1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
19 #include "xfs_trans.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_alloc.h"
27 #include "xfs_ialloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_cksum.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_error.h"
35 #include "xfs_rmap_item.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_refcount_item.h"
38 #include "xfs_bmap_item.h"
40 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
47 xlog_clear_stale_blocks(
52 xlog_recover_check_summary(
55 #define xlog_recover_check_summary(log)
58 xlog_do_recovery_pass(
59 struct xlog
*, xfs_daddr_t
, xfs_daddr_t
, int, xfs_daddr_t
*);
62 * This structure is used during recovery to record the buf log items which
63 * have been canceled and should not be replayed.
65 struct xfs_buf_cancel
{
69 struct list_head bc_list
;
73 * Sector aligned buffer routines for buffer create/read/write/access
77 * Verify the log-relative block number and length in basic blocks are valid for
78 * an operation involving the given XFS log buffer. Returns true if the fields
79 * are valid, false otherwise.
87 if (blk_no
< 0 || blk_no
>= log
->l_logBBsize
)
89 if (bbcount
<= 0 || (blk_no
+ bbcount
) > log
->l_logBBsize
)
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
107 * Pass log block 0 since we don't have an addr yet, buffer will be
110 if (!xlog_verify_bp(log
, 0, nbblks
)) {
111 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
113 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
120 * requested size to accommodate the basic blocks required
121 * for complete log sectors.
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
131 * there's space to accommodate this possibility.
133 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
134 nbblks
+= log
->l_sectBBsize
;
135 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
137 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
161 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
163 ASSERT(offset
+ nbblks
<= bp
->b_length
);
164 return bp
->b_addr
+ BBTOB(offset
);
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
180 if (!xlog_verify_bp(log
, blk_no
, nbblks
)) {
182 "Invalid log block/length (0x%llx, 0x%x) for buffer",
184 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
185 return -EFSCORRUPTED
;
188 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
189 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
192 ASSERT(nbblks
<= bp
->b_length
);
194 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
195 bp
->b_flags
|= XBF_READ
;
196 bp
->b_io_length
= nbblks
;
199 error
= xfs_buf_submit_wait(bp
);
200 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
201 xfs_buf_ioerror_alert(bp
, __func__
);
215 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
219 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
224 * Read at an offset into the buffer. Returns with the buffer in it's original
225 * state regardless of the result of the read.
230 xfs_daddr_t blk_no
, /* block to read from */
231 int nbblks
, /* blocks to read */
235 char *orig_offset
= bp
->b_addr
;
236 int orig_len
= BBTOB(bp
->b_length
);
239 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
243 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
245 /* must reset buffer pointer even on error */
246 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
253 * Write out the buffer at the given block for the given number of blocks.
254 * The buffer is kept locked across the write and is returned locked.
255 * This can only be used for synchronous log writes.
266 if (!xlog_verify_bp(log
, blk_no
, nbblks
)) {
268 "Invalid log block/length (0x%llx, 0x%x) for buffer",
270 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
271 return -EFSCORRUPTED
;
274 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
275 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
278 ASSERT(nbblks
<= bp
->b_length
);
280 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
283 bp
->b_io_length
= nbblks
;
286 error
= xfs_bwrite(bp
);
288 xfs_buf_ioerror_alert(bp
, __func__
);
295 * dump debug superblock and log record information
298 xlog_header_check_dump(
300 xlog_rec_header_t
*head
)
302 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
303 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
304 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
305 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
308 #define xlog_header_check_dump(mp, head)
312 * check log record header for recovery
315 xlog_header_check_recover(
317 xlog_rec_header_t
*head
)
319 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
322 * IRIX doesn't write the h_fmt field and leaves it zeroed
323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
324 * a dirty log created in IRIX.
326 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
328 "dirty log written in incompatible format - can't recover");
329 xlog_header_check_dump(mp
, head
);
330 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
331 XFS_ERRLEVEL_HIGH
, mp
);
332 return -EFSCORRUPTED
;
333 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
335 "dirty log entry has mismatched uuid - can't recover");
336 xlog_header_check_dump(mp
, head
);
337 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
338 XFS_ERRLEVEL_HIGH
, mp
);
339 return -EFSCORRUPTED
;
345 * read the head block of the log and check the header
348 xlog_header_check_mount(
350 xlog_rec_header_t
*head
)
352 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
354 if (uuid_is_null(&head
->h_fs_uuid
)) {
356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
357 * h_fs_uuid is null, we assume this log was last mounted
358 * by IRIX and continue.
360 xfs_warn(mp
, "null uuid in log - IRIX style log");
361 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
362 xfs_warn(mp
, "log has mismatched uuid - can't recover");
363 xlog_header_check_dump(mp
, head
);
364 XFS_ERROR_REPORT("xlog_header_check_mount",
365 XFS_ERRLEVEL_HIGH
, mp
);
366 return -EFSCORRUPTED
;
377 * We're not going to bother about retrying
378 * this during recovery. One strike!
380 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
381 xfs_buf_ioerror_alert(bp
, __func__
);
382 xfs_force_shutdown(bp
->b_target
->bt_mount
,
383 SHUTDOWN_META_IO_ERROR
);
388 * On v5 supers, a bli could be attached to update the metadata LSN.
392 xfs_buf_item_relse(bp
);
393 ASSERT(bp
->b_log_item
== NULL
);
400 * This routine finds (to an approximation) the first block in the physical
401 * log which contains the given cycle. It uses a binary search algorithm.
402 * Note that the algorithm can not be perfect because the disk will not
403 * necessarily be perfect.
406 xlog_find_cycle_start(
409 xfs_daddr_t first_blk
,
410 xfs_daddr_t
*last_blk
,
420 mid_blk
= BLK_AVG(first_blk
, end_blk
);
421 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
422 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
425 mid_cycle
= xlog_get_cycle(offset
);
426 if (mid_cycle
== cycle
)
427 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
429 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
430 mid_blk
= BLK_AVG(first_blk
, end_blk
);
432 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
433 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
441 * Check that a range of blocks does not contain stop_on_cycle_no.
442 * Fill in *new_blk with the block offset where such a block is
443 * found, or with -1 (an invalid block number) if there is no such
444 * block in the range. The scan needs to occur from front to back
445 * and the pointer into the region must be updated since a later
446 * routine will need to perform another test.
449 xlog_find_verify_cycle(
451 xfs_daddr_t start_blk
,
453 uint stop_on_cycle_no
,
454 xfs_daddr_t
*new_blk
)
464 * Greedily allocate a buffer big enough to handle the full
465 * range of basic blocks we'll be examining. If that fails,
466 * try a smaller size. We need to be able to read at least
467 * a log sector, or we're out of luck.
469 bufblks
= 1 << ffs(nbblks
);
470 while (bufblks
> log
->l_logBBsize
)
472 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
474 if (bufblks
< log
->l_sectBBsize
)
478 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
481 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
483 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
487 for (j
= 0; j
< bcount
; j
++) {
488 cycle
= xlog_get_cycle(buf
);
489 if (cycle
== stop_on_cycle_no
) {
506 * Potentially backup over partial log record write.
508 * In the typical case, last_blk is the number of the block directly after
509 * a good log record. Therefore, we subtract one to get the block number
510 * of the last block in the given buffer. extra_bblks contains the number
511 * of blocks we would have read on a previous read. This happens when the
512 * last log record is split over the end of the physical log.
514 * extra_bblks is the number of blocks potentially verified on a previous
515 * call to this routine.
518 xlog_find_verify_log_record(
520 xfs_daddr_t start_blk
,
521 xfs_daddr_t
*last_blk
,
527 xlog_rec_header_t
*head
= NULL
;
530 int num_blks
= *last_blk
- start_blk
;
533 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
535 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
536 if (!(bp
= xlog_get_bp(log
, 1)))
540 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
543 offset
+= ((num_blks
- 1) << BBSHIFT
);
546 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
548 /* valid log record not found */
550 "Log inconsistent (didn't find previous header)");
557 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
562 head
= (xlog_rec_header_t
*)offset
;
564 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
572 * We hit the beginning of the physical log & still no header. Return
573 * to caller. If caller can handle a return of -1, then this routine
574 * will be called again for the end of the physical log.
582 * We have the final block of the good log (the first block
583 * of the log record _before_ the head. So we check the uuid.
585 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
589 * We may have found a log record header before we expected one.
590 * last_blk will be the 1st block # with a given cycle #. We may end
591 * up reading an entire log record. In this case, we don't want to
592 * reset last_blk. Only when last_blk points in the middle of a log
593 * record do we update last_blk.
595 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
596 uint h_size
= be32_to_cpu(head
->h_size
);
598 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
599 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
605 if (*last_blk
- i
+ extra_bblks
!=
606 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
615 * Head is defined to be the point of the log where the next log write
616 * could go. This means that incomplete LR writes at the end are
617 * eliminated when calculating the head. We aren't guaranteed that previous
618 * LR have complete transactions. We only know that a cycle number of
619 * current cycle number -1 won't be present in the log if we start writing
620 * from our current block number.
622 * last_blk contains the block number of the first block with a given
625 * Return: zero if normal, non-zero if error.
630 xfs_daddr_t
*return_head_blk
)
634 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
636 uint first_half_cycle
, last_half_cycle
;
638 int error
, log_bbnum
= log
->l_logBBsize
;
640 /* Is the end of the log device zeroed? */
641 error
= xlog_find_zeroed(log
, &first_blk
);
643 xfs_warn(log
->l_mp
, "empty log check failed");
647 *return_head_blk
= first_blk
;
649 /* Is the whole lot zeroed? */
651 /* Linux XFS shouldn't generate totally zeroed logs -
652 * mkfs etc write a dummy unmount record to a fresh
653 * log so we can store the uuid in there
655 xfs_warn(log
->l_mp
, "totally zeroed log");
661 first_blk
= 0; /* get cycle # of 1st block */
662 bp
= xlog_get_bp(log
, 1);
666 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
670 first_half_cycle
= xlog_get_cycle(offset
);
672 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
673 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
677 last_half_cycle
= xlog_get_cycle(offset
);
678 ASSERT(last_half_cycle
!= 0);
681 * If the 1st half cycle number is equal to the last half cycle number,
682 * then the entire log is stamped with the same cycle number. In this
683 * case, head_blk can't be set to zero (which makes sense). The below
684 * math doesn't work out properly with head_blk equal to zero. Instead,
685 * we set it to log_bbnum which is an invalid block number, but this
686 * value makes the math correct. If head_blk doesn't changed through
687 * all the tests below, *head_blk is set to zero at the very end rather
688 * than log_bbnum. In a sense, log_bbnum and zero are the same block
689 * in a circular file.
691 if (first_half_cycle
== last_half_cycle
) {
693 * In this case we believe that the entire log should have
694 * cycle number last_half_cycle. We need to scan backwards
695 * from the end verifying that there are no holes still
696 * containing last_half_cycle - 1. If we find such a hole,
697 * then the start of that hole will be the new head. The
698 * simple case looks like
699 * x | x ... | x - 1 | x
700 * Another case that fits this picture would be
701 * x | x + 1 | x ... | x
702 * In this case the head really is somewhere at the end of the
703 * log, as one of the latest writes at the beginning was
706 * x | x + 1 | x ... | x - 1 | x
707 * This is really the combination of the above two cases, and
708 * the head has to end up at the start of the x-1 hole at the
711 * In the 256k log case, we will read from the beginning to the
712 * end of the log and search for cycle numbers equal to x-1.
713 * We don't worry about the x+1 blocks that we encounter,
714 * because we know that they cannot be the head since the log
717 head_blk
= log_bbnum
;
718 stop_on_cycle
= last_half_cycle
- 1;
721 * In this case we want to find the first block with cycle
722 * number matching last_half_cycle. We expect the log to be
724 * x + 1 ... | x ... | x
725 * The first block with cycle number x (last_half_cycle) will
726 * be where the new head belongs. First we do a binary search
727 * for the first occurrence of last_half_cycle. The binary
728 * search may not be totally accurate, so then we scan back
729 * from there looking for occurrences of last_half_cycle before
730 * us. If that backwards scan wraps around the beginning of
731 * the log, then we look for occurrences of last_half_cycle - 1
732 * at the end of the log. The cases we're looking for look
734 * v binary search stopped here
735 * x + 1 ... | x | x + 1 | x ... | x
736 * ^ but we want to locate this spot
738 * <---------> less than scan distance
739 * x + 1 ... | x ... | x - 1 | x
740 * ^ we want to locate this spot
742 stop_on_cycle
= last_half_cycle
;
743 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
744 &head_blk
, last_half_cycle
)))
749 * Now validate the answer. Scan back some number of maximum possible
750 * blocks and make sure each one has the expected cycle number. The
751 * maximum is determined by the total possible amount of buffering
752 * in the in-core log. The following number can be made tighter if
753 * we actually look at the block size of the filesystem.
755 num_scan_bblks
= min_t(int, log_bbnum
, XLOG_TOTAL_REC_SHIFT(log
));
756 if (head_blk
>= num_scan_bblks
) {
758 * We are guaranteed that the entire check can be performed
761 start_blk
= head_blk
- num_scan_bblks
;
762 if ((error
= xlog_find_verify_cycle(log
,
763 start_blk
, num_scan_bblks
,
764 stop_on_cycle
, &new_blk
)))
768 } else { /* need to read 2 parts of log */
770 * We are going to scan backwards in the log in two parts.
771 * First we scan the physical end of the log. In this part
772 * of the log, we are looking for blocks with cycle number
773 * last_half_cycle - 1.
774 * If we find one, then we know that the log starts there, as
775 * we've found a hole that didn't get written in going around
776 * the end of the physical log. The simple case for this is
777 * x + 1 ... | x ... | x - 1 | x
778 * <---------> less than scan distance
779 * If all of the blocks at the end of the log have cycle number
780 * last_half_cycle, then we check the blocks at the start of
781 * the log looking for occurrences of last_half_cycle. If we
782 * find one, then our current estimate for the location of the
783 * first occurrence of last_half_cycle is wrong and we move
784 * back to the hole we've found. This case looks like
785 * x + 1 ... | x | x + 1 | x ...
786 * ^ binary search stopped here
787 * Another case we need to handle that only occurs in 256k
789 * x + 1 ... | x ... | x+1 | x ...
790 * ^ binary search stops here
791 * In a 256k log, the scan at the end of the log will see the
792 * x + 1 blocks. We need to skip past those since that is
793 * certainly not the head of the log. By searching for
794 * last_half_cycle-1 we accomplish that.
796 ASSERT(head_blk
<= INT_MAX
&&
797 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
798 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
799 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
800 num_scan_bblks
- (int)head_blk
,
801 (stop_on_cycle
- 1), &new_blk
)))
809 * Scan beginning of log now. The last part of the physical
810 * log is good. This scan needs to verify that it doesn't find
811 * the last_half_cycle.
814 ASSERT(head_blk
<= INT_MAX
);
815 if ((error
= xlog_find_verify_cycle(log
,
816 start_blk
, (int)head_blk
,
817 stop_on_cycle
, &new_blk
)))
825 * Now we need to make sure head_blk is not pointing to a block in
826 * the middle of a log record.
828 num_scan_bblks
= XLOG_REC_SHIFT(log
);
829 if (head_blk
>= num_scan_bblks
) {
830 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
832 /* start ptr at last block ptr before head_blk */
833 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
840 ASSERT(head_blk
<= INT_MAX
);
841 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
845 /* We hit the beginning of the log during our search */
846 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
848 ASSERT(start_blk
<= INT_MAX
&&
849 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
850 ASSERT(head_blk
<= INT_MAX
);
851 error
= xlog_find_verify_log_record(log
, start_blk
,
852 &new_blk
, (int)head_blk
);
857 if (new_blk
!= log_bbnum
)
864 if (head_blk
== log_bbnum
)
865 *return_head_blk
= 0;
867 *return_head_blk
= head_blk
;
869 * When returning here, we have a good block number. Bad block
870 * means that during a previous crash, we didn't have a clean break
871 * from cycle number N to cycle number N-1. In this case, we need
872 * to find the first block with cycle number N-1.
880 xfs_warn(log
->l_mp
, "failed to find log head");
885 * Seek backwards in the log for log record headers.
887 * Given a starting log block, walk backwards until we find the provided number
888 * of records or hit the provided tail block. The return value is the number of
889 * records encountered or a negative error code. The log block and buffer
890 * pointer of the last record seen are returned in rblk and rhead respectively.
893 xlog_rseek_logrec_hdr(
895 xfs_daddr_t head_blk
,
896 xfs_daddr_t tail_blk
,
900 struct xlog_rec_header
**rhead
,
912 * Walk backwards from the head block until we hit the tail or the first
915 end_blk
= head_blk
> tail_blk
? tail_blk
: 0;
916 for (i
= (int) head_blk
- 1; i
>= end_blk
; i
--) {
917 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
921 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
923 *rhead
= (struct xlog_rec_header
*) offset
;
924 if (++found
== count
)
930 * If we haven't hit the tail block or the log record header count,
931 * start looking again from the end of the physical log. Note that
932 * callers can pass head == tail if the tail is not yet known.
934 if (tail_blk
>= head_blk
&& found
!= count
) {
935 for (i
= log
->l_logBBsize
- 1; i
>= (int) tail_blk
; i
--) {
936 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
940 if (*(__be32
*)offset
==
941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
944 *rhead
= (struct xlog_rec_header
*) offset
;
945 if (++found
== count
)
958 * Seek forward in the log for log record headers.
