4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
12 #include <linux/nsproxy.h>
13 #include <uapi/linux/mount.h>
17 /* return the next shared peer mount of @p */
18 static inline struct mount
*next_peer(struct mount
*p
)
20 return list_entry(p
->mnt_share
.next
, struct mount
, mnt_share
);
23 static inline struct mount
*first_slave(struct mount
*p
)
25 return list_entry(p
->mnt_slave_list
.next
, struct mount
, mnt_slave
);
28 static inline struct mount
*last_slave(struct mount
*p
)
30 return list_entry(p
->mnt_slave_list
.prev
, struct mount
, mnt_slave
);
33 static inline struct mount
*next_slave(struct mount
*p
)
35 return list_entry(p
->mnt_slave
.next
, struct mount
, mnt_slave
);
38 static struct mount
*get_peer_under_root(struct mount
*mnt
,
39 struct mnt_namespace
*ns
,
40 const struct path
*root
)
42 struct mount
*m
= mnt
;
45 /* Check the namespace first for optimization */
46 if (m
->mnt_ns
== ns
&& is_path_reachable(m
, m
->mnt
.mnt_root
, root
))
56 * Get ID of closest dominating peer group having a representative
57 * under the given root.
59 * Caller must hold namespace_sem
61 int get_dominating_id(struct mount
*mnt
, const struct path
*root
)
65 for (m
= mnt
->mnt_master
; m
!= NULL
; m
= m
->mnt_master
) {
66 struct mount
*d
= get_peer_under_root(m
, mnt
->mnt_ns
, root
);
68 return d
->mnt_group_id
;
74 static int do_make_slave(struct mount
*mnt
)
76 struct mount
*master
, *slave_mnt
;
78 if (list_empty(&mnt
->mnt_share
)) {
79 if (IS_MNT_SHARED(mnt
)) {
80 mnt_release_group_id(mnt
);
81 CLEAR_MNT_SHARED(mnt
);
83 master
= mnt
->mnt_master
;
85 struct list_head
*p
= &mnt
->mnt_slave_list
;
86 while (!list_empty(p
)) {
87 slave_mnt
= list_first_entry(p
,
88 struct mount
, mnt_slave
);
89 list_del_init(&slave_mnt
->mnt_slave
);
90 slave_mnt
->mnt_master
= NULL
;
97 * slave 'mnt' to a peer mount that has the
98 * same root dentry. If none is available then
99 * slave it to anything that is available.
101 for (m
= master
= next_peer(mnt
); m
!= mnt
; m
= next_peer(m
)) {
102 if (m
->mnt
.mnt_root
== mnt
->mnt
.mnt_root
) {
107 list_del_init(&mnt
->mnt_share
);
108 mnt
->mnt_group_id
= 0;
109 CLEAR_MNT_SHARED(mnt
);
111 list_for_each_entry(slave_mnt
, &mnt
->mnt_slave_list
, mnt_slave
)
112 slave_mnt
->mnt_master
= master
;
113 list_move(&mnt
->mnt_slave
, &master
->mnt_slave_list
);
114 list_splice(&mnt
->mnt_slave_list
, master
->mnt_slave_list
.prev
);
115 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
116 mnt
->mnt_master
= master
;
121 * vfsmount lock must be held for write
123 void change_mnt_propagation(struct mount
*mnt
, int type
)
125 if (type
== MS_SHARED
) {
130 if (type
!= MS_SLAVE
) {
131 list_del_init(&mnt
->mnt_slave
);
132 mnt
->mnt_master
= NULL
;
133 if (type
== MS_UNBINDABLE
)
134 mnt
->mnt
.mnt_flags
|= MNT_UNBINDABLE
;
136 mnt
->mnt
.mnt_flags
&= ~MNT_UNBINDABLE
;
141 * get the next mount in the propagation tree.
142 * @m: the mount seen last
143 * @origin: the original mount from where the tree walk initiated
145 * Note that peer groups form contiguous segments of slave lists.
146 * We rely on that in get_source() to be able to find out if
147 * vfsmount found while iterating with propagation_next() is
148 * a peer of one we'd found earlier.
