netfilter: nft_set_rbtree: fix panic when destroying set by GC
[linux/fpc-iii.git] / fs / xfs / xfs_trans_buf.c
blob15919f67a88f57aeab504f471c9088d066d08493
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
21 * Check to see if a buffer matching the given parameters is already
22 * a part of the given transaction.
24 STATIC struct xfs_buf *
25 xfs_trans_buf_item_match(
26 struct xfs_trans *tp,
27 struct xfs_buftarg *target,
28 struct xfs_buf_map *map,
29 int nmaps)
31 struct xfs_log_item *lip;
32 struct xfs_buf_log_item *blip;
33 int len = 0;
34 int i;
36 for (i = 0; i < nmaps; i++)
37 len += map[i].bm_len;
39 list_for_each_entry(lip, &tp->t_items, li_trans) {
40 blip = (struct xfs_buf_log_item *)lip;
41 if (blip->bli_item.li_type == XFS_LI_BUF &&
42 blip->bli_buf->b_target == target &&
43 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
44 blip->bli_buf->b_length == len) {
45 ASSERT(blip->bli_buf->b_map_count == nmaps);
46 return blip->bli_buf;
50 return NULL;
54 * Add the locked buffer to the transaction.
56 * The buffer must be locked, and it cannot be associated with any
57 * transaction.
59 * If the buffer does not yet have a buf log item associated with it,
60 * then allocate one for it. Then add the buf item to the transaction.
62 STATIC void
63 _xfs_trans_bjoin(
64 struct xfs_trans *tp,
65 struct xfs_buf *bp,
66 int reset_recur)
68 struct xfs_buf_log_item *bip;
70 ASSERT(bp->b_transp == NULL);
73 * The xfs_buf_log_item pointer is stored in b_log_item. If
74 * it doesn't have one yet, then allocate one and initialize it.
75 * The checks to see if one is there are in xfs_buf_item_init().
77 xfs_buf_item_init(bp, tp->t_mountp);
78 bip = bp->b_log_item;
79 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
80 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
81 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
82 if (reset_recur)
83 bip->bli_recur = 0;
86 * Take a reference for this transaction on the buf item.
88 atomic_inc(&bip->bli_refcount);
91 * Attach the item to the transaction so we can find it in
92 * xfs_trans_get_buf() and friends.
94 xfs_trans_add_item(tp, &bip->bli_item);
95 bp->b_transp = tp;
99 void
100 xfs_trans_bjoin(
101 struct xfs_trans *tp,
102 struct xfs_buf *bp)
104 _xfs_trans_bjoin(tp, bp, 0);
105 trace_xfs_trans_bjoin(bp->b_log_item);
109 * Get and lock the buffer for the caller if it is not already
110 * locked within the given transaction. If it is already locked
111 * within the transaction, just increment its lock recursion count
112 * and return a pointer to it.
114 * If the transaction pointer is NULL, make this just a normal
115 * get_buf() call.
117 struct xfs_buf *
118 xfs_trans_get_buf_map(
119 struct xfs_trans *tp,
120 struct xfs_buftarg *target,
121 struct xfs_buf_map *map,
122 int nmaps,
123 xfs_buf_flags_t flags)
125 xfs_buf_t *bp;
126 struct xfs_buf_log_item *bip;
128 if (!tp)
129 return xfs_buf_get_map(target, map, nmaps, flags);
132 * If we find the buffer in the cache with this transaction
133 * pointer in its b_fsprivate2 field, then we know we already
134 * have it locked. In this case we just increment the lock
135 * recursion count and return the buffer to the caller.
137 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
138 if (bp != NULL) {
139 ASSERT(xfs_buf_islocked(bp));
140 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
141 xfs_buf_stale(bp);
142 bp->b_flags |= XBF_DONE;
145 ASSERT(bp->b_transp == tp);
146 bip = bp->b_log_item;
147 ASSERT(bip != NULL);
148 ASSERT(atomic_read(&bip->bli_refcount) > 0);
149 bip->bli_recur++;
150 trace_xfs_trans_get_buf_recur(bip);
151 return bp;
154 bp = xfs_buf_get_map(target, map, nmaps, flags);
155 if (bp == NULL) {
156 return NULL;
159 ASSERT(!bp->b_error);
161 _xfs_trans_bjoin(tp, bp, 1);
162 trace_xfs_trans_get_buf(bp->b_log_item);
163 return bp;
167 * Get and lock the superblock buffer of this file system for the
168 * given transaction.
