2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "ref-cache.h"
52 #include "compression.h"
55 struct btrfs_iget_args
{
57 struct btrfs_root
*root
;
60 static struct inode_operations btrfs_dir_inode_operations
;
61 static struct inode_operations btrfs_symlink_inode_operations
;
62 static struct inode_operations btrfs_dir_ro_inode_operations
;
63 static struct inode_operations btrfs_special_inode_operations
;
64 static struct inode_operations btrfs_file_inode_operations
;
65 static struct address_space_operations btrfs_aops
;
66 static struct address_space_operations btrfs_symlink_aops
;
67 static struct file_operations btrfs_dir_file_operations
;
68 static struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_transaction_cachep
;
73 struct kmem_cache
*btrfs_bit_radix_cachep
;
74 struct kmem_cache
*btrfs_path_cachep
;
77 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
78 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
79 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
80 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
81 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
82 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
83 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
84 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
87 static void btrfs_truncate(struct inode
*inode
);
88 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
89 static noinline
int cow_file_range(struct inode
*inode
,
90 struct page
*locked_page
,
91 u64 start
, u64 end
, int *page_started
,
92 unsigned long *nr_written
, int unlock
);
94 static int btrfs_init_inode_security(struct inode
*inode
, struct inode
*dir
)
98 err
= btrfs_init_acl(inode
, dir
);
100 err
= btrfs_xattr_security_init(inode
, dir
);
105 * this does all the hard work for inserting an inline extent into
106 * the btree. The caller should have done a btrfs_drop_extents so that
107 * no overlapping inline items exist in the btree
109 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
110 struct btrfs_root
*root
, struct inode
*inode
,
111 u64 start
, size_t size
, size_t compressed_size
,
112 struct page
**compressed_pages
)
114 struct btrfs_key key
;
115 struct btrfs_path
*path
;
116 struct extent_buffer
*leaf
;
117 struct page
*page
= NULL
;
120 struct btrfs_file_extent_item
*ei
;
123 size_t cur_size
= size
;
125 unsigned long offset
;
126 int use_compress
= 0;
128 if (compressed_size
&& compressed_pages
) {
130 cur_size
= compressed_size
;
133 path
= btrfs_alloc_path();
137 btrfs_set_trans_block_group(trans
, inode
);
139 key
.objectid
= inode
->i_ino
;
141 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
142 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
144 inode_add_bytes(inode
, size
);
145 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
152 leaf
= path
->nodes
[0];
153 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_file_extent_item
);
155 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
156 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
157 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
158 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
159 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
160 ptr
= btrfs_file_extent_inline_start(ei
);
165 while (compressed_size
> 0) {
166 cpage
= compressed_pages
[i
];
167 cur_size
= min_t(unsigned long, compressed_size
,
171 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
176 compressed_size
-= cur_size
;
178 btrfs_set_file_extent_compression(leaf
, ei
,
179 BTRFS_COMPRESS_ZLIB
);
181 page
= find_get_page(inode
->i_mapping
,
182 start
>> PAGE_CACHE_SHIFT
);
183 btrfs_set_file_extent_compression(leaf
, ei
, 0);
184 kaddr
= kmap_atomic(page
, KM_USER0
);
185 offset
= start
& (PAGE_CACHE_SIZE
- 1);
186 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
187 kunmap_atomic(kaddr
, KM_USER0
);
188 page_cache_release(page
);
190 btrfs_mark_buffer_dirty(leaf
);
191 btrfs_free_path(path
);
193 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
194 btrfs_update_inode(trans
, root
, inode
);
197 btrfs_free_path(path
);
203 * conditionally insert an inline extent into the file. This
204 * does the checks required to make sure the data is small enough
205 * to fit as an inline extent.
207 static int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
208 struct btrfs_root
*root
,
209 struct inode
*inode
, u64 start
, u64 end
,
210 size_t compressed_size
,
211 struct page
**compressed_pages
)
213 u64 isize
= i_size_read(inode
);
214 u64 actual_end
= min(end
+ 1, isize
);
215 u64 inline_len
= actual_end
- start
;
216 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
217 ~((u64
)root
->sectorsize
- 1);
219 u64 data_len
= inline_len
;
223 data_len
= compressed_size
;
226 actual_end
>= PAGE_CACHE_SIZE
||
227 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
229 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
231 data_len
> root
->fs_info
->max_inline
) {
235 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
236 aligned_end
, start
, &hint_byte
);
239 if (isize
> actual_end
)
240 inline_len
= min_t(u64
, isize
, actual_end
);
241 ret
= insert_inline_extent(trans
, root
, inode
, start
,
242 inline_len
, compressed_size
,
245 btrfs_drop_extent_cache(inode
, start
, aligned_end
, 0);
249 struct async_extent
{
254 unsigned long nr_pages
;
255 struct list_head list
;
260 struct btrfs_root
*root
;
261 struct page
*locked_page
;
264 struct list_head extents
;
265 struct btrfs_work work
;
268 static noinline
int add_async_extent(struct async_cow
*cow
,
269 u64 start
, u64 ram_size
,
272 unsigned long nr_pages
)
274 struct async_extent
*async_extent
;
276 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
277 async_extent
->start
= start
;
278 async_extent
->ram_size
= ram_size
;
279 async_extent
->compressed_size
= compressed_size
;
280 async_extent
->pages
= pages
;
281 async_extent
->nr_pages
= nr_pages
;
282 list_add_tail(&async_extent
->list
, &cow
->extents
);
287 * we create compressed extents in two phases. The first
288 * phase compresses a range of pages that have already been
289 * locked (both pages and state bits are locked).
291 * This is done inside an ordered work queue, and the compression
292 * is spread across many cpus. The actual IO submission is step
293 * two, and the ordered work queue takes care of making sure that
294 * happens in the same order things were put onto the queue by
295 * writepages and friends.
297 * If this code finds it can't get good compression, it puts an
298 * entry onto the work queue to write the uncompressed bytes. This
299 * makes sure that both compressed inodes and uncompressed inodes
300 * are written in the same order that pdflush sent them down.
302 static noinline
int compress_file_range(struct inode
*inode
,
303 struct page
*locked_page
,
305 struct async_cow
*async_cow
,
308 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
309 struct btrfs_trans_handle
*trans
;
313 u64 blocksize
= root
->sectorsize
;
315 u64 isize
= i_size_read(inode
);
317 struct page
**pages
= NULL
;
318 unsigned long nr_pages
;
319 unsigned long nr_pages_ret
= 0;
320 unsigned long total_compressed
= 0;
321 unsigned long total_in
= 0;
322 unsigned long max_compressed
= 128 * 1024;
323 unsigned long max_uncompressed
= 128 * 1024;
329 actual_end
= min_t(u64
, isize
, end
+ 1);
332 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
333 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
336 * we don't want to send crud past the end of i_size through
337 * compression, that's just a waste of CPU time. So, if the
338 * end of the file is before the start of our current
339 * requested range of bytes, we bail out to the uncompressed
340 * cleanup code that can deal with all of this.
342 * It isn't really the fastest way to fix things, but this is a
343 * very uncommon corner.
345 if (actual_end
<= start
)
346 goto cleanup_and_bail_uncompressed
;
348 total_compressed
= actual_end
- start
;
350 /* we want to make sure that amount of ram required to uncompress
351 * an extent is reasonable, so we limit the total size in ram
352 * of a compressed extent to 128k. This is a crucial number
353 * because it also controls how easily we can spread reads across
354 * cpus for decompression.
356 * We also want to make sure the amount of IO required to do
357 * a random read is reasonably small, so we limit the size of
358 * a compressed extent to 128k.
360 total_compressed
= min(total_compressed
, max_uncompressed
);
361 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
362 num_bytes
= max(blocksize
, num_bytes
);
363 disk_num_bytes
= num_bytes
;
368 * we do compression for mount -o compress and when the
369 * inode has not been flagged as nocompress. This flag can
370 * change at any time if we discover bad compression ratios.
372 if (!btrfs_test_flag(inode
, NOCOMPRESS
) &&
373 btrfs_test_opt(root
, COMPRESS
)) {
375 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
377 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
378 total_compressed
, pages
,
379 nr_pages
, &nr_pages_ret
,
385 unsigned long offset
= total_compressed
&
386 (PAGE_CACHE_SIZE
- 1);
387 struct page
*page
= pages
[nr_pages_ret
- 1];
390 /* zero the tail end of the last page, we might be
391 * sending it down to disk
394 kaddr
= kmap_atomic(page
, KM_USER0
);
395 memset(kaddr
+ offset
, 0,
396 PAGE_CACHE_SIZE
- offset
);
397 kunmap_atomic(kaddr
, KM_USER0
);
403 trans
= btrfs_join_transaction(root
, 1);
405 btrfs_set_trans_block_group(trans
, inode
);
407 /* lets try to make an inline extent */
408 if (ret
|| total_in
< (actual_end
- start
)) {
409 /* we didn't compress the entire range, try
410 * to make an uncompressed inline extent.
412 ret
= cow_file_range_inline(trans
, root
, inode
,
413 start
, end
, 0, NULL
);
415 /* try making a compressed inline extent */
416 ret
= cow_file_range_inline(trans
, root
, inode
,
418 total_compressed
, pages
);
420 btrfs_end_transaction(trans
, root
);
423 * inline extent creation worked, we don't need
424 * to create any more async work items. Unlock
425 * and free up our temp pages.
427 extent_clear_unlock_delalloc(inode
,
428 &BTRFS_I(inode
)->io_tree
,
429 start
, end
, NULL
, 1, 0,
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
442 total_compressed
= (total_compressed
+ blocksize
- 1) &
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
449 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
450 ~(PAGE_CACHE_SIZE
- 1);
451 if (total_compressed
>= total_in
) {
454 disk_num_bytes
= total_compressed
;
455 num_bytes
= total_in
;
458 if (!will_compress
&& pages
) {
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
463 for (i
= 0; i
< nr_pages_ret
; i
++) {
464 WARN_ON(pages
[i
]->mapping
);
465 page_cache_release(pages
[i
]);
469 total_compressed
= 0;
472 /* flag the file so we don't compress in the future */
473 btrfs_set_flag(inode
, NOCOMPRESS
);
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
482 add_async_extent(async_cow
, start
, num_bytes
,
483 total_compressed
, pages
, nr_pages_ret
);
485 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
492 cleanup_and_bail_uncompressed
:
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
500 if (page_offset(locked_page
) >= start
&&
501 page_offset(locked_page
) <= end
) {
502 __set_page_dirty_nobuffers(locked_page
);
503 /* unlocked later on in the async handlers */
505 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
513 for (i
= 0; i
< nr_pages_ret
; i
++) {
514 WARN_ON(pages
[i
]->mapping
);
515 page_cache_release(pages
[i
]);
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
528 static noinline
int submit_compressed_extents(struct inode
*inode
,
529 struct async_cow
*async_cow
)
531 struct async_extent
*async_extent
;
533 struct btrfs_trans_handle
*trans
;
534 struct btrfs_key ins
;
535 struct extent_map
*em
;
536 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
537 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
538 struct extent_io_tree
*io_tree
;
541 if (list_empty(&async_cow
->extents
))
544 trans
= btrfs_join_transaction(root
, 1);
546 while (!list_empty(&async_cow
->extents
)) {
547 async_extent
= list_entry(async_cow
->extents
.next
,
548 struct async_extent
, list
);
549 list_del(&async_extent
->list
);
551 io_tree
= &BTRFS_I(inode
)->io_tree
;
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent
->pages
) {
555 int page_started
= 0;
556 unsigned long nr_written
= 0;
558 lock_extent(io_tree
, async_extent
->start
,
559 async_extent
->start
+
560 async_extent
->ram_size
- 1, GFP_NOFS
);
562 /* allocate blocks */
563 cow_file_range(inode
, async_cow
->locked_page
,
565 async_extent
->start
+
566 async_extent
->ram_size
- 1,
567 &page_started
, &nr_written
, 0);
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
576 extent_write_locked_range(io_tree
,
577 inode
, async_extent
->start
,
578 async_extent
->start
+
579 async_extent
->ram_size
- 1,
587 lock_extent(io_tree
, async_extent
->start
,
588 async_extent
->start
+ async_extent
->ram_size
- 1,
591 * here we're doing allocation and writeback of the
594 btrfs_drop_extent_cache(inode
, async_extent
->start
,
595 async_extent
->start
+
596 async_extent
->ram_size
- 1, 0);
598 ret
= btrfs_reserve_extent(trans
, root
,
599 async_extent
->compressed_size
,
600 async_extent
->compressed_size
,
604 em
= alloc_extent_map(GFP_NOFS
);
605 em
->start
= async_extent
->start
;
606 em
->len
= async_extent
->ram_size
;
607 em
->orig_start
= em
->start
;
609 em
->block_start
= ins
.objectid
;
610 em
->block_len
= ins
.offset
;
611 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
612 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
613 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
616 spin_lock(&em_tree
->lock
);
617 ret
= add_extent_mapping(em_tree
, em
);
618 spin_unlock(&em_tree
->lock
);
619 if (ret
!= -EEXIST
) {
623 btrfs_drop_extent_cache(inode
, async_extent
->start
,
624 async_extent
->start
+
625 async_extent
->ram_size
- 1, 0);
628 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
630 async_extent
->ram_size
,
632 BTRFS_ORDERED_COMPRESSED
);
635 btrfs_end_transaction(trans
, root
);
638 * clear dirty, set writeback and unlock the pages.
640 extent_clear_unlock_delalloc(inode
,
641 &BTRFS_I(inode
)->io_tree
,
643 async_extent
->start
+
644 async_extent
->ram_size
- 1,
645 NULL
, 1, 1, 0, 1, 1, 0);
647 ret
= btrfs_submit_compressed_write(inode
,
649 async_extent
->ram_size
,
651 ins
.offset
, async_extent
->pages
,
652 async_extent
->nr_pages
);
655 trans
= btrfs_join_transaction(root
, 1);
656 alloc_hint
= ins
.objectid
+ ins
.offset
;
661 btrfs_end_transaction(trans
, root
);
666 * when extent_io.c finds a delayed allocation range in the file,
667 * the call backs end up in this code. The basic idea is to
668 * allocate extents on disk for the range, and create ordered data structs
669 * in ram to track those extents.
