2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <asm/unaligned.h>
95 #include <linux/capability.h>
96 #include <linux/errno.h>
97 #include <linux/errqueue.h>
98 #include <linux/types.h>
99 #include <linux/socket.h>
100 #include <linux/in.h>
101 #include <linux/kernel.h>
102 #include <linux/module.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <linux/sched.h>
106 #include <linux/sched/mm.h>
107 #include <linux/timer.h>
108 #include <linux/string.h>
109 #include <linux/sockios.h>
110 #include <linux/net.h>
111 #include <linux/mm.h>
112 #include <linux/slab.h>
113 #include <linux/interrupt.h>
114 #include <linux/poll.h>
115 #include <linux/tcp.h>
116 #include <linux/init.h>
117 #include <linux/highmem.h>
118 #include <linux/user_namespace.h>
119 #include <linux/static_key.h>
120 #include <linux/memcontrol.h>
121 #include <linux/prefetch.h>
123 #include <linux/uaccess.h>
125 #include <linux/netdevice.h>
126 #include <net/protocol.h>
127 #include <linux/skbuff.h>
128 #include <net/net_namespace.h>
129 #include <net/request_sock.h>
130 #include <net/sock.h>
131 #include <linux/net_tstamp.h>
132 #include <net/xfrm.h>
133 #include <linux/ipsec.h>
134 #include <net/cls_cgroup.h>
135 #include <net/netprio_cgroup.h>
136 #include <linux/sock_diag.h>
138 #include <linux/filter.h>
139 #include <net/sock_reuseport.h>
141 #include <trace/events/sock.h>
144 #include <net/busy_poll.h>
146 static DEFINE_MUTEX(proto_list_mutex
);
147 static LIST_HEAD(proto_list
);
149 static void sock_inuse_add(struct net
*net
, int val
);
152 * sk_ns_capable - General socket capability test
153 * @sk: Socket to use a capability on or through
154 * @user_ns: The user namespace of the capability to use
155 * @cap: The capability to use
157 * Test to see if the opener of the socket had when the socket was
158 * created and the current process has the capability @cap in the user
159 * namespace @user_ns.
161 bool sk_ns_capable(const struct sock
*sk
,
162 struct user_namespace
*user_ns
, int cap
)
164 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
165 ns_capable(user_ns
, cap
);
167 EXPORT_SYMBOL(sk_ns_capable
);
170 * sk_capable - Socket global capability test
171 * @sk: Socket to use a capability on or through
172 * @cap: The global capability to use
174 * Test to see if the opener of the socket had when the socket was
175 * created and the current process has the capability @cap in all user
178 bool sk_capable(const struct sock
*sk
, int cap
)
180 return sk_ns_capable(sk
, &init_user_ns
, cap
);
182 EXPORT_SYMBOL(sk_capable
);
185 * sk_net_capable - Network namespace socket capability test
186 * @sk: Socket to use a capability on or through
187 * @cap: The capability to use
189 * Test to see if the opener of the socket had when the socket was created
190 * and the current process has the capability @cap over the network namespace
191 * the socket is a member of.