170 * We don't need to use incore_match() here, because the superblock
171 * buffer is a private buffer which we keep a pointer to in the
172 * mount structure.
174 xfs_buf_t *
175 xfs_trans_getsb(
176 xfs_trans_t *tp,
177 struct xfs_mount *mp,
178 int flags)
180 xfs_buf_t *bp;
181 struct xfs_buf_log_item *bip;
184 * Default to just trying to lock the superblock buffer
185 * if tp is NULL.
187 if (tp == NULL)
188 return xfs_getsb(mp, flags);
191 * If the superblock buffer already has this transaction
192 * pointer in its b_fsprivate2 field, then we know we already
193 * have it locked. In this case we just increment the lock
194 * recursion count and return the buffer to the caller.
196 bp = mp->m_sb_bp;
197 if (bp->b_transp == tp) {
198 bip = bp->b_log_item;
199 ASSERT(bip != NULL);
200 ASSERT(atomic_read(&bip->bli_refcount) > 0);
201 bip->bli_recur++;
202 trace_xfs_trans_getsb_recur(bip);
203 return bp;
206 bp = xfs_getsb(mp, flags);
207 if (bp == NULL)
208 return NULL;
210 _xfs_trans_bjoin(tp, bp, 1);
211 trace_xfs_trans_getsb(bp->b_log_item);
212 return bp;
216 * Get and lock the buffer for the caller if it is not already
217 * locked within the given transaction. If it has not yet been
218 * read in, read it from disk. If it is already locked
219 * within the transaction and already read in, just increment its
220 * lock recursion count and return a pointer to it.
222 * If the transaction pointer is NULL, make this just a normal
223 * read_buf() call.
226 xfs_trans_read_buf_map(
227 struct xfs_mount *mp,
228 struct xfs_trans *tp,
229 struct xfs_buftarg *target,
230 struct xfs_buf_map *map,
231 int nmaps,
232 xfs_buf_flags_t flags,
233 struct xfs_buf **bpp,
234 const struct xfs_buf_ops *ops)
236 struct xfs_buf *bp = NULL;
237 struct xfs_buf_log_item *bip;
238 int error;
240 *bpp = NULL;
242 * If we find the buffer in the cache with this transaction
243 * pointer in its b_fsprivate2 field, then we know we already
244 * have it locked. If it is already read in we just increment
245 * the lock recursion count and return the buffer to the caller.
246 * If the buffer is not yet read in, then we read it in, increment
247 * the lock recursion count, and return it to the caller.
249 if (tp)
250 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
251 if (bp) {
252 ASSERT(xfs_buf_islocked(bp));
253 ASSERT(bp->b_transp == tp);
254 ASSERT(bp->b_log_item != NULL);
255 ASSERT(!bp->b_error);
256 ASSERT(bp->b_flags & XBF_DONE);
259 * We never locked this buf ourselves, so we shouldn't
260 * brelse it either. Just get out.
262 if (XFS_FORCED_SHUTDOWN(mp)) {
263 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
264 return -EIO;
267 bip = bp->b_log_item;
268 bip->bli_recur++;
270 ASSERT(atomic_read(&bip->bli_refcount) > 0);
271 trace_xfs_trans_read_buf_recur(bip);
272 *bpp = bp;
273 return 0;
276 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
277 if (!bp) {
278 if (!(flags & XBF_TRYLOCK))
279 return -ENOMEM;
280 return tp ? 0 : -EAGAIN;
284 * If we've had a read error, then the contents of the buffer are
285 * invalid and should not be used. To ensure that a followup read tries
286 * to pull the buffer from disk again, we clear the XBF_DONE flag and
287 * mark the buffer stale. This ensures that anyone who has a current
288 * reference to the buffer will interpret it's contents correctly and
289 * future cache lookups will also treat it as an empty, uninitialised
290 * buffer.