671 * locked_page is the page that writepage had locked already. We use
672 * it to make sure we don't do extra locks or unlocks.
674 * *page_started is set to one if we unlock locked_page and do everything
675 * required to start IO on it. It may be clean and already done with
678 static noinline
int cow_file_range(struct inode
*inode
,
679 struct page
*locked_page
,
680 u64 start
, u64 end
, int *page_started
,
681 unsigned long *nr_written
,
684 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
685 struct btrfs_trans_handle
*trans
;
688 unsigned long ram_size
;
691 u64 blocksize
= root
->sectorsize
;
693 u64 isize
= i_size_read(inode
);
694 struct btrfs_key ins
;
695 struct extent_map
*em
;
696 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
699 trans
= btrfs_join_transaction(root
, 1);
701 btrfs_set_trans_block_group(trans
, inode
);
703 actual_end
= min_t(u64
, isize
, end
+ 1);
705 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
706 num_bytes
= max(blocksize
, num_bytes
);
707 disk_num_bytes
= num_bytes
;
711 /* lets try to make an inline extent */
712 ret
= cow_file_range_inline(trans
, root
, inode
,
713 start
, end
, 0, NULL
);
715 extent_clear_unlock_delalloc(inode
,
716 &BTRFS_I(inode
)->io_tree
,
717 start
, end
, NULL
, 1, 1,
719 *nr_written
= *nr_written
+
720 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
727 BUG_ON(disk_num_bytes
>
728 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
730 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
732 while (disk_num_bytes
> 0) {
733 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
734 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
735 root
->sectorsize
, 0, alloc_hint
,
739 em
= alloc_extent_map(GFP_NOFS
);
741 em
->orig_start
= em
->start
;
743 ram_size
= ins
.offset
;
744 em
->len
= ins
.offset
;
746 em
->block_start
= ins
.objectid
;
747 em
->block_len
= ins
.offset
;
748 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
749 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
752 spin_lock(&em_tree
->lock
);
753 ret
= add_extent_mapping(em_tree
, em
);
754 spin_unlock(&em_tree
->lock
);
755 if (ret
!= -EEXIST
) {
759 btrfs_drop_extent_cache(inode
, start
,
760 start
+ ram_size
- 1, 0);
763 cur_alloc_size
= ins
.offset
;
764 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
765 ram_size
, cur_alloc_size
, 0);
768 if (root
->root_key
.objectid
==
769 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
770 ret
= btrfs_reloc_clone_csums(inode
, start
,
775 if (disk_num_bytes
< cur_alloc_size
)
778 /* we're not doing compressed IO, don't unlock the first
779 * page (which the caller expects to stay locked), don't
780 * clear any dirty bits and don't set any writeback bits
782 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
783 start
, start
+ ram_size
- 1,
784 locked_page
, unlock
, 1,
786 disk_num_bytes
-= cur_alloc_size
;
787 num_bytes
-= cur_alloc_size
;
788 alloc_hint
= ins
.objectid
+ ins
.offset
;
789 start
+= cur_alloc_size
;
793 btrfs_end_transaction(trans
, root
);
799 * work queue call back to started compression on a file and pages
801 static noinline
void async_cow_start(struct btrfs_work
*work
)
803 struct async_cow
*async_cow
;
805 async_cow
= container_of(work
, struct async_cow
, work
);
807 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
808 async_cow
->start
, async_cow
->end
, async_cow
,
811 async_cow
->inode
= NULL
;
815 * work queue call back to submit previously compressed pages
817 static noinline
void async_cow_submit(struct btrfs_work
*work
)
819 struct async_cow
*async_cow
;
820 struct btrfs_root
*root
;
821 unsigned long nr_pages
;
823 async_cow
= container_of(work
, struct async_cow
, work
);
825 root
= async_cow
->root
;
826 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
829 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
831 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
833 waitqueue_active(&root
->fs_info
->async_submit_wait
))
834 wake_up(&root
->fs_info
->async_submit_wait
);
836 if (async_cow
->inode
)
837 submit_compressed_extents(async_cow
->inode
, async_cow
);
840 static noinline
void async_cow_free(struct btrfs_work
*work
)
842 struct async_cow
*async_cow
;
843 async_cow
= container_of(work
, struct async_cow
, work
);
847 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
848 u64 start
, u64 end
, int *page_started
,
849 unsigned long *nr_written
)
851 struct async_cow
*async_cow
;
852 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
853 unsigned long nr_pages
;
855 int limit
= 10 * 1024 * 1042;
857 if (!btrfs_test_opt(root
, COMPRESS
)) {
858 return cow_file_range(inode
, locked_page
, start
, end
,
859 page_started
, nr_written
, 1);
862 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
|
863 EXTENT_DELALLOC
, 1, 0, GFP_NOFS
);
864 while (start
< end
) {
865 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
866 async_cow
->inode
= inode
;
867 async_cow
->root
= root
;
868 async_cow
->locked_page
= locked_page
;
869 async_cow
->start
= start
;
871 if (btrfs_test_flag(inode
, NOCOMPRESS
))
874 cur_end
= min(end
, start
+ 512 * 1024 - 1);
876 async_cow
->end
= cur_end
;
877 INIT_LIST_HEAD(&async_cow
->extents
);
879 async_cow
->work
.func
= async_cow_start
;
880 async_cow
->work
.ordered_func
= async_cow_submit
;
881 async_cow
->work
.ordered_free
= async_cow_free
;
882 async_cow
->work
.flags
= 0;
884 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
886 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
888 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
891 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
892 wait_event(root
->fs_info
->async_submit_wait
,
893 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
897 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
898 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
899 wait_event(root
->fs_info
->async_submit_wait
,
900 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
904 *nr_written
+= nr_pages
;
911 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
912 u64 bytenr
, u64 num_bytes
)
915 struct btrfs_ordered_sum
*sums
;
918 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
919 bytenr
+ num_bytes
- 1, &list
);
920 if (ret
== 0 && list_empty(&list
))
923 while (!list_empty(&list
)) {
924 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
925 list_del(&sums
->list
);
932 * when nowcow writeback call back. This checks for snapshots or COW copies
933 * of the extents that exist in the file, and COWs the file as required.
935 * If no cow copies or snapshots exist, we write directly to the existing
938 static int run_delalloc_nocow(struct inode
*inode
, struct page
*locked_page
,
939 u64 start
, u64 end
, int *page_started
, int force
,
940 unsigned long *nr_written
)
942 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
943 struct btrfs_trans_handle
*trans
;
944 struct extent_buffer
*leaf
;
945 struct btrfs_path
*path
;
946 struct btrfs_file_extent_item
*fi
;
947 struct btrfs_key found_key
;
959 path
= btrfs_alloc_path();
961 trans
= btrfs_join_transaction(root
, 1);
967 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
970 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
971 leaf
= path
->nodes
[0];
972 btrfs_item_key_to_cpu(leaf
, &found_key
,
974 if (found_key
.objectid
== inode
->i_ino
&&
975 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
980 leaf
= path
->nodes
[0];
981 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
982 ret
= btrfs_next_leaf(root
, path
);
987 leaf
= path
->nodes
[0];
993 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
995 if (found_key
.objectid
> inode
->i_ino
||
996 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
997 found_key
.offset
> end
)
1000 if (found_key
.offset
> cur_offset
) {
1001 extent_end
= found_key
.offset
;
1005 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1006 struct btrfs_file_extent_item
);
1007 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1009 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1010 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1011 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1012 extent_end
= found_key
.offset
+
1013 btrfs_file_extent_num_bytes(leaf
, fi
);
1014 if (extent_end
<= start
) {
1018 if (disk_bytenr
== 0)
1020 if (btrfs_file_extent_compression(leaf
, fi
) ||
1021 btrfs_file_extent_encryption(leaf
, fi
) ||
1022 btrfs_file_extent_other_encoding(leaf
, fi
))
1024 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1026 if (btrfs_extent_readonly(root
, disk_bytenr
))
1028 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1031 disk_bytenr
+= btrfs_file_extent_offset(leaf
, fi
);
1032 disk_bytenr
+= cur_offset
- found_key
.offset
;
1033 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1035 * force cow if csum exists in the range.
1036 * this ensure that csum for a given extent are
1037 * either valid or do not exist.
1039 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1042 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1043 extent_end
= found_key
.offset
+
1044 btrfs_file_extent_inline_len(leaf
, fi
);
1045 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1050 if (extent_end
<= start
) {
1055 if (cow_start
== (u64
)-1)
1056 cow_start
= cur_offset
;
1057 cur_offset
= extent_end
;
1058 if (cur_offset
> end
)
1064 btrfs_release_path(root
, path
);
1065 if (cow_start
!= (u64
)-1) {
1066 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1067 found_key
.offset
- 1, page_started
,
1070 cow_start
= (u64
)-1;
1073 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1074 struct extent_map
*em
;
1075 struct extent_map_tree
*em_tree
;
1076 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1077 em
= alloc_extent_map(GFP_NOFS
);
1078 em
->start
= cur_offset
;
1079 em
->orig_start
= em
->start
;
1080 em
->len
= num_bytes
;
1081 em
->block_len
= num_bytes
;
1082 em
->block_start
= disk_bytenr
;
1083 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1084 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1086 spin_lock(&em_tree
->lock
);
1087 ret
= add_extent_mapping(em_tree
, em
);
1088 spin_unlock(&em_tree
->lock
);
1089 if (ret
!= -EEXIST
) {
1090 free_extent_map(em
);
1093 btrfs_drop_extent_cache(inode
, em
->start
,
1094 em
->start
+ em
->len
- 1, 0);
1096 type
= BTRFS_ORDERED_PREALLOC
;
1098 type
= BTRFS_ORDERED_NOCOW
;
1101 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1102 num_bytes
, num_bytes
, type
);
1105 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1106 cur_offset
, cur_offset
+ num_bytes
- 1,
1107 locked_page
, 1, 1, 1, 0, 0, 0);
1108 cur_offset
= extent_end
;
1109 if (cur_offset
> end
)
1112 btrfs_release_path(root
, path
);
1114 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1115 cow_start
= cur_offset
;
1116 if (cow_start
!= (u64
)-1) {
1117 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1118 page_started
, nr_written
, 1);
1122 ret
= btrfs_end_transaction(trans
, root
);
1124 btrfs_free_path(path
);
1129 * extent_io.c call back to do delayed allocation processing
1131 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1132 u64 start
, u64 end
, int *page_started
,
1133 unsigned long *nr_written
)
1137 if (btrfs_test_flag(inode
, NODATACOW
))
1138 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1139 page_started
, 1, nr_written
);
1140 else if (btrfs_test_flag(inode
, PREALLOC
))
1141 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1142 page_started
, 0, nr_written
);
1144 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1145 page_started
, nr_written
);
1151 * extent_io.c set_bit_hook, used to track delayed allocation
1152 * bytes in this file, and to maintain the list of inodes that
1153 * have pending delalloc work to be done.