150 static struct mount
*propagation_next(struct mount
*m
,
151 struct mount
*origin
)
153 /* are there any slaves of this mount? */
154 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
155 return first_slave(m
);
158 struct mount
*master
= m
->mnt_master
;
160 if (master
== origin
->mnt_master
) {
161 struct mount
*next
= next_peer(m
);
162 return (next
== origin
) ? NULL
: next
;
163 } else if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
164 return next_slave(m
);
171 static struct mount
*skip_propagation_subtree(struct mount
*m
,
172 struct mount
*origin
)
175 * Advance m such that propagation_next will not return
178 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
184 static struct mount
*next_group(struct mount
*m
, struct mount
*origin
)
189 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
190 return first_slave(m
);
192 if (m
->mnt_group_id
== origin
->mnt_group_id
) {
195 } else if (m
->mnt_slave
.next
!= &next
->mnt_slave
)
199 /* m is the last peer */
201 struct mount
*master
= m
->mnt_master
;
202 if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
203 return next_slave(m
);
204 m
= next_peer(master
);
205 if (master
->mnt_group_id
== origin
->mnt_group_id
)
207 if (master
->mnt_slave
.next
== &m
->mnt_slave
)
216 /* all accesses are serialized by namespace_sem */
217 static struct mount
*last_dest
, *first_source
, *last_source
, *dest_master
;
218 static struct mountpoint
*mp
;
219 static struct hlist_head
*list
;
221 static inline bool peers(struct mount
*m1
, struct mount
*m2
)
223 return m1
->mnt_group_id
== m2
->mnt_group_id
&& m1
->mnt_group_id
;
226 static int propagate_one(struct mount
*m
)
230 /* skip ones added by this propagate_mnt() */
233 /* skip if mountpoint isn't covered by it */
234 if (!is_subdir(mp
->m_dentry
, m
->mnt
.mnt_root
))
236 if (peers(m
, last_dest
)) {
237 type
= CL_MAKE_SHARED
;
241 for (n
= m
; ; n
= p
) {
243 if (p
== dest_master
|| IS_MNT_MARKED(p
))
247 struct mount
*parent
= last_source
->mnt_parent
;
248 if (last_source
== first_source
)
250 done
= parent
->mnt_master
== p
;
251 if (done
&& peers(n
, parent
))
253 last_source
= last_source
->mnt_master
;
257 /* beginning of peer group among the slaves? */
258 if (IS_MNT_SHARED(m
))
259 type
|= CL_MAKE_SHARED
;
262 child
= copy_tree(last_source
, last_source
->mnt
.mnt_root
, type
);
264 return PTR_ERR(child
);
265 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
266 mnt_set_mountpoint(m
, mp
, child
);
269 if (m
->mnt_master
!= dest_master
) {
270 read_seqlock_excl(&mount_lock
);
271 SET_MNT_MARK(m
->mnt_master
);
272 read_sequnlock_excl(&mount_lock
);
274 hlist_add_head(&child
->mnt_hash
, list
);
275 return count_mounts(m
->mnt_ns
, child
);
279 * mount 'source_mnt' under the destination 'dest_mnt' at
280 * dentry 'dest_dentry'. And propagate that mount to
281 * all the peer and slave mounts of 'dest_mnt'.
282 * Link all the new mounts into a propagation tree headed at
283 * source_mnt. Also link all the new mounts using ->mnt_list
284 * headed at source_mnt's ->mnt_list
286 * @dest_mnt: destination mount.
287 * @dest_dentry: destination dentry.
288 * @source_mnt: source mount.
289 * @tree_list : list of heads of trees to be attached.
291 int propagate_mnt(struct mount
*dest_mnt
, struct mountpoint
*dest_mp
,
292 struct mount
*source_mnt
, struct hlist_head
*tree_list
)
298 * we don't want to bother passing tons of arguments to
299 * propagate_one(); everything is serialized by namespace_sem,
300 * so globals will do just fine.
