1 /* linux/arch/arm/mach-exynos4/mct.c
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * EXYNOS4 MCT(Multi-Core Timer) support
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
29 #define EXYNOS4_MCTREG(x) (x)
30 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK (0xffffff00)
44 #define MCT_L_TCNTB_OFFSET (0x00)
45 #define MCT_L_ICNTB_OFFSET (0x08)
46 #define MCT_L_TCON_OFFSET (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET (0x30)
48 #define MCT_L_INT_ENB_OFFSET (0x34)
49 #define MCT_L_WSTAT_OFFSET (0x40)
50 #define MCT_G_TCON_START (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
54 #define MCT_L_TCON_INT_START (1 << 1)
55 #define MCT_L_TCON_TIMER_START (1 << 0)
57 #define TICK_BASE_CNT 1
80 static void __iomem
*reg_base
;
81 static unsigned long clk_rate
;
82 static unsigned int mct_int_type
;
83 static int mct_irqs
[MCT_NR_IRQS
];
85 struct mct_clock_event_device
{
86 struct clock_event_device evt
;
91 static void exynos4_mct_write(unsigned int value
, unsigned long offset
)
93 unsigned long stat_addr
;
97 writel_relaxed(value
, reg_base
+ offset
);
99 if (likely(offset
>= EXYNOS4_MCT_L_BASE(0))) {
100 stat_addr
= (offset
& EXYNOS4_MCT_L_MASK
) + MCT_L_WSTAT_OFFSET
;
101 switch (offset
& ~EXYNOS4_MCT_L_MASK
) {
102 case MCT_L_TCON_OFFSET
:
103 mask
= 1 << 3; /* L_TCON write status */
105 case MCT_L_ICNTB_OFFSET
:
106 mask
= 1 << 1; /* L_ICNTB write status */
108 case MCT_L_TCNTB_OFFSET
:
109 mask
= 1 << 0; /* L_TCNTB write status */
116 case EXYNOS4_MCT_G_TCON
:
117 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
118 mask
= 1 << 16; /* G_TCON write status */
120 case EXYNOS4_MCT_G_COMP0_L
:
121 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
122 mask
= 1 << 0; /* G_COMP0_L write status */
124 case EXYNOS4_MCT_G_COMP0_U
:
125 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
126 mask
= 1 << 1; /* G_COMP0_U write status */
128 case EXYNOS4_MCT_G_COMP0_ADD_INCR
:
129 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
130 mask
= 1 << 2; /* G_COMP0_ADD_INCR w status */
132 case EXYNOS4_MCT_G_CNT_L
:
133 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
134 mask
= 1 << 0; /* G_CNT_L write status */
136 case EXYNOS4_MCT_G_CNT_U
:
137 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
138 mask
= 1 << 1; /* G_CNT_U write status */
145 /* Wait maximum 1 ms until written values are applied */
146 for (i
= 0; i
< loops_per_jiffy
/ 1000 * HZ
; i
++)
147 if (readl_relaxed(reg_base
+ stat_addr
) & mask
) {
148 writel_relaxed(mask
, reg_base
+ stat_addr
);
152 panic("MCT hangs after writing %d (offset:0x%lx)\n", value
, offset
);
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
160 reg
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_TCON
);
161 reg
|= MCT_G_TCON_START
;
162 exynos4_mct_write(reg
, EXYNOS4_MCT_G_TCON
);
166 * exynos4_read_count_64 - Read all 64-bits of the global counter
168 * This will read all 64-bits of the global counter taking care to make sure
169 * that the upper and lower half match. Note that reading the MCT can be quite
170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171 * only) version when possible.
173 * Returns the number of cycles in the global counter.
175 static u64
exynos4_read_count_64(void)
178 u32 hi2
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_U
);
182 lo
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_L
);
183 hi2
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_U
);
186 return ((cycle_t
)hi
<< 32) | lo
;
190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
192 * This will read just the lower 32-bits of the global counter. This is marked
193 * as notrace so it can be used by the scheduler clock.
195 * Returns the number of cycles in the global counter (lower 32 bits).
