torture: Run a couple scenarios with CONFIG_RCU_EQS_DEBUG
[linux/fpc-iii.git] / drivers / misc / mei / hw-me.c
bloba05375a3338a98370cd6abb495e27d670330a0bf
1 /*
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 #include <linux/pm_runtime.h>
23 #include "mei_dev.h"
24 #include "hbm.h"
26 #include "hw-me.h"
27 #include "hw-me-regs.h"
29 #include "mei-trace.h"
31 /**
32 * mei_me_reg_read - Reads 32bit data from the mei device
34 * @hw: the me hardware structure
35 * @offset: offset from which to read the data
37 * Return: register value (u32)
39 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
40 unsigned long offset)
42 return ioread32(hw->mem_addr + offset);
46 /**
47 * mei_me_reg_write - Writes 32bit data to the mei device
49 * @hw: the me hardware structure
50 * @offset: offset from which to write the data
51 * @value: register value to write (u32)
53 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
54 unsigned long offset, u32 value)
56 iowrite32(value, hw->mem_addr + offset);
59 /**
60 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
61 * read window register
63 * @dev: the device structure
65 * Return: ME_CB_RW register value (u32)
67 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
69 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
72 /**
73 * mei_me_hcbww_write - write 32bit data to the host circular buffer
75 * @dev: the device structure
76 * @data: 32bit data to be written to the host circular buffer
78 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
80 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
83 /**
84 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
86 * @dev: the device structure
88 * Return: ME_CSR_HA register value (u32)
90 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
92 u32 reg;
94 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
95 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
97 return reg;
101 * mei_hcsr_read - Reads 32bit data from the host CSR
103 * @dev: the device structure
105 * Return: H_CSR register value (u32)
107 static inline u32 mei_hcsr_read(const struct mei_device *dev)
109 u32 reg;
111 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
112 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
114 return reg;
118 * mei_hcsr_write - writes H_CSR register to the mei device
120 * @dev: the device structure
121 * @reg: new register value
123 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
125 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
126 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
130 * mei_hcsr_set - writes H_CSR register to the mei device,
131 * and ignores the H_IS bit for it is write-one-to-zero.
133 * @dev: the device structure
134 * @reg: new register value
136 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
138 reg &= ~H_CSR_IS_MASK;
139 mei_hcsr_write(dev, reg);
143 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
145 * @dev: the device structure
147 * Return: H_D0I3C register value (u32)
149 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
151 u32 reg;
153 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
154 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
156 return reg;
160 * mei_me_d0i3c_write - writes H_D0I3C register to device
162 * @dev: the device structure
163 * @reg: new register value
165 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
167 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
168 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
172 * mei_me_fw_status - read fw status register from pci config space
174 * @dev: mei device
175 * @fw_status: fw status register values
177 * Return: 0 on success, error otherwise
179 static int mei_me_fw_status(struct mei_device *dev,
180 struct mei_fw_status *fw_status)
182 struct pci_dev *pdev = to_pci_dev(dev->dev);
183 struct mei_me_hw *hw = to_me_hw(dev);
184 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
185 int ret;
186 int i;
188 if (!fw_status)
189 return -EINVAL;
191 fw_status->count = fw_src->count;
192 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
193 ret = pci_read_config_dword(pdev, fw_src->status[i],
194 &fw_status->status[i]);
195 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
196 fw_src->status[i],
197 fw_status->status[i]);
198 if (ret)
199 return ret;
202 return 0;
206 * mei_me_hw_config - configure hw dependent settings
208 * @dev: mei device
210 static void mei_me_hw_config(struct mei_device *dev)
212 struct pci_dev *pdev = to_pci_dev(dev->dev);
213 struct mei_me_hw *hw = to_me_hw(dev);
214 u32 hcsr, reg;
216 /* Doesn't change in runtime */
217 hcsr = mei_hcsr_read(dev);
218 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
220 reg = 0;
221 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
222 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
223 hw->d0i3_supported =
224 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
226 hw->pg_state = MEI_PG_OFF;
227 if (hw->d0i3_supported) {
228 reg = mei_me_d0i3c_read(dev);
229 if (reg & H_D0I3C_I3)
230 hw->pg_state = MEI_PG_ON;
235 * mei_me_pg_state - translate internal pg state
236 * to the mei power gating state
238 * @dev: mei device
240 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
242 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
244 struct mei_me_hw *hw = to_me_hw(dev);
246 return hw->pg_state;
249 static inline u32 me_intr_src(u32 hcsr)
251 return hcsr & H_CSR_IS_MASK;
255 * me_intr_disable - disables mei device interrupts
256 * using supplied hcsr register value.
