USB: serial: option: reimplement interface masking
[linux/fpc-iii.git] / arch / arm / kernel / perf_event_v6.c
blob1d7061a389222862c68ea4da2dd8063a5a503c25
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARMv6 Performance counter handling code.
5 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * ARMv6 has 2 configurable performance counters and a single cycle counter.
8 * They all share a single reset bit but can be written to zero so we can use
9 * that for a reset.
11 * The counters can't be individually enabled or disabled so when we remove
12 * one event and replace it with another we could get spurious counts from the
13 * wrong event. However, we can take advantage of the fact that the
14 * performance counters can export events to the event bus, and the event bus
15 * itself can be monitored. This requires that we *don't* export the events to
16 * the event bus. The procedure for disabling a configurable counter is:
17 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
18 * effectively stops the counter from counting.
19 * - disable the counter's interrupt generation (each counter has it's
20 * own interrupt enable bit).
21 * Once stopped, the counter value can be written as 0 to reset.
23 * To enable a counter:
24 * - enable the counter's interrupt generation.
25 * - set the new event type.
27 * Note: the dedicated cycle counter only counts cycles and can't be
28 * enabled/disabled independently of the others. When we want to disable the
29 * cycle counter, we have to just disable the interrupt reporting and start
30 * ignoring that counter. When re-enabling, we have to reset the value and
31 * enable the interrupt.
34 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
36 #include <asm/cputype.h>
37 #include <asm/irq_regs.h>
39 #include <linux/of.h>
40 #include <linux/perf/arm_pmu.h>
41 #include <linux/platform_device.h>
43 enum armv6_perf_types {
44 ARMV6_PERFCTR_ICACHE_MISS = 0x0,
45 ARMV6_PERFCTR_IBUF_STALL = 0x1,
46 ARMV6_PERFCTR_DDEP_STALL = 0x2,
47 ARMV6_PERFCTR_ITLB_MISS = 0x3,
48 ARMV6_PERFCTR_DTLB_MISS = 0x4,
49 ARMV6_PERFCTR_BR_EXEC = 0x5,
50 ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
51 ARMV6_PERFCTR_INSTR_EXEC = 0x7,
52 ARMV6_PERFCTR_DCACHE_HIT = 0x9,
53 ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
54 ARMV6_PERFCTR_DCACHE_MISS = 0xB,
55 ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
56 ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
57 ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
58 ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
59 ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
60 ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
61 ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
62 ARMV6_PERFCTR_NOP = 0x20,
65 enum armv6_counters {
66 ARMV6_CYCLE_COUNTER = 0,
67 ARMV6_COUNTER0,
68 ARMV6_COUNTER1,
72 * The hardware events that we support. We do support cache operations but
73 * we have harvard caches and no way to combine instruction and data
74 * accesses/misses in hardware.
76 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
77 PERF_MAP_ALL_UNSUPPORTED,
78 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
79 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
80 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
81 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
82 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6_PERFCTR_IBUF_STALL,
83 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV6_PERFCTR_LSU_FULL_STALL,
86 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
87 [PERF_COUNT_HW_CACHE_OP_MAX]
88 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
89 PERF_CACHE_MAP_ALL_UNSUPPORTED,
92 * The performance counters don't differentiate between read and write
93 * accesses/misses so this isn't strictly correct, but it's the best we
94 * can do. Writes and reads get combined.
96 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
97 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
98 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
99 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
101 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
104 * The ARM performance counters can count micro DTLB misses, micro ITLB
105 * misses and main TLB misses. There isn't an event for TLB misses, so
106 * use the micro misses here and if users want the main TLB misses they
107 * can use a raw counter.
109 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
110 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
112 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
113 [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
116 enum armv6mpcore_perf_types {
117 ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
118 ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
119 ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
120 ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
121 ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
122 ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
123 ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
124 ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
125 ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
126 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
127 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
128 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
129 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
130 ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
131 ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
132 ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
133 ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
134 ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
135 ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
136 ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
140 * The hardware events that we support. We do support cache operations but
141 * we have harvard caches and no way to combine instruction and data
142 * accesses/misses in hardware.