193 bool sk_net_capable(const struct sock
*sk
, int cap
)
195 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
197 EXPORT_SYMBOL(sk_net_capable
);
200 * Each address family might have different locking rules, so we have
201 * one slock key per address family and separate keys for internal and
204 static struct lock_class_key af_family_keys
[AF_MAX
];
205 static struct lock_class_key af_family_kern_keys
[AF_MAX
];
206 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
207 static struct lock_class_key af_family_kern_slock_keys
[AF_MAX
];
210 * Make lock validator output more readable. (we pre-construct these
211 * strings build-time, so that runtime initialization of socket
215 #define _sock_locks(x) \
216 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
217 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
218 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
219 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
220 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
221 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
222 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
223 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
224 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
225 x "27" , x "28" , x "AF_CAN" , \
226 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
227 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
228 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
229 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
230 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
233 static const char *const af_family_key_strings
[AF_MAX
+1] = {
234 _sock_locks("sk_lock-")
236 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
237 _sock_locks("slock-")
239 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
240 _sock_locks("clock-")
243 static const char *const af_family_kern_key_strings
[AF_MAX
+1] = {
244 _sock_locks("k-sk_lock-")
246 static const char *const af_family_kern_slock_key_strings
[AF_MAX
+1] = {
247 _sock_locks("k-slock-")
249 static const char *const af_family_kern_clock_key_strings
[AF_MAX
+1] = {
250 _sock_locks("k-clock-")
252 static const char *const af_family_rlock_key_strings
[AF_MAX
+1] = {
253 _sock_locks("rlock-")
255 static const char *const af_family_wlock_key_strings
[AF_MAX
+1] = {
256 _sock_locks("wlock-")
258 static const char *const af_family_elock_key_strings
[AF_MAX
+1] = {
259 _sock_locks("elock-")
263 * sk_callback_lock and sk queues locking rules are per-address-family,
264 * so split the lock classes by using a per-AF key:
266 static struct lock_class_key af_callback_keys
[AF_MAX
];
267 static struct lock_class_key af_rlock_keys
[AF_MAX
];
268 static struct lock_class_key af_wlock_keys
[AF_MAX
];
269 static struct lock_class_key af_elock_keys
[AF_MAX
];
270 static struct lock_class_key af_kern_callback_keys
[AF_MAX
];
272 /* Run time adjustable parameters. */
273 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
274 EXPORT_SYMBOL(sysctl_wmem_max
);
275 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
276 EXPORT_SYMBOL(sysctl_rmem_max
);
277 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
278 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
280 /* Maximal space eaten by iovec or ancillary data plus some space */
281 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
282 EXPORT_SYMBOL(sysctl_optmem_max
);
284 int sysctl_tstamp_allow_data __read_mostly
= 1;
286 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key
);
287 EXPORT_SYMBOL_GPL(memalloc_socks_key
);
290 * sk_set_memalloc - sets %SOCK_MEMALLOC
291 * @sk: socket to set it on
293 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
294 * It's the responsibility of the admin to adjust min_free_kbytes
295 * to meet the requirements
297 void sk_set_memalloc(struct sock
*sk
)
299 sock_set_flag(sk
, SOCK_MEMALLOC
);
300 sk
->sk_allocation
|= __GFP_MEMALLOC
;
301 static_branch_inc(&memalloc_socks_key
);
303 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
305 void sk_clear_memalloc(struct sock
*sk
)
307 sock_reset_flag(sk
, SOCK_MEMALLOC
);
308 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
309 static_branch_dec(&memalloc_socks_key
);
312 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
313 * progress of swapping. SOCK_MEMALLOC may be cleared while
314 * it has rmem allocations due to the last swapfile being deactivated
315 * but there is a risk that the socket is unusable due to exceeding
316 * the rmem limits. Reclaim the reserves and obey rmem limits again.
320 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
322 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
325 unsigned int noreclaim_flag
;
327 /* these should have been dropped before queueing */
328 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
330 noreclaim_flag
= memalloc_noreclaim_save();
331 ret
= sk
->sk_backlog_rcv(sk
, skb
);
332 memalloc_noreclaim_restore(noreclaim_flag
);
336 EXPORT_SYMBOL(__sk_backlog_rcv
);
338 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