292 if (bp->b_error) {
293 error = bp->b_error;
294 if (!XFS_FORCED_SHUTDOWN(mp))
295 xfs_buf_ioerror_alert(bp, __func__);
296 bp->b_flags &= ~XBF_DONE;
297 xfs_buf_stale(bp);
299 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
300 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
301 xfs_buf_relse(bp);
303 /* bad CRC means corrupted metadata */
304 if (error == -EFSBADCRC)
305 error = -EFSCORRUPTED;
306 return error;
309 if (XFS_FORCED_SHUTDOWN(mp)) {
310 xfs_buf_relse(bp);
311 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
312 return -EIO;
315 if (tp) {
316 _xfs_trans_bjoin(tp, bp, 1);
317 trace_xfs_trans_read_buf(bp->b_log_item);
319 *bpp = bp;
320 return 0;
325 * Release the buffer bp which was previously acquired with one of the
326 * xfs_trans_... buffer allocation routines if the buffer has not
327 * been modified within this transaction. If the buffer is modified
328 * within this transaction, do decrement the recursion count but do
329 * not release the buffer even if the count goes to 0. If the buffer is not
330 * modified within the transaction, decrement the recursion count and
331 * release the buffer if the recursion count goes to 0.
333 * If the buffer is to be released and it was not modified before
334 * this transaction began, then free the buf_log_item associated with it.
336 * If the transaction pointer is NULL, make this just a normal
337 * brelse() call.
339 void
340 xfs_trans_brelse(
341 xfs_trans_t *tp,
342 xfs_buf_t *bp)
344 struct xfs_buf_log_item *bip;
345 int freed;
348 * Default to a normal brelse() call if the tp is NULL.
350 if (tp == NULL) {
351 ASSERT(bp->b_transp == NULL);
352 xfs_buf_relse(bp);
353 return;
356 ASSERT(bp->b_transp == tp);
357 bip = bp->b_log_item;
358 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
359 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
360 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
361 ASSERT(atomic_read(&bip->bli_refcount) > 0);
363 trace_xfs_trans_brelse(bip);
366 * If the release is just for a recursive lock,
367 * then decrement the count and return.
369 if (bip->bli_recur > 0) {
370 bip->bli_recur--;
371 return;
375 * If the buffer is dirty within this transaction, we can't
376 * release it until we commit.
378 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
379 return;
382 * If the buffer has been invalidated, then we can't release
383 * it until the transaction commits to disk unless it is re-dirtied
384 * as part of this transaction. This prevents us from pulling
385 * the item from the AIL before we should.
387 if (bip->bli_flags & XFS_BLI_STALE)
388 return;
390 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
393 * Free up the log item descriptor tracking the released item.
395 xfs_trans_del_item(&bip->bli_item);
398 * Clear the hold flag in the buf log item if it is set.
399 * We wouldn't want the next user of the buffer to
400 * get confused.
402 if (bip->bli_flags & XFS_BLI_HOLD) {
403 bip->bli_flags &= ~XFS_BLI_HOLD;
407 * Drop our reference to the buf log item.
409 freed = atomic_dec_and_test(&bip->bli_refcount);
412 * If the buf item is not tracking data in the log, then we must free it
413 * before releasing the buffer back to the free pool.
415 * If the fs has shutdown and we dropped the last reference, it may fall
416 * on us to release a (possibly dirty) bli if it never made it to the
417 * AIL (e.g., the aborted unpin already happened and didn't release it
418 * due to our reference). Since we're already shutdown and need
419 * ail_lock, just force remove from the AIL and release the bli here.