144 static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
145 PERF_MAP_ALL_UNSUPPORTED,
146 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
147 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
148 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
149 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
150 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6MPCORE_PERFCTR_IBUF_STALL,
151 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV6MPCORE_PERFCTR_LSU_FULL_STALL,
154 static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
155 [PERF_COUNT_HW_CACHE_OP_MAX]
156 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
157 PERF_CACHE_MAP_ALL_UNSUPPORTED,
159 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
160 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
161 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
162 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
164 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
167 * The ARM performance counters can count micro DTLB misses, micro ITLB
168 * misses and main TLB misses. There isn't an event for TLB misses, so
169 * use the micro misses here and if users want the main TLB misses they
170 * can use a raw counter.
172 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
173 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
175 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
176 [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
179 static inline unsigned long
180 armv6_pmcr_read(void)
182 u32 val;
183 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
184 return val;
187 static inline void
188 armv6_pmcr_write(unsigned long val)
190 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
193 #define ARMV6_PMCR_ENABLE (1 << 0)
194 #define ARMV6_PMCR_CTR01_RESET (1 << 1)
195 #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
196 #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
197 #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
198 #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
199 #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
200 #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
201 #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
202 #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
203 #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
204 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
205 #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
206 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
208 #define ARMV6_PMCR_OVERFLOWED_MASK \
209 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
210 ARMV6_PMCR_CCOUNT_OVERFLOW)
212 static inline int
213 armv6_pmcr_has_overflowed(unsigned long pmcr)
215 return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
218 static inline int
219 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
220 enum armv6_counters counter)
222 int ret = 0;
224 if (ARMV6_CYCLE_COUNTER == counter)
225 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
226 else if (ARMV6_COUNTER0 == counter)
227 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
228 else if (ARMV6_COUNTER1 == counter)
229 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
230 else
231 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
233 return ret;
236 static inline u32 armv6pmu_read_counter(struct perf_event *event)
238 struct hw_perf_event *hwc = &event->hw;
239 int counter = hwc->idx;
240 unsigned long value = 0;
242 if (ARMV6_CYCLE_COUNTER == counter)
243 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
244 else if (ARMV6_COUNTER0 == counter)
245 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
246 else if (ARMV6_COUNTER1 == counter)
247 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
248 else
249 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
251 return value;
254 static inline void armv6pmu_write_counter(struct perf_event *event, u32 value)
256 struct hw_perf_event *hwc = &event->hw;
257 int counter = hwc->idx;
259 if (ARMV6_CYCLE_COUNTER == counter)
260 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
261 else if (ARMV6_COUNTER0 == counter)
262 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
263 else if (ARMV6_COUNTER1 == counter)
264 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
265 else
266 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
269 static void armv6pmu_enable_event(struct perf_event *event)
271 unsigned long val, mask, evt, flags;
272 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
273 struct hw_perf_event *hwc = &event->hw;
274 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
275 int idx = hwc->idx;
277 if (ARMV6_CYCLE_COUNTER == idx) {
278 mask = 0;
279 evt = ARMV6_PMCR_CCOUNT_IEN;
280 } else if (ARMV6_COUNTER0 == idx) {
281 mask = ARMV6_PMCR_EVT_COUNT0_MASK;
282 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
283 ARMV6_PMCR_COUNT0_IEN;
284 } else if (ARMV6_COUNTER1 == idx) {
285 mask = ARMV6_PMCR_EVT_COUNT1_MASK;
286 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
287 ARMV6_PMCR_COUNT1_IEN;
288 } else {
289 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
290 return;
294 * Mask out the current event and set the counter to count the event
295 * that we're interested in.
297 raw_spin_lock_irqsave(&events->pmu_lock, flags);
298 val = armv6_pmcr_read();
299 val &= ~mask;
300 val |= evt;
301 armv6_pmcr_write(val);
302 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
305 static irqreturn_t
306 armv6pmu_handle_irq(int irq_num,
307 void *dev)
309 unsigned long pmcr = armv6_pmcr_read();
310 struct perf_sample_data data;
311 struct arm_pmu *cpu_pmu = (struct arm_pmu *)dev;
312 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
313 struct pt_regs *regs;
314 int idx;
316 if (!armv6_pmcr_has_overflowed(pmcr))
317 return IRQ_NONE;
319 regs = get_irq_regs();
322 * The interrupts are cleared by writing the overflow flags back to
323 * the control register. All of the other bits don't have any effect
324 * if they are rewritten, so write the whole value back.