197 static u32 notrace
exynos4_read_count_32(void)
199 return readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_L
);
202 static cycle_t
exynos4_frc_read(struct clocksource
*cs
)
204 return exynos4_read_count_32();
207 static void exynos4_frc_resume(struct clocksource
*cs
)
209 exynos4_mct_frc_start();
212 static struct clocksource mct_frc
= {
215 .read
= exynos4_frc_read
,
216 .mask
= CLOCKSOURCE_MASK(32),
217 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
218 .resume
= exynos4_frc_resume
,
221 static u64 notrace
exynos4_read_sched_clock(void)
223 return exynos4_read_count_32();
226 #if defined(CONFIG_ARM)
227 static struct delay_timer exynos4_delay_timer
;
229 static cycles_t
exynos4_read_current_timer(void)
231 BUILD_BUG_ON_MSG(sizeof(cycles_t
) != sizeof(u32
),
232 "cycles_t needs to move to 32-bit for ARM64 usage");
233 return exynos4_read_count_32();
237 static int __init
exynos4_clocksource_init(void)
239 exynos4_mct_frc_start();
241 #if defined(CONFIG_ARM)
242 exynos4_delay_timer
.read_current_timer
= &exynos4_read_current_timer
;
243 exynos4_delay_timer
.freq
= clk_rate
;
244 register_current_timer_delay(&exynos4_delay_timer
);
247 if (clocksource_register_hz(&mct_frc
, clk_rate
))
248 panic("%s: can't register clocksource\n", mct_frc
.name
);
250 sched_clock_register(exynos4_read_sched_clock
, 32, clk_rate
);
255 static void exynos4_mct_comp0_stop(void)
259 tcon
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_TCON
);
260 tcon
&= ~(MCT_G_TCON_COMP0_ENABLE
| MCT_G_TCON_COMP0_AUTO_INC
);
262 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
263 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB
);
266 static void exynos4_mct_comp0_start(bool periodic
, unsigned long cycles
)
271 tcon
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_TCON
);
274 tcon
|= MCT_G_TCON_COMP0_AUTO_INC
;
275 exynos4_mct_write(cycles
, EXYNOS4_MCT_G_COMP0_ADD_INCR
);
278 comp_cycle
= exynos4_read_count_64() + cycles
;
279 exynos4_mct_write((u32
)comp_cycle
, EXYNOS4_MCT_G_COMP0_L
);
280 exynos4_mct_write((u32
)(comp_cycle
>> 32), EXYNOS4_MCT_G_COMP0_U
);
282 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB
);
284 tcon
|= MCT_G_TCON_COMP0_ENABLE
;
285 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
288 static int exynos4_comp_set_next_event(unsigned long cycles
,
289 struct clock_event_device
*evt
)
291 exynos4_mct_comp0_start(false, cycles
);
296 static int mct_set_state_shutdown(struct clock_event_device
*evt
)
298 exynos4_mct_comp0_stop();
302 static int mct_set_state_periodic(struct clock_event_device
*evt
)
304 unsigned long cycles_per_jiffy
;
306 cycles_per_jiffy
= (((unsigned long long)NSEC_PER_SEC
/ HZ
* evt
->mult
)
308 exynos4_mct_comp0_stop();
309 exynos4_mct_comp0_start(true, cycles_per_jiffy
);
313 static struct clock_event_device mct_comp_device
= {
315 .features
= CLOCK_EVT_FEAT_PERIODIC
|
316 CLOCK_EVT_FEAT_ONESHOT
,
318 .set_next_event
= exynos4_comp_set_next_event
,
319 .set_state_periodic
= mct_set_state_periodic
,
320 .set_state_shutdown
= mct_set_state_shutdown
,
321 .set_state_oneshot
= mct_set_state_shutdown
,
322 .set_state_oneshot_stopped
= mct_set_state_shutdown
,
323 .tick_resume
= mct_set_state_shutdown
,
326 static irqreturn_t
exynos4_mct_comp_isr(int irq
, void *dev_id
)
328 struct clock_event_device
*evt
= dev_id
;
330 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT
);
332 evt
->event_handler(evt
);
337 static struct irqaction mct_comp_event_irq
= {
338 .name
= "mct_comp_irq",