960 * Given head and tail blocks, walk forward from the tail block until we find
961 * the provided number of records or hit the head block. The return value is the
962 * number of records encountered or a negative error code. The log block and
963 * buffer pointer of the last record seen are returned in rblk and rhead
967 xlog_seek_logrec_hdr(
969 xfs_daddr_t head_blk
,
970 xfs_daddr_t tail_blk
,
974 struct xlog_rec_header
**rhead
,
986 * Walk forward from the tail block until we hit the head or the last
989 end_blk
= head_blk
> tail_blk
? head_blk
: log
->l_logBBsize
- 1;
990 for (i
= (int) tail_blk
; i
<= end_blk
; i
++) {
991 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
995 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
997 *rhead
= (struct xlog_rec_header
*) offset
;
998 if (++found
== count
)
1004 * If we haven't hit the head block or the log record header count,
1005 * start looking again from the start of the physical log.
1007 if (tail_blk
> head_blk
&& found
!= count
) {
1008 for (i
= 0; i
< (int) head_blk
; i
++) {
1009 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
1013 if (*(__be32
*)offset
==
1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
1017 *rhead
= (struct xlog_rec_header
*) offset
;
1018 if (++found
== count
)
1031 * Calculate distance from head to tail (i.e., unused space in the log).
1036 xfs_daddr_t head_blk
,
1037 xfs_daddr_t tail_blk
)
1039 if (head_blk
< tail_blk
)
1040 return tail_blk
- head_blk
;
1042 return tail_blk
+ (log
->l_logBBsize
- head_blk
);
1046 * Verify the log tail. This is particularly important when torn or incomplete
1047 * writes have been detected near the front of the log and the head has been
1048 * walked back accordingly.
1050 * We also have to handle the case where the tail was pinned and the head
1051 * blocked behind the tail right before a crash. If the tail had been pushed
1052 * immediately prior to the crash and the subsequent checkpoint was only
1053 * partially written, it's possible it overwrote the last referenced tail in the
1054 * log with garbage. This is not a coherency problem because the tail must have
1055 * been pushed before it can be overwritten, but appears as log corruption to
1056 * recovery because we have no way to know the tail was updated if the
1057 * subsequent checkpoint didn't write successfully.
1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1060 * offending record is within max iclog bufs from the head, walk the tail
1061 * forward and retry until a valid tail is found or corruption is detected out
1062 * of the range of a possible overwrite.
1067 xfs_daddr_t head_blk
,
1068 xfs_daddr_t
*tail_blk
,
1071 struct xlog_rec_header
*thead
;
1073 xfs_daddr_t first_bad
;
1076 xfs_daddr_t tmp_tail
;
1077 xfs_daddr_t orig_tail
= *tail_blk
;
1079 bp
= xlog_get_bp(log
, 1);
1084 * Make sure the tail points to a record (returns positive count on
1087 error
= xlog_seek_logrec_hdr(log
, head_blk
, *tail_blk
, 1, bp
,
1088 &tmp_tail
, &thead
, &wrapped
);
1091 if (*tail_blk
!= tmp_tail
)
1092 *tail_blk
= tmp_tail
;
1095 * Run a CRC check from the tail to the head. We can't just check
1096 * MAX_ICLOGS records past the tail because the tail may point to stale
1097 * blocks cleared during the search for the head/tail. These blocks are
1098 * overwritten with zero-length records and thus record count is not a
1099 * reliable indicator of the iclog state before a crash.
1102 error
= xlog_do_recovery_pass(log
, head_blk
, *tail_blk
,
1103 XLOG_RECOVER_CRCPASS
, &first_bad
);
1104 while ((error
== -EFSBADCRC
|| error
== -EFSCORRUPTED
) && first_bad
) {
1108 * Is corruption within range of the head? If so, retry from
1109 * the next record. Otherwise return an error.
1111 tail_distance
= xlog_tail_distance(log
, head_blk
, first_bad
);
1112 if (tail_distance
> BTOBB(XLOG_MAX_ICLOGS
* hsize
))
1115 /* skip to the next record; returns positive count on success */
1116 error
= xlog_seek_logrec_hdr(log
, head_blk
, first_bad
, 2, bp
,
1117 &tmp_tail
, &thead
, &wrapped
);
1121 *tail_blk
= tmp_tail
;
1123 error
= xlog_do_recovery_pass(log
, head_blk
, *tail_blk
,
1124 XLOG_RECOVER_CRCPASS
, &first_bad
);
1127 if (!error
&& *tail_blk
!= orig_tail
)
1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1130 orig_tail
, *tail_blk
);
1137 * Detect and trim torn writes from the head of the log.
1139 * Storage without sector atomicity guarantees can result in torn writes in the
1140 * log in the event of a crash. Our only means to detect this scenario is via
1141 * CRC verification. While we can't always be certain that CRC verification
1142 * failure is due to a torn write vs. an unrelated corruption, we do know that
1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1145 * the log and treat failures in this range as torn writes as a matter of
1146 * policy. In the event of CRC failure, the head is walked back to the last good
1147 * record in the log and the tail is updated from that record and verified.
1152 xfs_daddr_t
*head_blk
, /* in/out: unverified head */
1153 xfs_daddr_t
*tail_blk
, /* out: tail block */
1155 xfs_daddr_t
*rhead_blk
, /* start blk of last record */
1156 struct xlog_rec_header
**rhead
, /* ptr to last record */
1157 bool *wrapped
) /* last rec. wraps phys. log */
1159 struct xlog_rec_header
*tmp_rhead
;
1160 struct xfs_buf
*tmp_bp
;
1161 xfs_daddr_t first_bad
;
1162 xfs_daddr_t tmp_rhead_blk
;
1168 * Check the head of the log for torn writes. Search backwards from the
1169 * head until we hit the tail or the maximum number of log record I/Os
1170 * that could have been in flight at one time. Use a temporary buffer so
1171 * we don't trash the rhead/bp pointers from the caller.
1173 tmp_bp
= xlog_get_bp(log
, 1);
1176 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *tail_blk
,
1177 XLOG_MAX_ICLOGS
, tmp_bp
, &tmp_rhead_blk
,
1178 &tmp_rhead
, &tmp_wrapped
);
1179 xlog_put_bp(tmp_bp
);
1184 * Now run a CRC verification pass over the records starting at the
1185 * block found above to the current head. If a CRC failure occurs, the
1186 * log block of the first bad record is saved in first_bad.
1188 error
= xlog_do_recovery_pass(log
, *head_blk
, tmp_rhead_blk
,
1189 XLOG_RECOVER_CRCPASS
, &first_bad
);
1190 if ((error
== -EFSBADCRC
|| error
== -EFSCORRUPTED
) && first_bad
) {
1192 * We've hit a potential torn write. Reset the error and warn
1197 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1198 first_bad
, *head_blk
);
1201 * Get the header block and buffer pointer for the last good
1202 * record before the bad record.
1204 * Note that xlog_find_tail() clears the blocks at the new head
1205 * (i.e., the records with invalid CRC) if the cycle number
1206 * matches the the current cycle.
1208 found
= xlog_rseek_logrec_hdr(log
, first_bad
, *tail_blk
, 1, bp
,
1209 rhead_blk
, rhead
, wrapped
);
1212 if (found
== 0) /* XXX: right thing to do here? */
1216 * Reset the head block to the starting block of the first bad
1217 * log record and set the tail block based on the last good
1220 * Bail out if the updated head/tail match as this indicates
1221 * possible corruption outside of the acceptable
1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1224 *head_blk
= first_bad
;
1225 *tail_blk
= BLOCK_LSN(be64_to_cpu((*rhead
)->h_tail_lsn
));
1226 if (*head_blk
== *tail_blk
) {
1234 return xlog_verify_tail(log
, *head_blk
, tail_blk
,
1235 be32_to_cpu((*rhead
)->h_size
));
1239 * We need to make sure we handle log wrapping properly, so we can't use the
1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1244 * operation here and cast it back to a 64 bit daddr on return.
1246 static inline xfs_daddr_t
1253 div_s64_rem(bno
, log
->l_logBBsize
, &mod
);
1258 * Check whether the head of the log points to an unmount record. In other
1259 * words, determine whether the log is clean. If so, update the in-core state
1263 xlog_check_unmount_rec(
1265 xfs_daddr_t
*head_blk
,
1266 xfs_daddr_t
*tail_blk
,
1267 struct xlog_rec_header
*rhead
,
1268 xfs_daddr_t rhead_blk
,
1272 struct xlog_op_header
*op_head
;
1273 xfs_daddr_t umount_data_blk
;
1274 xfs_daddr_t after_umount_blk
;
1282 * Look for unmount record. If we find it, then we know there was a
1283 * clean unmount. Since 'i' could be the last block in the physical
1284 * log, we convert to a log block before comparing to the head_blk.
1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1287 * below. We won't want to clear the unmount record if there is one, so
1288 * we pass the lsn of the unmount record rather than the block after it.
1290 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1291 int h_size
= be32_to_cpu(rhead
->h_size
);
1292 int h_version
= be32_to_cpu(rhead
->h_version
);
1294 if ((h_version
& XLOG_VERSION_2
) &&
1295 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1296 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1297 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1306 after_umount_blk
= xlog_wrap_logbno(log
,
1307 rhead_blk
+ hblks
+ BTOBB(be32_to_cpu(rhead
->h_len
)));
1309 if (*head_blk
== after_umount_blk
&&
1310 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1311 umount_data_blk
= xlog_wrap_logbno(log
, rhead_blk
+ hblks
);
1312 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1316 op_head
= (struct xlog_op_header
*)offset
;
1317 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1319 * Set tail and last sync so that newly written log
1320 * records will point recovery to after the current
1323 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1324 log
->l_curr_cycle
, after_umount_blk
);
1325 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1326 log
->l_curr_cycle
, after_umount_blk
);
1327 *tail_blk
= after_umount_blk
;
1339 xfs_daddr_t head_blk
,
1340 struct xlog_rec_header
*rhead
,
1341 xfs_daddr_t rhead_blk
,
1345 * Reset log values according to the state of the log when we
1346 * crashed. In the case where head_blk == 0, we bump curr_cycle
1347 * one because the next write starts a new cycle rather than
1348 * continuing the cycle of the last good log record. At this
1349 * point we have guaranteed that all partial log records have been
1350 * accounted for. Therefore, we know that the last good log record
1351 * written was complete and ended exactly on the end boundary
1352 * of the physical log.
1354 log
->l_prev_block
= rhead_blk
;
1355 log
->l_curr_block
= (int)head_blk
;
1356 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
1358 log
->l_curr_cycle
++;
1359 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
1360 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
1361 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
1362 BBTOB(log
->l_curr_block
));
1363 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
1364 BBTOB(log
->l_curr_block
));
1368 * Find the sync block number or the tail of the log.
1370 * This will be the block number of the last record to have its
1371 * associated buffers synced to disk. Every log record header has
1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1373 * to get a sync block number. The only concern is to figure out which
1374 * log record header to believe.
1376 * The following algorithm uses the log record header with the largest
1377 * lsn. The entire log record does not need to be valid. We only care
1378 * that the header is valid.
1380 * We could speed up search by using current head_blk buffer, but it is not
1386 xfs_daddr_t
*head_blk
,
1387 xfs_daddr_t
*tail_blk
)
1389 xlog_rec_header_t
*rhead
;
1390 char *offset
= NULL
;
1393 xfs_daddr_t rhead_blk
;
1395 bool wrapped
= false;
1399 * Find previous log record
1401 if ((error
= xlog_find_head(log
, head_blk
)))
1403 ASSERT(*head_blk
< INT_MAX
);
1405 bp
= xlog_get_bp(log
, 1);
1408 if (*head_blk
== 0) { /* special case */
1409 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1413 if (xlog_get_cycle(offset
) == 0) {
1415 /* leave all other log inited values alone */
1421 * Search backwards through the log looking for the log record header
1422 * block. This wraps all the way back around to the head so something is
1423 * seriously wrong if we can't find it.
1425 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *head_blk
, 1, bp
,
1426 &rhead_blk
, &rhead
, &wrapped
);
1430 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
1433 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
1436 * Set the log state based on the current head record.
1438 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
, wrapped
);
1439 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1442 * Look for an unmount record at the head of the log. This sets the log
1443 * state to determine whether recovery is necessary.
1445 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
, rhead
,
1446 rhead_blk
, bp
, &clean
);
1451 * Verify the log head if the log is not clean (e.g., we have anything
1452 * but an unmount record at the head). This uses CRC verification to
1453 * detect and trim torn writes. If discovered, CRC failures are
1454 * considered torn writes and the log head is trimmed accordingly.
1456 * Note that we can only run CRC verification when the log is dirty
1457 * because there's no guarantee that the log data behind an unmount
1458 * record is compatible with the current architecture.
1461 xfs_daddr_t orig_head
= *head_blk
;
1463 error
= xlog_verify_head(log
, head_blk
, tail_blk
, bp
,
1464 &rhead_blk
, &rhead
, &wrapped
);
1468 /* update in-core state again if the head changed */
1469 if (*head_blk
!= orig_head
) {
1470 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
,
1472 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1473 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
,
1474 rhead
, rhead_blk
, bp
,
1482 * Note that the unmount was clean. If the unmount was not clean, we
1483 * need to know this to rebuild the superblock counters from the perag
1484 * headers if we have a filesystem using non-persistent counters.
1487 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1490 * Make sure that there are no blocks in front of the head
1491 * with the same cycle number as the head. This can happen
1492 * because we allow multiple outstanding log writes concurrently,
1493 * and the later writes might make it out before earlier ones.
1495 * We use the lsn from before modifying it so that we'll never
1496 * overwrite the unmount record after a clean unmount.
1498 * Do this only if we are going to recover the filesystem
1500 * NOTE: This used to say "if (!readonly)"
1501 * However on Linux, we can & do recover a read-only filesystem.
1502 * We only skip recovery if NORECOVERY is specified on mount,
1503 * in which case we would not be here.
1505 * But... if the -device- itself is readonly, just skip this.
1506 * We can't recover this device anyway, so it won't matter.
1508 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1509 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1515 xfs_warn(log
->l_mp
, "failed to locate log tail");
1520 * Is the log zeroed at all?
1522 * The last binary search should be changed to perform an X block read
1523 * once X becomes small enough. You can then search linearly through
1524 * the X blocks. This will cut down on the number of reads we need to do.
1526 * If the log is partially zeroed, this routine will pass back the blkno
1527 * of the first block with cycle number 0. It won't have a complete LR
1531 * 0 => the log is completely written to
1532 * 1 => use *blk_no as the first block of the log
1533 * <0 => error has occurred
1538 xfs_daddr_t
*blk_no
)
1542 uint first_cycle
, last_cycle
;
1543 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1544 xfs_daddr_t num_scan_bblks
;
1545 int error
, log_bbnum
= log
->l_logBBsize
;
1549 /* check totally zeroed log */
1550 bp
= xlog_get_bp(log
, 1);
1553 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1557 first_cycle
= xlog_get_cycle(offset
);
1558 if (first_cycle
== 0) { /* completely zeroed log */
1564 /* check partially zeroed log */
1565 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1569 last_cycle
= xlog_get_cycle(offset
);
1570 if (last_cycle
!= 0) { /* log completely written to */
1573 } else if (first_cycle
!= 1) {
1575 * If the cycle of the last block is zero, the cycle of
1576 * the first block must be 1. If it's not, maybe we're
1577 * not looking at a log... Bail out.
1580 "Log inconsistent or not a log (last==0, first!=1)");
1585 /* we have a partially zeroed log */
1586 last_blk
= log_bbnum
-1;
1587 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1591 * Validate the answer. Because there is no way to guarantee that
1592 * the entire log is made up of log records which are the same size,
1593 * we scan over the defined maximum blocks. At this point, the maximum
1594 * is not chosen to mean anything special. XXXmiken
1596 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1597 ASSERT(num_scan_bblks
<= INT_MAX
);
1599 if (last_blk
< num_scan_bblks
)
1600 num_scan_bblks
= last_blk
;
1601 start_blk
= last_blk
- num_scan_bblks
;
1604 * We search for any instances of cycle number 0 that occur before
1605 * our current estimate of the head. What we're trying to detect is
1606 * 1 ... | 0 | 1 | 0...
1607 * ^ binary search ends here
1609 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1610 (int)num_scan_bblks
, 0, &new_blk
)))
1616 * Potentially backup over partial log record write. We don't need
1617 * to search the end of the log because we know it is zero.
1619 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1634 * These are simple subroutines used by xlog_clear_stale_blocks() below
1635 * to initialize a buffer full of empty log record headers and write
1636 * them into the log.
1647 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1649 memset(buf
, 0, BBSIZE
);
1650 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1651 recp
->h_cycle
= cpu_to_be32(cycle
);
1652 recp
->h_version
= cpu_to_be32(
1653 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1654 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1655 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1656 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1657 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1661 xlog_write_log_records(
1672 int sectbb
= log
->l_sectBBsize
;
1673 int end_block
= start_block
+ blocks
;
1679 * Greedily allocate a buffer big enough to handle the full
1680 * range of basic blocks to be written. If that fails, try
1681 * a smaller size. We need to be able to write at least a
1682 * log sector, or we're out of luck.