258 * @dev: the device structure
259 * @hcsr: supplied hcsr register value
261 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
263 hcsr &= ~H_CSR_IE_MASK;
264 mei_hcsr_set(dev, hcsr);
268 * mei_me_intr_clear - clear and stop interrupts
270 * @dev: the device structure
271 * @hcsr: supplied hcsr register value
273 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
275 if (me_intr_src(hcsr))
276 mei_hcsr_write(dev, hcsr);
280 * mei_me_intr_clear - clear and stop interrupts
282 * @dev: the device structure
284 static void mei_me_intr_clear(struct mei_device *dev)
286 u32 hcsr = mei_hcsr_read(dev);
288 me_intr_clear(dev, hcsr);
291 * mei_me_intr_enable - enables mei device interrupts
293 * @dev: the device structure
295 static void mei_me_intr_enable(struct mei_device *dev)
297 u32 hcsr = mei_hcsr_read(dev);
299 hcsr |= H_CSR_IE_MASK;
300 mei_hcsr_set(dev, hcsr);
304 * mei_me_intr_disable - disables mei device interrupts
306 * @dev: the device structure
308 static void mei_me_intr_disable(struct mei_device *dev)
310 u32 hcsr = mei_hcsr_read(dev);
312 me_intr_disable(dev, hcsr);
316 * mei_me_synchronize_irq - wait for pending IRQ handlers
318 * @dev: the device structure
320 static void mei_me_synchronize_irq(struct mei_device *dev)
322 struct pci_dev *pdev = to_pci_dev(dev->dev);
324 synchronize_irq(pdev->irq);
328 * mei_me_hw_reset_release - release device from the reset
330 * @dev: the device structure
332 static void mei_me_hw_reset_release(struct mei_device *dev)
334 u32 hcsr = mei_hcsr_read(dev);
336 hcsr |= H_IG;
337 hcsr &= ~H_RST;
338 mei_hcsr_set(dev, hcsr);
340 /* complete this write before we set host ready on another CPU */
341 mmiowb();
345 * mei_me_host_set_ready - enable device
347 * @dev: mei device
349 static void mei_me_host_set_ready(struct mei_device *dev)
351 u32 hcsr = mei_hcsr_read(dev);
353 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
354 mei_hcsr_set(dev, hcsr);
358 * mei_me_host_is_ready - check whether the host has turned ready
360 * @dev: mei device
361 * Return: bool
363 static bool mei_me_host_is_ready(struct mei_device *dev)
365 u32 hcsr = mei_hcsr_read(dev);
367 return (hcsr & H_RDY) == H_RDY;
371 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
373 * @dev: mei device
374 * Return: bool
376 static bool mei_me_hw_is_ready(struct mei_device *dev)
378 u32 mecsr = mei_me_mecsr_read(dev);
380 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
384 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
385 * or timeout is reached
387 * @dev: mei device
388 * Return: 0 on success, error otherwise
390 static int mei_me_hw_ready_wait(struct mei_device *dev)
392 mutex_unlock(&dev->device_lock);
393 wait_event_timeout(dev->wait_hw_ready,
394 dev->recvd_hw_ready,
395 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
396 mutex_lock(&dev->device_lock);
397 if (!dev->recvd_hw_ready) {
398 dev_err(dev->dev, "wait hw ready failed\n");
399 return -ETIME;
402 mei_me_hw_reset_release(dev);
403 dev->recvd_hw_ready = false;
404 return 0;
408 * mei_me_hw_start - hw start routine
410 * @dev: mei device
411 * Return: 0 on success, error otherwise
413 static int mei_me_hw_start(struct mei_device *dev)
415 int ret = mei_me_hw_ready_wait(dev);
417 if (ret)
418 return ret;
419 dev_dbg(dev->dev, "hw is ready\n");
421 mei_me_host_set_ready(dev);
422 return ret;
427 * mei_hbuf_filled_slots - gets number of device filled buffer slots
429 * @dev: the device structure
431 * Return: number of filled slots
433 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
435 u32 hcsr;
436 char read_ptr, write_ptr;
438 hcsr = mei_hcsr_read(dev);
440 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
441 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
443 return (unsigned char) (write_ptr - read_ptr);
447 * mei_me_hbuf_is_empty - checks if host buffer is empty.
449 * @dev: the device structure
451 * Return: true if empty, false - otherwise.
453 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
455 return mei_hbuf_filled_slots(dev) == 0;
459 * mei_me_hbuf_empty_slots - counts write empty slots.
461 * @dev: the device structure
463 * Return: -EOVERFLOW if overflow, otherwise empty slots count
465 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
467 unsigned char filled_slots, empty_slots;
469 filled_slots = mei_hbuf_filled_slots(dev);
470 empty_slots = dev->hbuf_depth - filled_slots;
472 /* check for overflow */
473 if (filled_slots > dev->hbuf_depth)
474 return -EOVERFLOW;
476 return empty_slots;
480 * mei_me_hbuf_max_len - returns size of hw buffer.
482 * @dev: the device structure
484 * Return: size of hw buffer in bytes
486 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
488 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
493 * mei_me_hbuf_write - writes a message to host hw buffer.
495 * @dev: the device structure
496 * @header: mei HECI header of message
497 * @buf: message payload will be written
499 * Return: -EIO if write has failed
501 static int mei_me_hbuf_write(struct mei_device *dev,
502 struct mei_msg_hdr *header,
503 const unsigned char *buf)
505 unsigned long rem;
506 unsigned long length = header->length;
507 u32 *reg_buf = (u32 *)buf;
508 u32 hcsr;
509 u32 dw_cnt;
510 int i;
511 int empty_slots;
513 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
515 empty_slots = mei_hbuf_empty_slots(dev);
516 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
518 dw_cnt = mei_data2slots(length);
519 if (empty_slots < 0 || dw_cnt > empty_slots)
520 return -EMSGSIZE;
522 mei_me_hcbww_write(dev, *((u32 *) header));
524 for (i = 0; i < length / 4; i++)
525 mei_me_hcbww_write(dev, reg_buf[i]);
527 rem = length & 0x3;
528 if (rem > 0) {
529 u32 reg = 0;
531 memcpy(&reg, &buf[length - rem], rem);
532 mei_me_hcbww_write(dev, reg);
535 hcsr = mei_hcsr_read(dev) | H_IG;
536 mei_hcsr_set(dev, hcsr);
537 if (!mei_me_hw_is_ready(dev))
538 return -EIO;
540 return 0;
544 * mei_me_count_full_read_slots - counts read full slots.
546 * @dev: the device structure
548 * Return: -EOVERFLOW if overflow, otherwise filled slots count
550 static int mei_me_count_full_read_slots(struct mei_device *dev)
552 u32 me_csr;
553 char read_ptr, write_ptr;
554 unsigned char buffer_depth, filled_slots;
556 me_csr = mei_me_mecsr_read(dev);
557 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
558 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
559 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
560 filled_slots = (unsigned char) (write_ptr - read_ptr);
562 /* check for overflow */
563 if (filled_slots > buffer_depth)
564 return -EOVERFLOW;
566 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
567 return (int)filled_slots;
571 * mei_me_read_slots - reads a message from mei device.