421 if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) {
422 xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR);
423 xfs_buf_item_relse(bp);
424 } else if (!(bip->bli_flags & XFS_BLI_DIRTY)) {
425 /***
426 ASSERT(bp->b_pincount == 0);
427 ***/
428 ASSERT(atomic_read(&bip->bli_refcount) == 0);
429 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
430 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
431 xfs_buf_item_relse(bp);
434 bp->b_transp = NULL;
435 xfs_buf_relse(bp);
439 * Mark the buffer as not needing to be unlocked when the buf item's
440 * iop_unlock() routine is called. The buffer must already be locked
441 * and associated with the given transaction.
443 /* ARGSUSED */
444 void
445 xfs_trans_bhold(
446 xfs_trans_t *tp,
447 xfs_buf_t *bp)
449 struct xfs_buf_log_item *bip = bp->b_log_item;
451 ASSERT(bp->b_transp == tp);
452 ASSERT(bip != NULL);
453 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
454 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
455 ASSERT(atomic_read(&bip->bli_refcount) > 0);
457 bip->bli_flags |= XFS_BLI_HOLD;
458 trace_xfs_trans_bhold(bip);
462 * Cancel the previous buffer hold request made on this buffer
463 * for this transaction.
465 void
466 xfs_trans_bhold_release(
467 xfs_trans_t *tp,
468 xfs_buf_t *bp)
470 struct xfs_buf_log_item *bip = bp->b_log_item;
472 ASSERT(bp->b_transp == tp);
473 ASSERT(bip != NULL);
474 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
475 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
476 ASSERT(atomic_read(&bip->bli_refcount) > 0);
477 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
479 bip->bli_flags &= ~XFS_BLI_HOLD;
480 trace_xfs_trans_bhold_release(bip);
484 * Mark a buffer dirty in the transaction.
486 void
487 xfs_trans_dirty_buf(
488 struct xfs_trans *tp,
489 struct xfs_buf *bp)
491 struct xfs_buf_log_item *bip = bp->b_log_item;
493 ASSERT(bp->b_transp == tp);
494 ASSERT(bip != NULL);
495 ASSERT(bp->b_iodone == NULL ||
496 bp->b_iodone == xfs_buf_iodone_callbacks);
499 * Mark the buffer as needing to be written out eventually,
500 * and set its iodone function to remove the buffer's buf log
501 * item from the AIL and free it when the buffer is flushed
502 * to disk. See xfs_buf_attach_iodone() for more details
503 * on li_cb and xfs_buf_iodone_callbacks().
504 * If we end up aborting this transaction, we trap this buffer
505 * inside the b_bdstrat callback so that this won't get written to
506 * disk.
508 bp->b_flags |= XBF_DONE;
510 ASSERT(atomic_read(&bip->bli_refcount) > 0);
511 bp->b_iodone = xfs_buf_iodone_callbacks;
512 bip->bli_item.li_cb = xfs_buf_iodone;
515 * If we invalidated the buffer within this transaction, then
516 * cancel the invalidation now that we're dirtying the buffer
517 * again. There are no races with the code in xfs_buf_item_unpin(),
518 * because we have a reference to the buffer this entire time.
520 if (bip->bli_flags & XFS_BLI_STALE) {
521 bip->bli_flags &= ~XFS_BLI_STALE;
522 ASSERT(bp->b_flags & XBF_STALE);
523 bp->b_flags &= ~XBF_STALE;
524 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
526 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
528 tp->t_flags |= XFS_TRANS_DIRTY;
529 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
533 * This is called to mark bytes first through last inclusive of the given
534 * buffer as needing to be logged when the transaction is committed.
535 * The buffer must already be associated with the given transaction.
537 * First and last are numbers relative to the beginning of this buffer,
538 * so the first byte in the buffer is numbered 0 regardless of the
539 * value of b_blkno.
541 void
542 xfs_trans_log_buf(
543 struct xfs_trans *tp,
544 struct xfs_buf *bp,
545 uint first,
546 uint last)
548 struct xfs_buf_log_item *bip = bp->b_log_item;
550 ASSERT(first <= last && last < BBTOB(bp->b_length));
551 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
553 xfs_trans_dirty_buf(tp, bp);
555 trace_xfs_trans_log_buf(bip);
556 xfs_buf_item_log(bip, first, last);
561 * Invalidate a buffer that is being used within a transaction.