1684 bufblks
= 1 << ffs(blocks
);
1685 while (bufblks
> log
->l_logBBsize
)
1687 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1689 if (bufblks
< sectbb
)
1693 /* We may need to do a read at the start to fill in part of
1694 * the buffer in the starting sector not covered by the first
1697 balign
= round_down(start_block
, sectbb
);
1698 if (balign
!= start_block
) {
1699 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1703 j
= start_block
- balign
;
1706 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1707 int bcount
, endcount
;
1709 bcount
= min(bufblks
, end_block
- start_block
);
1710 endcount
= bcount
- j
;
1712 /* We may need to do a read at the end to fill in part of
1713 * the buffer in the final sector not covered by the write.
1714 * If this is the same sector as the above read, skip it.
1716 ealign
= round_down(end_block
, sectbb
);
1717 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1718 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1719 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1726 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1727 for (; j
< endcount
; j
++) {
1728 xlog_add_record(log
, offset
, cycle
, i
+j
,
1729 tail_cycle
, tail_block
);
1732 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1735 start_block
+= endcount
;
1745 * This routine is called to blow away any incomplete log writes out
1746 * in front of the log head. We do this so that we won't become confused
1747 * if we come up, write only a little bit more, and then crash again.
1748 * If we leave the partial log records out there, this situation could
1749 * cause us to think those partial writes are valid blocks since they
1750 * have the current cycle number. We get rid of them by overwriting them
1751 * with empty log records with the old cycle number rather than the
1754 * The tail lsn is passed in rather than taken from
1755 * the log so that we will not write over the unmount record after a
1756 * clean unmount in a 512 block log. Doing so would leave the log without
1757 * any valid log records in it until a new one was written. If we crashed
1758 * during that time we would not be able to recover.
1761 xlog_clear_stale_blocks(
1765 int tail_cycle
, head_cycle
;
1766 int tail_block
, head_block
;
1767 int tail_distance
, max_distance
;
1771 tail_cycle
= CYCLE_LSN(tail_lsn
);
1772 tail_block
= BLOCK_LSN(tail_lsn
);
1773 head_cycle
= log
->l_curr_cycle
;
1774 head_block
= log
->l_curr_block
;
1777 * Figure out the distance between the new head of the log
1778 * and the tail. We want to write over any blocks beyond the
1779 * head that we may have written just before the crash, but
1780 * we don't want to overwrite the tail of the log.
1782 if (head_cycle
== tail_cycle
) {
1784 * The tail is behind the head in the physical log,
1785 * so the distance from the head to the tail is the
1786 * distance from the head to the end of the log plus
1787 * the distance from the beginning of the log to the
1790 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1791 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1792 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1793 return -EFSCORRUPTED
;
1795 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1798 * The head is behind the tail in the physical log,
1799 * so the distance from the head to the tail is just
1800 * the tail block minus the head block.
1802 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1803 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1804 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1805 return -EFSCORRUPTED
;
1807 tail_distance
= tail_block
- head_block
;
1811 * If the head is right up against the tail, we can't clear
1814 if (tail_distance
<= 0) {
1815 ASSERT(tail_distance
== 0);
1819 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1821 * Take the smaller of the maximum amount of outstanding I/O
1822 * we could have and the distance to the tail to clear out.
1823 * We take the smaller so that we don't overwrite the tail and
1824 * we don't waste all day writing from the head to the tail
1827 max_distance
= min(max_distance
, tail_distance
);
1829 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1831 * We can stomp all the blocks we need to without
1832 * wrapping around the end of the log. Just do it
1833 * in a single write. Use the cycle number of the
1834 * current cycle minus one so that the log will look like:
1837 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1838 head_block
, max_distance
, tail_cycle
,
1844 * We need to wrap around the end of the physical log in
1845 * order to clear all the blocks. Do it in two separate
1846 * I/Os. The first write should be from the head to the
1847 * end of the physical log, and it should use the current
1848 * cycle number minus one just like above.
1850 distance
= log
->l_logBBsize
- head_block
;
1851 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1852 head_block
, distance
, tail_cycle
,
1859 * Now write the blocks at the start of the physical log.
1860 * This writes the remainder of the blocks we want to clear.
1861 * It uses the current cycle number since we're now on the
1862 * same cycle as the head so that we get:
1863 * n ... n ... | n - 1 ...
1864 * ^^^^^ blocks we're writing
1866 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1867 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1868 tail_cycle
, tail_block
);
1876 /******************************************************************************
1878 * Log recover routines
1880 ******************************************************************************
1884 * Sort the log items in the transaction.
1886 * The ordering constraints are defined by the inode allocation and unlink
1887 * behaviour. The rules are:
1889 * 1. Every item is only logged once in a given transaction. Hence it
1890 * represents the last logged state of the item. Hence ordering is
1891 * dependent on the order in which operations need to be performed so
1892 * required initial conditions are always met.
1894 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1895 * there's nothing to replay from them so we can simply cull them
1896 * from the transaction. However, we can't do that until after we've
1897 * replayed all the other items because they may be dependent on the
1898 * cancelled buffer and replaying the cancelled buffer can remove it
1899 * form the cancelled buffer table. Hence they have tobe done last.
1901 * 3. Inode allocation buffers must be replayed before inode items that
1902 * read the buffer and replay changes into it. For filesystems using the
1903 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1904 * treated the same as inode allocation buffers as they create and
1905 * initialise the buffers directly.
1907 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1908 * This ensures that inodes are completely flushed to the inode buffer
1909 * in a "free" state before we remove the unlinked inode list pointer.
1911 * Hence the ordering needs to be inode allocation buffers first, inode items
1912 * second, inode unlink buffers third and cancelled buffers last.
1914 * But there's a problem with that - we can't tell an inode allocation buffer
1915 * apart from a regular buffer, so we can't separate them. We can, however,
1916 * tell an inode unlink buffer from the others, and so we can separate them out
1917 * from all the other buffers and move them to last.
1919 * Hence, 4 lists, in order from head to tail:
1920 * - buffer_list for all buffers except cancelled/inode unlink buffers
1921 * - item_list for all non-buffer items
1922 * - inode_buffer_list for inode unlink buffers
1923 * - cancel_list for the cancelled buffers
1925 * Note that we add objects to the tail of the lists so that first-to-last
1926 * ordering is preserved within the lists. Adding objects to the head of the
1927 * list means when we traverse from the head we walk them in last-to-first
1928 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1929 * but for all other items there may be specific ordering that we need to
1933 xlog_recover_reorder_trans(
1935 struct xlog_recover
*trans
,
1938 xlog_recover_item_t
*item
, *n
;
1940 LIST_HEAD(sort_list
);
1941 LIST_HEAD(cancel_list
);
1942 LIST_HEAD(buffer_list
);
1943 LIST_HEAD(inode_buffer_list
);
1944 LIST_HEAD(inode_list
);
1946 list_splice_init(&trans
->r_itemq
, &sort_list
);
1947 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1948 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1950 switch (ITEM_TYPE(item
)) {
1951 case XFS_LI_ICREATE
:
1952 list_move_tail(&item
->ri_list
, &buffer_list
);
1955 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1956 trace_xfs_log_recover_item_reorder_head(log
,
1958 list_move(&item
->ri_list
, &cancel_list
);
1961 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1962 list_move(&item
->ri_list
, &inode_buffer_list
);
1965 list_move_tail(&item
->ri_list
, &buffer_list
);
1969 case XFS_LI_QUOTAOFF
:
1978 trace_xfs_log_recover_item_reorder_tail(log
,
1980 list_move_tail(&item
->ri_list
, &inode_list
);
1984 "%s: unrecognized type of log operation",
1988 * return the remaining items back to the transaction
1989 * item list so they can be freed in caller.
1991 if (!list_empty(&sort_list
))
1992 list_splice_init(&sort_list
, &trans
->r_itemq
);
1998 ASSERT(list_empty(&sort_list
));
1999 if (!list_empty(&buffer_list
))
2000 list_splice(&buffer_list
, &trans
->r_itemq
);
2001 if (!list_empty(&inode_list
))
2002 list_splice_tail(&inode_list
, &trans
->r_itemq
);
2003 if (!list_empty(&inode_buffer_list
))
2004 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
2005 if (!list_empty(&cancel_list
))
2006 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
2011 * Build up the table of buf cancel records so that we don't replay
2012 * cancelled data in the second pass. For buffer records that are
2013 * not cancel records, there is nothing to do here so we just return.
2015 * If we get a cancel record which is already in the table, this indicates
2016 * that the buffer was cancelled multiple times. In order to ensure
2017 * that during pass 2 we keep the record in the table until we reach its
2018 * last occurrence in the log, we keep a reference count in the cancel
2019 * record in the table to tell us how many times we expect to see this
2020 * record during the second pass.
2023 xlog_recover_buffer_pass1(
2025 struct xlog_recover_item
*item
)
2027 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2028 struct list_head
*bucket
;
2029 struct xfs_buf_cancel
*bcp
;
2032 * If this isn't a cancel buffer item, then just return.
2034 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
2035 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
2040 * Insert an xfs_buf_cancel record into the hash table of them.
2041 * If there is already an identical record, bump its reference count.
2043 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
2044 list_for_each_entry(bcp
, bucket
, bc_list
) {
2045 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
2046 bcp
->bc_len
== buf_f
->blf_len
) {
2048 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
2053 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
2054 bcp
->bc_blkno
= buf_f
->blf_blkno
;
2055 bcp
->bc_len
= buf_f
->blf_len
;
2056 bcp
->bc_refcount
= 1;
2057 list_add_tail(&bcp
->bc_list
, bucket
);
2059 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
2064 * Check to see whether the buffer being recovered has a corresponding
2065 * entry in the buffer cancel record table. If it is, return the cancel
2066 * buffer structure to the caller.
2068 STATIC
struct xfs_buf_cancel
*
2069 xlog_peek_buffer_cancelled(
2073 unsigned short flags
)
2075 struct list_head
*bucket
;
2076 struct xfs_buf_cancel
*bcp
;
2078 if (!log
->l_buf_cancel_table
) {
2079 /* empty table means no cancelled buffers in the log */
2080 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2084 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
2085 list_for_each_entry(bcp
, bucket
, bc_list
) {
2086 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
2091 * We didn't find a corresponding entry in the table, so return 0 so
2092 * that the buffer is NOT cancelled.
2094 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2099 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2100 * otherwise return 0. If the buffer is actually a buffer cancel item
2101 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2102 * table and remove it from the table if this is the last reference.
2104 * We remove the cancel record from the table when we encounter its last
2105 * occurrence in the log so that if the same buffer is re-used again after its
2106 * last cancellation we actually replay the changes made at that point.
2109 xlog_check_buffer_cancelled(
2113 unsigned short flags
)
2115 struct xfs_buf_cancel
*bcp
;
2117 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
2122 * We've go a match, so return 1 so that the recovery of this buffer
2123 * is cancelled. If this buffer is actually a buffer cancel log
2124 * item, then decrement the refcount on the one in the table and
2125 * remove it if this is the last reference.
2127 if (flags
& XFS_BLF_CANCEL
) {
2128 if (--bcp
->bc_refcount
== 0) {
2129 list_del(&bcp
->bc_list
);
2137 * Perform recovery for a buffer full of inodes. In these buffers, the only
2138 * data which should be recovered is that which corresponds to the
2139 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2140 * data for the inodes is always logged through the inodes themselves rather
2141 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2143 * The only time when buffers full of inodes are fully recovered is when the
2144 * buffer is full of newly allocated inodes. In this case the buffer will
2145 * not be marked as an inode buffer and so will be sent to
2146 * xlog_recover_do_reg_buffer() below during recovery.
2149 xlog_recover_do_inode_buffer(
2150 struct xfs_mount
*mp
,
2151 xlog_recover_item_t
*item
,
2153 xfs_buf_log_format_t
*buf_f
)
2159 int reg_buf_offset
= 0;
2160 int reg_buf_bytes
= 0;
2161 int next_unlinked_offset
;
2163 xfs_agino_t
*logged_nextp
;
2164 xfs_agino_t
*buffer_nextp
;
2166 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
2169 * Post recovery validation only works properly on CRC enabled
2172 if (xfs_sb_version_hascrc(&mp
->m_sb
))
2173 bp
->b_ops
= &xfs_inode_buf_ops
;
2175 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
2176 for (i
= 0; i
< inodes_per_buf
; i
++) {
2177 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
2178 offsetof(xfs_dinode_t
, di_next_unlinked
);
2180 while (next_unlinked_offset
>=
2181 (reg_buf_offset
+ reg_buf_bytes
)) {
2183 * The next di_next_unlinked field is beyond
2184 * the current logged region. Find the next
2185 * logged region that contains or is beyond
2186 * the current di_next_unlinked field.
2189 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2190 buf_f
->blf_map_size
, bit
);
2193 * If there are no more logged regions in the
2194 * buffer, then we're done.
2199 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2200 buf_f
->blf_map_size
, bit
);
2202 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
2203 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
2208 * If the current logged region starts after the current
2209 * di_next_unlinked field, then move on to the next
2210 * di_next_unlinked field.
2212 if (next_unlinked_offset
< reg_buf_offset
)
2215 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
2216 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
2217 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
2218 BBTOB(bp
->b_io_length
));
2221 * The current logged region contains a copy of the
2222 * current di_next_unlinked field. Extract its value
2223 * and copy it to the buffer copy.
2225 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
2226 next_unlinked_offset
- reg_buf_offset
;
2227 if (unlikely(*logged_nextp
== 0)) {
2229 "Bad inode buffer log record (ptr = "PTR_FMT
", bp = "PTR_FMT
"). "
2230 "Trying to replay bad (0) inode di_next_unlinked field.",
2232 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2233 XFS_ERRLEVEL_LOW
, mp
);
2234 return -EFSCORRUPTED
;
2237 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
2238 *buffer_nextp
= *logged_nextp
;
2241 * If necessary, recalculate the CRC in the on-disk inode. We
2242 * have to leave the inode in a consistent state for whoever
2245 xfs_dinode_calc_crc(mp
,
2246 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
2254 * V5 filesystems know the age of the buffer on disk being recovered. We can
2255 * have newer objects on disk than we are replaying, and so for these cases we
2256 * don't want to replay the current change as that will make the buffer contents
2257 * temporarily invalid on disk.
2259 * The magic number might not match the buffer type we are going to recover
2260 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2261 * extract the LSN of the existing object in the buffer based on it's current
2262 * magic number. If we don't recognise the magic number in the buffer, then
2263 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2264 * so can recover the buffer.
2266 * Note: we cannot rely solely on magic number matches to determine that the
2267 * buffer has a valid LSN - we also need to verify that it belongs to this
2268 * filesystem, so we need to extract the object's LSN and compare it to that
2269 * which we read from the superblock. If the UUIDs don't match, then we've got a
2270 * stale metadata block from an old filesystem instance that we need to recover
2274 xlog_recover_get_buf_lsn(
2275 struct xfs_mount
*mp
,
2281 void *blk
= bp
->b_addr
;
2285 /* v4 filesystems always recover immediately */
2286 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2287 goto recover_immediately
;
2289 magic32
= be32_to_cpu(*(__be32
*)blk
);
2291 case XFS_ABTB_CRC_MAGIC
:
2292 case XFS_ABTC_CRC_MAGIC
:
2293 case XFS_ABTB_MAGIC
:
2294 case XFS_ABTC_MAGIC
:
2295 case XFS_RMAP_CRC_MAGIC
:
2296 case XFS_REFC_CRC_MAGIC
:
2297 case XFS_IBT_CRC_MAGIC
:
2298 case XFS_IBT_MAGIC
: {
2299 struct xfs_btree_block
*btb
= blk
;
2301 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
2302 uuid
= &btb
->bb_u
.s
.bb_uuid
;
2305 case XFS_BMAP_CRC_MAGIC
:
2306 case XFS_BMAP_MAGIC
: {
2307 struct xfs_btree_block
*btb
= blk
;
2309 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
2310 uuid
= &btb
->bb_u
.l
.bb_uuid
;
2314 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
2315 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
2317 case XFS_AGFL_MAGIC
:
2318 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
2319 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
2322 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
2323 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
2325 case XFS_SYMLINK_MAGIC
:
2326 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
2327 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
2329 case XFS_DIR3_BLOCK_MAGIC
:
2330 case XFS_DIR3_DATA_MAGIC
:
2331 case XFS_DIR3_FREE_MAGIC
:
2332 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
2333 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
2335 case XFS_ATTR3_RMT_MAGIC
:
2337 * Remote attr blocks are written synchronously, rather than
2338 * being logged. That means they do not contain a valid LSN
2339 * (i.e. transactionally ordered) in them, and hence any time we
2340 * see a buffer to replay over the top of a remote attribute
2341 * block we should simply do so.
2343 goto recover_immediately
;
2346 * superblock uuids are magic. We may or may not have a
2347 * sb_meta_uuid on disk, but it will be set in the in-core
2348 * superblock. We set the uuid pointer for verification
2349 * according to the superblock feature mask to ensure we check
2350 * the relevant UUID in the superblock.
2352 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
2353 if (xfs_sb_version_hasmetauuid(&mp
->m_sb
))
2354 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
2356 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
2362 if (lsn
!= (xfs_lsn_t
)-1) {
2363 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
2364 goto recover_immediately
;
2368 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
2370 case XFS_DIR3_LEAF1_MAGIC
:
2371 case XFS_DIR3_LEAFN_MAGIC
:
2372 case XFS_DA3_NODE_MAGIC
:
2373 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
2374 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
2380 if (lsn
!= (xfs_lsn_t
)-1) {
2381 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
2382 goto recover_immediately
;
2387 * We do individual object checks on dquot and inode buffers as they
2388 * have their own individual LSN records. Also, we could have a stale
2389 * buffer here, so we have to at least recognise these buffer types.