342 if (optlen
< sizeof(tv
))
344 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
346 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
350 static int warned __read_mostly
;
353 if (warned
< 10 && net_ratelimit()) {
355 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
356 __func__
, current
->comm
, task_pid_nr(current
));
360 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
361 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
363 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
364 *timeo_p
= tv
.tv_sec
* HZ
+ DIV_ROUND_UP(tv
.tv_usec
, USEC_PER_SEC
/ HZ
);
368 static void sock_warn_obsolete_bsdism(const char *name
)
371 static char warncomm
[TASK_COMM_LEN
];
372 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
373 strcpy(warncomm
, current
->comm
);
374 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
380 static bool sock_needs_netstamp(const struct sock
*sk
)
382 switch (sk
->sk_family
) {
391 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
393 if (sk
->sk_flags
& flags
) {
394 sk
->sk_flags
&= ~flags
;
395 if (sock_needs_netstamp(sk
) &&
396 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
397 net_disable_timestamp();
402 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
405 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
407 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
408 atomic_inc(&sk
->sk_drops
);
409 trace_sock_rcvqueue_full(sk
, skb
);
413 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
414 atomic_inc(&sk
->sk_drops
);
419 skb_set_owner_r(skb
, sk
);
421 /* we escape from rcu protected region, make sure we dont leak
426 spin_lock_irqsave(&list
->lock
, flags
);
427 sock_skb_set_dropcount(sk
, skb
);
428 __skb_queue_tail(list
, skb
);
429 spin_unlock_irqrestore(&list
->lock
, flags
);
431 if (!sock_flag(sk
, SOCK_DEAD
))
432 sk
->sk_data_ready(sk
);
435 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
437 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
441 err
= sk_filter(sk
, skb
);
445 return __sock_queue_rcv_skb(sk
, skb
);
447 EXPORT_SYMBOL(sock_queue_rcv_skb
);
449 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
450 const int nested
, unsigned int trim_cap
, bool refcounted
)
452 int rc
= NET_RX_SUCCESS
;
454 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
455 goto discard_and_relse
;
459 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
460 atomic_inc(&sk
->sk_drops
);
461 goto discard_and_relse
;
464 bh_lock_sock_nested(sk
);
467 if (!sock_owned_by_user(sk
)) {
469 * trylock + unlock semantics:
471 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
473 rc
= sk_backlog_rcv(sk
, skb
);
475 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
476 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
478 atomic_inc(&sk
->sk_drops
);
479 goto discard_and_relse
;
491 EXPORT_SYMBOL(__sk_receive_skb
);
493 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
495 struct dst_entry
*dst
= __sk_dst_get(sk
);
497 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
498 sk_tx_queue_clear(sk
);
499 sk
->sk_dst_pending_confirm
= 0;
500 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
507 EXPORT_SYMBOL(__sk_dst_check
);
509 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
511 struct dst_entry
*dst
= sk_dst_get(sk
);
513 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
521 EXPORT_SYMBOL(sk_dst_check
);
523 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
526 int ret
= -ENOPROTOOPT
;
527 #ifdef CONFIG_NETDEVICES
528 struct net
*net
= sock_net(sk
);
529 char devname
[IFNAMSIZ
];
534 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
541 /* Bind this socket to a particular device like "eth0",
542 * as specified in the passed interface name. If the
543 * name is "" or the option length is zero the socket
546 if (optlen
> IFNAMSIZ
- 1)
547 optlen
= IFNAMSIZ
- 1;
548 memset(devname
, 0, sizeof(devname
));
551 if (copy_from_user(devname
, optval
, optlen
))
555 if (devname
[0] != '\0') {
556 struct net_device
*dev
;
559 dev
= dev_get_by_name_rcu(net
, devname
);
561 index
= dev
->ifindex
;
569 sk
->sk_bound_dev_if
= index
;
581 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
582 int __user
*optlen
, int len
)
584 int ret
= -ENOPROTOOPT
;
585 #ifdef CONFIG_NETDEVICES
586 struct net
*net
= sock_net(sk
);
587 char devname
[IFNAMSIZ
];
589 if (sk
->sk_bound_dev_if
== 0) {
598 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
602 len
= strlen(devname
) + 1;
605 if (copy_to_user(optval
, devname
, len
))
610 if (put_user(len
, optlen
))
621 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
624 sock_set_flag(sk
, bit
);
626 sock_reset_flag(sk
, bit
);
629 bool sk_mc_loop(struct sock
*sk
)
631 if (dev_recursion_level())
635 switch (sk
->sk_family
) {
637 return inet_sk(sk
)->mc_loop
;
638 #if IS_ENABLED(CONFIG_IPV6)
640 return inet6_sk(sk
)->mc_loop
;
646 EXPORT_SYMBOL(sk_mc_loop
);
649 * This is meant for all protocols to use and covers goings on
650 * at the socket level. Everything here is generic.