326 armv6_pmcr_write(pmcr);
328 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
329 struct perf_event *event = cpuc->events[idx];
330 struct hw_perf_event *hwc;
332 /* Ignore if we don't have an event. */
333 if (!event)
334 continue;
337 * We have a single interrupt for all counters. Check that
338 * each counter has overflowed before we process it.
340 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
341 continue;
343 hwc = &event->hw;
344 armpmu_event_update(event);
345 perf_sample_data_init(&data, 0, hwc->last_period);
346 if (!armpmu_event_set_period(event))
347 continue;
349 if (perf_event_overflow(event, &data, regs))
350 cpu_pmu->disable(event);
354 * Handle the pending perf events.
356 * Note: this call *must* be run with interrupts disabled. For
357 * platforms that can have the PMU interrupts raised as an NMI, this
358 * will not work.
360 irq_work_run();
362 return IRQ_HANDLED;
365 static void armv6pmu_start(struct arm_pmu *cpu_pmu)
367 unsigned long flags, val;
368 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
370 raw_spin_lock_irqsave(&events->pmu_lock, flags);
371 val = armv6_pmcr_read();
372 val |= ARMV6_PMCR_ENABLE;
373 armv6_pmcr_write(val);
374 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
377 static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
379 unsigned long flags, val;
380 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
382 raw_spin_lock_irqsave(&events->pmu_lock, flags);
383 val = armv6_pmcr_read();
384 val &= ~ARMV6_PMCR_ENABLE;
385 armv6_pmcr_write(val);
386 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
389 static int
390 armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
391 struct perf_event *event)
393 struct hw_perf_event *hwc = &event->hw;
394 /* Always place a cycle counter into the cycle counter. */
395 if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
396 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
397 return -EAGAIN;
399 return ARMV6_CYCLE_COUNTER;
400 } else {
402 * For anything other than a cycle counter, try and use
403 * counter0 and counter1.
405 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
406 return ARMV6_COUNTER1;
408 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
409 return ARMV6_COUNTER0;
411 /* The counters are all in use. */
412 return -EAGAIN;
416 static void armv6pmu_disable_event(struct perf_event *event)
418 unsigned long val, mask, evt, flags;
419 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
420 struct hw_perf_event *hwc = &event->hw;
421 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
422 int idx = hwc->idx;
424 if (ARMV6_CYCLE_COUNTER == idx) {
425 mask = ARMV6_PMCR_CCOUNT_IEN;
426 evt = 0;
427 } else if (ARMV6_COUNTER0 == idx) {
428 mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
429 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
430 } else if (ARMV6_COUNTER1 == idx) {
431 mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
432 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
433 } else {
434 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
435 return;
439 * Mask out the current event and set the counter to count the number
440 * of ETM bus signal assertion cycles. The external reporting should
441 * be disabled and so this should never increment.
443 raw_spin_lock_irqsave(&events->pmu_lock, flags);
444 val = armv6_pmcr_read();
445 val &= ~mask;
446 val |= evt;
447 armv6_pmcr_write(val);
448 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
451 static void armv6mpcore_pmu_disable_event(struct perf_event *event)
453 unsigned long val, mask, flags, evt = 0;
454 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
455 struct hw_perf_event *hwc = &event->hw;
456 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
457 int idx = hwc->idx;
459 if (ARMV6_CYCLE_COUNTER == idx) {
460 mask = ARMV6_PMCR_CCOUNT_IEN;
461 } else if (ARMV6_COUNTER0 == idx) {
462 mask = ARMV6_PMCR_COUNT0_IEN;
463 } else if (ARMV6_COUNTER1 == idx) {
464 mask = ARMV6_PMCR_COUNT1_IEN;
465 } else {
466 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
467 return;
471 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
472 * simply disable the interrupt reporting.