573 * @dev: the device structure
574 * @buffer: message buffer will be written
575 * @buffer_length: message size will be read
577 * Return: always 0
579 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
580 unsigned long buffer_length)
582 u32 *reg_buf = (u32 *)buffer;
583 u32 hcsr;
585 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
586 *reg_buf++ = mei_me_mecbrw_read(dev);
588 if (buffer_length > 0) {
589 u32 reg = mei_me_mecbrw_read(dev);
591 memcpy(reg_buf, &reg, buffer_length);
594 hcsr = mei_hcsr_read(dev) | H_IG;
595 mei_hcsr_set(dev, hcsr);
596 return 0;
600 * mei_me_pg_set - write pg enter register
602 * @dev: the device structure
604 static void mei_me_pg_set(struct mei_device *dev)
606 struct mei_me_hw *hw = to_me_hw(dev);
607 u32 reg;
609 reg = mei_me_reg_read(hw, H_HPG_CSR);
610 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
612 reg |= H_HPG_CSR_PGI;
614 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
615 mei_me_reg_write(hw, H_HPG_CSR, reg);
619 * mei_me_pg_unset - write pg exit register
621 * @dev: the device structure
623 static void mei_me_pg_unset(struct mei_device *dev)
625 struct mei_me_hw *hw = to_me_hw(dev);
626 u32 reg;
628 reg = mei_me_reg_read(hw, H_HPG_CSR);
629 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
631 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
633 reg |= H_HPG_CSR_PGIHEXR;
635 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
636 mei_me_reg_write(hw, H_HPG_CSR, reg);
640 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
642 * @dev: the device structure
644 * Return: 0 on success an error code otherwise
646 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
648 struct mei_me_hw *hw = to_me_hw(dev);
649 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
650 int ret;
652 dev->pg_event = MEI_PG_EVENT_WAIT;
654 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
655 if (ret)
656 return ret;
658 mutex_unlock(&dev->device_lock);
659 wait_event_timeout(dev->wait_pg,
660 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
661 mutex_lock(&dev->device_lock);
663 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
664 mei_me_pg_set(dev);
665 ret = 0;
666 } else {
667 ret = -ETIME;
670 dev->pg_event = MEI_PG_EVENT_IDLE;
671 hw->pg_state = MEI_PG_ON;
673 return ret;
677 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
679 * @dev: the device structure
681 * Return: 0 on success an error code otherwise
683 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
685 struct mei_me_hw *hw = to_me_hw(dev);
686 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
687 int ret;
689 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
690 goto reply;
692 dev->pg_event = MEI_PG_EVENT_WAIT;
694 mei_me_pg_unset(dev);
696 mutex_unlock(&dev->device_lock);
697 wait_event_timeout(dev->wait_pg,
698 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
699 mutex_lock(&dev->device_lock);
701 reply:
702 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
703 ret = -ETIME;
704 goto out;
707 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
708 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
709 if (ret)
710 return ret;
712 mutex_unlock(&dev->device_lock);
713 wait_event_timeout(dev->wait_pg,
714 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
715 mutex_lock(&dev->device_lock);
717 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
718 ret = 0;
719 else
720 ret = -ETIME;
722 out:
723 dev->pg_event = MEI_PG_EVENT_IDLE;
724 hw->pg_state = MEI_PG_OFF;
726 return ret;
730 * mei_me_pg_in_transition - is device now in pg transition
732 * @dev: the device structure
734 * Return: true if in pg transition, false otherwise
736 static bool mei_me_pg_in_transition(struct mei_device *dev)
738 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
739 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
743 * mei_me_pg_is_enabled - detect if PG is supported by HW
745 * @dev: the device structure
747 * Return: true is pg supported, false otherwise
749 static bool mei_me_pg_is_enabled(struct mei_device *dev)
751 struct mei_me_hw *hw = to_me_hw(dev);
752 u32 reg = mei_me_mecsr_read(dev);
754 if (hw->d0i3_supported)
755 return true;
757 if ((reg & ME_PGIC_HRA) == 0)
758 goto notsupported;
760 if (!dev->hbm_f_pg_supported)
761 goto notsupported;
763 return true;
765 notsupported:
766 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
767 hw->d0i3_supported,
768 !!(reg & ME_PGIC_HRA),
769 dev->version.major_version,
770 dev->version.minor_version,
771 HBM_MAJOR_VERSION_PGI,
772 HBM_MINOR_VERSION_PGI);
774 return false;
778 * mei_me_d0i3_set - write d0i3 register bit on mei device.
