1 #include <linux/extable.h>
2 #include <linux/uaccess.h>
3 #include <linux/sched/debug.h>
5 #include <asm/fpu/internal.h>
7 #include <asm/kdebug.h>
9 typedef bool (*ex_handler_t
)(const struct exception_table_entry
*,
10 struct pt_regs
*, int);
12 static inline unsigned long
13 ex_fixup_addr(const struct exception_table_entry
*x
)
15 return (unsigned long)&x
->fixup
+ x
->fixup
;
17 static inline ex_handler_t
18 ex_fixup_handler(const struct exception_table_entry
*x
)
20 return (ex_handler_t
)((unsigned long)&x
->handler
+ x
->handler
);
23 bool ex_handler_default(const struct exception_table_entry
*fixup
,
24 struct pt_regs
*regs
, int trapnr
)
26 regs
->ip
= ex_fixup_addr(fixup
);
29 EXPORT_SYMBOL(ex_handler_default
);
31 bool ex_handler_fault(const struct exception_table_entry
*fixup
,
32 struct pt_regs
*regs
, int trapnr
)
34 regs
->ip
= ex_fixup_addr(fixup
);
38 EXPORT_SYMBOL_GPL(ex_handler_fault
);
41 * Handler for UD0 exception following a failed test against the
42 * result of a refcount inc/dec/add/sub.
44 bool ex_handler_refcount(const struct exception_table_entry
*fixup
,
45 struct pt_regs
*regs
, int trapnr
)
47 /* First unconditionally saturate the refcount. */
48 *(int *)regs
->cx
= INT_MIN
/ 2;
51 * Strictly speaking, this reports the fixup destination, not
52 * the fault location, and not the actually overflowing
53 * instruction, which is the instruction before the "js", but
54 * since that instruction could be a variety of lengths, just
55 * report the location after the overflow, which should be close
56 * enough for finding the overflow, as it's at least back in
57 * the function, having returned from .text.unlikely.
59 regs
->ip
= ex_fixup_addr(fixup
);
62 * This function has been called because either a negative refcount
63 * value was seen by any of the refcount functions, or a zero
64 * refcount value was seen by refcount_dec().
66 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
67 * wrapped around) will be set. Additionally, seeing the refcount
68 * reach 0 will set ZF (Zero Flag: result was zero). In each of
69 * these cases we want a report, since it's a boundary condition.
70 * The SF case is not reported since it indicates post-boundary
71 * manipulations below zero or above INT_MAX. And if none of the
72 * flags are set, something has gone very wrong, so report it.
74 if (regs
->flags
& (X86_EFLAGS_OF
| X86_EFLAGS_ZF
)) {
75 bool zero
= regs
->flags
& X86_EFLAGS_ZF
;
77 refcount_error_report(regs
, zero
? "hit zero" : "overflow");
78 } else if ((regs
->flags
& X86_EFLAGS_SF
) == 0) {
79 /* Report if none of OF, ZF, nor SF are set. */
80 refcount_error_report(regs
, "unexpected saturation");
85 EXPORT_SYMBOL(ex_handler_refcount
);
88 * Handler for when we fail to restore a task's FPU state. We should never get
89 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
90 * should always be valid. However, past bugs have allowed userspace to set
91 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
92 * These caused XRSTOR to fail when switching to the task, leaking the FPU
93 * registers of the task previously executing on the CPU. Mitigate this class
94 * of vulnerability by restoring from the initial state (essentially, zeroing
95 * out all the FPU registers) if we can't restore from the task's FPU state.