653 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
654 char __user
*optval
, unsigned int optlen
)
656 struct sock_txtime sk_txtime
;
657 struct sock
*sk
= sock
->sk
;
664 * Options without arguments
667 if (optname
== SO_BINDTODEVICE
)
668 return sock_setbindtodevice(sk
, optval
, optlen
);
670 if (optlen
< sizeof(int))
673 if (get_user(val
, (int __user
*)optval
))
676 valbool
= val
? 1 : 0;
682 if (val
&& !capable(CAP_NET_ADMIN
))
685 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
688 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
691 sk
->sk_reuseport
= valbool
;
700 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
704 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
707 /* Don't error on this BSD doesn't and if you think
708 * about it this is right. Otherwise apps have to
709 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710 * are treated in BSD as hints
712 val
= min_t(u32
, val
, sysctl_wmem_max
);
714 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
715 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
716 /* Wake up sending tasks if we upped the value. */
717 sk
->sk_write_space(sk
);
721 if (!capable(CAP_NET_ADMIN
)) {
728 /* Don't error on this BSD doesn't and if you think
729 * about it this is right. Otherwise apps have to
730 * play 'guess the biggest size' games. RCVBUF/SNDBUF
731 * are treated in BSD as hints
733 val
= min_t(u32
, val
, sysctl_rmem_max
);
735 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
737 * We double it on the way in to account for
738 * "struct sk_buff" etc. overhead. Applications
739 * assume that the SO_RCVBUF setting they make will
740 * allow that much actual data to be received on that
743 * Applications are unaware that "struct sk_buff" and
744 * other overheads allocate from the receive buffer
745 * during socket buffer allocation.
747 * And after considering the possible alternatives,
748 * returning the value we actually used in getsockopt
749 * is the most desirable behavior.
751 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
755 if (!capable(CAP_NET_ADMIN
)) {
762 if (sk
->sk_prot
->keepalive
)
763 sk
->sk_prot
->keepalive(sk
, valbool
);
764 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
768 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
772 sk
->sk_no_check_tx
= valbool
;
776 if ((val
>= 0 && val
<= 6) ||
777 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
778 sk
->sk_priority
= val
;
784 if (optlen
< sizeof(ling
)) {
785 ret
= -EINVAL
; /* 1003.1g */
788 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
793 sock_reset_flag(sk
, SOCK_LINGER
);
795 #if (BITS_PER_LONG == 32)
796 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
797 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
800 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
801 sock_set_flag(sk
, SOCK_LINGER
);
806 sock_warn_obsolete_bsdism("setsockopt");
811 set_bit(SOCK_PASSCRED
, &sock
->flags
);
813 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
819 if (optname
== SO_TIMESTAMP
)
820 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
822 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
823 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
824 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
826 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
827 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
831 case SO_TIMESTAMPING
:
832 if (val
& ~SOF_TIMESTAMPING_MASK
) {
837 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
838 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
839 if (sk
->sk_protocol
== IPPROTO_TCP
&&
840 sk
->sk_type
== SOCK_STREAM
) {
841 if ((1 << sk
->sk_state
) &
842 (TCPF_CLOSE
| TCPF_LISTEN
)) {
846 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
852 if (val
& SOF_TIMESTAMPING_OPT_STATS
&&
853 !(val
& SOF_TIMESTAMPING_OPT_TSONLY
)) {
858 sk
->sk_tsflags
= val
;
859 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
860 sock_enable_timestamp(sk
,
861 SOCK_TIMESTAMPING_RX_SOFTWARE
);
863 sock_disable_timestamp(sk
,
864 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
870 if (sock
->ops