780 * @dev: the device structure
781 * @intr: ask for interrupt
783 * Return: D0I3C register value
785 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
787 u32 reg = mei_me_d0i3c_read(dev);
789 reg |= H_D0I3C_I3;
790 if (intr)
791 reg |= H_D0I3C_IR;
792 else
793 reg &= ~H_D0I3C_IR;
794 mei_me_d0i3c_write(dev, reg);
795 /* read it to ensure HW consistency */
796 reg = mei_me_d0i3c_read(dev);
797 return reg;
801 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
803 * @dev: the device structure
805 * Return: D0I3C register value
807 static u32 mei_me_d0i3_unset(struct mei_device *dev)
809 u32 reg = mei_me_d0i3c_read(dev);
811 reg &= ~H_D0I3C_I3;
812 reg |= H_D0I3C_IR;
813 mei_me_d0i3c_write(dev, reg);
814 /* read it to ensure HW consistency */
815 reg = mei_me_d0i3c_read(dev);
816 return reg;
820 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
822 * @dev: the device structure
824 * Return: 0 on success an error code otherwise
826 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
828 struct mei_me_hw *hw = to_me_hw(dev);
829 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
830 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
831 int ret;
832 u32 reg;
834 reg = mei_me_d0i3c_read(dev);
835 if (reg & H_D0I3C_I3) {
836 /* we are in d0i3, nothing to do */
837 dev_dbg(dev->dev, "d0i3 set not needed\n");
838 ret = 0;
839 goto on;
842 /* PGI entry procedure */
843 dev->pg_event = MEI_PG_EVENT_WAIT;
845 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
846 if (ret)
847 /* FIXME: should we reset here? */
848 goto out;
850 mutex_unlock(&dev->device_lock);
851 wait_event_timeout(dev->wait_pg,
852 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
853 mutex_lock(&dev->device_lock);
855 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
856 ret = -ETIME;
857 goto out;
859 /* end PGI entry procedure */
861 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
863 reg = mei_me_d0i3_set(dev, true);
864 if (!(reg & H_D0I3C_CIP)) {
865 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
866 ret = 0;
867 goto on;
870 mutex_unlock(&dev->device_lock);
871 wait_event_timeout(dev->wait_pg,
872 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
873 mutex_lock(&dev->device_lock);
875 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
876 reg = mei_me_d0i3c_read(dev);
877 if (!(reg & H_D0I3C_I3)) {
878 ret = -ETIME;
879 goto out;
883 ret = 0;
885 hw->pg_state = MEI_PG_ON;
886 out:
887 dev->pg_event = MEI_PG_EVENT_IDLE;
888 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
889 return ret;
893 * mei_me_d0i3_enter - perform d0i3 entry procedure
894 * no hbm PG handshake
895 * no waiting for confirmation; runs with interrupts
896 * disabled
898 * @dev: the device structure
900 * Return: 0 on success an error code otherwise
902 static int mei_me_d0i3_enter(struct mei_device *dev)
904 struct mei_me_hw *hw = to_me_hw(dev);
905 u32 reg;
907 reg = mei_me_d0i3c_read(dev);
908 if (reg & H_D0I3C_I3) {
909 /* we are in d0i3, nothing to do */
910 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
911 goto on;
914 mei_me_d0i3_set(dev, false);
916 hw->pg_state = MEI_PG_ON;
917 dev->pg_event = MEI_PG_EVENT_IDLE;
918 dev_dbg(dev->dev, "d0i3 enter\n");
919 return 0;
923 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
925 * @dev: the device structure
927 * Return: 0 on success an error code otherwise
929 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
931 struct mei_me_hw *hw = to_me_hw(dev);
932 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
933 int ret;
934 u32 reg;
936 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
938 reg = mei_me_d0i3c_read(dev);
939 if (!(reg & H_D0I3C_I3)) {
940 /* we are not in d0i3, nothing to do */
941 dev_dbg(dev->dev, "d0i3 exit not needed\n");
942 ret = 0;
943 goto off;
946 reg = mei_me_d0i3_unset(dev);
947 if (!(reg & H_D0I3C_CIP)) {
948 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