97 bool ex_handler_fprestore(const struct exception_table_entry
*fixup
,
98 struct pt_regs
*regs
, int trapnr
)
100 regs
->ip
= ex_fixup_addr(fixup
);
102 WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
103 (void *)instruction_pointer(regs
));
105 __copy_kernel_to_fpregs(&init_fpstate
, -1);
108 EXPORT_SYMBOL_GPL(ex_handler_fprestore
);
110 bool ex_handler_ext(const struct exception_table_entry
*fixup
,
111 struct pt_regs
*regs
, int trapnr
)
113 /* Special hack for uaccess_err */
114 current
->thread
.uaccess_err
= 1;
115 regs
->ip
= ex_fixup_addr(fixup
);
118 EXPORT_SYMBOL(ex_handler_ext
);
120 bool ex_handler_rdmsr_unsafe(const struct exception_table_entry
*fixup
,
121 struct pt_regs
*regs
, int trapnr
)
123 if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n",
124 (unsigned int)regs
->cx
, regs
->ip
, (void *)regs
->ip
))
125 show_stack_regs(regs
);
127 /* Pretend that the read succeeded and returned 0. */
128 regs
->ip
= ex_fixup_addr(fixup
);
133 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe
);
135 bool ex_handler_wrmsr_unsafe(const struct exception_table_entry
*fixup
,
136 struct pt_regs
*regs
, int trapnr
)
138 if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n",
139 (unsigned int)regs
->cx
, (unsigned int)regs
->dx
,
140 (unsigned int)regs
->ax
, regs
->ip
, (void *)regs
->ip
))
141 show_stack_regs(regs
);
143 /* Pretend that the write succeeded. */
144 regs
->ip
= ex_fixup_addr(fixup
);
147 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe
);
149 bool ex_handler_clear_fs(const struct exception_table_entry
*fixup
,
150 struct pt_regs
*regs
, int trapnr
)
152 if (static_cpu_has(X86_BUG_NULL_SEG
))
153 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS
));
154 asm volatile ("mov %0, %%fs" : : "rm" (0));
155 return ex_handler_default(fixup
, regs
, trapnr
);
157 EXPORT_SYMBOL(ex_handler_clear_fs
);
159 bool ex_has_fault_handler(unsigned long ip
)
161 const struct exception_table_entry
*e
;
162 ex_handler_t handler
;
164 e
= search_exception_tables(ip
);
167 handler
= ex_fixup_handler(e
);
169 return handler
== ex_handler_fault
;
172 int fixup_exception(struct pt_regs
*regs
, int trapnr
)
174 const struct exception_table_entry
*e
;
175 ex_handler_t handler
;
177 #ifdef CONFIG_PNPBIOS
178 if (unlikely(SEGMENT_IS_PNP_CODE(regs
->cs
))) {
179 extern u32 pnp_bios_fault_eip
, pnp_bios_fault_esp
;
180 extern u32 pnp_bios_is_utter_crap
;
181 pnp_bios_is_utter_crap
= 1;
182 printk(KERN_CRIT
"PNPBIOS fault.. attempting recovery.\n");
186 : : "g" (pnp_bios_fault_esp
), "g" (pnp_bios_fault_eip
));
187 panic("do_trap: can't hit this");
191 e
= search_exception_tables(regs
->ip
);
195 handler
= ex_fixup_handler(e
);
196 return handler(e
, regs
, trapnr
);
199 extern unsigned int early_recursion_flag
;
201 /* Restricted version used during very early boot */
202 void __init
early_fixup_exception(struct pt_regs
*regs
, int trapnr
)
204 /* Ignore early NMIs. */
205 if (trapnr
== X86_TRAP_NMI
)
208 if (early_recursion_flag
> 2)
212 * Old CPUs leave the high bits of CS on the stack
213 * undefined. I'm not sure which CPUs do this, but at least
214 * the 486 DX works this way.
216 if (regs
->cs
!= __KERNEL_CS
)
220 * The full exception fixup machinery is available as soon as
221 * the early IDT is loaded. This means that it is the
222 * responsibility of extable users to either function correctly
223 * when handlers are invoked early or to simply avoid causing
224 * exceptions before they're ready to handle them.
226 * This is better than filtering which handlers can be used,
227 * because refusing to call a handler here is guaranteed to
228 * result in a hard-to-debug panic.
230 * Keep in mind that not all vectors actually get here. Early
231 * fage faults, for example, are special.
233 if (fixup_exception(regs
, trapnr
))
236 if (fixup_bug(regs
, trapnr
))
240 early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
241 (unsigned)trapnr
, (unsigned long)regs
->cs
, regs
->ip
,
242 regs
->orig_ax
, read_cr2());