474 raw_spin_lock_irqsave(&events->pmu_lock, flags);
475 val = armv6_pmcr_read();
476 val &= ~mask;
477 val |= evt;
478 armv6_pmcr_write(val);
479 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
482 static int armv6_map_event(struct perf_event *event)
484 return armpmu_map_event(event, &armv6_perf_map,
485 &armv6_perf_cache_map, 0xFF);
488 static void armv6pmu_init(struct arm_pmu *cpu_pmu)
490 cpu_pmu->handle_irq = armv6pmu_handle_irq;
491 cpu_pmu->enable = armv6pmu_enable_event;
492 cpu_pmu->disable = armv6pmu_disable_event;
493 cpu_pmu->read_counter = armv6pmu_read_counter;
494 cpu_pmu->write_counter = armv6pmu_write_counter;
495 cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
496 cpu_pmu->start = armv6pmu_start;
497 cpu_pmu->stop = armv6pmu_stop;
498 cpu_pmu->map_event = armv6_map_event;
499 cpu_pmu->num_events = 3;
500 cpu_pmu->max_period = (1LLU << 32) - 1;
503 static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
505 armv6pmu_init(cpu_pmu);
506 cpu_pmu->name = "armv6_1136";
507 return 0;
510 static int armv6_1156_pmu_init(struct arm_pmu *cpu_pmu)
512 armv6pmu_init(cpu_pmu);
513 cpu_pmu->name = "armv6_1156";
514 return 0;
517 static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
519 armv6pmu_init(cpu_pmu);
520 cpu_pmu->name = "armv6_1176";
521 return 0;
525 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
526 * that some of the events have different enumerations and that there is no
527 * *hack* to stop the programmable counters. To stop the counters we simply
528 * disable the interrupt reporting and update the event. When unthrottling we
529 * reset the period and enable the interrupt reporting.
532 static int armv6mpcore_map_event(struct perf_event *event)
534 return armpmu_map_event(event, &armv6mpcore_perf_map,
535 &armv6mpcore_perf_cache_map, 0xFF);
538 static int armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
540 cpu_pmu->name = "armv6_11mpcore";
541 cpu_pmu->handle_irq = armv6pmu_handle_irq;
542 cpu_pmu->enable = armv6pmu_enable_event;
543 cpu_pmu->disable = armv6mpcore_pmu_disable_event;
544 cpu_pmu->read_counter = armv6pmu_read_counter;
545 cpu_pmu->write_counter = armv6pmu_write_counter;
546 cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
547 cpu_pmu->start = armv6pmu_start;
548 cpu_pmu->stop = armv6pmu_stop;
549 cpu_pmu->map_event = armv6mpcore_map_event;
550 cpu_pmu->num_events = 3;
551 cpu_pmu->max_period = (1LLU << 32) - 1;
553 return 0;
556 static const struct of_device_id armv6_pmu_of_device_ids[] = {
557 {.compatible = "arm,arm11mpcore-pmu", .data = armv6mpcore_pmu_init},
558 {.compatible = "arm,arm1176-pmu", .data = armv6_1176_pmu_init},
559 {.compatible = "arm,arm1136-pmu", .data = armv6_1136_pmu_init},
560 { /* sentinel value */ }
563 static const struct pmu_probe_info armv6_pmu_probe_table[] = {
564 ARM_PMU_PROBE(ARM_CPU_PART_ARM1136, armv6_1136_pmu_init),
565 ARM_PMU_PROBE(ARM_CPU_PART_ARM1156, armv6_1156_pmu_init),
566 ARM_PMU_PROBE(ARM_CPU_PART_ARM1176, armv6_1176_pmu_init),
567 ARM_PMU_PROBE(ARM_CPU_PART_ARM11MPCORE, armv6mpcore_pmu_init),
568 { /* sentinel value */ }
571 static int armv6_pmu_device_probe(struct platform_device *pdev)
573 return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids,
574 armv6_pmu_probe_table);
577 static struct platform_driver armv6_pmu_driver = {
578 .driver = {
579 .name = "armv6-pmu",
580 .of_match_table = armv6_pmu_of_device_ids,
582 .probe = armv6_pmu_device_probe,
585 builtin_platform_driver(armv6_pmu_driver);
586 #endif /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */