode
->i_ctime
.tv_sec
;
326 to
->di_ctime
.t_nsec
= inode
->i_ctime
.tv_nsec
;
327 to
->di_nlink
= inode
->i_nlink
;
328 to
->di_gen
= inode
->i_generation
;
329 to
->di_mode
= inode
->i_mode
;
331 to
->di_size
= from
->di_size
;
332 to
->di_nblocks
= from
->di_nblocks
;
333 to
->di_extsize
= from
->di_extsize
;
334 to
->di_nextents
= from
->di_nextents
;
335 to
->di_anextents
= from
->di_anextents
;
336 to
->di_forkoff
= from
->di_forkoff
;
337 to
->di_aformat
= from
->di_aformat
;
338 to
->di_dmevmask
= from
->di_dmevmask
;
339 to
->di_dmstate
= from
->di_dmstate
;
340 to
->di_flags
= from
->di_flags
;
342 /* log a dummy value to ensure log structure is fully initialised */
343 to
->di_next_unlinked
= NULLAGINO
;
345 if (from
->di_version
== 3) {
346 to
->di_changecount
= inode_peek_iversion(inode
);
347 to
->di_crtime
.t_sec
= from
->di_crtime
.t_sec
;
348 to
->di_crtime
.t_nsec
= from
->di_crtime
.t_nsec
;
349 to
->di_flags2
= from
->di_flags2
;
350 to
->di_cowextsize
= from
->di_cowextsize
;
351 to
->di_ino
= ip
->i_ino
;
353 memset(to
->di_pad2
, 0, sizeof(to
->di_pad2
));
354 uuid_copy(&to
->di_uuid
, &ip
->i_mount
->m_sb
.sb_meta_uuid
);
355 to
->di_flushiter
= 0;
357 to
->di_flushiter
= from
->di_flushiter
;
362 * Format the inode core. Current timestamp data is only in the VFS inode
363 * fields, so we need to grab them from there. Hence rather than just copying
364 * the XFS inode core structure, format the fields directly into the iovec.
367 xfs_inode_item_format_core(
368 struct xfs_inode
*ip
,
369 struct xfs_log_vec
*lv
,
370 struct xfs_log_iovec
**vecp
)
372 struct xfs_log_dinode
*dic
;
374 dic
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_ICORE
);
375 xfs_inode_to_log_dinode(ip
, dic
, ip
->i_itemp
->ili_item
.li_lsn
);
376 xlog_finish_iovec(lv
, *vecp
, xfs_log_dinode_size(ip
->i_d
.di_version
));
380 * This is called to fill in the vector of log iovecs for the given inode
381 * log item. It fills the first item with an inode log format structure,
382 * the second with the on-disk inode structure, and a possible third and/or
383 * fourth with the inode data/extents/b-tree root and inode attributes
384 * data/extents/b-tree root.
386 * Note: Always use the 64 bit inode log format structure so we don't
387 * leave an uninitialised hole in the format item on 64 bit systems. Log
388 * recovery on 32 bit systems handles this just fine, so there's no reason
389 * for not using an initialising the properly padded structure all the time.
392 xfs_inode_item_format(
393 struct xfs_log_item
*lip
,
394 struct xfs_log_vec
*lv
)
396 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
397 struct xfs_inode
*ip
= iip
->ili_inode
;
398 struct xfs_log_iovec
*vecp
= NULL
;
399 struct xfs_inode_log_format
*ilf
;
401 ASSERT(ip
->i_d
.di_version
> 1);
403 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
404 ilf
->ilf_type
= XFS_LI_INODE
;
405 ilf
->ilf_ino
= ip
->i_ino
;
406 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
407 ilf
->ilf_len
= ip
->i_imap
.im_len
;
408 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
409 ilf
->ilf_fields
= XFS_ILOG_CORE
;
410 ilf
->ilf_size
= 2; /* format + core */
413 * make sure we don't leak uninitialised data into the log in the case
414 * when we don't log every field in the inode.
419 memset(&ilf
->ilf_u
, 0, sizeof(ilf
->ilf_u
));
421 xlog_finish_iovec(lv
, vecp
, sizeof(*ilf
));
423 xfs_inode_item_format_core(ip
, lv
, &vecp
);
424 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
425 if (XFS_IFORK_Q(ip
)) {
426 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
429 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
432 /* update the format with the exact fields we actually logged */
433 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
437 * This is called to pin the inode associated with the inode log
438 * item in memory so it cannot be written out.
442 struct xfs_log_item
*lip
)
444 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
446 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
448 trace_xfs_inode_pin(ip
, _RET_IP_
);
449 atomic_inc(&ip
->i_pincount
);
454 * This is called to unpin the inode associated with the inode log
455 * item which was previously pinned with a call to xfs_inode_item_pin().
457 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
460 xfs_inode_item_unpin(
461 struct xfs_log_item
*lip
,
464 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
466 trace_xfs_inode_unpin(ip
, _RET_IP_
);
467 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
468 if (atomic_dec_and_test(&ip
->i_pincount
))
469 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
473 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
474 * have been failed during writeback
476 * This informs the AIL that the inode is already flush locked on the next push,
477 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
478 * dirty data makes it to disk.
481 xfs_inode_item_error(
482 struct xfs_log_item
*lip
,
485 ASSERT(xfs_isiflocked(INODE_ITEM(lip
)->ili_inode
));
486 xfs_set_li_failed(lip
, bp
);
491 struct xfs_log_item
*lip
,
492 struct list_head
*buffer_list
)
493 __releases(&lip
->li_ailp
->ail_lock
)
494 __acquires(&lip
->li_ailp
->ail_lock
)
496 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
497 struct xfs_inode
*ip
= iip
->ili_inode
;
498 struct xfs_buf
*bp
= lip
->li_buf
;
499 uint rval
= XFS_ITEM_SUCCESS
;
502 if (xfs_ipincount(ip
) > 0)
503 return XFS_ITEM_PINNED
;
506 * The buffer containing this item failed to be written back
507 * previously. Resubmit the buffer for IO.
509 if (test_bit(XFS_LI_FAILED
, &lip
->li_flags
)) {
510 if (!xfs_buf_trylock(bp
))
511 return XFS_ITEM_LOCKED
;
513 if (!xfs_buf_resubmit_failed_buffers(bp
, buffer_list
))
514 rval
= XFS_ITEM_FLUSHING
;
520 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
521 return XFS_ITEM_LOCKED
;
524 * Re-check the pincount now that we stabilized the value by
527 if (xfs_ipincount(ip
) > 0) {
528 rval
= XFS_ITEM_PINNED
;
533 * Stale inode items should force out the iclog.
535 if (ip
->i_flags
& XFS_ISTALE
) {
536 rval
= XFS_ITEM_PINNED
;
541 * Someone else is already flushing the inode. Nothing we can do
542 * here but wait for the flush to finish and remove the item from
545 if (!xfs_iflock_nowait(ip
)) {
546 rval
= XFS_ITEM_FLUSHING
;
550 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
551 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
553 spin_unlock(&lip
->li_ailp
->ail_lock
);
555 error
= xfs_iflush(ip
, &bp
);
557 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
558 rval
= XFS_ITEM_FLUSHING
;
562 spin_lock(&lip
->li_ailp
->ail_lock
);
564 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
569 * Unlock the inode associated with the inode log item.
572 xfs_inode_item_unlock(
573 struct xfs_log_item
*lip
)
575 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
576 struct xfs_inode
*ip
= iip
->ili_inode
;
577 unsigned short lock_flags
;
579 ASSERT(ip
->i_itemp
!= NULL
);
580 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
582 lock_flags
= iip
->ili_lock_flags
;
583 iip
->ili_lock_flags
= 0;
585 xfs_iunlock(ip
, lock_flags
);
589 * This is called to find out where the oldest active copy of the inode log
590 * item in the on disk log resides now that the last log write of it completed
591 * at the given lsn. Since we always re-log all dirty data in an inode, the
592 * latest copy in the on disk log is the only one that matters. Therefore,
593 * simply return the given lsn.
595 * If the inode has been marked stale because the cluster is being freed, we
596 * don't want to (re-)insert this inode into the AIL. There is a race condition
597 * where the cluster buffer may be unpinned before the inode is inserted into
598 * the AIL during transaction committed processing. If the buffer is unpinned
599 * before the inode item has been committed and inserted, then it is possible
600 * for the buffer to be written and IO completes before the inode is inserted
601 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
602 * AIL which will never get removed. It will, however, get reclaimed which
603 * triggers an assert in xfs_inode_free() complaining about freein an inode
606 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
607 * transaction committed code knows that it does not need to do any further
608 * processing on the item.
611 xfs_inode_item_committed(
612 struct xfs_log_item
*lip
,
615 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
616 struct xfs_inode
*ip
= iip
->ili_inode
;
618 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
619 xfs_inode_item_unpin(lip
, 0);
626 xfs_inode_item_committing(
627 struct xfs_log_item
*lip
,
630 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
634 * This is the ops vector shared by all buf log items.
636 static const struct xfs_item_ops xfs_inode_item_ops
= {
637 .iop_size
= xfs_inode_item_size
,
638 .iop_format
= xfs_inode_item_format
,
639 .iop_pin
= xfs_inode_item_pin
,
640 .iop_unpin
= xfs_inode_item_unpin
,
641 .iop_unlock
= xfs_inode_item_unlock
,
642 .iop_committed
= xfs_inode_item_committed
,
643 .iop_push
= xfs_inode_item_push
,
644 .iop_committing
= xfs_inode_item_committing
,
645 .iop_error
= xfs_inode_item_error
650 * Initialize the inode log item for a newly allocated (in-core) inode.
654 struct xfs_inode
*ip
,
655 struct xfs_mount
*mp
)
657 struct xfs_inode_log_item
*iip
;
659 ASSERT(ip
->i_itemp
== NULL
);
660 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
663 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
664 &xfs_inode_item_ops
);
668 * Free the inode log item and any memory hanging off of it.
671 xfs_inode_item_destroy(
674 kmem_free(ip
->i_itemp
->ili_item
.li_lv_shadow
);
675 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
680 * This is the inode flushing I/O completion routine. It is called
681 * from interrupt level when the buffer containing the inode is
682 * flushed to disk. It is responsible for removing the inode item
683 * from the AIL if it has not been re-logged, and unlocking the inode's
686 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
687 * list for other inodes that will run this function. We remove them from the
688 * buffer list so we can process all the inode IO completions in one AIL lock
694 struct xfs_log_item
*lip
)
696 struct xfs_inode_log_item
*iip
;
697 struct xfs_log_item
*blip
, *n
;
698 struct xfs_ail
*ailp
= lip
->li_ailp
;
703 * Scan the buffer IO completions for other inodes being completed and
704 * attach them to the current inode log item.
707 list_add_tail(&lip
->li_bio_list
, &tmp
);
709 list_for_each_entry_safe(blip
, n
, &bp
->b_li_list
, li_bio_list
) {
710 if (lip
->li_cb
!= xfs_iflush_done
)
713 list_move_tail(&blip
->li_bio_list
, &tmp
);
715 * while we have the item, do the unlocked check for needing
718 iip
= INODE_ITEM(blip
);
719 if ((iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
) ||
720 test_bit(XFS_LI_FAILED
, &blip
->li_flags
))
724 /* make sure we capture the state of the initial inode. */
725 iip
= INODE_ITEM(lip
);
726 if ((iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
) ||
727 test_bit(XFS_LI_FAILED
, &lip
->li_flags
))
731 * We only want to pull the item from the AIL if it is
732 * actually there and its location in the log has not
733 * changed since we started the flush. Thus, we only bother
734 * if the ili_logged flag is set and the inode's lsn has not
735 * changed. First we check the lsn outside
736 * the lock since it's cheaper, and then we recheck while
737 * holding the lock before removing the inode from the AIL.