2391 * A notd complexity here is inode unlinked list processing - it logs
2392 * the inode directly in the buffer, but we don't know which inodes have
2393 * been modified, and there is no global buffer LSN. Hence we need to
2394 * recover all inode buffer types immediately. This problem will be
2395 * fixed by logical logging of the unlinked list modifications.
2397 magic16
= be16_to_cpu(*(__be16
*)blk
);
2399 case XFS_DQUOT_MAGIC
:
2400 case XFS_DINODE_MAGIC
:
2401 goto recover_immediately
;
2406 /* unknown buffer contents, recover immediately */
2408 recover_immediately
:
2409 return (xfs_lsn_t
)-1;
2414 * Validate the recovered buffer is of the correct type and attach the
2415 * appropriate buffer operations to them for writeback. Magic numbers are in a
2417 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2418 * the first 32 bits of the buffer (most blocks),
2419 * inside a struct xfs_da_blkinfo at the start of the buffer.
2422 xlog_recover_validate_buf_type(
2423 struct xfs_mount
*mp
,
2425 xfs_buf_log_format_t
*buf_f
,
2426 xfs_lsn_t current_lsn
)
2428 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
2432 char *warnmsg
= NULL
;
2435 * We can only do post recovery validation on items on CRC enabled
2436 * fielsystems as we need to know when the buffer was written to be able
2437 * to determine if we should have replayed the item. If we replay old
2438 * metadata over a newer buffer, then it will enter a temporarily
2439 * inconsistent state resulting in verification failures. Hence for now
2440 * just avoid the verification stage for non-crc filesystems
2442 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2445 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
2446 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
2447 magicda
= be16_to_cpu(info
->magic
);
2448 switch (xfs_blft_from_flags(buf_f
)) {
2449 case XFS_BLFT_BTREE_BUF
:
2451 case XFS_ABTB_CRC_MAGIC
:
2452 case XFS_ABTC_CRC_MAGIC
:
2453 case XFS_ABTB_MAGIC
:
2454 case XFS_ABTC_MAGIC
:
2455 bp
->b_ops
= &xfs_allocbt_buf_ops
;
2457 case XFS_IBT_CRC_MAGIC
:
2458 case XFS_FIBT_CRC_MAGIC
:
2460 case XFS_FIBT_MAGIC
:
2461 bp
->b_ops
= &xfs_inobt_buf_ops
;
2463 case XFS_BMAP_CRC_MAGIC
:
2464 case XFS_BMAP_MAGIC
:
2465 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2467 case XFS_RMAP_CRC_MAGIC
:
2468 bp
->b_ops
= &xfs_rmapbt_buf_ops
;
2470 case XFS_REFC_CRC_MAGIC
:
2471 bp
->b_ops
= &xfs_refcountbt_buf_ops
;
2474 warnmsg
= "Bad btree block magic!";
2478 case XFS_BLFT_AGF_BUF
:
2479 if (magic32
!= XFS_AGF_MAGIC
) {
2480 warnmsg
= "Bad AGF block magic!";
2483 bp
->b_ops
= &xfs_agf_buf_ops
;
2485 case XFS_BLFT_AGFL_BUF
:
2486 if (magic32
!= XFS_AGFL_MAGIC
) {
2487 warnmsg
= "Bad AGFL block magic!";
2490 bp
->b_ops
= &xfs_agfl_buf_ops
;
2492 case XFS_BLFT_AGI_BUF
:
2493 if (magic32
!= XFS_AGI_MAGIC
) {
2494 warnmsg
= "Bad AGI block magic!";
2497 bp
->b_ops
= &xfs_agi_buf_ops
;
2499 case XFS_BLFT_UDQUOT_BUF
:
2500 case XFS_BLFT_PDQUOT_BUF
:
2501 case XFS_BLFT_GDQUOT_BUF
:
2502 #ifdef CONFIG_XFS_QUOTA
2503 if (magic16
!= XFS_DQUOT_MAGIC
) {
2504 warnmsg
= "Bad DQUOT block magic!";
2507 bp
->b_ops
= &xfs_dquot_buf_ops
;
2510 "Trying to recover dquots without QUOTA support built in!");
2514 case XFS_BLFT_DINO_BUF
:
2515 if (magic16
!= XFS_DINODE_MAGIC
) {
2516 warnmsg
= "Bad INODE block magic!";
2519 bp
->b_ops
= &xfs_inode_buf_ops
;
2521 case XFS_BLFT_SYMLINK_BUF
:
2522 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2523 warnmsg
= "Bad symlink block magic!";
2526 bp
->b_ops
= &xfs_symlink_buf_ops
;
2528 case XFS_BLFT_DIR_BLOCK_BUF
:
2529 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2530 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2531 warnmsg
= "Bad dir block magic!";
2534 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2536 case XFS_BLFT_DIR_DATA_BUF
:
2537 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2538 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2539 warnmsg
= "Bad dir data magic!";
2542 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2544 case XFS_BLFT_DIR_FREE_BUF
:
2545 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2546 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2547 warnmsg
= "Bad dir3 free magic!";
2550 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2552 case XFS_BLFT_DIR_LEAF1_BUF
:
2553 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2554 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2555 warnmsg
= "Bad dir leaf1 magic!";
2558 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2560 case XFS_BLFT_DIR_LEAFN_BUF
:
2561 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2562 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2563 warnmsg
= "Bad dir leafn magic!";
2566 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2568 case XFS_BLFT_DA_NODE_BUF
:
2569 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2570 magicda
!= XFS_DA3_NODE_MAGIC
) {
2571 warnmsg
= "Bad da node magic!";
2574 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2576 case XFS_BLFT_ATTR_LEAF_BUF
:
2577 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2578 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2579 warnmsg
= "Bad attr leaf magic!";
2582 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2584 case XFS_BLFT_ATTR_RMT_BUF
:
2585 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2586 warnmsg
= "Bad attr remote magic!";
2589 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2591 case XFS_BLFT_SB_BUF
:
2592 if (magic32
!= XFS_SB_MAGIC
) {
2593 warnmsg
= "Bad SB block magic!";
2596 bp
->b_ops
= &xfs_sb_buf_ops
;
2598 #ifdef CONFIG_XFS_RT
2599 case XFS_BLFT_RTBITMAP_BUF
:
2600 case XFS_BLFT_RTSUMMARY_BUF
:
2601 /* no magic numbers for verification of RT buffers */
2602 bp
->b_ops
= &xfs_rtbuf_ops
;
2604 #endif /* CONFIG_XFS_RT */
2606 xfs_warn(mp
, "Unknown buffer type %d!",
2607 xfs_blft_from_flags(buf_f
));
2612 * Nothing else to do in the case of a NULL current LSN as this means
2613 * the buffer is more recent than the change in the log and will be
2616 if (current_lsn
== NULLCOMMITLSN
)
2620 xfs_warn(mp
, warnmsg
);
2625 * We must update the metadata LSN of the buffer as it is written out to
2626 * ensure that older transactions never replay over this one and corrupt
2627 * the buffer. This can occur if log recovery is interrupted at some
2628 * point after the current transaction completes, at which point a
2629 * subsequent mount starts recovery from the beginning.
2631 * Write verifiers update the metadata LSN from log items attached to
2632 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2633 * the verifier. We'll clean it up in our ->iodone() callback.
2636 struct xfs_buf_log_item
*bip
;
2638 ASSERT(!bp
->b_iodone
|| bp
->b_iodone
== xlog_recover_iodone
);
2639 bp
->b_iodone
= xlog_recover_iodone
;
2640 xfs_buf_item_init(bp
, mp
);
2641 bip
= bp
->b_log_item
;
2642 bip
->bli_item
.li_lsn
= current_lsn
;
2647 * Perform a 'normal' buffer recovery. Each logged region of the
2648 * buffer should be copied over the corresponding region in the
2649 * given buffer. The bitmap in the buf log format structure indicates
2650 * where to place the logged data.
2653 xlog_recover_do_reg_buffer(
2654 struct xfs_mount
*mp
,
2655 xlog_recover_item_t
*item
,
2657 xfs_buf_log_format_t
*buf_f
,
2658 xfs_lsn_t current_lsn
)
2665 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2668 i
= 1; /* 0 is the buf format structure */
2670 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2671 buf_f
->blf_map_size
, bit
);
2674 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2675 buf_f
->blf_map_size
, bit
);
2677 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2678 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2679 ASSERT(BBTOB(bp
->b_io_length
) >=
2680 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2683 * The dirty regions logged in the buffer, even though
2684 * contiguous, may span multiple chunks. This is because the
2685 * dirty region may span a physical page boundary in a buffer
2686 * and hence be split into two separate vectors for writing into
2687 * the log. Hence we need to trim nbits back to the length of
2688 * the current region being copied out of the log.
2690 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2691 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2694 * Do a sanity check if this is a dquot buffer. Just checking
2695 * the first dquot in the buffer should do. XXXThis is
2696 * probably a good thing to do for other buf types also.
2699 if (buf_f
->blf_flags
&
2700 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2701 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2703 "XFS: NULL dquot in %s.", __func__
);
2706 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2708 "XFS: dquot too small (%d) in %s.",
2709 item
->ri_buf
[i
].i_len
, __func__
);
2712 fa
= xfs_dquot_verify(mp
, item
->ri_buf
[i
].i_addr
,
2716 "dquot corrupt at %pS trying to replay into block 0x%llx",
2722 memcpy(xfs_buf_offset(bp
,
2723 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2724 item
->ri_buf
[i
].i_addr
, /* source */
2725 nbits
<<XFS_BLF_SHIFT
); /* length */
2731 /* Shouldn't be any more regions */
2732 ASSERT(i
== item
->ri_total
);
2734 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, current_lsn
);
2738 * Perform a dquot buffer recovery.
2739 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2740 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2741 * Else, treat it as a regular buffer and do recovery.
2743 * Return false if the buffer was tossed and true if we recovered the buffer to
2744 * indicate to the caller if the buffer needs writing.
2747 xlog_recover_do_dquot_buffer(
2748 struct xfs_mount
*mp
,
2750 struct xlog_recover_item
*item
,
2752 struct xfs_buf_log_format
*buf_f
)
2756 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2759 * Filesystems are required to send in quota flags at mount time.
2765 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2766 type
|= XFS_DQ_USER
;
2767 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2768 type
|= XFS_DQ_PROJ
;
2769 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2770 type
|= XFS_DQ_GROUP
;
2772 * This type of quotas was turned off, so ignore this buffer
2774 if (log
->l_quotaoffs_flag
& type
)
2777 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, NULLCOMMITLSN
);
2782 * This routine replays a modification made to a buffer at runtime.
2783 * There are actually two types of buffer, regular and inode, which
2784 * are handled differently. Inode buffers are handled differently
2785 * in that we only recover a specific set of data from them, namely
2786 * the inode di_next_unlinked fields. This is because all other inode
2787 * data is actually logged via inode records and any data we replay
2788 * here which overlaps that may be stale.
2790 * When meta-data buffers are freed at run time we log a buffer item
2791 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2792 * of the buffer in the log should not be replayed at recovery time.
2793 * This is so that if the blocks covered by the buffer are reused for
2794 * file data before we crash we don't end up replaying old, freed
2795 * meta-data into a user's file.
2797 * To handle the cancellation of buffer log items, we make two passes
2798 * over the log during recovery. During the first we build a table of
2799 * those buffers which have been cancelled, and during the second we
2800 * only replay those buffers which do not have corresponding cancel
2801 * records in the table. See xlog_recover_buffer_pass[1,2] above
2802 * for more details on the implementation of the table of cancel records.
2805 xlog_recover_buffer_pass2(
2807 struct list_head
*buffer_list
,
2808 struct xlog_recover_item
*item
,
2809 xfs_lsn_t current_lsn
)
2811 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2812 xfs_mount_t
*mp
= log
->l_mp
;
2819 * In this pass we only want to recover all the buffers which have
2820 * not been cancelled and are not cancellation buffers themselves.
2822 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2823 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2824 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2828 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2831 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2832 buf_flags
|= XBF_UNMAPPED
;
2834 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2838 error
= bp
->b_error
;
2840 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2845 * Recover the buffer only if we get an LSN from it and it's less than
2846 * the lsn of the transaction we are replaying.
2848 * Note that we have to be extremely careful of readahead here.
2849 * Readahead does not attach verfiers to the buffers so if we don't
2850 * actually do any replay after readahead because of the LSN we found
2851 * in the buffer if more recent than that current transaction then we
2852 * need to attach the verifier directly. Failure to do so can lead to
2853 * future recovery actions (e.g. EFI and unlinked list recovery) can
2854 * operate on the buffers and they won't get the verifier attached. This
2855 * can lead to blocks on disk having the correct content but a stale
2858 * It is safe to assume these clean buffers are currently up to date.
2859 * If the buffer is dirtied by a later transaction being replayed, then
2860 * the verifier will be reset to match whatever recover turns that
2863 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2864 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2865 trace_xfs_log_recover_buf_skip(log
, buf_f
);
2866 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, NULLCOMMITLSN
);
2870 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2871 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2874 } else if (buf_f
->blf_flags
&
2875 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2878 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2882 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, current_lsn
);
2886 * Perform delayed write on the buffer. Asynchronous writes will be
2887 * slower when taking into account all the buffers to be flushed.
2889 * Also make sure that only inode buffers with good sizes stay in
2890 * the buffer cache. The kernel moves inodes in buffers of 1 block
2891 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2892 * buffers in the log can be a different size if the log was generated
2893 * by an older kernel using unclustered inode buffers or a newer kernel
2894 * running with a different inode cluster size. Regardless, if the
2895 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size)
2896 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2897 * the buffer out of the buffer cache so that the buffer won't
2898 * overlap with future reads of those inodes.
2900 if (XFS_DINODE_MAGIC
==
2901 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2902 (BBTOB(bp
->b_io_length
) != max(log
->l_mp
->m_sb
.sb_blocksize
,
2903 (uint32_t)log
->l_mp
->m_inode_cluster_size
))) {
2905 error
= xfs_bwrite(bp
);
2907 ASSERT(bp
->b_target
->bt_mount
== mp
);
2908 bp
->b_iodone
= xlog_recover_iodone
;
2909 xfs_buf_delwri_queue(bp
, buffer_list
);
2918 * Inode fork owner changes
2920 * If we have been told that we have to reparent the inode fork, it's because an
2921 * extent swap operation on a CRC enabled filesystem has been done and we are
2922 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2925 * The complexity here is that we don't have an inode context to work with, so
2926 * after we've replayed the inode we need to instantiate one. This is where the
2929 * We are in the middle of log recovery, so we can't run transactions. That
2930 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2931 * that will result in the corresponding iput() running the inode through
2932 * xfs_inactive(). If we've just replayed an inode core that changes the link
2933 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2934 * transactions (bad!).
2936 * So, to avoid this, we instantiate an inode directly from the inode core we've
2937 * just recovered. We have the buffer still locked, and all we really need to
2938 * instantiate is the inode core and the forks being modified. We can do this
2939 * manually, then run the inode btree owner change, and then tear down the
2940 * xfs_inode without having to run any transactions at all.
2942 * Also, because we don't have a transaction context available here but need to
2943 * gather all the buffers we modify for writeback so we pass the buffer_list
2944 * instead for the operation to use.
2948 xfs_recover_inode_owner_change(
2949 struct xfs_mount
*mp
,
2950 struct xfs_dinode
*dip
,
2951 struct xfs_inode_log_format
*in_f
,
2952 struct list_head
*buffer_list
)
2954 struct xfs_inode
*ip
;
2957 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2959 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2963 /* instantiate the inode */
2964 xfs_inode_from_disk(ip
, dip
);
2965 ASSERT(ip
->i_d
.di_version
>= 3);
2967 error
= xfs_iformat_fork(ip
, dip
);
2971 if (!xfs_inode_verify_forks(ip
)) {
2972 error
= -EFSCORRUPTED
;
2976 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2977 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2978 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2979 ip
->i_ino
, buffer_list
);
2984 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2985 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2986 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2987 ip
->i_ino
, buffer_list
);
2998 xlog_recover_inode_pass2(
3000 struct list_head
*buffer_list
,
3001 struct xlog_recover_item
*item
,
3002 xfs_lsn_t current_lsn
)
3004 struct xfs_inode_log_format
*in_f
;
3005 xfs_mount_t
*mp
= log
->l_mp
;
3014 struct xfs_log_dinode
*ldip
;
3018 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3019 in_f
= item
->ri_buf
[0].i_addr
;
3021 in_f
= kmem_alloc(sizeof(struct xfs_inode_log_format
), KM_SLEEP
);
3023 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
3029 * Inode buffers can be freed, look out for it,
3030 * and do not replay the inode.
3032 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
3033 in_f
->ilf_len
, 0)) {
3035 trace_xfs_log_recover_inode_cancel(log
, in_f
);
3038 trace_xfs_log_recover_inode_recover(log
, in_f
);
3040 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
3041 &xfs_inode_buf_ops
);
3046 error
= bp
->b_error
;
3048 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
3051 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
3052 dip
= xfs_buf_offset(bp
, in_f
->ilf_boffset
);
3055 * Make sure the place we're flushing out to really looks
3058 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
3060 "%s: Bad inode magic number, dip = "PTR_FMT
", dino bp = "PTR_FMT
", ino = %Ld",
3061 __func__
, dip
, bp
, in_f
->ilf_ino
);
3062 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3063 XFS_ERRLEVEL_LOW
, mp
);
3064 error
= -EFSCORRUPTED
;
3067 ldip
= item
->ri_buf
[1].i_addr
;
3068 if (unlikely(ldip
->di_magic
!= XFS_DINODE_MAGIC
)) {
3070 "%s: Bad inode log record, rec ptr "PTR_FMT
", ino %Ld",
3071 __func__
, item
, in_f
->ilf_ino
);
3072 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3073 XFS_ERRLEVEL_LOW
, mp
);
3074 error
= -EFSCORRUPTED
;
3079 * If the inode has an LSN in it, recover the inode only if it's less
3080 * than the lsn of the transaction we are replaying. Note: we still
3081 * need to replay an owner change even though the inode is more recent
3082 * than the transaction as there is no guarantee that all the btree
3083 * blocks are more recent than this transaction, too.