1155 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1156 unsigned long old
, unsigned long bits
)
1159 * set_bit and clear bit hooks normally require _irqsave/restore
1160 * but in this case, we are only testeing for the DELALLOC
1161 * bit, which is only set or cleared with irqs on
1163 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1164 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1165 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1166 spin_lock(&root
->fs_info
->delalloc_lock
);
1167 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1168 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1169 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1170 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1171 &root
->fs_info
->delalloc_inodes
);
1173 spin_unlock(&root
->fs_info
->delalloc_lock
);
1179 * extent_io.c clear_bit_hook, see set_bit_hook for why
1181 static int btrfs_clear_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1182 unsigned long old
, unsigned long bits
)
1185 * set_bit and clear bit hooks normally require _irqsave/restore
1186 * but in this case, we are only testeing for the DELALLOC
1187 * bit, which is only set or cleared with irqs on
1189 if ((old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1190 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1192 spin_lock(&root
->fs_info
->delalloc_lock
);
1193 if (end
- start
+ 1 > root
->fs_info
->delalloc_bytes
) {
1194 printk(KERN_INFO
"btrfs warning: delalloc account "
1196 (unsigned long long)end
- start
+ 1,
1197 (unsigned long long)
1198 root
->fs_info
->delalloc_bytes
);
1199 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1200 root
->fs_info
->delalloc_bytes
= 0;
1201 BTRFS_I(inode
)->delalloc_bytes
= 0;
1203 btrfs_delalloc_free_space(root
, inode
,
1205 root
->fs_info
->delalloc_bytes
-= end
- start
+ 1;
1206 BTRFS_I(inode
)->delalloc_bytes
-= end
- start
+ 1;
1208 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1209 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1210 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1212 spin_unlock(&root
->fs_info
->delalloc_lock
);
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1221 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1222 size_t size
, struct bio
*bio
,
1223 unsigned long bio_flags
)
1225 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1226 struct btrfs_mapping_tree
*map_tree
;
1227 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1232 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1235 length
= bio
->bi_size
;
1236 map_tree
= &root
->fs_info
->mapping_tree
;
1237 map_length
= length
;
1238 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1239 &map_length
, NULL
, 0);
1241 if (map_length
< length
+ size
)
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1254 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1255 struct bio
*bio
, int mirror_num
,
1256 unsigned long bio_flags
)
1258 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1261 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1274 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1275 int mirror_num
, unsigned long bio_flags
)
1277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1278 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
1285 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1286 int mirror_num
, unsigned long bio_flags
)
1288 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1292 skip_sum
= btrfs_test_flag(inode
, NODATASUM
);
1294 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1297 if (!(rw
& (1 << BIO_RW
))) {
1298 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1299 return btrfs_submit_compressed_read(inode
, bio
,
1300 mirror_num
, bio_flags
);
1301 } else if (!skip_sum
)
1302 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1304 } else if (!skip_sum
) {
1305 /* csum items have already been cloned */
1306 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1310 inode
, rw
, bio
, mirror_num
,
1311 bio_flags
, __btrfs_submit_bio_start
,
1312 __btrfs_submit_bio_done
);
1316 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1323 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1324 struct inode
*inode
, u64 file_offset
,
1325 struct list_head
*list
)
1327 struct btrfs_ordered_sum
*sum
;
1329 btrfs_set_trans_block_group(trans
, inode
);
1331 list_for_each_entry(sum
, list
, list
) {
1332 btrfs_csum_file_blocks(trans
,
1333 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1338 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1340 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1342 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup
{
1349 struct btrfs_work work
;
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1354 struct btrfs_writepage_fixup
*fixup
;
1355 struct btrfs_ordered_extent
*ordered
;
1357 struct inode
*inode
;
1361 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1365 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1366 ClearPageChecked(page
);
1370 inode
= page
->mapping
->host
;
1371 page_start
= page_offset(page
);
1372 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1374 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1378 EXTENT_ORDERED
, 0)) {
1382 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1384 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1385 page_end
, GFP_NOFS
);
1387 btrfs_start_ordered_extent(inode
, ordered
, 1);
1391 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1392 ClearPageChecked(page
);
1394 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1397 page_cache_release(page
);
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1406 * In our case any range that doesn't have the ORDERED bit set
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1411 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1413 struct inode
*inode
= page
->mapping
->host
;
1414 struct btrfs_writepage_fixup
*fixup
;
1415 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1418 ret
= test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1423 if (PageChecked(page
))
1426 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1430 SetPageChecked(page
);
1431 page_cache_get(page
);
1432 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1434 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1439 struct inode
*inode
, u64 file_pos
,
1440 u64 disk_bytenr
, u64 disk_num_bytes
,
1441 u64 num_bytes
, u64 ram_bytes
,
1442 u8 compression
, u8 encryption
,
1443 u16 other_encoding
, int extent_type
)
1445 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1446 struct btrfs_file_extent_item
*fi
;
1447 struct btrfs_path
*path
;
1448 struct extent_buffer
*leaf
;
1449 struct btrfs_key ins
;
1453 path
= btrfs_alloc_path();
1456 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1457 file_pos
+ num_bytes
, file_pos
, &hint
);
1460 ins
.objectid
= inode
->i_ino
;
1461 ins
.offset
= file_pos
;
1462 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1463 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1465 leaf
= path
->nodes
[0];
1466 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1467 struct btrfs_file_extent_item
);
1468 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1469 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1470 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1471 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1472 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1473 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1474 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1475 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1476 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1477 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1478 btrfs_mark_buffer_dirty(leaf
);
1480 inode_add_bytes(inode
, num_bytes
);
1481 btrfs_drop_extent_cache(inode
, file_pos
, file_pos
+ num_bytes
- 1, 0);
1483 ins
.objectid
= disk_bytenr
;
1484 ins
.offset
= disk_num_bytes
;
1485 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1486 ret
= btrfs_alloc_reserved_extent(trans
, root
, leaf
->start
,
1487 root
->root_key
.objectid
,
1488 trans
->transid
, inode
->i_ino
, &ins
);
1491 btrfs_free_path(path
);
1495 /* as ordered data IO finishes, this gets called so we can finish
1496 * an ordered extent if the range of bytes in the file it covers are
1499 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1501 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1502 struct btrfs_trans_handle
*trans
;
1503 struct btrfs_ordered_extent
*ordered_extent
;
1504 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1508 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1512 trans
= btrfs_join_transaction(root
, 1);
1514 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1515 BUG_ON(!ordered_extent
);
1516 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1519 lock_extent(io_tree
, ordered_extent
->file_offset
,
1520 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1523 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1525 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1527 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1528 ordered_extent
->file_offset
,
1529 ordered_extent
->file_offset
+
1530 ordered_extent
->len
);
1533 ret
= insert_reserved_file_extent(trans
, inode
,
1534 ordered_extent
->file_offset
,
1535 ordered_extent
->start
,
1536 ordered_extent
->disk_len
,
1537 ordered_extent
->len
,
1538 ordered_extent
->len
,
1540 BTRFS_FILE_EXTENT_REG
);
1543 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1544 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1547 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1548 &ordered_extent
->list
);
1550 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1551 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1552 btrfs_update_inode(trans
, root
, inode
);
1553 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1554 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1557 btrfs_put_ordered_extent(ordered_extent
);
1558 /* once for the tree */
1559 btrfs_put_ordered_extent(ordered_extent
);
1561 btrfs_end_transaction(trans
, root
);
1565 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1566 struct extent_state
*state
, int uptodate
)
1568 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1572 * When IO fails, either with EIO or csum verification fails, we
1573 * try other mirrors that might have a good copy of the data. This
1574 * io_failure_record is used to record state as we go through all the
1575 * mirrors. If another mirror has good data, the page is set up to date
1576 * and things continue. If a good mirror can't be found, the original
1577 * bio end_io callback is called to indicate things have failed.
1579 struct io_failure_record
{
1584 unsigned long bio_flags
;
1588 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1589 struct page
*page
, u64 start
, u64 end
,
1590 struct extent_state
*state
)
1592 struct io_failure_record
*failrec
= NULL
;
1594 struct extent_map
*em
;
1595 struct inode
*inode
= page
->mapping
->host
;
1596 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1597 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1604 ret
= get_state_private(failure_tree
, start
, &private);
1606 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1609 failrec
->start
= start
;
1610 failrec
->len
= end
- start
+ 1;
1611 failrec
->last_mirror
= 0;
1612 failrec
->bio_flags
= 0;
1614 spin_lock(&em_tree
->lock
);
1615 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1616 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1617 free_extent_map(em
);
1620 spin_unlock(&em_tree
->lock
);
1622 if (!em
|| IS_ERR(em
)) {
1626 logical
= start
- em
->start
;
1627 logical
= em
->block_start
+ logical
;
1628 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1629 logical
= em
->block_start
;
1630 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1632 failrec
->logical
= logical
;
1633 free_extent_map(em
);
1634 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1635 EXTENT_DIRTY
, GFP_NOFS
);
1636 set_state_private(failure_tree
, start
,
1637 (u64
)(unsigned long)failrec
);
1639 failrec
= (struct io_failure_record
*)(unsigned long)private;
1641 num_copies
= btrfs_num_copies(
1642 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1643 failrec
->logical
, failrec
->len
);
1644 failrec
->last_mirror
++;
1646 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1647 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1650 if (state
&& state
->start
!= failrec
->start
)
1652 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1654 if (!state
|| failrec
->last_mirror
> num_copies
) {
1655 set_state_private(failure_tree
, failrec
->start
, 0);
1656 clear_extent_bits(failure_tree
, failrec
->start
,
1657 failrec
->start
+ failrec
->len
- 1,
1658 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1662 bio
= bio_alloc(GFP_NOFS
, 1);
1663 bio
->bi_private
= state
;
1664 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1665 bio
->bi_sector
= failrec
->logical
>> 9;
1666 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1669 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1670 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1675 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1676 failrec
->last_mirror
,
1677 failrec
->bio_flags
);
1682 * each time an IO finishes, we do a fast check in the IO failure tree
1683 * to see if we need to process or clean up an io_failure_record
1685 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1688 u64 private_failure
;
1689 struct io_failure_record
*failure
;
1693 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1694 (u64
)-1, 1, EXTENT_DIRTY
)) {
1695 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1696 start
, &private_failure
);
1698 failure
= (struct io_failure_record
*)(unsigned long)
1700 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1702 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1704 failure
->start
+ failure
->len
- 1,
1705 EXTENT_DIRTY
| EXTENT_LOCKED
,
1714 * when reads are done, we need to check csums to verify the data is correct
1715 * if there's a match, we allow the bio to finish. If not, we go through
1716 * the io_failure_record routines to find good copies
1718 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1719 struct extent_state
*state
)
1721 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1722 struct inode
*inode
= page
->mapping
->host
;
1723 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1725 u64
private = ~(u32
)0;
1727 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1730 if (PageChecked(page
)) {
1731 ClearPageChecked(page
);
1734 if (btrfs_test_flag(inode
, NODATASUM
))
1737 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1738 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1)) {
1739 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1744 if (state
&& state
->start
== start
) {
1745 private = state
->private;
1748 ret
= get_state_private(io_tree
, start
, &private);
1750 kaddr
= kmap_atomic(page
, KM_USER0
);
1754 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1755 btrfs_csum_final(csum
, (char *)&csum
);
1756 if (csum
!= private)
1759 kunmap_atomic(kaddr
, KM_USER0
);
1761 /* if the io failure tree for this inode is non-empty,
1762 * check to see if we've recovered from a failed IO
1764 btrfs_clean_io_failures(inode
, start
);
1768 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1769 "private %llu\n", page
->mapping
->host
->i_ino
,
1770 (unsigned long long)start
, csum
,
1771 (unsigned long long)private);
1772 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1773 flush_dcache_page(page
);
1774 kunmap_atomic(kaddr
, KM_USER0
);
1781 * This creates an orphan entry for the given inode in case something goes
1782 * wrong in the middle of an unlink/truncate.
1784 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1786 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1789 spin_lock(&root
->list_lock
);
1791 /* already on the orphan list, we're good */
1792 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1793 spin_unlock(&root
->list_lock
);
1797 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1799 spin_unlock(&root
->list_lock
);
1802 * insert an orphan item to track this unlinked/truncated file
1804 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
1810 * We have done the truncate/delete so we can go ahead and remove the orphan
1811 * item for this particular inode.
1813 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1815 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1818 spin_lock(&root
->list_lock
);
1820 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1821 spin_unlock(&root
->list_lock
);
1825 list_del_init(&BTRFS_I(inode
)->i_orphan
);
1827 spin_unlock(&root
->list_lock
);
1831 spin_unlock(&root
->list_lock
);
1833 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
1839 * this cleans up any orphans that may be left on the list from the last use
1842 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
1844 struct btrfs_path
*path
;
1845 struct extent_buffer
*leaf
;
1846 struct btrfs_item
*item
;
1847 struct btrfs_key key
, found_key
;
1848 struct btrfs_trans_handle
*trans
;
1849 struct inode
*inode
;
1850 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
1852 path
= btrfs_alloc_path();
1857 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1858 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1859 key
.offset
= (u64
)-1;
1863 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1865 printk(KERN_ERR
"Error searching slot for orphan: %d"
1871 * if ret == 0 means we found what we were searching for, which
1872 * is weird, but possible, so only screw with path if we didnt
1873 * find the key and see if we have stuff that matches
1876 if (path
->slots
[0] == 0)
1881 /* pull out the item */
1882 leaf
= path
->nodes
[0];
1883 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
1884 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1886 /* make sure the item matches what we want */
1887 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
1889 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
1892 /* release the path since we're done with it */
1893 btrfs_release_path(root
, path
);
1896 * this is where we are basically btrfs_lookup, without the
1897 * crossing root thing. we store the inode number in the
1898 * offset of the orphan item.
1900 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
1901 found_key
.offset
, root
);
1905 if (inode
->i_state
& I_NEW
) {
1906 BTRFS_I(inode
)->root
= root
;
1908 /* have to set the location manually */
1909 BTRFS_I(inode
)->location
.objectid
= inode
->i_ino
;
1910 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
1911 BTRFS_I(inode
)->location
.offset
= 0;
1913 btrfs_read_locked_inode(inode
);
1914 unlock_new_inode(inode
);
1918 * add this inode to the orphan list so btrfs_orphan_del does
1919 * the proper thing when we hit it
1921 spin_lock(&root
->list_lock
);
1922 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1923 spin_unlock(&root
->list_lock
);
1926 * if this is a bad inode, means we actually succeeded in
1927 * removing the inode, but not the orphan record, which means
1928 * we need to manually delete the orphan since iput will just
1929 * do a destroy_inode
1931 if (is_bad_inode(inode
)) {
1932 trans
= btrfs_start_transaction(root
, 1);
1933 btrfs_orphan_del(trans
, inode
);
1934 btrfs_end_transaction(trans
, root
);
1939 /* if we have links, this was a truncate, lets do that */
1940 if (inode
->i_nlink
) {
1942 btrfs_truncate(inode
);
1947 /* this will do delete_inode and everything for us */
1952 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
1954 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
1956 btrfs_free_path(path
);
1960 * read an inode from the btree into the in-memory inode
1962 void btrfs_read_locked_inode(struct inode
*inode
)
1964 struct btrfs_path
*path
;
1965 struct extent_buffer
*leaf
;
1966 struct btrfs_inode_item
*inode_item
;
1967 struct btrfs_timespec
*tspec
;
1968 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1969 struct btrfs_key location
;
1970 u64 alloc_group_block
;
1974 path
= btrfs_alloc_path();
1976 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
1978 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
1982 leaf
= path
->nodes
[0];
1983 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1984 struct btrfs_inode_item
);
1986 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
1987 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
1988 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
1989 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
1990 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
1992 tspec
= btrfs_inode_atime(inode_item
);
1993 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
1994 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
1996 tspec
= btrfs_inode_mtime(inode_item
);
1997 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
1998 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2000 tspec
= btrfs_inode_ctime(inode_item
);
2001 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2002 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2004 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2005 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2006 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2007 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2009 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2011 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2012 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2014 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2016 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2017 alloc_group_block
, 0);
2018 btrfs_free_path(path
);
2021 switch (inode
->i_mode
& S_IFMT
) {
2023 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2024 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2025 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2026 inode
->i_fop
= &btrfs_file_operations
;
2027 inode
->i_op
= &btrfs_file_inode_operations
;
2030 inode
->i_fop
= &btrfs_dir_file_operations
;
2031 if (root
== root
->fs_info
->tree_root
)
2032 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2034 inode
->i_op
= &btrfs_dir_inode_operations
;
2037 inode
->i_op
= &btrfs_symlink_inode_operations
;
2038 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2039 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2042 inode
->i_op
= &btrfs_special_inode_operations
;
2043 init_special_inode(inode
, inode
->i_mode
, rdev
);
2049 btrfs_free_path(path
);
2050 make_bad_inode(inode
);
2054 * given a leaf and an inode, copy the inode fields into the leaf
2056 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2057 struct extent_buffer
*leaf
,
2058 struct btrfs_inode_item
*item
,
2059 struct inode
*inode
)
2061 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2062 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2063 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2064 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2065 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2067 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2068 inode
->i_atime
.tv_sec
);
2069 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2070 inode
->i_atime
.tv_nsec
);
2072 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2073 inode
->i_mtime
.tv_sec
);
2074 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2075 inode
->i_mtime
.tv_nsec
);
2077 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2078 inode
->i_ctime
.tv_sec
);
2079 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2080 inode
->i_ctime
.tv_nsec
);
2082 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2083 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2084 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2085 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2086 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2087 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2088 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2092 * copy everything in the in-memory inode into the btree.
2094 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2095 struct btrfs_root
*root
, struct inode
*inode
)
2097 struct btrfs_inode_item
*inode_item
;
2098 struct btrfs_path
*path
;
2099 struct extent_buffer
*leaf
;
2102 path
= btrfs_alloc_path();
2104 ret
= btrfs_lookup_inode(trans
, root
, path
,
2105 &BTRFS_I(inode
)->location
, 1);
2112 btrfs_unlock_up_safe(path
, 1);
2113 leaf
= path
->nodes
[0];
2114 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2115 struct btrfs_inode_item
);
2117 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2118 btrfs_mark_buffer_dirty(leaf
);
2119 btrfs_set_inode_last_trans(trans
, inode
);
2122 btrfs_free_path(path
);
2128 * unlink helper that gets used here in inode.c and in the tree logging
2129 * recovery code. It remove a link in a directory with a given name, and
2130 * also drops the back refs in the inode to the directory
2132 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2133 struct btrfs_root
*root
,
2134 struct inode
*dir
, struct inode
*inode
,
2135 const char *name
, int name_len
)
2137 struct btrfs_path
*path
;
2139 struct extent_buffer
*leaf
;
2140 struct btrfs_dir_item
*di
;
2141 struct btrfs_key key
;
2144 path
= btrfs_alloc_path();
2150 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2151 name
, name_len
, -1);
2160 leaf
= path
->nodes
[0];
2161 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2162 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2165 btrfs_release_path(root
, path
);
2167 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2169 dir
->i_ino
, &index
);
2171 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2172 "inode %lu parent %lu\n", name_len
, name
,
2173 inode
->i_ino
, dir
->i_ino
);
2177 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2178 index
, name
, name_len
, -1);
2187 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2188 btrfs_release_path(root
, path
);
2190 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2192 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2194 BTRFS_I(dir
)->log_dirty_trans
= trans
->transid
;
2196 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2200 btrfs_free_path(path
);
2204 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2205 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2206 btrfs_update_inode(trans
, root
, dir
);
2207 btrfs_drop_nlink(inode
);
2208 ret
= btrfs_update_inode(trans
, root
, inode
);
2209 dir
->i_sb
->s_dirt
= 1;
2214 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2216 struct btrfs_root
*root
;
2217 struct btrfs_trans_handle
*trans
;
2218 struct inode
*inode
= dentry
->d_inode
;
2220 unsigned long nr
= 0;
2222 root
= BTRFS_I(dir
)->root
;
2224 trans
= btrfs_start_transaction(root
, 1);
2226 btrfs_set_trans_block_group(trans
, dir
);
2227 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2228 dentry
->d_name
.name
, dentry
->d_name
.len
);
2230 if (inode
->i_nlink
== 0)
2231 ret
= btrfs_orphan_add(trans
, inode
);
2233 nr
= trans
->blocks_used
;
2235 btrfs_end_transaction_throttle(trans
, root
);
2236 btrfs_btree_balance_dirty(root
, nr
);
2240 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2242 struct inode
*inode
= dentry
->d_inode
;
2245 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2246 struct btrfs_trans_handle
*trans
;
2247 unsigned long nr
= 0;
2250 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2251 * the root of a subvolume or snapshot
2253 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2254 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
2258 trans
= btrfs_start_transaction(root
, 1);
2259 btrfs_set_trans_block_group(trans
, dir
);
2261 err
= btrfs_orphan_add(trans
, inode
);
2265 /* now the directory is empty */
2266 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2267 dentry
->d_name
.name
, dentry
->d_name
.len
);
2269 btrfs_i_size_write(inode
, 0);
2272 nr
= trans
->blocks_used
;
2273 ret
= btrfs_end_transaction_throttle(trans
, root
);
2274 btrfs_btree_balance_dirty(root
, nr
);
2283 * when truncating bytes in a file, it is possible to avoid reading
2284 * the leaves that contain only checksum items. This can be the
2285 * majority of the IO required to delete a large file, but it must
2286 * be done carefully.
2288 * The keys in the level just above the leaves are checked to make sure
2289 * the lowest key in a given leaf is a csum key, and starts at an offset
2290 * after the new size.
2292 * Then the key for the next leaf is checked to make sure it also has
2293 * a checksum item for the same file. If it does, we know our target leaf
2294 * contains only checksum items, and it can be safely freed without reading
2297 * This is just an optimization targeted at large files. It may do
2298 * nothing. It will return 0 unless things went badly.
2300 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2301 struct btrfs_root
*root
,
2302 struct btrfs_path
*path
,
2303 struct inode
*inode
, u64 new_size
)
2305 struct btrfs_key key
;
2308 struct btrfs_key found_key
;
2309 struct btrfs_key other_key
;
2310 struct btrfs_leaf_ref
*ref
;
2314 path
->lowest_level
= 1;
2315 key
.objectid
= inode
->i_ino
;
2316 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2317 key
.offset
= new_size
;
2319 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2323 if (path
->nodes
[1] == NULL
) {
2328 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2329 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2334 if (path
->slots
[1] >= nritems
)
2337 /* did we find a key greater than anything we want to delete? */
2338 if (found_key
.objectid
> inode
->i_ino
||
2339 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2342 /* we check the next key in the node to make sure the leave contains
2343 * only checksum items. This comparison doesn't work if our
2344 * leaf is the last one in the node
2346 if (path
->slots
[1] + 1 >= nritems
) {
2348 /* search forward from the last key in the node, this
2349 * will bring us into the next node in the tree
2351 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2353 /* unlikely, but we inc below, so check to be safe */
2354 if (found_key
.offset
== (u64
)-1)
2357 /* search_forward needs a path with locks held, do the
2358 * search again for the original key. It is possible
2359 * this will race with a balance and return a path that
2360 * we could modify, but this drop is just an optimization
2361 * and is allowed to miss some leaves.
2363 btrfs_release_path(root
, path
);
2366 /* setup a max key for search_forward */
2367 other_key
.offset
= (u64
)-1;
2368 other_key
.type
= key
.type
;
2369 other_key
.objectid
= key
.objectid
;
2371 path
->keep_locks
= 1;
2372 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2374 path
->keep_locks
= 0;
2375 if (ret
|| found_key
.objectid
!= key
.objectid
||
2376 found_key
.type
!= key
.type
) {
2381 key
.offset
= found_key
.offset
;
2382 btrfs_release_path(root
, path
);
2387 /* we know there's one more slot after us in the tree,
2388 * read that key so we can verify it is also a checksum item
2390 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2392 if (found_key
.objectid
< inode
->i_ino
)
2395 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2399 * if the key for the next leaf isn't a csum key from this objectid,
2400 * we can't be sure there aren't good items inside this leaf.
2403 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2406 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2407 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2409 * it is safe to delete this leaf, it contains only
2410 * csum items from this inode at an offset >= new_size
2412 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2415 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2416 ref
= btrfs_alloc_leaf_ref(root
, 0);
2418 ref
->root_gen
= root
->root_key
.offset
;
2419 ref
->bytenr
= leaf_start
;
2421 ref
->generation
= leaf_gen
;
2424 btrfs_sort_leaf_ref(ref
);
2426 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2428 btrfs_free_leaf_ref(root
, ref
);
2434 btrfs_release_path(root
, path
);
2436 if (other_key
.objectid
== inode
->i_ino
&&
2437 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2438 key
.offset
= other_key
.offset
;
2444 /* fixup any changes we've made to the path */
2445 path
->lowest_level
= 0;
2446 path
->keep_locks
= 0;
2447 btrfs_release_path(root
, path
);
2454 * this can truncate away extent items, csum items and directory items.
2455 * It starts at a high offset and removes keys until it can't find
2456 * any higher than new_size
2458 * csum items that cross the new i_size are truncated to the new size
2461 * min_type is the minimum key type to truncate down to. If set to 0, this
2462 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2464 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2465 struct btrfs_root
*root
,
2466 struct inode
*inode
,
2467 u64 new_size
, u32 min_type
)
2470 struct btrfs_path
*path
;
2471 struct btrfs_key key
;
2472 struct btrfs_key found_key
;
2473 u32 found_type
= (u8
)-1;
2474 struct extent_buffer
*leaf
;
2475 struct btrfs_file_extent_item
*fi
;
2476 u64 extent_start
= 0;
2477 u64 extent_num_bytes
= 0;
2483 int pending_del_nr
= 0;
2484 int pending_del_slot
= 0;
2485 int extent_type
= -1;
2487 u64 mask
= root
->sectorsize
- 1;
2490 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2491 path
= btrfs_alloc_path();
2495 /* FIXME, add redo link to tree so we don't leak on crash */
2496 key
.objectid
= inode
->i_ino
;
2497 key
.offset
= (u64
)-1;
2501 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2506 /* there are no items in the tree for us to truncate, we're
2509 if (path
->slots
[0] == 0) {
2518 leaf
= path
->nodes
[0];
2519 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2520 found_type
= btrfs_key_type(&found_key
);
2523 if (found_key
.objectid
!= inode
->i_ino
)
2526 if (found_type
< min_type
)
2529 item_end
= found_key
.offset
;
2530 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2531 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2532 struct btrfs_file_extent_item
);
2533 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2534 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2535 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2536 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2538 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2540 btrfs_file_extent_num_bytes(leaf
, fi
);
2541 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2542 item_end
+= btrfs_file_extent_inline_len(leaf
,
2547 if (item_end
< new_size
) {
2548 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2549 found_type
= BTRFS_INODE_ITEM_KEY
;
2550 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2551 found_type
= BTRFS_EXTENT_DATA_KEY
;
2552 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2553 found_type
= BTRFS_XATTR_ITEM_KEY
;
2554 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2555 found_type
= BTRFS_INODE_REF_KEY
;
2556 else if (found_type
)
2560 btrfs_set_key_type(&key
, found_type
);
2563 if (found_key
.offset
>= new_size
)
2569 /* FIXME, shrink the extent if the ref count is only 1 */
2570 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2573 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2575 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2576 if (!del_item
&& !encoding
) {
2577 u64 orig_num_bytes
=
2578 btrfs_file_extent_num_bytes(leaf
, fi
);
2579 extent_num_bytes
= new_size
-
2580 found_key
.offset
+ root
->sectorsize
- 1;
2581 extent_num_bytes
= extent_num_bytes
&
2582 ~((u64
)root
->sectorsize
- 1);
2583 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2585 num_dec
= (orig_num_bytes
-
2587 if (root
->ref_cows
&& extent_start
!= 0)
2588 inode_sub_bytes(inode
, num_dec
);
2589 btrfs_mark_buffer_dirty(leaf
);
2592 btrfs_file_extent_disk_num_bytes(leaf
,
2594 /* FIXME blocksize != 4096 */
2595 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2596 if (extent_start
!= 0) {
2599 inode_sub_bytes(inode
, num_dec
);
2601 root_gen
= btrfs_header_generation(leaf
);
2602 root_owner
= btrfs_header_owner(leaf
);
2604 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2606 * we can't truncate inline items that have had
2610 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2611 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2612 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2613 u32 size
= new_size
- found_key
.offset
;
2615 if (root
->ref_cows
) {
2616 inode_sub_bytes(inode
, item_end
+ 1 -
2620 btrfs_file_extent_calc_inline_size(size
);
2621 ret
= btrfs_truncate_item(trans
, root
, path
,
2624 } else if (root
->ref_cows
) {
2625 inode_sub_bytes(inode
, item_end
+ 1 -
2631 if (!pending_del_nr
) {
2632 /* no pending yet, add ourselves */
2633 pending_del_slot
= path
->slots
[0];
2635 } else if (pending_del_nr
&&
2636 path
->slots
[0] + 1 == pending_del_slot
) {
2637 /* hop on the pending chunk */
2639 pending_del_slot
= path
->slots
[0];
2647 ret
= btrfs_free_extent(trans
, root
, extent_start
,
2649 leaf
->start
, root_owner
,
2650 root_gen
, inode
->i_ino
, 0);
2654 if (path
->slots
[0] == 0) {
2657 btrfs_release_path(root
, path
);
2658 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2664 if (pending_del_nr
&&
2665 path
->slots
[0] + 1 != pending_del_slot
) {
2666 struct btrfs_key debug
;
2668 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
2670 ret
= btrfs_del_items(trans
, root
, path
,
2675 btrfs_release_path(root
, path
);
2676 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2683 if (pending_del_nr
) {
2684 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
2687 btrfs_free_path(path
);
2688 inode
->i_sb
->s_dirt
= 1;
2693 * taken from block_truncate_page, but does cow as it zeros out
2694 * any bytes left in the last page in the file.
2696 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
2698 struct inode
*inode
= mapping
->host
;
2699 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2700 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2701 struct btrfs_ordered_extent
*ordered
;
2703 u32 blocksize
= root
->sectorsize
;
2704 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2705 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2711 if ((offset
& (blocksize
- 1)) == 0)
2716 page
= grab_cache_page(mapping
, index
);
2720 page_start
= page_offset(page
);
2721 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2723 if (!PageUptodate(page
)) {
2724 ret
= btrfs_readpage(NULL
, page
);
2726 if (page
->mapping
!= mapping
) {
2728 page_cache_release(page
);
2731 if (!PageUptodate(page
)) {
2736 wait_on_page_writeback(page
);
2738 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2739 set_page_extent_mapped(page
);
2741 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
2743 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2745 page_cache_release(page
);
2746 btrfs_start_ordered_extent(inode
, ordered
, 1);
2747 btrfs_put_ordered_extent(ordered
);
2751 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
2753 if (offset
!= PAGE_CACHE_SIZE
) {
2755 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2756 flush_dcache_page(page
);
2759 ClearPageChecked(page
);
2760 set_page_dirty(page
);
2761 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2765 page_cache_release(page
);
2770 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
2772 struct btrfs_trans_handle
*trans
;
2773 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2774 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2775 struct extent_map
*em
;
2776 u64 mask
= root
->sectorsize
- 1;
2777 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
2778 u64 block_end
= (size
+ mask
) & ~mask
;
2784 if (size
<= hole_start
)
2787 err
= btrfs_check_metadata_free_space(root
);
2791 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
2794 struct btrfs_ordered_extent
*ordered
;
2795 btrfs_wait_ordered_range(inode
, hole_start
,
2796 block_end
- hole_start
);
2797 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2798 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
2801 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2802 btrfs_put_ordered_extent(ordered
);
2805 trans
= btrfs_start_transaction(root
, 1);
2806 btrfs_set_trans_block_group(trans
, inode
);
2808 cur_offset
= hole_start
;
2810 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2811 block_end
- cur_offset
, 0);
2812 BUG_ON(IS_ERR(em
) || !em
);
2813 last_byte
= min(extent_map_end(em
), block_end
);
2814 last_byte
= (last_byte
+ mask
) & ~mask
;
2815 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2817 hole_size
= last_byte
- cur_offset
;
2818 err
= btrfs_drop_extents(trans
, root
, inode
,
2820 cur_offset
+ hole_size
,
2821 cur_offset
, &hint_byte
);
2824 err
= btrfs_insert_file_extent(trans
, root
,
2825 inode
->i_ino
, cur_offset
, 0,
2826 0, hole_size
, 0, hole_size
,
2828 btrfs_drop_extent_cache(inode
, hole_start
,
2831 free_extent_map(em
);
2832 cur_offset
= last_byte
;
2833 if (err
|| cur_offset
>= block_end
)
2837 btrfs_end_transaction(trans
, root
);
2838 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2842 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2844 struct inode
*inode
= dentry
->d_inode
;
2847 err
= inode_change_ok(inode
, attr
);
2851 if (S_ISREG(inode
->i_mode
) &&
2852 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
> inode
->i_size
) {
2853 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
2858 err
= inode_setattr(inode
, attr
);
2860 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
2861 err
= btrfs_acl_chmod(inode
);
2865 void btrfs_delete_inode(struct inode
*inode
)
2867 struct btrfs_trans_handle
*trans
;
2868 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2872 truncate_inode_pages(&inode
->i_data
, 0);
2873 if (is_bad_inode(inode
)) {
2874 btrfs_orphan_del(NULL
, inode
);
2877 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
2879 btrfs_i_size_write(inode
, 0);
2880 trans
= btrfs_join_transaction(root
, 1);
2882 btrfs_set_trans_block_group(trans
, inode
);
2883 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
2885 btrfs_orphan_del(NULL
, inode
);
2886 goto no_delete_lock
;
2889 btrfs_orphan_del(trans
, inode
);
2891 nr
= trans
->blocks_used
;
2894 btrfs_end_transaction(trans
, root
);
2895 btrfs_btree_balance_dirty(root
, nr
);
2899 nr
= trans
->blocks_used
;
2900 btrfs_end_transaction(trans
, root
);
2901 btrfs_btree_balance_dirty(root
, nr
);
2907 * this returns the key found in the dir entry in the location pointer.
2908 * If no dir entries were found, location->objectid is 0.
2910 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
2911 struct btrfs_key
*location
)
2913 const char *name
= dentry
->d_name
.name
;
2914 int namelen
= dentry
->d_name
.len
;
2915 struct btrfs_dir_item
*di
;
2916 struct btrfs_path
*path
;
2917 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2920 path
= btrfs_alloc_path();
2923 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
2928 if (!di
|| IS_ERR(di
))
2931 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
2933 btrfs_free_path(path
);
2936 location
->objectid
= 0;
2941 * when we hit a tree root in a directory, the btrfs part of the inode
2942 * needs to be changed to reflect the root directory of the tree root. This
2943 * is kind of like crossing a mount point.
2945 static int fixup_tree_root_location(struct btrfs_root
*root
,
2946 struct btrfs_key
*location
,
2947 struct btrfs_root
**sub_root
,
2948 struct dentry
*dentry
)
2950 struct btrfs_root_item
*ri
;
2952 if (btrfs_key_type(location
) != BTRFS_ROOT_ITEM_KEY
)
2954 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
2957 *sub_root
= btrfs_read_fs_root(root
->fs_info
, location
,
2958 dentry
->d_name
.name
,
2959 dentry
->d_name
.len
);
2960 if (IS_ERR(*sub_root
))
2961 return PTR_ERR(*sub_root
);
2963 ri
= &(*sub_root
)->root_item
;
2964 location
->objectid
= btrfs_root_dirid(ri
);
2965 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
2966 location
->offset
= 0;
2971 static noinline
void init_btrfs_i(struct inode
*inode
)
2973 struct btrfs_inode
*bi
= BTRFS_I(inode
);
2976 bi
->i_default_acl
= NULL
;
2981 bi
->logged_trans
= 0;
2982 bi
->delalloc_bytes
= 0;
2983 bi
->reserved_bytes
= 0;
2984 bi
->disk_i_size
= 0;
2986 bi
->index_cnt
= (u64
)-1;
2987 bi
->log_dirty_trans
= 0;
2988 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
2989 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
2990 inode
->i_mapping
, GFP_NOFS
);
2991 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
2992 inode
->i_mapping
, GFP_NOFS
);
2993 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
2994 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
2995 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
2996 mutex_init(&BTRFS_I(inode
)->log_mutex
);
2999 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3001 struct btrfs_iget_args
*args
= p
;
3002 inode
->i_ino
= args
->ino
;
3003 init_btrfs_i(inode
);
3004 BTRFS_I(inode
)->root
= args
->root
;
3005 btrfs_set_inode_space_info(args
->root
, inode
);
3009 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3011 struct btrfs_iget_args
*args
= opaque
;
3012 return args
->ino
== inode
->i_ino
&&
3013 args
->root
== BTRFS_I(inode
)->root
;
3016 struct inode
*btrfs_ilookup(struct super_block
*s
, u64 objectid
,
3017 struct btrfs_root
*root
, int wait
)
3019 struct inode
*inode
;
3020 struct btrfs_iget_args args
;
3021 args
.ino
= objectid
;
3025 inode
= ilookup5(s
, objectid
, btrfs_find_actor
,
3028 inode
= ilookup5_nowait(s
, objectid
, btrfs_find_actor
,
3034 struct inode
*btrfs_iget_locked(struct super_block
*s
, u64 objectid
,
3035 struct btrfs_root
*root
)
3037 struct inode
*inode
;
3038 struct btrfs_iget_args args
;
3039 args
.ino
= objectid
;
3042 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3043 btrfs_init_locked_inode
,
3048 /* Get an inode object given its location and corresponding root.
3049 * Returns in *is_new if the inode was read from disk
3051 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3052 struct btrfs_root
*root
, int *is_new
)
3054 struct inode
*inode
;
3056 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3058 return ERR_PTR(-EACCES
);
3060 if (inode
->i_state
& I_NEW
) {
3061 BTRFS_I(inode
)->root
= root
;
3062 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3063 btrfs_read_locked_inode(inode
);
3064 unlock_new_inode(inode
);
3075 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3077 struct inode
*inode
;
3078 struct btrfs_inode
*bi
= BTRFS_I(dir
);
3079 struct btrfs_root
*root
= bi
->root
;
3080 struct btrfs_root
*sub_root
= root
;
3081 struct btrfs_key location
;
3084 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3085 return ERR_PTR(-ENAMETOOLONG
);
3087 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3090 return ERR_PTR(ret
);
3093 if (location
.objectid
) {
3094 ret
= fixup_tree_root_location(root
, &location
, &sub_root
,
3097 return ERR_PTR(ret
);
3099 return ERR_PTR(-ENOENT
);
3100 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, &new);
3102 return ERR_CAST(inode
);
3107 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3108 struct nameidata
*nd
)
3110 struct inode
*inode
;
3112 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3113 return ERR_PTR(-ENAMETOOLONG
);
3115 inode
= btrfs_lookup_dentry(dir
, dentry
);
3117 return ERR_CAST(inode
);
3119 return d_splice_alias(inode
, dentry
);
3122 static unsigned char btrfs_filetype_table
[] = {
3123 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3126 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3129 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3130 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3131 struct btrfs_item
*item
;
3132 struct btrfs_dir_item
*di
;
3133 struct btrfs_key key
;
3134 struct btrfs_key found_key
;
3135 struct btrfs_path
*path
;
3138 struct extent_buffer
*leaf
;
3141 unsigned char d_type
;
3146 int key_type
= BTRFS_DIR_INDEX_KEY
;
3151 /* FIXME, use a real flag for deciding about the key type */
3152 if (root
->fs_info
->tree_root
== root
)
3153 key_type
= BTRFS_DIR_ITEM_KEY
;
3155 /* special case for "." */
3156 if (filp
->f_pos
== 0) {
3157 over
= filldir(dirent
, ".", 1,
3164 /* special case for .., just use the back ref */
3165 if (filp
->f_pos
== 1) {
3166 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3167 over
= filldir(dirent
, "..", 2,
3173 path
= btrfs_alloc_path();
3176 btrfs_set_key_type(&key
, key_type
);
3177 key
.offset
= filp
->f_pos
;
3178 key
.objectid
= inode
->i_ino
;
3180 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3186 leaf
= path
->nodes
[0];
3187 nritems
= btrfs_header_nritems(leaf
);
3188 slot
= path
->slots
[0];
3189 if (advance
|| slot
>= nritems
) {
3190 if (slot
>= nritems
- 1) {
3191 ret
= btrfs_next_leaf(root
, path
);
3194 leaf
= path
->nodes
[0];
3195 nritems
= btrfs_header_nritems(leaf
);
3196 slot
= path
->slots
[0];
3204 item
= btrfs_item_nr(leaf
, slot
);
3205 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3207 if (found_key
.objectid
!= key
.objectid
)
3209 if (btrfs_key_type(&found_key
) != key_type
)
3211 if (found_key
.offset
< filp
->f_pos
)
3214 filp
->f_pos
= found_key
.offset
;
3216 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3218 di_total
= btrfs_item_size(leaf
, item
);
3220 while (di_cur
< di_total
) {
3221 struct btrfs_key location
;
3223 name_len
= btrfs_dir_name_len(leaf
, di
);
3224 if (name_len
<= sizeof(tmp_name
)) {
3225 name_ptr
= tmp_name
;
3227 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3233 read_extent_buffer(leaf
, name_ptr
,
3234 (unsigned long)(di
+ 1), name_len
);
3236 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3237 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3239 /* is this a reference to our own snapshot? If so
3242 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3243 location
.objectid
== root
->root_key
.objectid
) {
3247 over
= filldir(dirent
, name_ptr
, name_len
,
3248 found_key
.offset
, location
.objectid
,
3252 if (name_ptr
!= tmp_name
)
3257 di_len
= btrfs_dir_name_len(leaf
, di
) +
3258 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3260 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3264 /* Reached end of directory/root. Bump pos past the last item. */
3265 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3266 filp
->f_pos
= INT_LIMIT(off_t
);
3272 btrfs_free_path(path
);
3276 int btrfs_write_inode(struct inode
*inode
, int wait
)
3278 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3279 struct btrfs_trans_handle
*trans
;
3282 if (root
->fs_info
->btree_inode
== inode
)
3286 trans
= btrfs_join_transaction(root
, 1);
3287 btrfs_set_trans_block_group(trans
, inode
);
3288 ret
= btrfs_commit_transaction(trans
, root
);
3294 * This is somewhat expensive, updating the tree every time the
3295 * inode changes. But, it is most likely to find the inode in cache.
3296 * FIXME, needs more benchmarking...there are no reasons other than performance
3297 * to keep or drop this code.
3299 void btrfs_dirty_inode(struct inode
*inode
)
3301 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3302 struct btrfs_trans_handle
*trans
;
3304 trans
= btrfs_join_transaction(root
, 1);
3305 btrfs_set_trans_block_group(trans
, inode
);
3306 btrfs_update_inode(trans
, root
, inode
);
3307 btrfs_end_transaction(trans
, root
);
3311 * find the highest existing sequence number in a directory
3312 * and then set the in-memory index_cnt variable to reflect
3313 * free sequence numbers
3315 static int btrfs_set_inode_index_count(struct inode
*inode
)
3317 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3318 struct btrfs_key key
, found_key
;
3319 struct btrfs_path
*path
;
3320 struct extent_buffer
*leaf
;
3323 key
.objectid
= inode
->i_ino
;
3324 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3325 key
.offset
= (u64
)-1;
3327 path
= btrfs_alloc_path();
3331 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3334 /* FIXME: we should be able to handle this */
3340 * MAGIC NUMBER EXPLANATION:
3341 * since we search a directory based on f_pos we have to start at 2
3342 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3343 * else has to start at 2
3345 if (path
->slots
[0] == 0) {
3346 BTRFS_I(inode
)->index_cnt
= 2;
3352 leaf
= path
->nodes
[0];
3353 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3355 if (found_key
.objectid
!= inode
->i_ino
||
3356 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3357 BTRFS_I(inode
)->index_cnt
= 2;
3361 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3363 btrfs_free_path(path
);
3368 * helper to find a free sequence number in a given directory. This current
3369 * code is very simple, later versions will do smarter things in the btree
3371 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3375 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3376 ret
= btrfs_set_inode_index_count(dir
);
3381 *index
= BTRFS_I(dir
)->index_cnt
;
3382 BTRFS_I(dir
)->index_cnt
++;
3387 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3388 struct btrfs_root
*root
,
3390 const char *name
, int name_len
,
3391 u64 ref_objectid
, u64 objectid
,
3392 u64 alloc_hint
, int mode
, u64
*index
)
3394 struct inode
*inode
;
3395 struct btrfs_inode_item
*inode_item
;
3396 struct btrfs_key
*location
;
3397 struct btrfs_path
*path
;
3398 struct btrfs_inode_ref
*ref
;
3399 struct btrfs_key key
[2];
3405 path
= btrfs_alloc_path();
3408 inode
= new_inode(root
->fs_info
->sb
);
3410 return ERR_PTR(-ENOMEM
);
3413 ret
= btrfs_set_inode_index(dir
, index
);
3415 return ERR_PTR(ret
);
3418 * index_cnt is ignored for everything but a dir,
3419 * btrfs_get_inode_index_count has an explanation for the magic
3422 init_btrfs_i(inode
);
3423 BTRFS_I(inode
)->index_cnt
= 2;
3424 BTRFS_I(inode
)->root
= root
;
3425 BTRFS_I(inode
)->generation
= trans
->transid
;
3426 btrfs_set_inode_space_info(root
, inode
);
3432 BTRFS_I(inode
)->block_group
=
3433 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
3434 if ((mode
& S_IFREG
)) {
3435 if (btrfs_test_opt(root
, NODATASUM
))
3436 btrfs_set_flag(inode
, NODATASUM
);
3437 if (btrfs_test_opt(root
, NODATACOW
))
3438 btrfs_set_flag(inode
, NODATACOW
);
3441 key
[0].objectid
= objectid
;
3442 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
3445 key
[1].objectid
= objectid
;
3446 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
3447 key
[1].offset
= ref_objectid
;
3449 sizes
[0] = sizeof(struct btrfs_inode_item
);
3450 sizes
[1] = name_len
+ sizeof(*ref
);
3452 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
3456 if (objectid
> root
->highest_inode
)
3457 root
->highest_inode
= objectid
;
3459 inode
->i_uid
= current_fsuid();
3461 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
3462 inode
->i_gid
= dir
->i_gid
;
3466 inode
->i_gid
= current_fsgid();
3468 inode
->i_mode
= mode
;
3469 inode
->i_ino
= objectid
;
3470 inode_set_bytes(inode
, 0);
3471 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3472 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3473 struct btrfs_inode_item
);
3474 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
3476 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
3477 struct btrfs_inode_ref
);
3478 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
3479 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
3480 ptr
= (unsigned long)(ref
+ 1);
3481 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
3483 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3484 btrfs_free_path(path
);
3486 location
= &BTRFS_I(inode
)->location
;
3487 location
->objectid
= objectid
;
3488 location
->offset
= 0;
3489 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3491 insert_inode_hash(inode
);
3495 BTRFS_I(dir
)->index_cnt
--;
3496 btrfs_free_path(path
);
3497 return ERR_PTR(ret
);
3500 static inline u8
btrfs_inode_type(struct inode
*inode
)
3502 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
3506 * utility function to add 'inode' into 'parent_inode' with
3507 * a give name and a given sequence number.
3508 * if 'add_backref' is true, also insert a backref from the
3509 * inode to the parent directory.
3511 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
3512 struct inode
*parent_inode
, struct inode
*inode
,
3513 const char *name
, int name_len
, int add_backref
, u64 index
)
3516 struct btrfs_key key
;
3517 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
3519 key
.objectid
= inode
->i_ino
;
3520 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
3523 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
3524 parent_inode
->i_ino
,
3525 &key
, btrfs_inode_type(inode
),
3529 ret
= btrfs_insert_inode_ref(trans
, root
,
3532 parent_inode
->i_ino
,
3535 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
3537 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
3538 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
3543 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
3544 struct dentry
*dentry
, struct inode
*inode
,
3545 int backref
, u64 index
)
3547 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3548 inode
, dentry
->d_name
.name
,
3549 dentry
->d_name
.len
, backref
, index
);
3551 d_instantiate(dentry
, inode
);
3559 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
3560 int mode
, dev_t rdev
)
3562 struct btrfs_trans_handle
*trans
;
3563 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3564 struct inode
*inode
= NULL
;
3568 unsigned long nr
= 0;
3571 if (!new_valid_dev(rdev
))
3574 err
= btrfs_check_metadata_free_space(root
);
3578 trans
= btrfs_start_transaction(root
, 1);
3579 btrfs_set_trans_block_group(trans
, dir
);
3581 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3587 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3589 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3590 BTRFS_I(dir
)->block_group
, mode
, &index
);
3591 err
= PTR_ERR(inode
);
3595 err
= btrfs_init_inode_security(inode
, dir
);
3601 btrfs_set_trans_block_group(trans
, inode
);
3602 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3606 inode
->i_op
= &btrfs_special_inode_operations
;
3607 init_special_inode(inode
, inode
->i_mode
, rdev
);
3608 btrfs_update_inode(trans
, root
, inode
);
3610 dir
->i_sb
->s_dirt
= 1;
3611 btrfs_update_inode_block_group(trans
, inode
);
3612 btrfs_update_inode_block_group(trans
, dir
);
3614 nr
= trans
->blocks_used
;
3615 btrfs_end_transaction_throttle(trans
, root
);
3618 inode_dec_link_count(inode
);
3621 btrfs_btree_balance_dirty(root
, nr
);
3625 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
3626 int mode
, struct nameidata
*nd
)
3628 struct btrfs_trans_handle
*trans
;
3629 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3630 struct inode
*inode
= NULL
;
3633 unsigned long nr
= 0;
3637 err
= btrfs_check_metadata_free_space(root
);
3640 trans
= btrfs_start_transaction(root
, 1);
3641 btrfs_set_trans_block_group(trans
, dir
);
3643 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3649 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3651 dentry
->d_parent
->d_inode
->i_ino
,
3652 objectid
, BTRFS_I(dir
)->block_group
, mode
,
3654 err
= PTR_ERR(inode
);
3658 err
= btrfs_init_inode_security(inode
, dir
);
3664 btrfs_set_trans_block_group(trans
, inode
);
3665 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3669 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3670 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3671 inode
->i_fop
= &btrfs_file_operations
;
3672 inode
->i_op
= &btrfs_file_inode_operations
;
3673 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3675 dir
->i_sb
->s_dirt
= 1;
3676 btrfs_update_inode_block_group(trans
, inode
);
3677 btrfs_update_inode_block_group(trans
, dir
);
3679 nr
= trans
->blocks_used
;
3680 btrfs_end_transaction_throttle(trans
, root
);
3683 inode_dec_link_count(inode
);
3686 btrfs_btree_balance_dirty(root
, nr
);
3690 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
3691 struct dentry
*dentry
)
3693 struct btrfs_trans_handle
*trans
;
3694 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3695 struct inode
*inode
= old_dentry
->d_inode
;
3697 unsigned long nr
= 0;
3701 if (inode
->i_nlink
== 0)
3704 btrfs_inc_nlink(inode
);
3705 err
= btrfs_check_metadata_free_space(root
);
3708 err
= btrfs_set_inode_index(dir
, &index
);
3712 trans
= btrfs_start_transaction(root
, 1);
3714 btrfs_set_trans_block_group(trans
, dir
);
3715 atomic_inc(&inode
->i_count
);
3717 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
3722 dir
->i_sb
->s_dirt
= 1;
3723 btrfs_update_inode_block_group(trans
, dir
);
3724 err
= btrfs_update_inode(trans
, root
, inode
);
3729 nr
= trans
->blocks_used
;
3730 btrfs_end_transaction_throttle(trans
, root
);
3733 inode_dec_link_count(inode
);
3736 btrfs_btree_balance_dirty(root
, nr
);
3740 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3742 struct inode
*inode
= NULL
;
3743 struct btrfs_trans_handle
*trans
;
3744 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3746 int drop_on_err
= 0;
3749 unsigned long nr
= 1;
3751 err
= btrfs_check_metadata_free_space(root
);
3755 trans
= btrfs_start_transaction(root
, 1);
3756 btrfs_set_trans_block_group(trans
, dir
);
3758 if (IS_ERR(trans
)) {
3759 err
= PTR_ERR(trans
);
3763 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3769 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3771 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3772 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
3774 if (IS_ERR(inode
)) {
3775 err
= PTR_ERR(inode
);
3781 err
= btrfs_init_inode_security(inode
, dir
);
3785 inode
->i_op
= &btrfs_dir_inode_operations
;
3786 inode
->i_fop
= &btrfs_dir_file_operations
;
3787 btrfs_set_trans_block_group(trans
, inode
);
3789 btrfs_i_size_write(inode
, 0);
3790 err
= btrfs_update_inode(trans
, root
, inode
);
3794 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3795 inode
, dentry
->d_name
.name
,
3796 dentry
->d_name
.len
, 0, index
);
3800 d_instantiate(dentry
, inode
);
3802 dir
->i_sb
->s_dirt
= 1;
3803 btrfs_update_inode_block_group(trans
, inode
);
3804 btrfs_update_inode_block_group(trans
, dir
);
3807 nr
= trans
->blocks_used
;
3808 btrfs_end_transaction_throttle(trans
, root
);
3813 btrfs_btree_balance_dirty(root
, nr
);
3817 /* helper for btfs_get_extent. Given an existing extent in the tree,
3818 * and an extent that you want to insert, deal with overlap and insert
3819 * the new extent into the tree.
3821 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
3822 struct extent_map
*existing
,
3823 struct extent_map
*em
,
3824 u64 map_start
, u64 map_len
)
3828 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
3829 start_diff
= map_start
- em
->start
;
3830 em
->start
= map_start
;
3832 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
3833 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3834 em
->block_start
+= start_diff
;
3835 em
->block_len
-= start_diff
;
3837 return add_extent_mapping(em_tree
, em
);
3840 static noinline
int uncompress_inline(struct btrfs_path
*path
,
3841 struct inode
*inode
, struct page
*page
,
3842 size_t pg_offset
, u64 extent_offset
,
3843 struct btrfs_file_extent_item
*item
)
3846 struct extent_buffer
*leaf
= path
->nodes
[0];
3849 unsigned long inline_size
;
3852 WARN_ON(pg_offset
!= 0);
3853 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
3854 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
3855 btrfs_item_nr(leaf
, path
->slots
[0]));
3856 tmp
= kmalloc(inline_size
, GFP_NOFS
);
3857 ptr
= btrfs_file_extent_inline_start(item
);
3859 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
3861 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
3862 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
3863 inline_size
, max_size
);
3865 char *kaddr
= kmap_atomic(page
, KM_USER0
);
3866 unsigned long copy_size
= min_t(u64
,
3867 PAGE_CACHE_SIZE
- pg_offset
,
3868 max_size
- extent_offset
);
3869 memset(kaddr
+ pg_offset
, 0, copy_size
);
3870 kunmap_atomic(kaddr
, KM_USER0
);
3877 * a bit scary, this does extent mapping from logical file offset to the disk.
3878 * the ugly parts come from merging extents from the disk with the in-ram
3879 * representation. This gets more complex because of the data=ordered code,
3880 * where the in-ram extents might be locked pending data=ordered completion.
3882 * This also copies inline extents directly into the page.