563 * Typically this is because the blocks in the buffer are being freed, so we
564 * need to prevent it from being written out when we're done. Allowing it
565 * to be written again might overwrite data in the free blocks if they are
566 * reallocated to a file.
568 * We prevent the buffer from being written out by marking it stale. We can't
569 * get rid of the buf log item at this point because the buffer may still be
570 * pinned by another transaction. If that is the case, then we'll wait until
571 * the buffer is committed to disk for the last time (we can tell by the ref
572 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
573 * keep the buffer locked so that the buffer and buf log item are not reused.
575 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
576 * the buf item. This will be used at recovery time to determine that copies
577 * of the buffer in the log before this should not be replayed.
579 * We mark the item descriptor and the transaction dirty so that we'll hold
580 * the buffer until after the commit.
582 * Since we're invalidating the buffer, we also clear the state about which
583 * parts of the buffer have been logged. We also clear the flag indicating
584 * that this is an inode buffer since the data in the buffer will no longer
585 * be valid.
587 * We set the stale bit in the buffer as well since we're getting rid of it.
589 void
590 xfs_trans_binval(
591 xfs_trans_t *tp,
592 xfs_buf_t *bp)
594 struct xfs_buf_log_item *bip = bp->b_log_item;
595 int i;
597 ASSERT(bp->b_transp == tp);
598 ASSERT(bip != NULL);
599 ASSERT(atomic_read(&bip->bli_refcount) > 0);
601 trace_xfs_trans_binval(bip);
603 if (bip->bli_flags & XFS_BLI_STALE) {
605 * If the buffer is already invalidated, then
606 * just return.
608 ASSERT(bp->b_flags & XBF_STALE);
609 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
610 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
611 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
612 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
613 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
614 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
615 return;
618 xfs_buf_stale(bp);
620 bip->bli_flags |= XFS_BLI_STALE;
621 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
622 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
623 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
624 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
625 for (i = 0; i < bip->bli_format_count; i++) {
626 memset(bip->bli_formats[i].blf_data_map, 0,
627 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
629 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
630 tp->t_flags |= XFS_TRANS_DIRTY;
634 * This call is used to indicate that the buffer contains on-disk inodes which
635 * must be handled specially during recovery. They require special handling
636 * because only the di_next_unlinked from the inodes in the buffer should be
637 * recovered. The rest of the data in the buffer is logged via the inodes
638 * themselves.
640 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
641 * transferred to the buffer's log format structure so that we'll know what to
642 * do at recovery time.
644 void
645 xfs_trans_inode_buf(
646 xfs_trans_t *tp,
647 xfs_buf_t *bp)
649 struct xfs_buf_log_item *bip = bp->b_log_item;
651 ASSERT(bp->b_transp == tp);
652 ASSERT(bip != NULL);
653 ASSERT(atomic_read(&bip->bli_refcount) > 0);
655 bip->bli_flags |= XFS_BLI_INODE_BUF;
656 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
660 * This call is used to indicate that the buffer is going to
661 * be staled and was an inode buffer. This means it gets
662 * special processing during unpin - where any inodes
663 * associated with the buffer should be removed from ail.
664 * There is also special processing during recovery,
665 * any replay of the inodes in the buffer needs to be
666 * prevented as the buffer may have been reused.
668 void
669 xfs_trans_stale_inode_buf(
670 xfs_trans_t *tp,
671 xfs_buf_t *bp)
673 struct xfs_buf_log_item *bip = bp->b_log_item;
675 ASSERT(bp->b_transp == tp);
676 ASSERT(bip != NULL);
677 ASSERT(atomic_read(&bip->bli_refcount) > 0);
679 bip->bli_flags |= XFS_BLI_STALE_INODE;
680 bip->bli_item.li_cb = xfs_buf_iodone;
681 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
685 * Mark the buffer as being one which contains newly allocated
686 * inodes. We need to make sure that even if this buffer is
687 * relogged as an 'inode buf' we still recover all of the inode
688 * images in the face of a crash. This works in coordination with
689 * xfs_buf_item_committed() to ensure that the buffer remains in the
690 * AIL at its original location even after it has been relogged.