3085 if (dip
->di_version
>= 3) {
3086 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
3088 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3089 trace_xfs_log_recover_inode_skip(log
, in_f
);
3091 goto out_owner_change
;
3096 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3097 * are transactional and if ordering is necessary we can determine that
3098 * more accurately by the LSN field in the V3 inode core. Don't trust
3099 * the inode versions we might be changing them here - use the
3100 * superblock flag to determine whether we need to look at di_flushiter
3101 * to skip replay when the on disk inode is newer than the log one
3103 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
3104 ldip
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
3106 * Deal with the wrap case, DI_MAX_FLUSH is less
3107 * than smaller numbers
3109 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
3110 ldip
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
3113 trace_xfs_log_recover_inode_skip(log
, in_f
);
3119 /* Take the opportunity to reset the flush iteration count */
3120 ldip
->di_flushiter
= 0;
3122 if (unlikely(S_ISREG(ldip
->di_mode
))) {
3123 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3124 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
3125 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3126 XFS_ERRLEVEL_LOW
, mp
, ldip
,
3129 "%s: Bad regular inode log record, rec ptr "PTR_FMT
", "
3130 "ino ptr = "PTR_FMT
", ino bp = "PTR_FMT
", ino %Ld",
3131 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3132 error
= -EFSCORRUPTED
;
3135 } else if (unlikely(S_ISDIR(ldip
->di_mode
))) {
3136 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3137 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
3138 (ldip
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
3139 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3140 XFS_ERRLEVEL_LOW
, mp
, ldip
,
3143 "%s: Bad dir inode log record, rec ptr "PTR_FMT
", "
3144 "ino ptr = "PTR_FMT
", ino bp = "PTR_FMT
", ino %Ld",
3145 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3146 error
= -EFSCORRUPTED
;
3150 if (unlikely(ldip
->di_nextents
+ ldip
->di_anextents
> ldip
->di_nblocks
)){
3151 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3152 XFS_ERRLEVEL_LOW
, mp
, ldip
,
3155 "%s: Bad inode log record, rec ptr "PTR_FMT
", dino ptr "PTR_FMT
", "
3156 "dino bp "PTR_FMT
", ino %Ld, total extents = %d, nblocks = %Ld",
3157 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
3158 ldip
->di_nextents
+ ldip
->di_anextents
,
3160 error
= -EFSCORRUPTED
;
3163 if (unlikely(ldip
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
3164 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3165 XFS_ERRLEVEL_LOW
, mp
, ldip
,
3168 "%s: Bad inode log record, rec ptr "PTR_FMT
", dino ptr "PTR_FMT
", "
3169 "dino bp "PTR_FMT
", ino %Ld, forkoff 0x%x", __func__
,
3170 item
, dip
, bp
, in_f
->ilf_ino
, ldip
->di_forkoff
);
3171 error
= -EFSCORRUPTED
;
3174 isize
= xfs_log_dinode_size(ldip
->di_version
);
3175 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
3176 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3177 XFS_ERRLEVEL_LOW
, mp
, ldip
,
3180 "%s: Bad inode log record length %d, rec ptr "PTR_FMT
,
3181 __func__
, item
->ri_buf
[1].i_len
, item
);
3182 error
= -EFSCORRUPTED
;
3186 /* recover the log dinode inode into the on disk inode */
3187 xfs_log_dinode_to_disk(ldip
, dip
);
3189 fields
= in_f
->ilf_fields
;
3190 if (fields
& XFS_ILOG_DEV
)
3191 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
3193 if (in_f
->ilf_size
== 2)
3194 goto out_owner_change
;
3195 len
= item
->ri_buf
[2].i_len
;
3196 src
= item
->ri_buf
[2].i_addr
;
3197 ASSERT(in_f
->ilf_size
<= 4);
3198 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
3199 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
3200 (len
== in_f
->ilf_dsize
));
3202 switch (fields
& XFS_ILOG_DFORK
) {
3203 case XFS_ILOG_DDATA
:
3205 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
3208 case XFS_ILOG_DBROOT
:
3209 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
3210 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
3211 XFS_DFORK_DSIZE(dip
, mp
));
3216 * There are no data fork flags set.
3218 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
3223 * If we logged any attribute data, recover it. There may or
3224 * may not have been any other non-core data logged in this
3227 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3228 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
3233 len
= item
->ri_buf
[attr_index
].i_len
;
3234 src
= item
->ri_buf
[attr_index
].i_addr
;
3235 ASSERT(len
== in_f
->ilf_asize
);
3237 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3238 case XFS_ILOG_ADATA
:
3240 dest
= XFS_DFORK_APTR(dip
);
3241 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
3242 memcpy(dest
, src
, len
);
3245 case XFS_ILOG_ABROOT
:
3246 dest
= XFS_DFORK_APTR(dip
);
3247 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
3248 len
, (xfs_bmdr_block_t
*)dest
,
3249 XFS_DFORK_ASIZE(dip
, mp
));
3253 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
3261 /* Recover the swapext owner change unless inode has been deleted */
3262 if ((in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
)) &&
3263 (dip
->di_mode
!= 0))
3264 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
3266 /* re-generate the checksum. */
3267 xfs_dinode_calc_crc(log
->l_mp
, dip
);
3269 ASSERT(bp
->b_target
->bt_mount
== mp
);
3270 bp
->b_iodone
= xlog_recover_iodone
;
3271 xfs_buf_delwri_queue(bp
, buffer_list
);
3282 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3283 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3287 xlog_recover_quotaoff_pass1(
3289 struct xlog_recover_item
*item
)
3291 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
3295 * The logitem format's flag tells us if this was user quotaoff,
3296 * group/project quotaoff or both.
3298 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
3299 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
3300 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
3301 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
3302 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
3303 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
3309 * Recover a dquot record
3312 xlog_recover_dquot_pass2(
3314 struct list_head
*buffer_list
,
3315 struct xlog_recover_item
*item
,
3316 xfs_lsn_t current_lsn
)
3318 xfs_mount_t
*mp
= log
->l_mp
;
3320 struct xfs_disk_dquot
*ddq
, *recddq
;
3323 xfs_dq_logformat_t
*dq_f
;
3328 * Filesystems are required to send in quota flags at mount time.
3330 if (mp
->m_qflags
== 0)
3333 recddq
= item
->ri_buf
[1].i_addr
;
3334 if (recddq
== NULL
) {
3335 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
3338 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
3339 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
3340 item
->ri_buf
[1].i_len
, __func__
);
3345 * This type of quotas was turned off, so ignore this record.
3347 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3349 if (log
->l_quotaoffs_flag
& type
)
3353 * At this point we know that quota was _not_ turned off.
3354 * Since the mount flags are not indicating to us otherwise, this
3355 * must mean that quota is on, and the dquot needs to be replayed.
3356 * Remember that we may not have fully recovered the superblock yet,
3357 * so we can't do the usual trick of looking at the SB quota bits.
3359 * The other possibility, of course, is that the quota subsystem was
3360 * removed since the last mount - ENOSYS.
3362 dq_f
= item
->ri_buf
[0].i_addr
;
3364 fa
= xfs_dquot_verify(mp
, recddq
, dq_f
->qlf_id
, 0);
3366 xfs_alert(mp
, "corrupt dquot ID 0x%x in log at %pS",
3370 ASSERT(dq_f
->qlf_len
== 1);
3373 * At this point we are assuming that the dquots have been allocated
3374 * and hence the buffer has valid dquots stamped in it. It should,
3375 * therefore, pass verifier validation. If the dquot is bad, then the
3376 * we'll return an error here, so we don't need to specifically check
3377 * the dquot in the buffer after the verifier has run.
3379 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3380 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
3381 &xfs_dquot_buf_ops
);
3386 ddq
= xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
3389 * If the dquot has an LSN in it, recover the dquot only if it's less
3390 * than the lsn of the transaction we are replaying.
3392 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3393 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
3394 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
3396 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3401 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
3402 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3403 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
3407 ASSERT(dq_f
->qlf_size
== 2);
3408 ASSERT(bp
->b_target
->bt_mount
== mp
);
3409 bp
->b_iodone
= xlog_recover_iodone
;
3410 xfs_buf_delwri_queue(bp
, buffer_list
);
3418 * This routine is called to create an in-core extent free intent
3419 * item from the efi format structure which was logged on disk.
3420 * It allocates an in-core efi, copies the extents from the format
3421 * structure into it, and adds the efi to the AIL with the given
3425 xlog_recover_efi_pass2(
3427 struct xlog_recover_item
*item
,
3431 struct xfs_mount
*mp
= log
->l_mp
;
3432 struct xfs_efi_log_item
*efip
;
3433 struct xfs_efi_log_format
*efi_formatp
;
3435 efi_formatp
= item
->ri_buf
[0].i_addr
;
3437 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
3438 error
= xfs_efi_copy_format(&item
->ri_buf
[0], &efip
->efi_format
);
3440 xfs_efi_item_free(efip
);
3443 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
3445 spin_lock(&log
->l_ailp
->ail_lock
);
3447 * The EFI has two references. One for the EFD and one for EFI to ensure
3448 * it makes it into the AIL. Insert the EFI into the AIL directly and
3449 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3452 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
3453 xfs_efi_release(efip
);
3459 * This routine is called when an EFD format structure is found in a committed
3460 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3461 * was still in the log. To do this it searches the AIL for the EFI with an id
3462 * equal to that in the EFD format structure. If we find it we drop the EFD
3463 * reference, which removes the EFI from the AIL and frees it.
3466 xlog_recover_efd_pass2(
3468 struct xlog_recover_item
*item
)
3470 xfs_efd_log_format_t
*efd_formatp
;
3471 xfs_efi_log_item_t
*efip
= NULL
;
3472 xfs_log_item_t
*lip
;
3474 struct xfs_ail_cursor cur
;
3475 struct xfs_ail
*ailp
= log
->l_ailp
;
3477 efd_formatp
= item
->ri_buf
[0].i_addr
;
3478 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
3479 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
3480 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
3481 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
3482 efi_id
= efd_formatp
->efd_efi_id
;
3485 * Search for the EFI with the id in the EFD format structure in the
3488 spin_lock(&ailp
->ail_lock
);
3489 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3490 while (lip
!= NULL
) {
3491 if (lip
->li_type
== XFS_LI_EFI
) {
3492 efip
= (xfs_efi_log_item_t
*)lip
;
3493 if (efip
->efi_format
.efi_id
== efi_id
) {
3495 * Drop the EFD reference to the EFI. This
3496 * removes the EFI from the AIL and frees it.
3498 spin_unlock(&ailp
->ail_lock
);
3499 xfs_efi_release(efip
);
3500 spin_lock(&ailp
->ail_lock
);
3504 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3507 xfs_trans_ail_cursor_done(&cur
);
3508 spin_unlock(&ailp
->ail_lock
);
3514 * This routine is called to create an in-core extent rmap update
3515 * item from the rui format structure which was logged on disk.
3516 * It allocates an in-core rui, copies the extents from the format
3517 * structure into it, and adds the rui to the AIL with the given
3521 xlog_recover_rui_pass2(
3523 struct xlog_recover_item
*item
,
3527 struct xfs_mount
*mp
= log
->l_mp
;
3528 struct xfs_rui_log_item
*ruip
;
3529 struct xfs_rui_log_format
*rui_formatp
;
3531 rui_formatp
= item
->ri_buf
[0].i_addr
;
3533 ruip
= xfs_rui_init(mp
, rui_formatp
->rui_nextents
);
3534 error
= xfs_rui_copy_format(&item
->ri_buf
[0], &ruip
->rui_format
);
3536 xfs_rui_item_free(ruip
);
3539 atomic_set(&ruip
->rui_next_extent
, rui_formatp
->rui_nextents
);
3541 spin_lock(&log
->l_ailp
->ail_lock
);
3543 * The RUI has two references. One for the RUD and one for RUI to ensure
3544 * it makes it into the AIL. Insert the RUI into the AIL directly and
3545 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3548 xfs_trans_ail_update(log
->l_ailp
, &ruip
->rui_item
, lsn
);
3549 xfs_rui_release(ruip
);
3555 * This routine is called when an RUD format structure is found in a committed
3556 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3557 * was still in the log. To do this it searches the AIL for the RUI with an id
3558 * equal to that in the RUD format structure. If we find it we drop the RUD
3559 * reference, which removes the RUI from the AIL and frees it.
3562 xlog_recover_rud_pass2(
3564 struct xlog_recover_item
*item
)
3566 struct xfs_rud_log_format
*rud_formatp
;
3567 struct xfs_rui_log_item
*ruip
= NULL
;
3568 struct xfs_log_item
*lip
;
3570 struct xfs_ail_cursor cur
;
3571 struct xfs_ail
*ailp
= log
->l_ailp
;
3573 rud_formatp
= item
->ri_buf
[0].i_addr
;
3574 ASSERT(item
->ri_buf
[0].i_len
== sizeof(struct xfs_rud_log_format
));
3575 rui_id
= rud_formatp
->rud_rui_id
;
3578 * Search for the RUI with the id in the RUD format structure in the
3581 spin_lock(&ailp
->ail_lock
);
3582 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3583 while (lip
!= NULL
) {
3584 if (lip
->li_type
== XFS_LI_RUI
) {
3585 ruip
= (struct xfs_rui_log_item
*)lip
;
3586 if (ruip
->rui_format
.rui_id
== rui_id
) {
3588 * Drop the RUD reference to the RUI. This
3589 * removes the RUI from the AIL and frees it.
3591 spin_unlock(&ailp
->ail_lock
);
3592 xfs_rui_release(ruip
);
3593 spin_lock(&ailp
->ail_lock
);
3597 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3600 xfs_trans_ail_cursor_done(&cur
);
3601 spin_unlock(&ailp
->ail_lock
);
3607 * Copy an CUI format buffer from the given buf, and into the destination
3608 * CUI format structure. The CUI/CUD items were designed not to need any
3609 * special alignment handling.
3612 xfs_cui_copy_format(
3613 struct xfs_log_iovec
*buf
,
3614 struct xfs_cui_log_format
*dst_cui_fmt
)
3616 struct xfs_cui_log_format
*src_cui_fmt
;
3619 src_cui_fmt
= buf
->i_addr
;
3620 len
= xfs_cui_log_format_sizeof(src_cui_fmt
->cui_nextents
);
3622 if (buf
->i_len
== len
) {
3623 memcpy(dst_cui_fmt
, src_cui_fmt
, len
);
3626 return -EFSCORRUPTED
;
3630 * This routine is called to create an in-core extent refcount update
3631 * item from the cui format structure which was logged on disk.
3632 * It allocates an in-core cui, copies the extents from the format
3633 * structure into it, and adds the cui to the AIL with the given
3637 xlog_recover_cui_pass2(
3639 struct xlog_recover_item
*item
,
3643 struct xfs_mount
*mp
= log
->l_mp
;
3644 struct xfs_cui_log_item
*cuip
;
3645 struct xfs_cui_log_format
*cui_formatp
;
3647 cui_formatp
= item
->ri_buf
[0].i_addr
;
3649 cuip
= xfs_cui_init(mp
, cui_formatp
->cui_nextents
);
3650 error
= xfs_cui_copy_format(&item
->ri_buf
[0], &cuip
->cui_format
);
3652 xfs_cui_item_free(cuip
);
3655 atomic_set(&cuip
->cui_next_extent
, cui_formatp
->cui_nextents
);
3657 spin_lock(&log
->l_ailp
->ail_lock
);
3659 * The CUI has two references. One for the CUD and one for CUI to ensure
3660 * it makes it into the AIL. Insert the CUI into the AIL directly and
3661 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3664 xfs_trans_ail_update(log
->l_ailp
, &cuip
->cui_item
, lsn
);
3665 xfs_cui_release(cuip
);
3671 * This routine is called when an CUD format structure is found in a committed
3672 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3673 * was still in the log. To do this it searches the AIL for the CUI with an id
3674 * equal to that in the CUD format structure. If we find it we drop the CUD
3675 * reference, which removes the CUI from the AIL and frees it.
3678 xlog_recover_cud_pass2(
3680 struct xlog_recover_item
*item
)
3682 struct xfs_cud_log_format
*cud_formatp
;
3683 struct xfs_cui_log_item
*cuip
= NULL
;
3684 struct xfs_log_item
*lip
;
3686 struct xfs_ail_cursor cur
;
3687 struct xfs_ail
*ailp
= log
->l_ailp
;
3689 cud_formatp
= item
->ri_buf
[0].i_addr
;
3690 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_cud_log_format
))
3691 return -EFSCORRUPTED
;
3692 cui_id
= cud_formatp
->cud_cui_id
;
3695 * Search for the CUI with the id in the CUD format structure in the
3698 spin_lock(&ailp
->ail_lock
);
3699 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3700 while (lip
!= NULL
) {
3701 if (lip
->li_type
== XFS_LI_CUI
) {
3702 cuip
= (struct xfs_cui_log_item
*)lip
;
3703 if (cuip
->cui_format
.cui_id
== cui_id
) {
3705 * Drop the CUD reference to the CUI. This
3706 * removes the CUI from the AIL and frees it.