949 ret = 0;
950 goto off;
953 mutex_unlock(&dev->device_lock);
954 wait_event_timeout(dev->wait_pg,
955 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
956 mutex_lock(&dev->device_lock);
958 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
959 reg = mei_me_d0i3c_read(dev);
960 if (reg & H_D0I3C_I3) {
961 ret = -ETIME;
962 goto out;
966 ret = 0;
967 off:
968 hw->pg_state = MEI_PG_OFF;
969 out:
970 dev->pg_event = MEI_PG_EVENT_IDLE;
972 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
973 return ret;
977 * mei_me_pg_legacy_intr - perform legacy pg processing
978 * in interrupt thread handler
980 * @dev: the device structure
982 static void mei_me_pg_legacy_intr(struct mei_device *dev)
984 struct mei_me_hw *hw = to_me_hw(dev);
986 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
987 return;
989 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
990 hw->pg_state = MEI_PG_OFF;
991 if (waitqueue_active(&dev->wait_pg))
992 wake_up(&dev->wait_pg);
996 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
998 * @dev: the device structure
999 * @intr_source: interrupt source
1001 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1003 struct mei_me_hw *hw = to_me_hw(dev);
1005 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1006 (intr_source & H_D0I3C_IS)) {
1007 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1008 if (hw->pg_state == MEI_PG_ON) {
1009 hw->pg_state = MEI_PG_OFF;
1010 if (dev->hbm_state != MEI_HBM_IDLE) {
1012 * force H_RDY because it could be
1013 * wiped off during PG
1015 dev_dbg(dev->dev, "d0i3 set host ready\n");
1016 mei_me_host_set_ready(dev);
1018 } else {
1019 hw->pg_state = MEI_PG_ON;
1022 wake_up(&dev->wait_pg);
1025 if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1027 * HW sent some data and we are in D0i3, so
1028 * we got here because of HW initiated exit from D0i3.
1029 * Start runtime pm resume sequence to exit low power state.
1031 dev_dbg(dev->dev, "d0i3 want resume\n");
1032 mei_hbm_pg_resume(dev);
1037 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1039 * @dev: the device structure
1040 * @intr_source: interrupt source
1042 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1044 struct mei_me_hw *hw = to_me_hw(dev);
1046 if (hw->d0i3_supported)
1047 mei_me_d0i3_intr(dev, intr_source);
1048 else
1049 mei_me_pg_legacy_intr(dev);
1053 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1055 * @dev: the device structure
1057 * Return: 0 on success an error code otherwise
1059 int mei_me_pg_enter_sync(struct mei_device *dev)
1061 struct mei_me_hw *hw = to_me_hw(dev);
1063 if (hw->d0i3_supported)
1064 return mei_me_d0i3_enter_sync(dev);
1065 else
1066 return mei_me_pg_legacy_enter_sync(dev);
1070 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1072 * @dev: the device structure
1074 * Return: 0 on success an error code otherwise
1076 int mei_me_pg_exit_sync(struct mei_device *dev)
1078 struct mei_me_hw *hw = to_me_hw(dev);
1080 if (hw->d0i3_supported)
1081 return mei_me_d0i3_exit_sync(dev);
1082 else
1083 return mei_me_pg_legacy_exit_sync(dev);
1087 * mei_me_hw_reset - resets fw via mei csr register.
1089 * @dev: the device structure
1090 * @intr_enable: if interrupt should be enabled after reset.
1092 * Return: 0 on success an error code otherwise
1094 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1096 struct mei_me_hw *hw = to_me_hw(dev);
1097 int ret;
1098 u32 hcsr;
1100 if (intr_enable) {
1101 mei_me_intr_enable(dev);
1102 if (hw->d0i3_supported) {
1103 ret = mei_me_d0i3_exit_sync(dev);
1104 if (ret)
1105 return ret;
1109 pm_runtime_set_active(dev->dev);
1111 hcsr = mei_hcsr_read(dev);
1112 /* H_RST may be found lit before reset is started,
1113 * for example if preceding reset flow hasn't completed.
1114 * In that case asserting H_RST will be ignored, therefore
1115 * we need to clean H_RST bit to start a successful reset sequence.