->set_rcvlowat
)
871 ret
= sock
->ops
->set_rcvlowat(sk
, val
);
873 sk
->sk_rcvlowat
= val
? : 1;
877 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
881 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
884 case SO_ATTACH_FILTER
:
886 if (optlen
== sizeof(struct sock_fprog
)) {
887 struct sock_fprog fprog
;
890 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
893 ret
= sk_attach_filter(&fprog
, sk
);
899 if (optlen
== sizeof(u32
)) {
903 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
906 ret
= sk_attach_bpf(ufd
, sk
);
910 case SO_ATTACH_REUSEPORT_CBPF
:
912 if (optlen
== sizeof(struct sock_fprog
)) {
913 struct sock_fprog fprog
;
916 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
919 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
923 case SO_ATTACH_REUSEPORT_EBPF
:
925 if (optlen
== sizeof(u32
)) {
929 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
932 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
936 case SO_DETACH_FILTER
:
937 ret
= sk_detach_filter(sk
);
941 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
944 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
949 set_bit(SOCK_PASSSEC
, &sock
->flags
);
951 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
954 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
961 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
965 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
969 if (sock
->ops
->set_peek_off
)
970 ret
= sock
->ops
->set_peek_off(sk
, val
);
976 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
979 case SO_SELECT_ERR_QUEUE
:
980 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
983 #ifdef CONFIG_NET_RX_BUSY_POLL
985 /* allow unprivileged users to decrease the value */
986 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
992 sk
->sk_ll_usec
= val
;
997 case SO_MAX_PACING_RATE
:
999 cmpxchg(&sk
->sk_pacing_status
,
1002 sk
->sk_max_pacing_rate
= (val
== ~0U) ? ~0UL : val
;
1003 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
1004 sk
->sk_max_pacing_rate
);
1007 case SO_INCOMING_CPU
:
1008 sk
->sk_incoming_cpu
= val
;
1013 dst_negative_advice(sk
);
1017 if (sk
->sk_family
== PF_INET
|| sk
->sk_family
== PF_INET6
) {
1018 if (sk
->sk_protocol
!= IPPROTO_TCP
)
1020 } else if (sk
->sk_family
!= PF_RDS
) {
1024 if (val
< 0 || val
> 1)
1027 sock_valbool_flag(sk
, SOCK_ZEROCOPY
, valbool
);
1032 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
)) {
1034 } else if (optlen
!= sizeof(struct sock_txtime
)) {
1036 } else if (copy_from_user(&sk_txtime
, optval
,
1037 sizeof(struct sock_txtime
))) {
1039 } else if (sk_txtime
.flags
& ~SOF_TXTIME_FLAGS_MASK
) {
1042 sock_valbool_flag(sk
, SOCK_TXTIME
, true);
1043 sk
->sk_clockid
= sk_txtime
.clockid
;
1044 sk
->sk_txtime_deadline_mode
=
1045 !!(sk_txtime
.flags
& SOF_TXTIME_DEADLINE_MODE
);
1046 sk
->sk_txtime_report_errors
=
1047 !!(sk_txtime
.flags
& SOF_TXTIME_REPORT_ERRORS
);
1058 EXPORT_SYMBOL(sock_setsockopt
);
1061 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1062 struct ucred
*ucred
)
1064 ucred
->pid
= pid_vnr(pid
);
1065 ucred
->uid
= ucred
->gid
= -1;
1067 struct user_namespace
*current_ns
= current_user_ns();
1069 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1070 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1074 static int groups_to_user(gid_t __user
*dst
, const struct group_info
*src
)
1076 struct user_namespace
*user_ns
= current_user_ns();
1079 for (i
= 0; i
< src
->ngroups
; i
++)
1080 if (put_user(from_kgid_munged(user_ns
, src
->gid
[i
]), dst
+ i
))
1086 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1087 char __user
*optval
, int __user
*optlen
)
1089 struct sock
*sk
= sock
->sk
;
1096 struct sock_txtime txtime
;
1099 int lv
= sizeof(int);
1102 if (get_user(len
, optlen
))
1107 memset(&v
, 0, sizeof(v
));
1111 v
.val
= sock_flag(sk
, SOCK_DBG
);
1115 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1119 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1123 v
.val
= sk
->sk_sndbuf
;
1127 v
.val
= sk
->sk_rcvbuf
;
1131 v
.val
= sk
->sk_reuse
;
1135 v
.val
= sk
->sk_reuseport
;
1139 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1143 v