339 .flags
= IRQF_TIMER
| IRQF_IRQPOLL
,
340 .handler
= exynos4_mct_comp_isr
,
341 .dev_id
= &mct_comp_device
,
344 static int exynos4_clockevent_init(void)
346 mct_comp_device
.cpumask
= cpumask_of(0);
347 clockevents_config_and_register(&mct_comp_device
, clk_rate
,
349 setup_irq(mct_irqs
[MCT_G0_IRQ
], &mct_comp_event_irq
);
354 static DEFINE_PER_CPU(struct mct_clock_event_device
, percpu_mct_tick
);
356 /* Clock event handling */
357 static void exynos4_mct_tick_stop(struct mct_clock_event_device
*mevt
)
360 unsigned long mask
= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
;
361 unsigned long offset
= mevt
->base
+ MCT_L_TCON_OFFSET
;
363 tmp
= readl_relaxed(reg_base
+ offset
);
366 exynos4_mct_write(tmp
, offset
);
370 static void exynos4_mct_tick_start(unsigned long cycles
,
371 struct mct_clock_event_device
*mevt
)
375 exynos4_mct_tick_stop(mevt
);
377 tmp
= (1 << 31) | cycles
; /* MCT_L_UPDATE_ICNTB */
379 /* update interrupt count buffer */
380 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_ICNTB_OFFSET
);
382 /* enable MCT tick interrupt */
383 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_ENB_OFFSET
);
385 tmp
= readl_relaxed(reg_base
+ mevt
->base
+ MCT_L_TCON_OFFSET
);
386 tmp
|= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
|
387 MCT_L_TCON_INTERVAL_MODE
;
388 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_TCON_OFFSET
);
391 static int exynos4_tick_set_next_event(unsigned long cycles
,
392 struct clock_event_device
*evt
)
394 struct mct_clock_event_device
*mevt
;
396 mevt
= container_of(evt
, struct mct_clock_event_device
, evt
);
397 exynos4_mct_tick_start(cycles
, mevt
);
401 static int set_state_shutdown(struct clock_event_device
*evt
)
403 struct mct_clock_event_device
*mevt
;
405 mevt
= container_of(evt
, struct mct_clock_event_device
, evt
);
406 exynos4_mct_tick_stop(mevt
);
410 static int set_state_periodic(struct clock_event_device
*evt
)
412 struct mct_clock_event_device
*mevt
;
413 unsigned long cycles_per_jiffy
;
415 mevt
= container_of(evt
, struct mct_clock_event_device
, evt
);
416 cycles_per_jiffy
= (((unsigned long long)NSEC_PER_SEC
/ HZ
* evt
->mult
)
418 exynos4_mct_tick_stop(mevt
);
419 exynos4_mct_tick_start(cycles_per_jiffy
, mevt
);
423 static void exynos4_mct_tick_clear(struct mct_clock_event_device
*mevt
)
426 * This is for supporting oneshot mode.
427 * Mct would generate interrupt periodically
428 * without explicit stopping.
430 if (!clockevent_state_periodic(&mevt
->evt
))
431 exynos4_mct_tick_stop(mevt
);
433 /* Clear the MCT tick interrupt */
434 if (readl_relaxed(reg_base
+ mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
) & 1)
435 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
);
438 static irqreturn_t
exynos4_mct_tick_isr(int irq
, void *dev_id
)
440 struct mct_clock_event_device
*mevt
= dev_id
;
441 struct clock_event_device
*evt
= &mevt
->evt
;
443 exynos4_mct_tick_clear(mevt
);
445 evt
->event_handler(evt
);
450 static int exynos4_mct_starting_cpu(unsigned int cpu
)
452 struct mct_clock_event_device
*mevt
=
453 per_cpu_ptr(&percpu_mct_tick
, cpu
);
454 struct clock_event_device
*evt
= &mevt
->evt
;
456 mevt
->base
= EXYNOS4_MCT_L_BASE(cpu
);
457 snprintf(mevt
->name
, sizeof(mevt
->name
), "mct_tick%d", cpu
);
459 evt
->name
= mevt
->name
;
460 evt
->cpumask
= cpumask_of(cpu
);
461 evt
->set_next_event
= exynos4_tick_set_next_event
;
462 evt
->set_state_periodic
= set_state_periodic
;
463 evt
->set_state_shutdown
= set_state_shutdown
;
464 evt
->set_state_oneshot
= set_state_shutdown
;
465 evt
->set_state_oneshot_stopped
= set_state_shutdown
;
466 evt
->tick_resume
= set_state_shutdown
;
467 evt
->features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
;
470 exynos4_mct_write(TICK_BASE_CNT
, mevt
->base
+ MCT_L_TCNTB_OFFSET
);
472 if (mct_int_type
== MCT_INT_SPI
) {
477 irq_force_affinity(evt
->irq
, cpumask_of(cpu
));
478 enable_irq(evt
->irq
);
480 enable_percpu_irq(mct_irqs
[MCT_L0_IRQ
], 0);
482 clockevents_config_and_register(evt
, clk_rate
/ (TICK_BASE_CNT
+ 1),
488 static int exynos4_mct_dying_cpu(unsigned int cpu
)
490 struct mct_clock_event_device
*mevt
=
491 per_cpu_ptr(&percpu_mct_tick
, cpu
);
492 struct clock_event_device
*evt
= &mevt
->evt
;
494 evt
->set_state_shutdown(evt
);
495 if (mct_int_type
== MCT_INT_SPI
) {
497 disable_irq_nosync(evt
->irq
);
499 disable_percpu_irq(mct_irqs
[MCT_L0_IRQ
]);
504 static int __init
exynos4_timer_resources(struct device_node
*np
, void __iomem
*base
)
507 struct clk
*mct_clk
, *tick_clk
;
509 tick_clk
= np
? of_clk_get_by_name(np
, "fin_pll") :
510 clk_get(NULL
, "fin_pll");
511 if (IS_ERR(tick_clk
))
512 panic("%s: unable to determine tick clock rate\n", __func__
);
513 clk_rate
= clk_get_rate(tick_clk
);
515 mct_clk
= np
? of_clk_get_by_name(np
, "mct") : clk_get(NULL
, "mct");
517 panic("%s: unable to retrieve mct clock instance\n", __func__
);
518 clk_prepare_enable(mct_clk
);
522 panic("%s: unable to ioremap mct address space\n", __func__
);
524 if (mct_int_type
== MCT_INT_PPI
) {
526 err
= request_percpu_irq(mct_irqs
[MCT_L0_IRQ
],
527 exynos4_mct_tick_isr
, "MCT",
529 WARN(err
, "MCT: can't request IRQ %d (%d)\n",
530 mct_irqs
[MCT_L0_IRQ
], err
);
532 for_each_possible_cpu(cpu
) {
533 int mct_irq
= mct_irqs
[MCT_L0_IRQ
+ cpu
];
534 struct mct_clock_event_device
*pcpu_mevt
=
535 per_cpu_ptr(&percpu_mct_tick
, cpu
);
537 pcpu_mevt
->evt
.irq
= -1;
539 irq_set_status_flags(mct_irq
, IRQ_NOAUTOEN
);
540 if (request_irq(mct_irq
,
541 exynos4_mct_tick_isr
,
542 IRQF_TIMER
| IRQF_NOBALANCING
,
543 pcpu_mevt
->name
, pcpu_mevt
)) {
544 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
549 pcpu_mevt
->evt
.irq
= mct_irq
;
553 /* Install hotplug callbacks which configure the timer on this CPU */
554 err
= cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING
,
555 "AP_EXYNOS4_MCT_TIMER_STARTING",
556 exynos4_mct_starting_cpu
,
557 exynos4_mct_dying_cpu
);
564 free_percpu_irq(mct_irqs
[MCT_L0_IRQ
], &percpu_mct_tick
);
568 static int __init
mct_init_dt(struct device_node
*np
, unsigned int int_type
)
573 mct_int_type
= int_type
;
575 /* This driver uses only one global timer interrupt */
576 mct_irqs
[MCT_G0_IRQ
] = irq_of_parse_and_map(np
, MCT_G0_IRQ
);
579 * Find out the number of local irqs specified. The local
580 * timer irqs are specified after the four global timer
581 * irqs are specified.
584 nr_irqs
= of_irq_count(np
);
588 for (i
= MCT_L0_IRQ
; i
< nr_irqs
; i
++)
589 mct_irqs
[i
] = irq_of_parse_and_map(np
, i
);
591 ret
= exynos4_timer_resources(np
, of_iomap(np
, 0));
595 ret
= exynos4_clocksource_init();
599 return exynos4_clockevent_init();
603 static int __init
mct_init_spi(struct device_node
*np
)
605 return mct_init_dt(np
, MCT_INT_SPI
);
608 static int __init
mct_init_ppi(struct device_node
*np
)
610 return mct_init_dt(np
, MCT_INT_PPI
);
612 CLOCKSOURCE_OF_DECLARE(exynos4210
, "samsung,exynos4210-mct", mct_init_spi
);
613 CLOCKSOURCE_OF_DECLARE(exynos4412
, "samsung,exynos4412-mct", mct_init_ppi
);