3885 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
3886 size_t pg_offset
, u64 start
, u64 len
,
3892 u64 extent_start
= 0;
3894 u64 objectid
= inode
->i_ino
;
3896 struct btrfs_path
*path
= NULL
;
3897 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3898 struct btrfs_file_extent_item
*item
;
3899 struct extent_buffer
*leaf
;
3900 struct btrfs_key found_key
;
3901 struct extent_map
*em
= NULL
;
3902 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3903 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3904 struct btrfs_trans_handle
*trans
= NULL
;
3908 spin_lock(&em_tree
->lock
);
3909 em
= lookup_extent_mapping(em_tree
, start
, len
);
3911 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3912 spin_unlock(&em_tree
->lock
);
3915 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
3916 free_extent_map(em
);
3917 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
3918 free_extent_map(em
);
3922 em
= alloc_extent_map(GFP_NOFS
);
3927 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3928 em
->start
= EXTENT_MAP_HOLE
;
3929 em
->orig_start
= EXTENT_MAP_HOLE
;
3931 em
->block_len
= (u64
)-1;
3934 path
= btrfs_alloc_path();
3938 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
3939 objectid
, start
, trans
!= NULL
);
3946 if (path
->slots
[0] == 0)
3951 leaf
= path
->nodes
[0];
3952 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3953 struct btrfs_file_extent_item
);
3954 /* are we inside the extent that was found? */
3955 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3956 found_type
= btrfs_key_type(&found_key
);
3957 if (found_key
.objectid
!= objectid
||
3958 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
3962 found_type
= btrfs_file_extent_type(leaf
, item
);
3963 extent_start
= found_key
.offset
;
3964 compressed
= btrfs_file_extent_compression(leaf
, item
);
3965 if (found_type
== BTRFS_FILE_EXTENT_REG
||
3966 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3967 extent_end
= extent_start
+
3968 btrfs_file_extent_num_bytes(leaf
, item
);
3969 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
3971 size
= btrfs_file_extent_inline_len(leaf
, item
);
3972 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
3973 ~((u64
)root
->sectorsize
- 1);
3976 if (start
>= extent_end
) {
3978 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3979 ret
= btrfs_next_leaf(root
, path
);
3986 leaf
= path
->nodes
[0];
3988 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3989 if (found_key
.objectid
!= objectid
||
3990 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3992 if (start
+ len
<= found_key
.offset
)
3995 em
->len
= found_key
.offset
- start
;
3999 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4000 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4001 em
->start
= extent_start
;
4002 em
->len
= extent_end
- extent_start
;
4003 em
->orig_start
= extent_start
-
4004 btrfs_file_extent_offset(leaf
, item
);
4005 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4007 em
->block_start
= EXTENT_MAP_HOLE
;
4011 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4012 em
->block_start
= bytenr
;
4013 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4016 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4017 em
->block_start
= bytenr
;
4018 em
->block_len
= em
->len
;
4019 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4020 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4023 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4027 size_t extent_offset
;
4030 em
->block_start
= EXTENT_MAP_INLINE
;
4031 if (!page
|| create
) {
4032 em
->start
= extent_start
;
4033 em
->len
= extent_end
- extent_start
;
4037 size
= btrfs_file_extent_inline_len(leaf
, item
);
4038 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4039 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4040 size
- extent_offset
);
4041 em
->start
= extent_start
+ extent_offset
;
4042 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4043 ~((u64
)root
->sectorsize
- 1);
4044 em
->orig_start
= EXTENT_MAP_INLINE
;
4046 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4047 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4048 if (create
== 0 && !PageUptodate(page
)) {
4049 if (btrfs_file_extent_compression(leaf
, item
) ==
4050 BTRFS_COMPRESS_ZLIB
) {
4051 ret
= uncompress_inline(path
, inode
, page
,
4053 extent_offset
, item
);
4057 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4061 flush_dcache_page(page
);
4062 } else if (create
&& PageUptodate(page
)) {
4065 free_extent_map(em
);
4067 btrfs_release_path(root
, path
);
4068 trans
= btrfs_join_transaction(root
, 1);
4072 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4075 btrfs_mark_buffer_dirty(leaf
);
4077 set_extent_uptodate(io_tree
, em
->start
,
4078 extent_map_end(em
) - 1, GFP_NOFS
);
4081 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4088 em
->block_start
= EXTENT_MAP_HOLE
;
4089 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4091 btrfs_release_path(root
, path
);
4092 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4093 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4094 "[%llu %llu]\n", (unsigned long long)em
->start
,
4095 (unsigned long long)em
->len
,
4096 (unsigned long long)start
,
4097 (unsigned long long)len
);
4103 spin_lock(&em_tree
->lock
);
4104 ret
= add_extent_mapping(em_tree
, em
);
4105 /* it is possible that someone inserted the extent into the tree
4106 * while we had the lock dropped. It is also possible that
4107 * an overlapping map exists in the tree
4109 if (ret
== -EEXIST
) {
4110 struct extent_map
*existing
;
4114 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4115 if (existing
&& (existing
->start
> start
||
4116 existing
->start
+ existing
->len
<= start
)) {
4117 free_extent_map(existing
);
4121 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4124 err
= merge_extent_mapping(em_tree
, existing
,
4127 free_extent_map(existing
);
4129 free_extent_map(em
);
4134 free_extent_map(em
);
4138 free_extent_map(em
);
4143 spin_unlock(&em_tree
->lock
);
4146 btrfs_free_path(path
);
4148 ret
= btrfs_end_transaction(trans
, root
);
4153 free_extent_map(em
);
4155 return ERR_PTR(err
);
4160 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4161 const struct iovec
*iov
, loff_t offset
,
4162 unsigned long nr_segs
)
4167 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4168 __u64 start
, __u64 len
)
4170 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4173 int btrfs_readpage(struct file
*file
, struct page
*page
)
4175 struct extent_io_tree
*tree
;
4176 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4177 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4180 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4182 struct extent_io_tree
*tree
;
4185 if (current
->flags
& PF_MEMALLOC
) {
4186 redirty_page_for_writepage(wbc
, page
);
4190 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4191 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4194 int btrfs_writepages(struct address_space
*mapping
,
4195 struct writeback_control
*wbc
)
4197 struct extent_io_tree
*tree
;
4199 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4200 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4204 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4205 struct list_head
*pages
, unsigned nr_pages
)
4207 struct extent_io_tree
*tree
;
4208 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4209 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4212 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4214 struct extent_io_tree
*tree
;
4215 struct extent_map_tree
*map
;
4218 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4219 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4220 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4222 ClearPagePrivate(page
);
4223 set_page_private(page
, 0);
4224 page_cache_release(page
);
4229 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4231 if (PageWriteback(page
) || PageDirty(page
))
4233 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4236 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4238 struct extent_io_tree
*tree
;
4239 struct btrfs_ordered_extent
*ordered
;
4240 u64 page_start
= page_offset(page
);
4241 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4243 wait_on_page_writeback(page
);
4244 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4246 btrfs_releasepage(page
, GFP_NOFS
);
4250 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4251 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4255 * IO on this page will never be started, so we need
4256 * to account for any ordered extents now
4258 clear_extent_bit(tree
, page_start
, page_end
,
4259 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4260 EXTENT_LOCKED
, 1, 0, GFP_NOFS
);
4261 btrfs_finish_ordered_io(page
->mapping
->host
,
4262 page_start
, page_end
);
4263 btrfs_put_ordered_extent(ordered
);
4264 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4266 clear_extent_bit(tree
, page_start
, page_end
,
4267 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4270 __btrfs_releasepage(page
, GFP_NOFS
);
4272 ClearPageChecked(page
);
4273 if (PagePrivate(page
)) {
4274 ClearPagePrivate(page
);
4275 set_page_private(page
, 0);
4276 page_cache_release(page
);
4281 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4282 * called from a page fault handler when a page is first dirtied. Hence we must
4283 * be careful to check for EOF conditions here. We set the page up correctly
4284 * for a written page which means we get ENOSPC checking when writing into
4285 * holes and correct delalloc and unwritten extent mapping on filesystems that
4286 * support these features.
4288 * We are not allowed to take the i_mutex here so we have to play games to
4289 * protect against truncate races as the page could now be beyond EOF. Because
4290 * vmtruncate() writes the inode size before removing pages, once we have the
4291 * page lock we can determine safely if the page is beyond EOF. If it is not
4292 * beyond EOF, then the page is guaranteed safe against truncation until we
4295 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4297 struct page
*page
= vmf
->page
;
4298 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4299 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4300 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4301 struct btrfs_ordered_extent
*ordered
;
4303 unsigned long zero_start
;
4309 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
4316 size
= i_size_read(inode
);
4317 page_start
= page_offset(page
);
4318 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4320 if ((page
->mapping
!= inode
->i_mapping
) ||
4321 (page_start
>= size
)) {
4322 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4323 /* page got truncated out from underneath us */
4326 wait_on_page_writeback(page
);
4328 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4329 set_page_extent_mapped(page
);
4332 * we can't set the delalloc bits if there are pending ordered
4333 * extents. Drop our locks and wait for them to finish
4335 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4337 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4339 btrfs_start_ordered_extent(inode
, ordered
, 1);
4340 btrfs_put_ordered_extent(ordered
);
4344 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
4347 /* page is wholly or partially inside EOF */
4348 if (page_start
+ PAGE_CACHE_SIZE
> size
)
4349 zero_start
= size
& ~PAGE_CACHE_MASK
;
4351 zero_start
= PAGE_CACHE_SIZE
;
4353 if (zero_start
!= PAGE_CACHE_SIZE
) {
4355 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
4356 flush_dcache_page(page
);
4359 ClearPageChecked(page
);
4360 set_page_dirty(page
);
4361 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4367 ret
= VM_FAULT_SIGBUS
;
4371 static void btrfs_truncate(struct inode
*inode
)
4373 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4375 struct btrfs_trans_handle
*trans
;
4377 u64 mask
= root
->sectorsize
- 1;
4379 if (!S_ISREG(inode
->i_mode
))
4381 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4384 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
4385 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
4387 trans
= btrfs_start_transaction(root
, 1);
4388 btrfs_set_trans_block_group(trans
, inode
);
4389 btrfs_i_size_write(inode
, inode
->i_size
);
4391 ret
= btrfs_orphan_add(trans
, inode
);
4394 /* FIXME, add redo link to tree so we don't leak on crash */
4395 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
4396 BTRFS_EXTENT_DATA_KEY
);
4397 btrfs_update_inode(trans
, root
, inode
);
4399 ret
= btrfs_orphan_del(trans
, inode
);
4403 nr
= trans
->blocks_used
;
4404 ret
= btrfs_end_transaction_throttle(trans
, root
);
4406 btrfs_btree_balance_dirty(root
, nr
);
4410 * create a new subvolume directory/inode (helper for the ioctl).
4412 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
4413 struct btrfs_root
*new_root
, struct dentry
*dentry
,
4414 u64 new_dirid
, u64 alloc_hint
)
4416 struct inode
*inode
;
4420 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
4421 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
4423 return PTR_ERR(inode
);
4424 inode
->i_op
= &btrfs_dir_inode_operations
;
4425 inode
->i_fop
= &btrfs_dir_file_operations
;
4428 btrfs_i_size_write(inode
, 0);
4430 error
= btrfs_update_inode(trans
, new_root
, inode
);
4434 d_instantiate(dentry
, inode
);
4438 /* helper function for file defrag and space balancing. This
4439 * forces readahead on a given range of bytes in an inode
4441 unsigned long btrfs_force_ra(struct address_space
*mapping
,
4442 struct file_ra_state
*ra
, struct file
*file
,
4443 pgoff_t offset
, pgoff_t last_index
)
4445 pgoff_t req_size
= last_index
- offset
+ 1;
4447 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
4448 return offset
+ req_size
;
4451 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
4453 struct btrfs_inode
*ei
;
4455 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
4459 ei
->logged_trans
= 0;
4460 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
4461 ei
->i_acl
= BTRFS_ACL_NOT_CACHED
;
4462 ei
->i_default_acl
= BTRFS_ACL_NOT_CACHED
;
4463 INIT_LIST_HEAD(&ei
->i_orphan
);
4464 return &ei
->vfs_inode
;
4467 void btrfs_destroy_inode(struct inode
*inode
)
4469 struct btrfs_ordered_extent
*ordered
;
4470 WARN_ON(!list_empty(&inode
->i_dentry
));
4471 WARN_ON(inode
->i_data
.nrpages
);
4473 if (BTRFS_I(inode
)->i_acl
&&
4474 BTRFS_I(inode
)->i_acl
!= BTRFS_ACL_NOT_CACHED
)
4475 posix_acl_release(BTRFS_I(inode
)->i_acl
);
4476 if (BTRFS_I(inode
)->i_default_acl
&&
4477 BTRFS_I(inode
)->i_default_acl
!= BTRFS_ACL_NOT_CACHED
)
4478 posix_acl_release(BTRFS_I(inode
)->i_default_acl
);
4480 spin_lock(&BTRFS_I(inode
)->root
->list_lock
);
4481 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
4482 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
4483 " list\n", inode
->i_ino
);
4486 spin_unlock(&BTRFS_I(inode
)->root
->list_lock
);
4489 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
4493 printk(KERN_ERR
"btrfs found ordered "
4494 "extent %llu %llu on inode cleanup\n",
4495 (unsigned long long)ordered
->file_offset
,
4496 (unsigned long long)ordered
->len
);
4497 btrfs_remove_ordered_extent(inode
, ordered
);
4498 btrfs_put_ordered_extent(ordered
);
4499 btrfs_put_ordered_extent(ordered
);
4502 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
4503 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
4506 static void init_once(void *foo
)
4508 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
4510 inode_init_once(&ei
->vfs_inode
);
4513 void btrfs_destroy_cachep(void)
4515 if (btrfs_inode_cachep
)
4516 kmem_cache_destroy(btrfs_inode_cachep
);
4517 if (btrfs_trans_handle_cachep
)
4518 kmem_cache_destroy(btrfs_trans_handle_cachep
);
4519 if (btrfs_transaction_cachep
)
4520 kmem_cache_destroy(btrfs_transaction_cachep
);
4521 if (btrfs_bit_radix_cachep
)
4522 kmem_cache_destroy(btrfs_bit_radix_cachep
);
4523 if (btrfs_path_cachep
)
4524 kmem_cache_destroy(btrfs_path_cachep
);
4527 struct kmem_cache
*btrfs_cache_create(const char *name
, size_t size
,
4528 unsigned long extra_flags
,
4529 void (*ctor
)(void *))
4531 return kmem_cache_create(name
, size
, 0, (SLAB_RECLAIM_ACCOUNT
|
4532 SLAB_MEM_SPREAD
| extra_flags
), ctor
);
4535 int btrfs_init_cachep(void)
4537 btrfs_inode_cachep
= btrfs_cache_create("btrfs_inode_cache",
4538 sizeof(struct btrfs_inode
),
4540 if (!btrfs_inode_cachep
)
4542 btrfs_trans_handle_cachep
=
4543 btrfs_cache_create("btrfs_trans_handle_cache",
4544 sizeof(struct btrfs_trans_handle
),
4546 if (!btrfs_trans_handle_cachep
)
4548 btrfs_transaction_cachep
= btrfs_cache_create("btrfs_transaction_cache",
4549 sizeof(struct btrfs_transaction
),
4551 if (!btrfs_transaction_cachep
)
4553 btrfs_path_cachep
= btrfs_cache_create("btrfs_path_cache",
4554 sizeof(struct btrfs_path
),
4556 if (!btrfs_path_cachep
)
4558 btrfs_bit_radix_cachep
= btrfs_cache_create("btrfs_radix", 256,
4559 SLAB_DESTROY_BY_RCU
, NULL
);
4560 if (!btrfs_bit_radix_cachep
)
4564 btrfs_destroy_cachep();
4568 static int btrfs_getattr(struct vfsmount
*mnt
,
4569 struct dentry
*dentry
, struct kstat
*stat
)
4571 struct inode
*inode
= dentry
->d_inode
;
4572 generic_fillattr(inode
, stat
);
4573 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
4574 stat
->blksize
= PAGE_CACHE_SIZE
;
4575 stat
->blocks
= (inode_get_bytes(inode
) +
4576 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
4580 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
4581 struct inode
*new_dir
, struct dentry
*new_dentry
)
4583 struct btrfs_trans_handle
*trans
;
4584 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
4585 struct inode
*new_inode
= new_dentry
->d_inode
;
4586 struct inode
*old_inode
= old_dentry
->d_inode
;
4587 struct timespec ctime
= CURRENT_TIME
;
4591 /* we're not allowed to rename between subvolumes */
4592 if (BTRFS_I(old_inode
)->root
->root_key
.objectid
!=
4593 BTRFS_I(new_dir
)->root
->root_key
.objectid
)
4596 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
4597 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
) {
4601 /* to rename a snapshot or subvolume, we need to juggle the
4602 * backrefs. This isn't coded yet
4604 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
4607 ret
= btrfs_check_metadata_free_space(root
);
4611 trans
= btrfs_start_transaction(root
, 1);
4613 btrfs_set_trans_block_group(trans
, new_dir
);
4615 btrfs_inc_nlink(old_dentry
->d_inode
);
4616 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
4617 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
4618 old_inode
->i_ctime
= ctime
;
4620 ret
= btrfs_unlink_inode(trans
, root
, old_dir
, old_dentry
->d_inode
,
4621 old_dentry
->d_name
.name
,
4622 old_dentry
->d_name
.len
);
4627 new_inode
->i_ctime
= CURRENT_TIME
;
4628 ret
= btrfs_unlink_inode(trans
, root
, new_dir
,
4629 new_dentry
->d_inode
,
4630 new_dentry
->d_name
.name
,
4631 new_dentry
->d_name
.len
);
4634 if (new_inode
->i_nlink
== 0) {
4635 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
4641 ret
= btrfs_set_inode_index(new_dir
, &index
);
4645 ret
= btrfs_add_link(trans
, new_dentry
->d_parent
->d_inode
,
4646 old_inode
, new_dentry
->d_name
.name
,
4647 new_dentry
->d_name
.len
, 1, index
);
4652 btrfs_end_transaction_throttle(trans
, root
);
4658 * some fairly slow code that needs optimization. This walks the list
4659 * of all the inodes with pending delalloc and forces them to disk.
4661 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
4663 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
4664 struct btrfs_inode
*binode
;
4665 struct inode
*inode
;
4667 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
4670 spin_lock(&root
->fs_info
->delalloc_lock
);
4671 while (!list_empty(head
)) {
4672 binode
= list_entry(head
->next
, struct btrfs_inode
,
4674 inode
= igrab(&binode
->vfs_inode
);
4676 list_del_init(&binode
->delalloc_inodes
);
4677 spin_unlock(&root
->fs_info
->delalloc_lock
);
4679 filemap_flush(inode
->i_mapping
);
4683 spin_lock(&root
->fs_info
->delalloc_lock
);
4685 spin_unlock(&root
->fs_info
->delalloc_lock
);
4687 /* the filemap_flush will queue IO into the worker threads, but
4688 * we have to make sure the IO is actually started and that
4689 * ordered extents get created before we return
4691 atomic_inc(&root
->fs_info
->async_submit_draining
);
4692 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
4693 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
4694 wait_event(root
->fs_info
->async_submit_wait
,
4695 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
4696 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
4698 atomic_dec(&root
->fs_info
->async_submit_draining
);
4702 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
4703 const char *symname
)
4705 struct btrfs_trans_handle
*trans
;
4706 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4707 struct btrfs_path
*path
;
4708 struct btrfs_key key
;
4709 struct inode
*inode
= NULL
;
4717 struct btrfs_file_extent_item
*ei
;
4718 struct extent_buffer
*leaf
;
4719 unsigned long nr
= 0;
4721 name_len
= strlen(symname
) + 1;
4722 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
4723 return -ENAMETOOLONG
;
4725 err
= btrfs_check_metadata_free_space(root
);
4729 trans
= btrfs_start_transaction(root
, 1);
4730 btrfs_set_trans_block_group(trans
, dir
);
4732 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4738 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4740 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4741 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
4743 err
= PTR_ERR(inode
);
4747 err
= btrfs_init_inode_security(inode
, dir
);
4753 btrfs_set_trans_block_group(trans
, inode
);
4754 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4758 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4759 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4760 inode
->i_fop
= &btrfs_file_operations
;
4761 inode
->i_op
= &btrfs_file_inode_operations
;
4762 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4764 dir
->i_sb
->s_dirt
= 1;
4765 btrfs_update_inode_block_group(trans
, inode
);
4766 btrfs_update_inode_block_group(trans
, dir
);
4770 path
= btrfs_alloc_path();
4772 key
.objectid
= inode
->i_ino
;
4774 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
4775 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
4776 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
4782 leaf
= path
->nodes
[0];
4783 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
4784 struct btrfs_file_extent_item
);
4785 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
4786 btrfs_set_file_extent_type(leaf
, ei
,
4787 BTRFS_FILE_EXTENT_INLINE
);
4788 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
4789 btrfs_set_file_extent_compression(leaf
, ei
, 0);
4790 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
4791 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
4793 ptr
= btrfs_file_extent_inline_start(ei
);
4794 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
4795 btrfs_mark_buffer_dirty(leaf
);
4796 btrfs_free_path(path
);
4798 inode
->i_op
= &btrfs_symlink_inode_operations
;
4799 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
4800 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4801 inode_set_bytes(inode
, name_len
);
4802 btrfs_i_size_write(inode
, name_len
- 1);
4803 err
= btrfs_update_inode(trans
, root
, inode
);
4808 nr
= trans
->blocks_used
;
4809 btrfs_end_transaction_throttle(trans
, root
);
4812 inode_dec_link_count(inode
);
4815 btrfs_btree_balance_dirty(root
, nr
);
4819 static int prealloc_file_range(struct inode
*inode
, u64 start
, u64 end
,
4820 u64 alloc_hint
, int mode
)
4822 struct btrfs_trans_handle
*trans
;
4823 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4824 struct btrfs_key ins
;
4826 u64 cur_offset
= start
;
4827 u64 num_bytes
= end
- start
;
4830 trans
= btrfs_join_transaction(root
, 1);
4832 btrfs_set_trans_block_group(trans
, inode
);
4834 while (num_bytes
> 0) {
4835 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
4836 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
4837 root
->sectorsize
, 0, alloc_hint
,
4843 ret
= insert_reserved_file_extent(trans
, inode
,
4844 cur_offset
, ins
.objectid
,
4845 ins
.offset
, ins
.offset
,
4846 ins
.offset
, 0, 0, 0,
4847 BTRFS_FILE_EXTENT_PREALLOC
);
4849 num_bytes
-= ins
.offset
;
4850 cur_offset
+= ins
.offset
;
4851 alloc_hint
= ins
.objectid
+ ins
.offset
;
4854 if (cur_offset
> start
) {
4855 inode
->i_ctime
= CURRENT_TIME
;
4856 btrfs_set_flag(inode
, PREALLOC
);
4857 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
4858 cur_offset
> i_size_read(inode
))
4859 btrfs_i_size_write(inode
, cur_offset
);
4860 ret
= btrfs_update_inode(trans
, root
, inode
);
4864 btrfs_end_transaction(trans
, root
);
4868 static long btrfs_fallocate(struct inode
*inode
, int mode
,
4869 loff_t offset
, loff_t len
)
4876 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
4877 struct extent_map
*em
;
4880 alloc_start
= offset
& ~mask
;
4881 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
4883 mutex_lock(&inode
->i_mutex
);
4884 if (alloc_start
> inode
->i_size
) {
4885 ret
= btrfs_cont_expand(inode
, alloc_start
);
4891 struct btrfs_ordered_extent
*ordered
;
4892 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
,
4893 alloc_end
- 1, GFP_NOFS
);
4894 ordered
= btrfs_lookup_first_ordered_extent(inode
,
4897 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
4898 ordered
->file_offset
< alloc_end
) {
4899 btrfs_put_ordered_extent(ordered
);
4900 unlock_extent(&BTRFS_I(inode
)->io_tree
,
4901 alloc_start
, alloc_end
- 1, GFP_NOFS
);
4902 btrfs_wait_ordered_range(inode
, alloc_start
,
4903 alloc_end
- alloc_start
);
4906 btrfs_put_ordered_extent(ordered
);
4911 cur_offset
= alloc_start
;
4913 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4914 alloc_end
- cur_offset
, 0);
4915 BUG_ON(IS_ERR(em
) || !em
);
4916 last_byte
= min(extent_map_end(em
), alloc_end
);
4917 last_byte
= (last_byte
+ mask
) & ~mask
;
4918 if (em
->block_start
== EXTENT_MAP_HOLE
) {
4919 ret
= prealloc_file_range(inode
, cur_offset
,
4920 last_byte
, alloc_hint
, mode
);
4922 free_extent_map(em
);
4926 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
4927 alloc_hint
= em
->block_start
;
4928 free_extent_map(em
);
4930 cur_offset
= last_byte
;
4931 if (cur_offset
>= alloc_end
) {
4936 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, alloc_end
- 1,
4939 mutex_unlock(&inode
->i_mutex
);
4943 static int btrfs_set_page_dirty(struct page
*page
)
4945 return __set_page_dirty_nobuffers(page
);
4948 static int btrfs_permission(struct inode
*inode
, int mask
)
4950 if (btrfs_test_flag(inode
, READONLY
) && (mask
& MAY_WRITE
))
4952 return generic_permission(inode
, mask
, btrfs_check_acl
);
4955 static struct inode_operations btrfs_dir_inode_operations
= {
4956 .getattr
= btrfs_getattr
,
4957 .lookup
= btrfs_lookup
,
4958 .create
= btrfs_create
,
4959 .unlink
= btrfs_unlink
,
4961 .mkdir
= btrfs_mkdir
,
4962 .rmdir
= btrfs_rmdir
,
4963 .rename
= btrfs_rename
,
4964 .symlink
= btrfs_symlink
,
4965 .setattr
= btrfs_setattr
,
4966 .mknod
= btrfs_mknod
,
4967 .setxattr
= btrfs_setxattr
,
4968 .getxattr
= btrfs_getxattr
,
4969 .listxattr
= btrfs_listxattr
,
4970 .removexattr
= btrfs_removexattr
,
4971 .permission
= btrfs_permission
,
4973 static struct inode_operations btrfs_dir_ro_inode_operations
= {
4974 .lookup
= btrfs_lookup
,
4975 .permission
= btrfs_permission
,
4977 static struct file_operations btrfs_dir_file_operations
= {
4978 .llseek
= generic_file_llseek
,
4979 .read
= generic_read_dir
,
4980 .readdir
= btrfs_real_readdir
,
4981 .unlocked_ioctl
= btrfs_ioctl
,
4982 #ifdef CONFIG_COMPAT
4983 .compat_ioctl
= btrfs_ioctl
,
4985 .release
= btrfs_release_file
,
4986 .fsync
= btrfs_sync_file
,
4989 static struct extent_io_ops btrfs_extent_io_ops
= {
4990 .fill_delalloc
= run_delalloc_range
,
4991 .submit_bio_hook
= btrfs_submit_bio_hook
,
4992 .merge_bio_hook
= btrfs_merge_bio_hook
,
4993 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
4994 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
4995 .writepage_start_hook
= btrfs_writepage_start_hook
,
4996 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
4997 .set_bit_hook
= btrfs_set_bit_hook
,
4998 .clear_bit_hook
= btrfs_clear_bit_hook
,
5002 * btrfs doesn't support the bmap operation because swapfiles
5003 * use bmap to make a mapping of extents in the file. They assume
5004 * these extents won't change over the life of the file and they
5005 * use the bmap result to do IO directly to the drive.
5007 * the btrfs bmap call would return logical addresses that aren't
5008 * suitable for IO and they also will change frequently as COW
5009 * operations happen. So, swapfile + btrfs == corruption.
5011 * For now we're avoiding this by dropping bmap.
5013 static struct address_space_operations btrfs_aops
= {
5014 .readpage
= btrfs_readpage
,
5015 .writepage
= btrfs_writepage
,
5016 .writepages
= btrfs_writepages
,
5017 .readpages
= btrfs_readpages
,
5018 .sync_page
= block_sync_page
,
5019 .direct_IO
= btrfs_direct_IO
,
5020 .invalidatepage
= btrfs_invalidatepage
,
5021 .releasepage
= btrfs_releasepage
,
5022 .set_page_dirty
= btrfs_set_page_dirty
,
5025 static struct address_space_operations btrfs_symlink_aops
= {
5026 .readpage
= btrfs_readpage
,
5027 .writepage
= btrfs_writepage
,
5028 .invalidatepage
= btrfs_invalidatepage
,
5029 .releasepage
= btrfs_releasepage
,
5032 static struct inode_operations btrfs_file_inode_operations
= {
5033 .truncate
= btrfs_truncate
,
5034 .getattr
= btrfs_getattr
,
5035 .setattr
= btrfs_setattr
,
5036 .setxattr
= btrfs_setxattr
,
5037 .getxattr
= btrfs_getxattr
,
5038 .listxattr
= btrfs_listxattr
,
5039 .removexattr
= btrfs_removexattr
,
5040 .permission
= btrfs_permission
,
5041 .fallocate
= btrfs_fallocate
,
5042 .fiemap
= btrfs_fiemap
,
5044 static struct inode_operations btrfs_special_inode_operations
= {
5045 .getattr
= btrfs_getattr
,
5046 .setattr
= btrfs_setattr
,
5047 .permission
= btrfs_permission
,
5048 .setxattr
= btrfs_setxattr
,
5049 .getxattr
= btrfs_getxattr
,
5050 .listxattr
= btrfs_listxattr
,
5051 .removexattr
= btrfs_removexattr
,
5053 static struct inode_operations btrfs_symlink_inode_operations
= {
5054 .readlink
= generic_readlink
,
5055 .follow_link
= page_follow_link_light
,
5056 .put_link
= page_put_link
,
5057 .permission
= btrfs_permission
,
5058 .setxattr
= btrfs_setxattr
,
5059 .getxattr
= btrfs_getxattr
,
5060 .listxattr
= btrfs_listxattr
,
5061 .removexattr
= btrfs_removexattr
,