.val
= sk
->sk_type
;
1147 v
.val
= sk
->sk_protocol
;
1151 v
.val
= sk
->sk_family
;
1155 v
.val
= -sock_error(sk
);
1157 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1161 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1165 v
.val
= sk
->sk_no_check_tx
;
1169 v
.val
= sk
->sk_priority
;
1173 lv
= sizeof(v
.ling
);
1174 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1175 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1179 sock_warn_obsolete_bsdism("getsockopt");
1183 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1184 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1187 case SO_TIMESTAMPNS
:
1188 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1191 case SO_TIMESTAMPING
:
1192 v
.val
= sk
->sk_tsflags
;
1196 lv
= sizeof(struct timeval
);
1197 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1201 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1202 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1207 lv
= sizeof(struct timeval
);
1208 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1212 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1213 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1218 v
.val
= sk
->sk_rcvlowat
;
1226 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1231 struct ucred peercred
;
1232 if (len
> sizeof(peercred
))
1233 len
= sizeof(peercred
);
1234 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1235 if (copy_to_user(optval
, &peercred
, len
))
1244 if (!sk
->sk_peer_cred
)
1247 n
= sk
->sk_peer_cred
->group_info
->ngroups
;
1248 if (len
< n
* sizeof(gid_t
)) {
1249 len
= n
* sizeof(gid_t
);
1250 return put_user(len
, optlen
) ? -EFAULT
: -ERANGE
;
1252 len
= n
* sizeof(gid_t
);
1254 ret
= groups_to_user((gid_t __user
*)optval
,
1255 sk
->sk_peer_cred
->group_info
);
1265 lv
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, 2);
1270 if (copy_to_user(optval
, address
, len
))
1275 /* Dubious BSD thing... Probably nobody even uses it, but
1276 * the UNIX standard wants it for whatever reason... -DaveM
1279 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1283 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1287 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1290 v
.val
= sk
->sk_mark
;
1294 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1297 case SO_WIFI_STATUS
:
1298 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1302 if (!sock
->ops
->set_peek_off
)
1305 v
.val
= sk
->sk_peek_off
;
1308 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1311 case SO_BINDTODEVICE
:
1312 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1315 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1321 case SO_LOCK_FILTER
:
1322 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1325 case SO_BPF_EXTENSIONS
:
1326 v
.val
= bpf_tell_extensions();
1329 case SO_SELECT_ERR_QUEUE
:
1330 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1333 #ifdef CONFIG_NET_RX_BUSY_POLL
1335 v
.val
= sk
->sk_ll_usec
;
1339 case SO_MAX_PACING_RATE
:
1341 v
.val
= min_t(unsigned long, sk
->sk_max_pacing_rate
, ~0U);
1344 case SO_INCOMING_CPU
:
1345 v
.val
= sk
->sk_incoming_cpu
;
1350 u32 meminfo
[SK_MEMINFO_VARS
];
1352 if (get_user(len
, optlen
))
1355 sk_get_meminfo(sk
, meminfo
);
1357 len
= min_t(unsigned int, len
, sizeof(meminfo
));
1358 if (copy_to_user(optval
, &meminfo
, len
))
1364 #ifdef CONFIG_NET_RX_BUSY_POLL
1365 case SO_INCOMING_NAPI_ID
:
1366 v
.val
= READ_ONCE(sk
->sk_napi_id
);
1368 /* aggregate non-NAPI IDs down to 0 */
1369 if (v
.val
< MIN_NAPI_ID
)
1379 v
.val64
= sock_gen_cookie(sk
);
1383 v
.val
= sock_flag(sk
, SOCK_ZEROCOPY
);
1387 lv
= sizeof(v
.txtime
);
1388 v
.txtime
.clockid
= sk
->sk_clockid
;
1389 v
.txtime
.flags
|= sk
->sk_txtime_deadline_mode
?
1390 SOF_TXTIME_DEADLINE_MODE
: 0;
1391 v
.txtime
.flags
|= sk
->sk_txtime_report_errors
?
1392 SOF_TXTIME_REPORT_ERRORS
: 0;
1396 /* We implement the SO_SNDLOWAT etc to not be settable
1399 return -ENOPROTOOPT
;
1404 if (copy_to_user(optval
, &v
, len
))
1407 if (put_user(len
, optlen
))
1413 * Initialize an sk_lock.
1415 * (We also register the sk_lock with the lock validator.)