302 last_dest
= dest_mnt
;
303 first_source
= source_mnt
;
304 last_source
= source_mnt
;
307 dest_master
= dest_mnt
->mnt_master
;
309 /* all peers of dest_mnt, except dest_mnt itself */
310 for (n
= next_peer(dest_mnt
); n
!= dest_mnt
; n
= next_peer(n
)) {
311 ret
= propagate_one(n
);
316 /* all slave groups */
317 for (m
= next_group(dest_mnt
, dest_mnt
); m
;
318 m
= next_group(m
, dest_mnt
)) {
319 /* everything in that slave group */
322 ret
= propagate_one(n
);
329 read_seqlock_excl(&mount_lock
);
330 hlist_for_each_entry(n
, tree_list
, mnt_hash
) {
332 if (m
->mnt_master
!= dest_mnt
->mnt_master
)
333 CLEAR_MNT_MARK(m
->mnt_master
);
335 read_sequnlock_excl(&mount_lock
);
339 static struct mount
*find_topper(struct mount
*mnt
)
341 /* If there is exactly one mount covering mnt completely return it. */
344 if (!list_is_singular(&mnt
->mnt_mounts
))
347 child
= list_first_entry(&mnt
->mnt_mounts
, struct mount
, mnt_child
);
348 if (child
->mnt_mountpoint
!= mnt
->mnt
.mnt_root
)
355 * return true if the refcount is greater than count
357 static inline int do_refcount_check(struct mount
*mnt
, int count
)
359 return mnt_get_count(mnt
) > count
;
363 * check if the mount 'mnt' can be unmounted successfully.
364 * @mnt: the mount to be checked for unmount
365 * NOTE: unmounting 'mnt' would naturally propagate to all
366 * other mounts its parent propagates to.
367 * Check if any of these mounts that **do not have submounts**
368 * have more references than 'refcnt'. If so return busy.
370 * vfsmount lock must be held for write
372 int propagate_mount_busy(struct mount
*mnt
, int refcnt
)
374 struct mount
*m
, *child
, *topper
;
375 struct mount
*parent
= mnt
->mnt_parent
;
378 return do_refcount_check(mnt
, refcnt
);
381 * quickly check if the current mount can be unmounted.
382 * If not, we don't have to go checking for all other
385 if (!list_empty(&mnt
->mnt_mounts
) || do_refcount_check(mnt
, refcnt
))
388 for (m
= propagation_next(parent
, parent
); m
;
389 m
= propagation_next(m
, parent
)) {
391 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
395 /* Is there exactly one mount on the child that covers
396 * it completely whose reference should be ignored?
398 topper
= find_topper(child
);
401 else if (!list_empty(&child
->mnt_mounts
))
404 if (do_refcount_check(child
, count
))
411 * Clear MNT_LOCKED when it can be shown to be safe.
413 * mount_lock lock must be held for write
415 void propagate_mount_unlock(struct mount
*mnt
)
417 struct mount
*parent
= mnt
->mnt_parent
;
418 struct mount
*m
, *child
;
420 BUG_ON(parent
== mnt
);
422 for (m
= propagation_next(parent
, parent
); m
;
423 m
= propagation_next(m
, parent
)) {
424 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
426 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
430 static void umount_one(struct mount
*mnt
, struct list_head
*to_umount
)
433 mnt
->mnt
.mnt_flags
|= MNT_UMOUNT
;
434 list_del_init(&mnt
->mnt_child
);
435 list_del_init(&mnt
->mnt_umounting
);
436 list_move_tail(&mnt
->mnt_list
, to_umount
);
440 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
441 * parent propagates to.
443 static bool __propagate_umount(struct mount
*mnt
,
444 struct list_head
*to_umount
,
445 struct list_head
*to_restore
)
447 bool progress
= false;
451 * The state of the parent won't change if this mount is
452 * already unmounted or marked as without children.
454 if (mnt
->mnt
.mnt_flags
& (MNT_UMOUNT
| MNT_MARKED
))
457 /* Verify topper is the only grandchild that has not been
458 * speculatively unmounted.