740 bool mlip_changed
= false;
742 /* this is an opencoded batch version of xfs_trans_ail_delete */
743 spin_lock(&ailp
->ail_lock
);
744 list_for_each_entry(blip
, &tmp
, li_bio_list
) {
745 if (INODE_ITEM(blip
)->ili_logged
&&
746 blip
->li_lsn
== INODE_ITEM(blip
)->ili_flush_lsn
)
747 mlip_changed
|= xfs_ail_delete_one(ailp
, blip
);
749 xfs_clear_li_failed(blip
);
754 if (!XFS_FORCED_SHUTDOWN(ailp
->ail_mount
))
755 xlog_assign_tail_lsn_locked(ailp
->ail_mount
);
756 if (list_empty(&ailp
->ail_head
))
757 wake_up_all(&ailp
->ail_empty
);
759 spin_unlock(&ailp
->ail_lock
);
762 xfs_log_space_wake(ailp
->ail_mount
);
766 * clean up and unlock the flush lock now we are done. We can clear the
767 * ili_last_fields bits now that we know that the data corresponding to
768 * them is safely on disk.
770 list_for_each_entry_safe(blip
, n
, &tmp
, li_bio_list
) {
771 list_del_init(&blip
->li_bio_list
);
772 iip
= INODE_ITEM(blip
);
774 iip
->ili_last_fields
= 0;
775 xfs_ifunlock(iip
->ili_inode
);
781 * This is the inode flushing abort routine. It is called from xfs_iflush when
782 * the filesystem is shutting down to clean up the inode state. It is
783 * responsible for removing the inode item from the AIL if it has not been
784 * re-logged, and unlocking the inode's flush lock.
791 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
794 if (test_bit(XFS_LI_IN_AIL
, &iip
->ili_item
.li_flags
)) {
795 xfs_trans_ail_remove(&iip
->ili_item
,
796 stale
? SHUTDOWN_LOG_IO_ERROR
:
797 SHUTDOWN_CORRUPT_INCORE
);
801 * Clear the ili_last_fields bits now that we know that the
802 * data corresponding to them is safely on disk.
804 iip
->ili_last_fields
= 0;
806 * Clear the inode logging fields so no more flushes are
810 iip
->ili_fsync_fields
= 0;
813 * Release the inode's flush lock since we're done with it.
821 struct xfs_log_item
*lip
)
823 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
827 * convert an xfs_inode_log_format struct from the old 32 bit version
828 * (which can have different field alignments) to the native 64 bit version
831 xfs_inode_item_format_convert(
832 struct xfs_log_iovec
*buf
,
833 struct xfs_inode_log_format
*in_f
)
835 struct xfs_inode_log_format_32
*in_f32
= buf
->i_addr
;
837 if (buf
->i_len
!= sizeof(*in_f32
))
838 return -EFSCORRUPTED
;
840 in_f
->ilf_type
= in_f32
->ilf_type
;
841 in_f
->ilf_size
= in_f32
->ilf_size
;
842 in_f
->ilf_fields
= in_f32
->ilf_fields
;
843 in_f
->ilf_asize
= in_f32
->ilf_asize
;
844 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
845 in_f
->ilf_ino
= in_f32
->ilf_ino
;
846 memcpy(&in_f
->ilf_u
, &in_f32
->ilf_u
, sizeof(in_f
->ilf_u
));
847 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
848 in_f
->ilf_len
= in_f32
->ilf_len
;
849 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;