1417 static inline void sock_lock_init(struct sock
*sk
)
1419 if (sk
->sk_kern_sock
)
1420 sock_lock_init_class_and_name(
1422 af_family_kern_slock_key_strings
[sk
->sk_family
],
1423 af_family_kern_slock_keys
+ sk
->sk_family
,
1424 af_family_kern_key_strings
[sk
->sk_family
],
1425 af_family_kern_keys
+ sk
->sk_family
);
1427 sock_lock_init_class_and_name(
1429 af_family_slock_key_strings
[sk
->sk_family
],
1430 af_family_slock_keys
+ sk
->sk_family
,
1431 af_family_key_strings
[sk
->sk_family
],
1432 af_family_keys
+ sk
->sk_family
);
1436 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1437 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1438 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1440 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1442 #ifdef CONFIG_SECURITY_NETWORK
1443 void *sptr
= nsk
->sk_security
;
1445 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1447 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1448 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1450 #ifdef CONFIG_SECURITY_NETWORK
1451 nsk
->sk_security
= sptr
;
1452 security_sk_clone(osk
, nsk
);
1456 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1460 struct kmem_cache
*slab
;
1464 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1467 if (priority
& __GFP_ZERO
)
1468 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1470 sk
= kmalloc(prot
->obj_size
, priority
);
1473 if (security_sk_alloc(sk
, family
, priority
))
1476 if (!try_module_get(prot
->owner
))
1478 sk_tx_queue_clear(sk
);
1484 security_sk_free(sk
);
1487 kmem_cache_free(slab
, sk
);
1493 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1495 struct kmem_cache
*slab
;
1496 struct module
*owner
;
1498 owner
= prot
->owner
;
1501 cgroup_sk_free(&sk
->sk_cgrp_data
);
1502 mem_cgroup_sk_free(sk
);
1503 security_sk_free(sk
);
1505 kmem_cache_free(slab
, sk
);
1512 * sk_alloc - All socket objects are allocated here
1513 * @net: the applicable net namespace
1514 * @family: protocol family
1515 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1516 * @prot: struct proto associated with this new sock instance
1517 * @kern: is this to be a kernel socket?
1519 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1520 struct proto
*prot
, int kern
)
1524 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1526 sk
->sk_family
= family
;
1528 * See comment in struct sock definition to understand
1529 * why we need sk_prot_creator -acme
1531 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1532 sk
->sk_kern_sock
= kern
;
1534 sk
->sk_net_refcnt
= kern
? 0 : 1;
1535 if (likely(sk
->sk_net_refcnt
)) {
1537 sock_inuse_add(net
, 1);
1540 sock_net_set(sk
, net
);
1541 refcount_set(&sk
->sk_wmem_alloc
, 1);
1543 mem_cgroup_sk_alloc(sk
);
1544 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1545 sock_update_classid(&sk
->sk_cgrp_data
);
1546 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1551 EXPORT_SYMBOL(sk_alloc
);
1553 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1554 * grace period. This is the case for UDP sockets and TCP listeners.
1556 static void __sk_destruct(struct rcu_head
*head
)
1558 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1559 struct sk_filter
*filter
;
1561 if (sk
->sk_destruct
)
1562 sk
->sk_destruct(sk
);
1564 filter
= rcu_dereference_check(sk
->sk_filter
,
1565 refcount_read(&sk
->sk_wmem_alloc
) == 0);
1567 sk_filter_uncharge(sk
, filter
);
1568 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1570 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1571 reuseport_detach_sock(sk
);
1573 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1575 if (atomic_read(&sk
->sk_omem_alloc
))
1576 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1577 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1579 if (sk
->sk_frag
.page
) {
1580 put_page(sk
->sk_frag
.page
);
1581 sk
->sk_frag
.page
= NULL
;
1584 if (sk
->sk_peer_cred
)
1585 put_cred(sk
->sk_peer_cred
);
1586 put_pid(sk
->sk_peer_pid
);
1587 if (likely(sk
->sk_net_refcnt
))
1588 put_net(sock_net(sk
));
1589 sk_prot_free(sk
->sk_prot_creator
, sk
);
1592 void sk_destruct(struct sock
*sk
)
1594 if (sock_flag(sk
, SOCK_RCU_FREE
))
1595 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1597 __sk_destruct(&sk
->sk_rcu
);
1600 static void __sk_free(struct sock
*sk
)
1602 if (likely(sk
->sk_net_refcnt
))
1603 sock_inuse_add(sock_net(sk
), -1);
1605 if (unlikely(sk
->sk_net_refcnt
&& sock_diag_has_destroy_listeners(sk
)))
1606 sock_diag_broadcast_destroy(sk
);
1611 void sk_free(struct sock
*sk
)
1614 * We subtract one from sk_wmem_alloc and can know if
1615 * some packets are still in some tx queue.