460 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
461 if (child
->mnt_mountpoint
== mnt
->mnt
.mnt_root
)
463 if (!list_empty(&child
->mnt_umounting
) && IS_MNT_MARKED(child
))
465 /* Found a mounted child */
469 /* Mark mounts that can be unmounted if not locked */
473 /* If a mount is without children and not locked umount it. */
474 if (!IS_MNT_LOCKED(mnt
)) {
475 umount_one(mnt
, to_umount
);
478 list_move_tail(&mnt
->mnt_umounting
, to_restore
);
484 static void umount_list(struct list_head
*to_umount
,
485 struct list_head
*to_restore
)
487 struct mount
*mnt
, *child
, *tmp
;
488 list_for_each_entry(mnt
, to_umount
, mnt_list
) {
489 list_for_each_entry_safe(child
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
491 if (child
->mnt_mountpoint
== mnt
->mnt
.mnt_root
)
492 list_move_tail(&child
->mnt_umounting
, to_restore
);
494 umount_one(child
, to_umount
);
499 static void restore_mounts(struct list_head
*to_restore
)
501 /* Restore mounts to a clean working state */
502 while (!list_empty(to_restore
)) {
503 struct mount
*mnt
, *parent
;
504 struct mountpoint
*mp
;
506 mnt
= list_first_entry(to_restore
, struct mount
, mnt_umounting
);
508 list_del_init(&mnt
->mnt_umounting
);
510 /* Should this mount be reparented? */
512 parent
= mnt
->mnt_parent
;
513 while (parent
->mnt
.mnt_flags
& MNT_UMOUNT
) {
515 parent
= parent
->mnt_parent
;
517 if (parent
!= mnt
->mnt_parent
)
518 mnt_change_mountpoint(parent
, mp
, mnt
);
522 static void cleanup_umount_visitations(struct list_head
*visited
)
524 while (!list_empty(visited
)) {
526 list_first_entry(visited
, struct mount
, mnt_umounting
);
527 list_del_init(&mnt
->mnt_umounting
);
532 * collect all mounts that receive propagation from the mount in @list,
533 * and return these additional mounts in the same list.
534 * @list: the list of mounts to be unmounted.
536 * vfsmount lock must be held for write
538 int propagate_umount(struct list_head
*list
)
541 LIST_HEAD(to_restore
);
542 LIST_HEAD(to_umount
);
545 /* Find candidates for unmounting */
546 list_for_each_entry_reverse(mnt
, list
, mnt_list
) {
547 struct mount
*parent
= mnt
->mnt_parent
;
551 * If this mount has already been visited it is known that it's
552 * entire peer group and all of their slaves in the propagation
553 * tree for the mountpoint has already been visited and there is
554 * no need to visit them again.
556 if (!list_empty(&mnt
->mnt_umounting
))
559 list_add_tail(&mnt
->mnt_umounting
, &visited
);
560 for (m
= propagation_next(parent
, parent
); m
;
561 m
= propagation_next(m
, parent
)) {
562 struct mount
*child
= __lookup_mnt(&m
->mnt
,
563 mnt
->mnt_mountpoint
);
567 if (!list_empty(&child
->mnt_umounting
)) {
569 * If the child has already been visited it is
570 * know that it's entire peer group and all of
571 * their slaves in the propgation tree for the
572 * mountpoint has already been visited and there
573 * is no need to visit this subtree again.
575 m
= skip_propagation_subtree(m
, parent
);
577 } else if (child
->mnt
.mnt_flags
& MNT_UMOUNT
) {
579 * We have come accross an partially unmounted
580 * mount in list that has not been visited yet.
581 * Remember it has been visited and continue
582 * about our merry way.
584 list_add_tail(&child
->mnt_umounting
, &visited
);
588 /* Check the child and parents while progress is made */
589 while (__propagate_umount(child
,
590 &to_umount
, &to_restore
)) {
591 /* Is the parent a umount candidate? */
592 child
= child
->mnt_parent
;
593 if (list_empty(&child
->mnt_umounting
))
599 umount_list(&to_umount
, &to_restore
);
600 restore_mounts(&to_restore
);
601 cleanup_umount_visitations(&visited
);
602 list_splice_tail(&to_umount
, list
);