1117 if ((hcsr & H_RST) == H_RST) {
1118 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1119 hcsr &= ~H_RST;
1120 mei_hcsr_set(dev, hcsr);
1121 hcsr = mei_hcsr_read(dev);
1124 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1126 if (!intr_enable)
1127 hcsr &= ~H_CSR_IE_MASK;
1129 dev->recvd_hw_ready = false;
1130 mei_hcsr_write(dev, hcsr);
1133 * Host reads the H_CSR once to ensure that the
1134 * posted write to H_CSR completes.
1136 hcsr = mei_hcsr_read(dev);
1138 if ((hcsr & H_RST) == 0)
1139 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1141 if ((hcsr & H_RDY) == H_RDY)
1142 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1144 if (!intr_enable) {
1145 mei_me_hw_reset_release(dev);
1146 if (hw->d0i3_supported) {
1147 ret = mei_me_d0i3_enter(dev);
1148 if (ret)
1149 return ret;
1152 return 0;
1156 * mei_me_irq_quick_handler - The ISR of the MEI device
1158 * @irq: The irq number
1159 * @dev_id: pointer to the device structure
1161 * Return: irqreturn_t
1163 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1165 struct mei_device *dev = (struct mei_device *)dev_id;
1166 u32 hcsr;
1168 hcsr = mei_hcsr_read(dev);
1169 if (!me_intr_src(hcsr))
1170 return IRQ_NONE;
1172 dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1174 /* disable interrupts on device */
1175 me_intr_disable(dev, hcsr);
1176 return IRQ_WAKE_THREAD;
1180 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1181 * processing.
1183 * @irq: The irq number
1184 * @dev_id: pointer to the device structure
1186 * Return: irqreturn_t
1189 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1191 struct mei_device *dev = (struct mei_device *) dev_id;
1192 struct mei_cl_cb complete_list;
1193 s32 slots;
1194 u32 hcsr;
1195 int rets = 0;
1197 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1198 /* initialize our complete list */
1199 mutex_lock(&dev->device_lock);
1201 hcsr = mei_hcsr_read(dev);
1202 me_intr_clear(dev, hcsr);
1204 mei_io_list_init(&complete_list);
1206 /* check if ME wants a reset */
1207 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1208 dev_warn(dev->dev, "FW not ready: resetting.\n");
1209 schedule_work(&dev->reset_work);
1210 goto end;
1213 mei_me_pg_intr(dev, me_intr_src(hcsr));
1215 /* check if we need to start the dev */
1216 if (!mei_host_is_ready(dev)) {
1217 if (mei_hw_is_ready(dev)) {
1218 dev_dbg(dev->dev, "we need to start the dev.\n");
1219 dev->recvd_hw_ready = true;
1220 wake_up(&dev->wait_hw_ready);
1221 } else {
1222 dev_dbg(dev->dev, "Spurious Interrupt\n");
1224 goto end;
1226 /* check slots available for reading */
1227 slots = mei_count_full_read_slots(dev);
1228 while (slots > 0) {
1229 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1230 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1231 /* There is a race between ME write and interrupt delivery:
1232 * Not all data is always available immediately after the
1233 * interrupt, so try to read again on the next interrupt.
1235 if (rets == -ENODATA)
1236 break;
1238 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1239 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1240 rets);
1241 schedule_work(&dev->reset_work);
1242 goto end;
1246 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1249 * During PG handshake only allowed write is the replay to the
1250 * PG exit message, so block calling write function
1251 * if the pg event is in PG handshake
1253 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1254 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1255 rets = mei_irq_write_handler(dev, &complete_list);
1256 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1259 mei_irq_compl_handler(dev, &complete_list);
1261 end:
1262 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1263 mei_me_intr_enable(dev);
1264 mutex_unlock(&dev->device_lock);
1265 return IRQ_HANDLED;
1268 static const struct mei_hw_ops mei_me_hw_ops = {
1270 .fw_status = mei_me_fw_status,
1271 .pg_state = mei_me_pg_state,
1273 .host_is_ready = mei_me_host_is_ready,
1275 .hw_is_ready = mei_me_hw_is_ready,
1276 .hw_reset = mei_me_hw_reset,
1277 .hw_config = mei_me_hw_config,
1278 .hw_start = mei_me_hw_start,
1280 .pg_in_transition = mei_me_pg_in_transition,
1281 .pg_is_enabled = mei_me_pg_is_enabled,
1283 .intr_clear = mei_me_intr_clear,
1284 .intr_enable = mei_me_intr_enable,
1285 .intr_disable = mei_me_intr_disable,
1286 .synchronize_irq = mei_me_synchronize_irq,
1288 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1289 .hbuf_is_ready = mei_me_hbuf_is_empty,
1290 .hbuf_max_len = mei_me_hbuf_max_len,
1292 .write = mei_me_hbuf_write,
1294 .rdbuf_full_slots = mei_me_count_full_read_slots,
1295 .read_hdr = mei_me_mecbrw_read,
1296 .read = mei_me_read_slots
1299 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1301 u32 reg;
1303 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1304 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1305 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1306 return (reg & 0x600) == 0x200;
1309 #define MEI_CFG_FW_NM \
1310 .quirk_probe = mei_me_fw_type_nm
1312 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1314 u32 reg;
1315 unsigned int devfn;
1318 * Read ME FW Status register to check for SPS Firmware
1319 * The SPS FW is only signaled in pci function 0
1321 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1322 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1323 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1324 /* if bits [19:16] = 15, running SPS Firmware */
1325 return (reg & 0xf0000) == 0xf0000;
1328 #define MEI_CFG_FW_SPS \
1329 .quirk_probe = mei_me_fw_type_sps
1332 #define MEI_CFG_LEGACY_HFS \
1333 .fw_status.count = 0
1335 #define MEI_CFG_ICH_HFS \
1336 .fw_status.count = 1, \
1337 .fw_status.status[0] = PCI_CFG_HFS_1
1339 #define MEI_CFG_PCH_HFS \
1340 .fw_status.count = 2, \
1341 .fw_status.status[0] = PCI_CFG_HFS_1, \
1342 .fw_status.status[1] = PCI_CFG_HFS_2
1344 #define MEI_CFG_PCH8_HFS \
1345 .fw_status.count = 6, \
1346 .fw_status.status[0] = PCI_CFG_HFS_1, \
1347 .fw_status.status[1] = PCI_CFG_HFS_2, \
1348 .fw_status.status[2] = PCI_CFG_HFS_3, \
1349 .fw_status.status[3] = PCI_CFG_HFS_4, \
1350 .fw_status.status[4] = PCI_CFG_HFS_5, \
1351 .fw_status.status[5] = PCI_CFG_HFS_6
1353 /* ICH Legacy devices */
1354 const struct mei_cfg mei_me_legacy_cfg = {
1355 MEI_CFG_LEGACY_HFS,
1358 /* ICH devices */
1359 const struct mei_cfg mei_me_ich_cfg = {
1360 MEI_CFG_ICH_HFS,
1363 /* PCH devices */
1364 const struct mei_cfg mei_me_pch_cfg = {
1365 MEI_CFG_PCH_HFS,
1369 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1370 const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1371 MEI_CFG_PCH_HFS,
1372 MEI_CFG_FW_NM,
1375 /* PCH8 Lynx Point and newer devices */
1376 const struct mei_cfg mei_me_pch8_cfg = {
1377 MEI_CFG_PCH8_HFS,
1380 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1381 const struct mei_cfg mei_me_pch8_sps_cfg = {
1382 MEI_CFG_PCH8_HFS,
1383 MEI_CFG_FW_SPS,
1387 * mei_me_dev_init - allocates and initializes the mei device structure
1389 * @pdev: The pci device structure
1390 * @cfg: per device generation config
1392 * Return: The mei_device_device pointer on success, NULL on failure.
1394 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1395 const struct mei_cfg *cfg)
1397 struct mei_device *dev;
1398 struct mei_me_hw *hw;
1400 dev = kzalloc(sizeof(struct mei_device) +
1401 sizeof(struct mei_me_hw), GFP_KERNEL);
1402 if (!dev)
1403 return NULL;
1404 hw = to_me_hw(dev);
1406 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1407 hw->cfg = cfg;
1408 return dev;