3708 spin_unlock(&ailp
->ail_lock
);
3709 xfs_cui_release(cuip
);
3710 spin_lock(&ailp
->ail_lock
);
3714 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3717 xfs_trans_ail_cursor_done(&cur
);
3718 spin_unlock(&ailp
->ail_lock
);
3724 * Copy an BUI format buffer from the given buf, and into the destination
3725 * BUI format structure. The BUI/BUD items were designed not to need any
3726 * special alignment handling.
3729 xfs_bui_copy_format(
3730 struct xfs_log_iovec
*buf
,
3731 struct xfs_bui_log_format
*dst_bui_fmt
)
3733 struct xfs_bui_log_format
*src_bui_fmt
;
3736 src_bui_fmt
= buf
->i_addr
;
3737 len
= xfs_bui_log_format_sizeof(src_bui_fmt
->bui_nextents
);
3739 if (buf
->i_len
== len
) {
3740 memcpy(dst_bui_fmt
, src_bui_fmt
, len
);
3743 return -EFSCORRUPTED
;
3747 * This routine is called to create an in-core extent bmap update
3748 * item from the bui format structure which was logged on disk.
3749 * It allocates an in-core bui, copies the extents from the format
3750 * structure into it, and adds the bui to the AIL with the given
3754 xlog_recover_bui_pass2(
3756 struct xlog_recover_item
*item
,
3760 struct xfs_mount
*mp
= log
->l_mp
;
3761 struct xfs_bui_log_item
*buip
;
3762 struct xfs_bui_log_format
*bui_formatp
;
3764 bui_formatp
= item
->ri_buf
[0].i_addr
;
3766 if (bui_formatp
->bui_nextents
!= XFS_BUI_MAX_FAST_EXTENTS
)
3767 return -EFSCORRUPTED
;
3768 buip
= xfs_bui_init(mp
);
3769 error
= xfs_bui_copy_format(&item
->ri_buf
[0], &buip
->bui_format
);
3771 xfs_bui_item_free(buip
);
3774 atomic_set(&buip
->bui_next_extent
, bui_formatp
->bui_nextents
);
3776 spin_lock(&log
->l_ailp
->ail_lock
);
3778 * The RUI has two references. One for the RUD and one for RUI to ensure
3779 * it makes it into the AIL. Insert the RUI into the AIL directly and
3780 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3783 xfs_trans_ail_update(log
->l_ailp
, &buip
->bui_item
, lsn
);
3784 xfs_bui_release(buip
);
3790 * This routine is called when an BUD format structure is found in a committed
3791 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3792 * was still in the log. To do this it searches the AIL for the BUI with an id
3793 * equal to that in the BUD format structure. If we find it we drop the BUD
3794 * reference, which removes the BUI from the AIL and frees it.
3797 xlog_recover_bud_pass2(
3799 struct xlog_recover_item
*item
)
3801 struct xfs_bud_log_format
*bud_formatp
;
3802 struct xfs_bui_log_item
*buip
= NULL
;
3803 struct xfs_log_item
*lip
;
3805 struct xfs_ail_cursor cur
;
3806 struct xfs_ail
*ailp
= log
->l_ailp
;
3808 bud_formatp
= item
->ri_buf
[0].i_addr
;
3809 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_bud_log_format
))
3810 return -EFSCORRUPTED
;
3811 bui_id
= bud_formatp
->bud_bui_id
;
3814 * Search for the BUI with the id in the BUD format structure in the
3817 spin_lock(&ailp
->ail_lock
);
3818 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3819 while (lip
!= NULL
) {
3820 if (lip
->li_type
== XFS_LI_BUI
) {
3821 buip
= (struct xfs_bui_log_item
*)lip
;
3822 if (buip
->bui_format
.bui_id
== bui_id
) {
3824 * Drop the BUD reference to the BUI. This
3825 * removes the BUI from the AIL and frees it.
3827 spin_unlock(&ailp
->ail_lock
);
3828 xfs_bui_release(buip
);
3829 spin_lock(&ailp
->ail_lock
);
3833 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3836 xfs_trans_ail_cursor_done(&cur
);
3837 spin_unlock(&ailp
->ail_lock
);
3843 * This routine is called when an inode create format structure is found in a
3844 * committed transaction in the log. It's purpose is to initialise the inodes
3845 * being allocated on disk. This requires us to get inode cluster buffers that
3846 * match the range to be initialised, stamped with inode templates and written
3847 * by delayed write so that subsequent modifications will hit the cached buffer
3848 * and only need writing out at the end of recovery.
3851 xlog_recover_do_icreate_pass2(
3853 struct list_head
*buffer_list
,
3854 xlog_recover_item_t
*item
)
3856 struct xfs_mount
*mp
= log
->l_mp
;
3857 struct xfs_icreate_log
*icl
;
3858 xfs_agnumber_t agno
;
3859 xfs_agblock_t agbno
;
3862 xfs_agblock_t length
;
3863 int blks_per_cluster
;
3869 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3870 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3871 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3875 if (icl
->icl_size
!= 1) {
3876 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3880 agno
= be32_to_cpu(icl
->icl_ag
);
3881 if (agno
>= mp
->m_sb
.sb_agcount
) {
3882 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3885 agbno
= be32_to_cpu(icl
->icl_agbno
);
3886 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3887 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3890 isize
= be32_to_cpu(icl
->icl_isize
);
3891 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3892 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3895 count
= be32_to_cpu(icl
->icl_count
);
3897 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3900 length
= be32_to_cpu(icl
->icl_length
);
3901 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3902 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3907 * The inode chunk is either full or sparse and we only support
3908 * m_ialloc_min_blks sized sparse allocations at this time.
3910 if (length
!= mp
->m_ialloc_blks
&&
3911 length
!= mp
->m_ialloc_min_blks
) {
3913 "%s: unsupported chunk length", __FUNCTION__
);
3917 /* verify inode count is consistent with extent length */
3918 if ((count
>> mp
->m_sb
.sb_inopblog
) != length
) {
3920 "%s: inconsistent inode count and chunk length",
3926 * The icreate transaction can cover multiple cluster buffers and these
3927 * buffers could have been freed and reused. Check the individual
3928 * buffers for cancellation so we don't overwrite anything written after
3931 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
3932 bb_per_cluster
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
3933 nbufs
= length
/ blks_per_cluster
;
3934 for (i
= 0, cancel_count
= 0; i
< nbufs
; i
++) {
3937 daddr
= XFS_AGB_TO_DADDR(mp
, agno
,
3938 agbno
+ i
* blks_per_cluster
);
3939 if (xlog_check_buffer_cancelled(log
, daddr
, bb_per_cluster
, 0))
3944 * We currently only use icreate for a single allocation at a time. This
3945 * means we should expect either all or none of the buffers to be
3946 * cancelled. Be conservative and skip replay if at least one buffer is
3947 * cancelled, but warn the user that something is awry if the buffers
3948 * are not consistent.
3950 * XXX: This must be refined to only skip cancelled clusters once we use
3951 * icreate for multiple chunk allocations.
3953 ASSERT(!cancel_count
|| cancel_count
== nbufs
);
3955 if (cancel_count
!= nbufs
)
3957 "WARNING: partial inode chunk cancellation, skipped icreate.");
3958 trace_xfs_log_recover_icreate_cancel(log
, icl
);
3962 trace_xfs_log_recover_icreate_recover(log
, icl
);
3963 return xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, count
, agno
, agbno
,
3964 length
, be32_to_cpu(icl
->icl_gen
));
3968 xlog_recover_buffer_ra_pass2(
3970 struct xlog_recover_item
*item
)
3972 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3973 struct xfs_mount
*mp
= log
->l_mp
;
3975 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3976 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3980 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3981 buf_f
->blf_len
, NULL
);
3985 xlog_recover_inode_ra_pass2(
3987 struct xlog_recover_item
*item
)
3989 struct xfs_inode_log_format ilf_buf
;
3990 struct xfs_inode_log_format
*ilfp
;
3991 struct xfs_mount
*mp
= log
->l_mp
;
3994 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3995 ilfp
= item
->ri_buf
[0].i_addr
;
3998 memset(ilfp
, 0, sizeof(*ilfp
));
3999 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
4004 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
4007 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
4008 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
4012 xlog_recover_dquot_ra_pass2(
4014 struct xlog_recover_item
*item
)
4016 struct xfs_mount
*mp
= log
->l_mp
;
4017 struct xfs_disk_dquot
*recddq
;
4018 struct xfs_dq_logformat
*dq_f
;
4023 if (mp
->m_qflags
== 0)
4026 recddq
= item
->ri_buf
[1].i_addr
;
4029 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
4032 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
4034 if (log
->l_quotaoffs_flag
& type
)
4037 dq_f
= item
->ri_buf
[0].i_addr
;
4039 ASSERT(dq_f
->qlf_len
== 1);
4041 len
= XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
);
4042 if (xlog_peek_buffer_cancelled(log
, dq_f
->qlf_blkno
, len
, 0))
4045 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
, len
,
4046 &xfs_dquot_buf_ra_ops
);
4050 xlog_recover_ra_pass2(
4052 struct xlog_recover_item
*item
)
4054 switch (ITEM_TYPE(item
)) {
4056 xlog_recover_buffer_ra_pass2(log
, item
);
4059 xlog_recover_inode_ra_pass2(log
, item
);
4062 xlog_recover_dquot_ra_pass2(log
, item
);
4066 case XFS_LI_QUOTAOFF
:
4079 xlog_recover_commit_pass1(
4081 struct xlog_recover
*trans
,
4082 struct xlog_recover_item
*item
)
4084 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
4086 switch (ITEM_TYPE(item
)) {
4088 return xlog_recover_buffer_pass1(log
, item
);
4089 case XFS_LI_QUOTAOFF
:
4090 return xlog_recover_quotaoff_pass1(log
, item
);
4095 case XFS_LI_ICREATE
:
4102 /* nothing to do in pass 1 */
4105 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4106 __func__
, ITEM_TYPE(item
));
4113 xlog_recover_commit_pass2(
4115 struct xlog_recover
*trans
,
4116 struct list_head
*buffer_list
,
4117 struct xlog_recover_item
*item
)
4119 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
4121 switch (ITEM_TYPE(item
)) {
4123 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
4126 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
4129 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
4131 return xlog_recover_efd_pass2(log
, item
);
4133 return xlog_recover_rui_pass2(log
, item
, trans
->r_lsn
);
4135 return xlog_recover_rud_pass2(log
, item
);
4137 return xlog_recover_cui_pass2(log
, item
, trans
->r_lsn
);
4139 return xlog_recover_cud_pass2(log
, item
);
4141 return xlog_recover_bui_pass2(log
, item
, trans
->r_lsn
);
4143 return xlog_recover_bud_pass2(log
, item
);
4145 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
4147 case XFS_LI_ICREATE
:
4148 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
4149 case XFS_LI_QUOTAOFF
:
4150 /* nothing to do in pass2 */
4153 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4154 __func__
, ITEM_TYPE(item
));
4161 xlog_recover_items_pass2(
4163 struct xlog_recover
*trans
,
4164 struct list_head
*buffer_list
,
4165 struct list_head
*item_list
)
4167 struct xlog_recover_item
*item
;
4170 list_for_each_entry(item
, item_list
, ri_list
) {
4171 error
= xlog_recover_commit_pass2(log
, trans
,
4181 * Perform the transaction.
4183 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4184 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4187 xlog_recover_commit_trans(
4189 struct xlog_recover
*trans
,
4191 struct list_head
*buffer_list
)
4194 int items_queued
= 0;
4195 struct xlog_recover_item
*item
;
4196 struct xlog_recover_item
*next
;
4197 LIST_HEAD (ra_list
);
4198 LIST_HEAD (done_list
);
4200 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4202 hlist_del_init(&trans
->r_list
);
4204 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
4208 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
4210 case XLOG_RECOVER_PASS1
:
4211 error
= xlog_recover_commit_pass1(log
, trans
, item
);
4213 case XLOG_RECOVER_PASS2
:
4214 xlog_recover_ra_pass2(log
, item
);
4215 list_move_tail(&item
->ri_list
, &ra_list
);
4217 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
4218 error
= xlog_recover_items_pass2(log
, trans
,
4219 buffer_list
, &ra_list
);
4220 list_splice_tail_init(&ra_list
, &done_list
);
4234 if (!list_empty(&ra_list
)) {
4236 error
= xlog_recover_items_pass2(log
, trans
,
4237 buffer_list
, &ra_list
);
4238 list_splice_tail_init(&ra_list
, &done_list
);
4241 if (!list_empty(&done_list
))
4242 list_splice_init(&done_list
, &trans
->r_itemq
);
4248 xlog_recover_add_item(
4249 struct list_head
*head
)
4251 xlog_recover_item_t
*item
;
4253 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
4254 INIT_LIST_HEAD(&item
->ri_list
);
4255 list_add_tail(&item
->ri_list
, head
);
4259 xlog_recover_add_to_cont_trans(
4261 struct xlog_recover
*trans
,
4265 xlog_recover_item_t
*item
;
4266 char *ptr
, *old_ptr
;
4270 * If the transaction is empty, the header was split across this and the
4271 * previous record. Copy the rest of the header.
4273 if (list_empty(&trans
->r_itemq
)) {
4274 ASSERT(len
<= sizeof(struct xfs_trans_header
));
4275 if (len
> sizeof(struct xfs_trans_header
)) {
4276 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4280 xlog_recover_add_item(&trans
->r_itemq
);
4281 ptr
= (char *)&trans
->r_theader
+
4282 sizeof(struct xfs_trans_header
) - len
;
4283 memcpy(ptr
, dp
, len
);
4287 /* take the tail entry */
4288 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4290 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
4291 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
4293 ptr
= kmem_realloc(old_ptr
, len
+ old_len
, KM_SLEEP
);
4294 memcpy(&ptr
[old_len
], dp
, len
);
4295 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
4296 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
4297 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
4302 * The next region to add is the start of a new region. It could be
4303 * a whole region or it could be the first part of a new region. Because
4304 * of this, the assumption here is that the type and size fields of all
4305 * format structures fit into the first 32 bits of the structure.
4307 * This works because all regions must be 32 bit aligned. Therefore, we
4308 * either have both fields or we have neither field. In the case we have
4309 * neither field, the data part of the region is zero length. We only have
4310 * a log_op_header and can throw away the header since a new one will appear
4311 * later. If we have at least 4 bytes, then we can determine how many regions
4312 * will appear in the current log item.
4315 xlog_recover_add_to_trans(
4317 struct xlog_recover
*trans
,
4321 struct xfs_inode_log_format
*in_f
; /* any will do */
4322 xlog_recover_item_t
*item
;
4327 if (list_empty(&trans
->r_itemq
)) {
4328 /* we need to catch log corruptions here */
4329 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
4330 xfs_warn(log
->l_mp
, "%s: bad header magic number",
4336 if (len
> sizeof(struct xfs_trans_header
)) {
4337 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4343 * The transaction header can be arbitrarily split across op
4344 * records. If we don't have the whole thing here, copy what we
4345 * do have and handle the rest in the next record.
4347 if (len
== sizeof(struct xfs_trans_header
))
4348 xlog_recover_add_item(&trans
->r_itemq
);
4349 memcpy(&trans
->r_theader
, dp
, len
);
4353 ptr
= kmem_alloc(len
, KM_SLEEP
);
4354 memcpy(ptr
, dp
, len
);
4355 in_f
= (struct xfs_inode_log_format
*)ptr
;
4357 /* take the tail entry */
4358 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4359 if (item
->ri_total
!= 0 &&
4360 item
->ri_total
== item
->ri_cnt
) {
4361 /* tail item is in use, get a new one */
4362 xlog_recover_add_item(&trans
->r_itemq
);
4363 item
= list_entry(trans
->r_itemq
.prev
,
4364 xlog_recover_item_t
, ri_list
);
4367 if (item
->ri_total
== 0) { /* first region to be added */
4368 if (in_f
->ilf_size
== 0 ||
4369 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
4371 "bad number of regions (%d) in inode log format",
4378 item
->ri_total
= in_f
->ilf_size
;
4380 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
4383 ASSERT(item
->ri_total
> item
->ri_cnt
);
4384 /* Description region is ri_buf[0] */
4385 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
4386 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
4388 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
4393 * Free up any resources allocated by the transaction
4395 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4398 xlog_recover_free_trans(
4399 struct xlog_recover
*trans
)
4401 xlog_recover_item_t
*item
, *n
;
4404 hlist_del_init(&trans
->r_list
);
4406 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
4407 /* Free the regions in the item. */
4408 list_del(&item
->ri_list
);
4409 for (i
= 0; i
< item
->ri_cnt
; i
++)
4410 kmem_free(item
->ri_buf
[i
].i_addr
);
4411 /* Free the item itself */
4412 kmem_free(item
->ri_buf
);
4415 /* Free the transaction recover structure */
4420 * On error or completion, trans is freed.
4423 xlog_recovery_process_trans(
4425 struct xlog_recover
*trans
,
4430 struct list_head
*buffer_list
)
4433 bool freeit
= false;
4435 /* mask off ophdr transaction container flags */
4436 flags
&= ~XLOG_END_TRANS
;
4437 if (flags
& XLOG_WAS_CONT_TRANS
)
4438 flags
&= ~XLOG_CONTINUE_TRANS
;
4441 * Callees must not free the trans structure. We'll decide if we need to
4442 * free it or not based on the operation being done and it's result.