692 /* ARGSUSED */
693 void
694 xfs_trans_inode_alloc_buf(
695 xfs_trans_t *tp,
696 xfs_buf_t *bp)
698 struct xfs_buf_log_item *bip = bp->b_log_item;
700 ASSERT(bp->b_transp == tp);
701 ASSERT(bip != NULL);
702 ASSERT(atomic_read(&bip->bli_refcount) > 0);
704 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
705 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
709 * Mark the buffer as ordered for this transaction. This means that the contents
710 * of the buffer are not recorded in the transaction but it is tracked in the
711 * AIL as though it was. This allows us to record logical changes in
712 * transactions rather than the physical changes we make to the buffer without
713 * changing writeback ordering constraints of metadata buffers.
715 bool
716 xfs_trans_ordered_buf(
717 struct xfs_trans *tp,
718 struct xfs_buf *bp)
720 struct xfs_buf_log_item *bip = bp->b_log_item;
722 ASSERT(bp->b_transp == tp);
723 ASSERT(bip != NULL);
724 ASSERT(atomic_read(&bip->bli_refcount) > 0);
726 if (xfs_buf_item_dirty_format(bip))
727 return false;
729 bip->bli_flags |= XFS_BLI_ORDERED;
730 trace_xfs_buf_item_ordered(bip);
733 * We don't log a dirty range of an ordered buffer but it still needs
734 * to be marked dirty and that it has been logged.
736 xfs_trans_dirty_buf(tp, bp);
737 return true;
741 * Set the type of the buffer for log recovery so that it can correctly identify
742 * and hence attach the correct buffer ops to the buffer after replay.
744 void
745 xfs_trans_buf_set_type(
746 struct xfs_trans *tp,
747 struct xfs_buf *bp,
748 enum xfs_blft type)
750 struct xfs_buf_log_item *bip = bp->b_log_item;
752 if (!tp)
753 return;
755 ASSERT(bp->b_transp == tp);
756 ASSERT(bip != NULL);
757 ASSERT(atomic_read(&bip->bli_refcount) > 0);
759 xfs_blft_to_flags(&bip->__bli_format, type);
762 void
763 xfs_trans_buf_copy_type(
764 struct xfs_buf *dst_bp,
765 struct xfs_buf *src_bp)
767 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
768 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
769 enum xfs_blft type;
771 type = xfs_blft_from_flags(&sbip->__bli_format);
772 xfs_blft_to_flags(&dbip->__bli_format, type);
776 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
777 * dquots. However, unlike in inode buffer recovery, dquot buffers get
778 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
779 * The only thing that makes dquot buffers different from regular
780 * buffers is that we must not replay dquot bufs when recovering
781 * if a _corresponding_ quotaoff has happened. We also have to distinguish
782 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
783 * can be turned off independently.
785 /* ARGSUSED */
786 void
787 xfs_trans_dquot_buf(
788 xfs_trans_t *tp,
789 xfs_buf_t *bp,
790 uint type)
792 struct xfs_buf_log_item *bip = bp->b_log_item;
794 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
795 type == XFS_BLF_PDQUOT_BUF ||
796 type == XFS_BLF_GDQUOT_BUF);
798 bip->__bli_format.blf_flags |= type;
800 switch (type) {
801 case XFS_BLF_UDQUOT_BUF:
802 type = XFS_BLFT_UDQUOT_BUF;
803 break;
804 case XFS_BLF_PDQUOT_BUF:
805 type = XFS_BLFT_PDQUOT_BUF;
806 break;
807 case XFS_BLF_GDQUOT_BUF:
808 type = XFS_BLFT_GDQUOT_BUF;
809 break;
810 default:
811 type = XFS_BLFT_UNKNOWN_BUF;
812 break;
815 xfs_trans_buf_set_type(tp, bp, type);