4445 /* expected flag values */
4447 case XLOG_CONTINUE_TRANS
:
4448 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
4450 case XLOG_WAS_CONT_TRANS
:
4451 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
4453 case XLOG_COMMIT_TRANS
:
4454 error
= xlog_recover_commit_trans(log
, trans
, pass
,
4456 /* success or fail, we are now done with this transaction. */
4460 /* unexpected flag values */
4461 case XLOG_UNMOUNT_TRANS
:
4462 /* just skip trans */
4463 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
4466 case XLOG_START_TRANS
:
4468 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
4473 if (error
|| freeit
)
4474 xlog_recover_free_trans(trans
);
4479 * Lookup the transaction recovery structure associated with the ID in the
4480 * current ophdr. If the transaction doesn't exist and the start flag is set in
4481 * the ophdr, then allocate a new transaction for future ID matches to find.
4482 * Either way, return what we found during the lookup - an existing transaction
4485 STATIC
struct xlog_recover
*
4486 xlog_recover_ophdr_to_trans(
4487 struct hlist_head rhash
[],
4488 struct xlog_rec_header
*rhead
,
4489 struct xlog_op_header
*ohead
)
4491 struct xlog_recover
*trans
;
4493 struct hlist_head
*rhp
;
4495 tid
= be32_to_cpu(ohead
->oh_tid
);
4496 rhp
= &rhash
[XLOG_RHASH(tid
)];
4497 hlist_for_each_entry(trans
, rhp
, r_list
) {
4498 if (trans
->r_log_tid
== tid
)
4503 * skip over non-start transaction headers - we could be
4504 * processing slack space before the next transaction starts
4506 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
4509 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
4512 * This is a new transaction so allocate a new recovery container to
4513 * hold the recovery ops that will follow.
4515 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
4516 trans
->r_log_tid
= tid
;
4517 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
4518 INIT_LIST_HEAD(&trans
->r_itemq
);
4519 INIT_HLIST_NODE(&trans
->r_list
);
4520 hlist_add_head(&trans
->r_list
, rhp
);
4523 * Nothing more to do for this ophdr. Items to be added to this new
4524 * transaction will be in subsequent ophdr containers.
4530 xlog_recover_process_ophdr(
4532 struct hlist_head rhash
[],
4533 struct xlog_rec_header
*rhead
,
4534 struct xlog_op_header
*ohead
,
4538 struct list_head
*buffer_list
)
4540 struct xlog_recover
*trans
;
4544 /* Do we understand who wrote this op? */
4545 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
4546 ohead
->oh_clientid
!= XFS_LOG
) {
4547 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
4548 __func__
, ohead
->oh_clientid
);
4554 * Check the ophdr contains all the data it is supposed to contain.
4556 len
= be32_to_cpu(ohead
->oh_len
);
4557 if (dp
+ len
> end
) {
4558 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
4563 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
4565 /* nothing to do, so skip over this ophdr */
4570 * The recovered buffer queue is drained only once we know that all
4571 * recovery items for the current LSN have been processed. This is
4574 * - Buffer write submission updates the metadata LSN of the buffer.
4575 * - Log recovery skips items with a metadata LSN >= the current LSN of
4576 * the recovery item.
4577 * - Separate recovery items against the same metadata buffer can share
4578 * a current LSN. I.e., consider that the LSN of a recovery item is
4579 * defined as the starting LSN of the first record in which its
4580 * transaction appears, that a record can hold multiple transactions,
4581 * and/or that a transaction can span multiple records.
4583 * In other words, we are allowed to submit a buffer from log recovery
4584 * once per current LSN. Otherwise, we may incorrectly skip recovery
4585 * items and cause corruption.
4587 * We don't know up front whether buffers are updated multiple times per
4588 * LSN. Therefore, track the current LSN of each commit log record as it
4589 * is processed and drain the queue when it changes. Use commit records
4590 * because they are ordered correctly by the logging code.
4592 if (log
->l_recovery_lsn
!= trans
->r_lsn
&&
4593 ohead
->oh_flags
& XLOG_COMMIT_TRANS
) {
4594 error
= xfs_buf_delwri_submit(buffer_list
);
4597 log
->l_recovery_lsn
= trans
->r_lsn
;
4600 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
4601 ohead
->oh_flags
, pass
, buffer_list
);
4605 * There are two valid states of the r_state field. 0 indicates that the
4606 * transaction structure is in a normal state. We have either seen the
4607 * start of the transaction or the last operation we added was not a partial
4608 * operation. If the last operation we added to the transaction was a
4609 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4611 * NOTE: skip LRs with 0 data length.
4614 xlog_recover_process_data(
4616 struct hlist_head rhash
[],
4617 struct xlog_rec_header
*rhead
,
4620 struct list_head
*buffer_list
)
4622 struct xlog_op_header
*ohead
;
4627 end
= dp
+ be32_to_cpu(rhead
->h_len
);
4628 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
4630 /* check the log format matches our own - else we can't recover */
4631 if (xlog_header_check_recover(log
->l_mp
, rhead
))
4634 trace_xfs_log_recover_record(log
, rhead
, pass
);
4635 while ((dp
< end
) && num_logops
) {
4637 ohead
= (struct xlog_op_header
*)dp
;
4638 dp
+= sizeof(*ohead
);
4641 /* errors will abort recovery */
4642 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
4643 dp
, end
, pass
, buffer_list
);
4647 dp
+= be32_to_cpu(ohead
->oh_len
);
4653 /* Recover the EFI if necessary. */
4655 xlog_recover_process_efi(
4656 struct xfs_mount
*mp
,
4657 struct xfs_ail
*ailp
,
4658 struct xfs_log_item
*lip
)
4660 struct xfs_efi_log_item
*efip
;
4664 * Skip EFIs that we've already processed.
4666 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4667 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
))
4670 spin_unlock(&ailp
->ail_lock
);
4671 error
= xfs_efi_recover(mp
, efip
);
4672 spin_lock(&ailp
->ail_lock
);
4677 /* Release the EFI since we're cancelling everything. */
4679 xlog_recover_cancel_efi(
4680 struct xfs_mount
*mp
,
4681 struct xfs_ail
*ailp
,
4682 struct xfs_log_item
*lip
)
4684 struct xfs_efi_log_item
*efip
;
4686 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4688 spin_unlock(&ailp
->ail_lock
);
4689 xfs_efi_release(efip
);
4690 spin_lock(&ailp
->ail_lock
);
4693 /* Recover the RUI if necessary. */
4695 xlog_recover_process_rui(
4696 struct xfs_mount
*mp
,
4697 struct xfs_ail
*ailp
,
4698 struct xfs_log_item
*lip
)
4700 struct xfs_rui_log_item
*ruip
;
4704 * Skip RUIs that we've already processed.
4706 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4707 if (test_bit(XFS_RUI_RECOVERED
, &ruip
->rui_flags
))
4710 spin_unlock(&ailp
->ail_lock
);
4711 error
= xfs_rui_recover(mp
, ruip
);
4712 spin_lock(&ailp
->ail_lock
);
4717 /* Release the RUI since we're cancelling everything. */
4719 xlog_recover_cancel_rui(
4720 struct xfs_mount
*mp
,
4721 struct xfs_ail
*ailp
,
4722 struct xfs_log_item
*lip
)
4724 struct xfs_rui_log_item
*ruip
;
4726 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4728 spin_unlock(&ailp
->ail_lock
);
4729 xfs_rui_release(ruip
);
4730 spin_lock(&ailp
->ail_lock
);
4733 /* Recover the CUI if necessary. */
4735 xlog_recover_process_cui(
4736 struct xfs_mount
*mp
,
4737 struct xfs_ail
*ailp
,
4738 struct xfs_log_item
*lip
,
4739 struct xfs_defer_ops
*dfops
)
4741 struct xfs_cui_log_item
*cuip
;
4745 * Skip CUIs that we've already processed.
4747 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4748 if (test_bit(XFS_CUI_RECOVERED
, &cuip
->cui_flags
))
4751 spin_unlock(&ailp
->ail_lock
);
4752 error
= xfs_cui_recover(mp
, cuip
, dfops
);
4753 spin_lock(&ailp
->ail_lock
);
4758 /* Release the CUI since we're cancelling everything. */
4760 xlog_recover_cancel_cui(
4761 struct xfs_mount
*mp
,
4762 struct xfs_ail
*ailp
,
4763 struct xfs_log_item
*lip
)
4765 struct xfs_cui_log_item
*cuip
;
4767 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4769 spin_unlock(&ailp
->ail_lock
);
4770 xfs_cui_release(cuip
);
4771 spin_lock(&ailp
->ail_lock
);
4774 /* Recover the BUI if necessary. */
4776 xlog_recover_process_bui(
4777 struct xfs_mount
*mp
,
4778 struct xfs_ail
*ailp
,
4779 struct xfs_log_item
*lip
,
4780 struct xfs_defer_ops
*dfops
)
4782 struct xfs_bui_log_item
*buip
;
4786 * Skip BUIs that we've already processed.
4788 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4789 if (test_bit(XFS_BUI_RECOVERED
, &buip
->bui_flags
))
4792 spin_unlock(&ailp
->ail_lock
);
4793 error
= xfs_bui_recover(mp
, buip
, dfops
);
4794 spin_lock(&ailp
->ail_lock
);
4799 /* Release the BUI since we're cancelling everything. */
4801 xlog_recover_cancel_bui(
4802 struct xfs_mount
*mp
,
4803 struct xfs_ail
*ailp
,
4804 struct xfs_log_item
*lip
)
4806 struct xfs_bui_log_item
*buip
;
4808 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4810 spin_unlock(&ailp
->ail_lock
);
4811 xfs_bui_release(buip
);
4812 spin_lock(&ailp
->ail_lock
);
4815 /* Is this log item a deferred action intent? */
4816 static inline bool xlog_item_is_intent(struct xfs_log_item
*lip
)
4818 switch (lip
->li_type
) {
4829 /* Take all the collected deferred ops and finish them in order. */
4831 xlog_finish_defer_ops(
4832 struct xfs_mount
*mp
,
4833 struct xfs_defer_ops
*dfops
)
4835 struct xfs_trans
*tp
;
4841 * We're finishing the defer_ops that accumulated as a result of
4842 * recovering unfinished intent items during log recovery. We
4843 * reserve an itruncate transaction because it is the largest
4844 * permanent transaction type. Since we're the only user of the fs
4845 * right now, take 93% (15/16) of the available free blocks. Use
4846 * weird math to avoid a 64-bit division.
4848 freeblks
= percpu_counter_sum(&mp
->m_fdblocks
);
4851 resblks
= min_t(int64_t, UINT_MAX
, freeblks
);
4852 resblks
= (resblks
* 15) >> 4;
4853 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, resblks
,
4854 0, XFS_TRANS_RESERVE
, &tp
);
4858 error
= xfs_defer_finish(&tp
, dfops
);
4862 return xfs_trans_commit(tp
);
4865 xfs_trans_cancel(tp
);
4870 * When this is called, all of the log intent items which did not have
4871 * corresponding log done items should be in the AIL. What we do now
4872 * is update the data structures associated with each one.
4874 * Since we process the log intent items in normal transactions, they
4875 * will be removed at some point after the commit. This prevents us
4876 * from just walking down the list processing each one. We'll use a
4877 * flag in the intent item to skip those that we've already processed
4878 * and use the AIL iteration mechanism's generation count to try to
4879 * speed this up at least a bit.
4881 * When we start, we know that the intents are the only things in the
4882 * AIL. As we process them, however, other items are added to the
4886 xlog_recover_process_intents(
4889 struct xfs_defer_ops dfops
;
4890 struct xfs_ail_cursor cur
;
4891 struct xfs_log_item
*lip
;
4892 struct xfs_ail
*ailp
;
4893 xfs_fsblock_t firstfsb
;
4895 #if defined(DEBUG) || defined(XFS_WARN)
4900 spin_lock(&ailp
->ail_lock
);
4901 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4902 #if defined(DEBUG) || defined(XFS_WARN)
4903 last_lsn
= xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
);
4905 xfs_defer_init(&dfops
, &firstfsb
);
4906 while (lip
!= NULL
) {
4908 * We're done when we see something other than an intent.
4909 * There should be no intents left in the AIL now.
4911 if (!xlog_item_is_intent(lip
)) {
4913 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4914 ASSERT(!xlog_item_is_intent(lip
));
4920 * We should never see a redo item with a LSN higher than
4921 * the last transaction we found in the log at the start
4924 ASSERT(XFS_LSN_CMP(last_lsn
, lip
->li_lsn
) >= 0);
4927 * NOTE: If your intent processing routine can create more
4928 * deferred ops, you /must/ attach them to the dfops in this
4929 * routine or else those subsequent intents will get
4930 * replayed in the wrong order!
4932 switch (lip
->li_type
) {
4934 error
= xlog_recover_process_efi(log
->l_mp
, ailp
, lip
);
4937 error
= xlog_recover_process_rui(log
->l_mp
, ailp
, lip
);
4940 error
= xlog_recover_process_cui(log
->l_mp
, ailp
, lip
,
4944 error
= xlog_recover_process_bui(log
->l_mp
, ailp
, lip
,
4950 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4953 xfs_trans_ail_cursor_done(&cur
);
4954 spin_unlock(&ailp
->ail_lock
);
4956 xfs_defer_cancel(&dfops
);
4958 error
= xlog_finish_defer_ops(log
->l_mp
, &dfops
);
4964 * A cancel occurs when the mount has failed and we're bailing out.
4965 * Release all pending log intent items so they don't pin the AIL.
4968 xlog_recover_cancel_intents(
4971 struct xfs_log_item
*lip
;
4973 struct xfs_ail_cursor cur
;
4974 struct xfs_ail
*ailp
;
4977 spin_lock(&ailp
->ail_lock
);
4978 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4979 while (lip
!= NULL
) {
4981 * We're done when we see something other than an intent.
4982 * There should be no intents left in the AIL now.
4984 if (!xlog_item_is_intent(lip
)) {
4986 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4987 ASSERT(!xlog_item_is_intent(lip
));
4992 switch (lip
->li_type
) {
4994 xlog_recover_cancel_efi(log
->l_mp
, ailp
, lip
);
4997 xlog_recover_cancel_rui(log
->l_mp
, ailp
, lip
);
5000 xlog_recover_cancel_cui(log
->l_mp
, ailp
, lip
);
5003 xlog_recover_cancel_bui(log
->l_mp
, ailp
, lip
);
5007 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
5010 xfs_trans_ail_cursor_done(&cur
);
5011 spin_unlock(&ailp
->ail_lock
);
5016 * This routine performs a transaction to null out a bad inode pointer
5017 * in an agi unlinked inode hash bucket.
5020 xlog_recover_clear_agi_bucket(
5022 xfs_agnumber_t agno
,
5031 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_clearagi
, 0, 0, 0, &tp
);
5035 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
5039 agi
= XFS_BUF_TO_AGI(agibp
);
5040 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
5041 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
5042 (sizeof(xfs_agino_t
) * bucket
);
5043 xfs_trans_log_buf(tp
, agibp
, offset
,
5044 (offset
+ sizeof(xfs_agino_t
) - 1));
5046 error
= xfs_trans_commit(tp
);
5052 xfs_trans_cancel(tp
);
5054 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
5059 xlog_recover_process_one_iunlink(
5060 struct xfs_mount
*mp
,
5061 xfs_agnumber_t agno
,
5065 struct xfs_buf
*ibp
;
5066 struct xfs_dinode
*dip
;
5067 struct xfs_inode
*ip
;
5071 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
5072 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
5077 * Get the on disk inode to find the next inode in the bucket.
5079 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
5083 xfs_iflags_clear(ip
, XFS_IRECOVERY
);
5084 ASSERT(VFS_I(ip
)->i_nlink
== 0);
5085 ASSERT(VFS_I(ip
)->i_mode
!= 0);
5087 /* setup for the next pass */
5088 agino
= be32_to_cpu(dip
->di_next_unlinked
);
5092 * Prevent any DMAPI event from being sent when the reference on
5093 * the inode is dropped.
5095 ip
->i_d
.di_dmevmask
= 0;
5104 * We can't read in the inode this bucket points to, or this inode
5105 * is messed up. Just ditch this bucket of inodes. We will lose
5106 * some inodes and space, but at least we won't hang.
5108 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5109 * clear the inode pointer in the bucket.
5111 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
5116 * xlog_iunlink_recover
5118 * This is called during recovery to process any inodes which
5119 * we unlinked but not freed when the system crashed. These
5120 * inodes will be on the lists in the AGI blocks. What we do
5121 * here is scan all the AGIs and fully truncate and free any
5122 * inodes found on the lists. Each inode is removed from the
5123 * lists when it has been fully truncated and is freed. The
5124 * freeing of the inode and its removal from the list must be
5128 xlog_recover_process_iunlinks(
5132 xfs_agnumber_t agno
;
5141 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5143 * Find the agi for this ag.
5145 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5148 * AGI is b0rked. Don't process it.
5150 * We should probably mark the filesystem as corrupt
5151 * after we've recovered all the ag's we can....
5156 * Unlock the buffer so that it can be acquired in the normal
5157 * course of the transaction to truncate and free each inode.
5158 * Because we are not racing with anyone else here for the AGI
5159 * buffer, we don't even need to hold it locked to read the
5160 * initial unlinked bucket entries out of the buffer. We keep
5161 * buffer reference though, so that it stays pinned in memory
5162 * while we need the buffer.
5164 agi
= XFS_BUF_TO_AGI(agibp
);
5165 xfs_buf_unlock(agibp
);
5167 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
5168 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
5169 while (agino
!= NULLAGINO
) {
5170 agino
= xlog_recover_process_one_iunlink(mp
,
5171 agno
, agino
, bucket
);
5174 xfs_buf_rele(agibp
);
5180 struct xlog_rec_header
*rhead
,
5186 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
5187 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
5188 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
5192 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5193 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
5194 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
5195 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5196 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5197 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
5206 * CRC check, unpack and process a log record.
5209 xlog_recover_process(
5211 struct hlist_head rhash
[],
5212 struct xlog_rec_header
*rhead
,
5215 struct list_head
*buffer_list
)
5218 __le32 old_crc
= rhead
->h_crc
;
5222 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
5225 * Nothing else to do if this is a CRC verification pass. Just return
5226 * if this a record with a non-zero crc. Unfortunately, mkfs always
5227 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5228 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5229 * know precisely what failed.
5231 if (pass
== XLOG_RECOVER_CRCPASS
) {
5232 if (old_crc
&& crc
!= old_crc
)
5238 * We're in the normal recovery path. Issue a warning if and only if the
5239 * CRC in the header is non-zero. This is an advisory warning and the
5240 * zero CRC check prevents warnings from being emitted when upgrading
5241 * the kernel from one that does not add CRCs by default.
5243 if (crc
!= old_crc
) {
5244 if (old_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
5245 xfs_alert(log
->l_mp
,
5246 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5247 le32_to_cpu(old_crc
),
5249 xfs_hex_dump(dp
, 32);
5253 * If the filesystem is CRC enabled, this mismatch becomes a
5254 * fatal log corruption failure.
5256 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
5257 return -EFSCORRUPTED
;
5260 error
= xlog_unpack_data(rhead
, dp
, log
);
5264 return xlog_recover_process_data(log
, rhash
, rhead
, dp
, pass
,
5269 xlog_valid_rec_header(
5271 struct xlog_rec_header
*rhead
,
5276 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
5277 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5278 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5279 return -EFSCORRUPTED
;
5282 (!rhead
->h_version
||
5283 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
5284 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
5285 __func__
, be32_to_cpu(rhead
->h_version
));
5289 /* LR body must have data or it wouldn't have been written */
5290 hlen
= be32_to_cpu(rhead
->h_len
);
5291 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
5292 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5293 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5294 return -EFSCORRUPTED
;
5296 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
5297 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5298 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5299 return -EFSCORRUPTED
;
5305 * Read the log from tail to head and process the log records found.
5306 * Handle the two cases where the tail and head are in the same cycle
5307 * and where the active portion of the log wraps around the end of
5308 * the physical log separately. The pass parameter is passed through
5309 * to the routines called to process the data and is not looked at
5313 xlog_do_recovery_pass(
5315 xfs_daddr_t head_blk
,
5316 xfs_daddr_t tail_blk
,
5318 xfs_daddr_t
*first_bad
) /* out: first bad log rec */
5320 xlog_rec_header_t
*rhead
;
5321 xfs_daddr_t blk_no
, rblk_no
;
5322 xfs_daddr_t rhead_blk
;
5324 xfs_buf_t
*hbp
, *dbp
;
5325 int error
= 0, h_size
, h_len
;
5327 int bblks
, split_bblks
;
5328 int hblks
, split_hblks
, wrapped_hblks
;
5330 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
5331 LIST_HEAD (buffer_list
);
5333 ASSERT(head_blk
!= tail_blk
);
5334 blk_no
= rhead_blk
= tail_blk
;
5336 for (i
= 0; i
< XLOG_RHASH_SIZE
; i
++)
5337 INIT_HLIST_HEAD(&rhash
[i
]);
5340 * Read the header of the tail block and get the iclog buffer size from
5341 * h_size. Use this to tell how many sectors make up the log header.
5343 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5345 * When using variable length iclogs, read first sector of
5346 * iclog header and extract the header size from it. Get a
5347 * new hbp that is the correct size.
5349 hbp
= xlog_get_bp(log
, 1);
5353 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
5357 rhead
= (xlog_rec_header_t
*)offset
;
5358 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
5363 * xfsprogs has a bug where record length is based on lsunit but
5364 * h_size (iclog size) is hardcoded to 32k. Now that we
5365 * unconditionally CRC verify the unmount record, this means the
5366 * log buffer can be too small for the record and cause an
5369 * Detect this condition here. Use lsunit for the buffer size as
5370 * long as this looks like the mkfs case. Otherwise, return an
5371 * error to avoid a buffer overrun.
5373 h_size
= be32_to_cpu(rhead
->h_size
);
5374 h_len
= be32_to_cpu(rhead
->h_len
);
5375 if (h_len
> h_size
) {
5376 if (h_len
<= log
->l_mp
->m_logbsize
&&
5377 be32_to_cpu(rhead
->h_num_logops
) == 1) {
5379 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5380 h_size
, log
->l_mp
->m_logbsize
);
5381 h_size
= log
->l_mp
->m_logbsize
;
5383 return -EFSCORRUPTED
;
5386 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
5387 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
5388 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
5389 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
5392 hbp
= xlog_get_bp(log
, hblks
);
5397 ASSERT(log
->l_sectBBsize
== 1);
5399 hbp
= xlog_get_bp(log
, 1);
5400 h_size
= XLOG_BIG_RECORD_BSIZE
;
5405 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
5411 memset(rhash
, 0, sizeof(rhash
));
5412 if (tail_blk
> head_blk
) {
5414 * Perform recovery around the end of the physical log.
5415 * When the head is not on the same cycle number as the tail,
5416 * we can't do a sequential recovery.
5418 while (blk_no
< log
->l_logBBsize
) {
5420 * Check for header wrapping around physical end-of-log
5422 offset
= hbp
->b_addr
;
5425 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
5426 /* Read header in one read */
5427 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
5432 /* This LR is split across physical log end */
5433 if (blk_no
!= log
->l_logBBsize
) {
5434 /* some data before physical log end */
5435 ASSERT(blk_no
<= INT_MAX
);
5436 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
5437 ASSERT(split_hblks
> 0);
5438 error
= xlog_bread(log
, blk_no
,
5446 * Note: this black magic still works with
5447 * large sector sizes (non-512) only because:
5448 * - we increased the buffer size originally
5449 * by 1 sector giving us enough extra space
5450 * for the second read;
5451 * - the log start is guaranteed to be sector
5453 * - we read the log end (LR header start)
5454 * _first_, then the log start (LR header end)
5455 * - order is important.
5457 wrapped_hblks
= hblks
- split_hblks
;
5458 error
= xlog_bread_offset(log
, 0,
5460 offset
+ BBTOB(split_hblks
));
5464 rhead
= (xlog_rec_header_t
*)offset
;
5465 error
= xlog_valid_rec_header(log
, rhead
,
5466 split_hblks
? blk_no
: 0);
5470 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5474 * Read the log record data in multiple reads if it
5475 * wraps around the end of the log. Note that if the
5476 * header already wrapped, blk_no could point past the
5477 * end of the log. The record data is contiguous in
5480 if (blk_no
+ bblks
<= log
->l_logBBsize
||
5481 blk_no
>= log
->l_logBBsize
) {
5482 rblk_no
= xlog_wrap_logbno(log
, blk_no
);
5483 error
= xlog_bread(log
, rblk_no
, bblks
, dbp
,
5488 /* This log record is split across the
5489 * physical end of log */
5490 offset
= dbp
->b_addr
;
5492 if (blk_no
!= log
->l_logBBsize
) {
5493 /* some data is before the physical
5495 ASSERT(!wrapped_hblks
);
5496 ASSERT(blk_no
<= INT_MAX
);
5498 log
->l_logBBsize
- (int)blk_no
;
5499 ASSERT(split_bblks
> 0);
5500 error
= xlog_bread(log
, blk_no
,
5508 * Note: this black magic still works with
5509 * large sector sizes (non-512) only because:
5510 * - we increased the buffer size originally
5511 * by 1 sector giving us enough extra space
5512 * for the second read;
5513 * - the log start is guaranteed to be sector
5515 * - we read the log end (LR header start)
5516 * _first_, then the log start (LR header end)
5517 * - order is important.
5519 error
= xlog_bread_offset(log
, 0,
5520 bblks
- split_bblks
, dbp
,
5521 offset
+ BBTOB(split_bblks
));
5526 error
= xlog_recover_process(log
, rhash
, rhead
, offset
,
5527 pass
, &buffer_list
);
5535 ASSERT(blk_no
>= log
->l_logBBsize
);
5536 blk_no
-= log
->l_logBBsize
;
5540 /* read first part of physical log */
5541 while (blk_no
< head_blk
) {
5542 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
5546 rhead
= (xlog_rec_header_t
*)offset
;
5547 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
5551 /* blocks in data section */
5552 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5553 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
5558 error
= xlog_recover_process(log
, rhash
, rhead
, offset
, pass
,
5563 blk_no
+= bblks
+ hblks
;
5573 * Submit buffers that have been added from the last record processed,
5574 * regardless of error status.
5576 if (!list_empty(&buffer_list
))
5577 error2
= xfs_buf_delwri_submit(&buffer_list
);
5579 if (error
&& first_bad
)
5580 *first_bad
= rhead_blk
;
5583 * Transactions are freed at commit time but transactions without commit
5584 * records on disk are never committed. Free any that may be left in the
5587 for (i
= 0; i
< XLOG_RHASH_SIZE
; i
++) {
5588 struct hlist_node
*tmp
;
5589 struct xlog_recover
*trans
;
5591 hlist_for_each_entry_safe(trans
, tmp
, &rhash
[i
], r_list
)
5592 xlog_recover_free_trans(trans
);
5595 return error
? error
: error2
;
5599 * Do the recovery of the log. We actually do this in two phases.
5600 * The two passes are necessary in order to implement the function
5601 * of cancelling a record written into the log. The first pass
5602 * determines those things which have been cancelled, and the
5603 * second pass replays log items normally except for those which
5604 * have been cancelled. The handling of the replay and cancellations
5605 * takes place in the log item type specific routines.
5607 * The table of items which have cancel records in the log is allocated
5608 * and freed at this level, since only here do we know when all of
5609 * the log recovery has been completed.
5612 xlog_do_log_recovery(
5614 xfs_daddr_t head_blk
,
5615 xfs_daddr_t tail_blk
)
5619 ASSERT(head_blk
!= tail_blk
);
5622 * First do a pass to find all of the cancelled buf log items.
5623 * Store them in the buf_cancel_table for use in the second pass.
5625 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
5626 sizeof(struct list_head
),
5628 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5629 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
5631 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5632 XLOG_RECOVER_PASS1
, NULL
);
5634 kmem_free(log
->l_buf_cancel_table
);
5635 log
->l_buf_cancel_table
= NULL
;
5639 * Then do a second pass to actually recover the items in the log.
5640 * When it is complete free the table of buf cancel items.
5642 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5643 XLOG_RECOVER_PASS2
, NULL
);
5648 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5649 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
5653 kmem_free(log
->l_buf_cancel_table
);
5654 log
->l_buf_cancel_table
= NULL
;
5660 * Do the actual recovery
5665 xfs_daddr_t head_blk
,
5666 xfs_daddr_t tail_blk
)
5668 struct xfs_mount
*mp
= log
->l_mp
;
5673 trace_xfs_log_recover(log
, head_blk
, tail_blk
);
5676 * First replay the images in the log.
5678 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
5683 * If IO errors happened during recovery, bail out.
5685 if (XFS_FORCED_SHUTDOWN(mp
)) {
5690 * We now update the tail_lsn since much of the recovery has completed
5691 * and there may be space available to use. If there were no extent
5692 * or iunlinks, we can free up the entire log and set the tail_lsn to
5693 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5694 * lsn of the last known good LR on disk. If there are extent frees
5695 * or iunlinks they will have some entries in the AIL; so we look at
5696 * the AIL to determine how to set the tail_lsn.
5698 xlog_assign_tail_lsn(mp
);
5701 * Now that we've finished replaying all buffer and inode
5702 * updates, re-read in the superblock and reverify it.
5704 bp
= xfs_getsb(mp
, 0);
5705 bp
->b_flags
&= ~(XBF_DONE
| XBF_ASYNC
);
5706 ASSERT(!(bp
->b_flags
& XBF_WRITE
));
5707 bp
->b_flags
|= XBF_READ
;
5708 bp
->b_ops
= &xfs_sb_buf_ops
;
5710 error
= xfs_buf_submit_wait(bp
);
5712 if (!XFS_FORCED_SHUTDOWN(mp
)) {
5713 xfs_buf_ioerror_alert(bp
, __func__
);
5720 /* Convert superblock from on-disk format */
5722 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
5725 /* re-initialise in-core superblock and geometry structures */
5726 xfs_reinit_percpu_counters(mp
);
5727 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
5729 xfs_warn(mp
, "Failed post-recovery per-ag init: %d", error
);
5732 mp
->m_alloc_set_aside
= xfs_alloc_set_aside(mp
);
5734 xlog_recover_check_summary(log
);
5736 /* Normal transactions can now occur */
5737 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
5742 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5744 * Return error or zero.
5750 xfs_daddr_t head_blk
, tail_blk
;
5753 /* find the tail of the log */
5754 error
= xlog_find_tail(log
, &head_blk
, &tail_blk
);
5759 * The superblock was read before the log was available and thus the LSN
5760 * could not be verified. Check the superblock LSN against the current
5761 * LSN now that it's known.
5763 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
) &&
5764 !xfs_log_check_lsn(log
->l_mp
, log
->l_mp
->m_sb
.sb_lsn
))
5767 if (tail_blk
!= head_blk
) {
5768 /* There used to be a comment here:
5770 * disallow recovery on read-only mounts. note -- mount
5771 * checks for ENOSPC and turns it into an intelligent
5773 * ...but this is no longer true. Now, unless you specify
5774 * NORECOVERY (in which case this function would never be
5775 * called), we just go ahead and recover. We do this all
5776 * under the vfs layer, so we can get away with it unless
5777 * the device itself is read-only, in which case we fail.
5779 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
5784 * Version 5 superblock log feature mask validation. We know the
5785 * log is dirty so check if there are any unknown log features
5786 * in what we need to recover. If there are unknown features
5787 * (e.g. unsupported transactions, then simply reject the
5788 * attempt at recovery before touching anything.
5790 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
5791 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
5792 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
5794 "Superblock has unknown incompatible log features (0x%x) enabled.",
5795 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
5796 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
5798 "The log can not be fully and/or safely recovered by this kernel.");
5800 "Please recover the log on a kernel that supports the unknown features.");
5805 * Delay log recovery if the debug hook is set. This is debug
5806 * instrumention to coordinate simulation of I/O failures with
5809 if (xfs_globals
.log_recovery_delay
) {
5810 xfs_notice(log
->l_mp
,
5811 "Delaying log recovery for %d seconds.",
5812 xfs_globals
.log_recovery_delay
);
5813 msleep(xfs_globals
.log_recovery_delay
* 1000);
5816 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
5817 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5820 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
5821 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
5827 * In the first part of recovery we replay inodes and buffers and build
5828 * up the list of extent free items which need to be processed. Here
5829 * we process the extent free items and clean up the on disk unlinked
5830 * inode lists. This is separated from the first part of recovery so
5831 * that the root and real-time bitmap inodes can be read in from disk in
5832 * between the two stages. This is necessary so that we can free space
5833 * in the real-time portion of the file system.
5836 xlog_recover_finish(
5840 * Now we're ready to do the transactions needed for the
5841 * rest of recovery. Start with completing all the extent
5842 * free intent records and then process the unlinked inode
5843 * lists. At this point, we essentially run in normal mode
5844 * except that we're still performing recovery actions
5845 * rather than accepting new requests.
5847 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
5849 error
= xlog_recover_process_intents(log
);
5851 xfs_alert(log
->l_mp
, "Failed to recover intents");
5856 * Sync the log to get all the intents out of the AIL.
5857 * This isn't absolutely necessary, but it helps in
5858 * case the unlink transactions would have problems
5859 * pushing the intents out of the way.
5861 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
5863 xlog_recover_process_iunlinks(log
);
5865 xlog_recover_check_summary(log
);
5867 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
5868 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5870 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
5872 xfs_info(log
->l_mp
, "Ending clean mount");
5878 xlog_recover_cancel(
5883 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
)
5884 error
= xlog_recover_cancel_intents(log
);
5891 * Read all of the agf and agi counters and check that they
5892 * are consistent with the superblock counters.
5895 xlog_recover_check_summary(
5902 xfs_agnumber_t agno
;
5913 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5914 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
5916 xfs_alert(mp
, "%s agf read failed agno %d error %d",
5917 __func__
, agno
, error
);
5919 agfp
= XFS_BUF_TO_AGF(agfbp
);
5920 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
5921 be32_to_cpu(agfp
->agf_flcount
);
5922 xfs_buf_relse(agfbp
);
5925 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5927 xfs_alert(mp
, "%s agi read failed agno %d error %d",
5928 __func__
, agno
, error
);
5930 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
5932 itotal
+= be32_to_cpu(agi
->agi_count
);
5933 ifree
+= be32_to_cpu(agi
->agi_freecount
);
5934 xfs_buf_relse(agibp
);