1616 * If not null, sock_wfree() will call __sk_free(sk) later
1618 if (refcount_dec_and_test(&sk
->sk_wmem_alloc
))
1621 EXPORT_SYMBOL(sk_free
);
1623 static void sk_init_common(struct sock
*sk
)
1625 skb_queue_head_init(&sk
->sk_receive_queue
);
1626 skb_queue_head_init(&sk
->sk_write_queue
);
1627 skb_queue_head_init(&sk
->sk_error_queue
);
1629 rwlock_init(&sk
->sk_callback_lock
);
1630 lockdep_set_class_and_name(&sk
->sk_receive_queue
.lock
,
1631 af_rlock_keys
+ sk
->sk_family
,
1632 af_family_rlock_key_strings
[sk
->sk_family
]);
1633 lockdep_set_class_and_name(&sk
->sk_write_queue
.lock
,
1634 af_wlock_keys
+ sk
->sk_family
,
1635 af_family_wlock_key_strings
[sk
->sk_family
]);
1636 lockdep_set_class_and_name(&sk
->sk_error_queue
.lock
,
1637 af_elock_keys
+ sk
->sk_family
,
1638 af_family_elock_key_strings
[sk
->sk_family
]);
1639 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1640 af_callback_keys
+ sk
->sk_family
,
1641 af_family_clock_key_strings
[sk
->sk_family
]);
1645 * sk_clone_lock - clone a socket, and lock its clone
1646 * @sk: the socket to clone
1647 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1649 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1651 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1654 bool is_charged
= true;
1656 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1657 if (newsk
!= NULL
) {
1658 struct sk_filter
*filter
;
1660 sock_copy(newsk
, sk
);
1662 newsk
->sk_prot_creator
= sk
->sk_prot
;
1665 if (likely(newsk
->sk_net_refcnt
))
1666 get_net(sock_net(newsk
));
1667 sk_node_init(&newsk
->sk_node
);
1668 sock_lock_init(newsk
);
1669 bh_lock_sock(newsk
);
1670 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1671 newsk
->sk_backlog
.len
= 0;
1673 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1675 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1677 refcount_set(&newsk
->sk_wmem_alloc
, 1);
1678 atomic_set(&newsk
->sk_omem_alloc
, 0);
1679 sk_init_common(newsk
);
1681 newsk
->sk_dst_cache
= NULL
;
1682 newsk
->sk_dst_pending_confirm
= 0;
1683 newsk
->sk_wmem_queued
= 0;
1684 newsk
->sk_forward_alloc
= 0;
1685 atomic_set(&newsk
->sk_drops
, 0);
1686 newsk
->sk_send_head
= NULL
;
1687 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1688 atomic_set(&newsk
->sk_zckey
, 0);
1690 sock_reset_flag(newsk
, SOCK_DONE
);
1691 mem_cgroup_sk_alloc(newsk
);
1692 cgroup_sk_alloc(&newsk
->sk_cgrp_data
);
1695 filter
= rcu_dereference(sk
->sk_filter
);
1697 /* though it's an empty new sock, the charging may fail
1698 * if sysctl_optmem_max was changed between creation of
1699 * original socket and cloning
1701 is_charged
= sk_filter_charge(newsk
, filter
);
1702 RCU_INIT_POINTER(newsk
->sk_filter
, filter
);
1705 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1706 /* We need to make sure that we don't uncharge the new
1707 * socket if we couldn't charge it in the first place
1708 * as otherwise we uncharge the parent's filter.
1711 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1712 sk_free_unlock_clone(newsk
);
1716 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1719 newsk
->sk_err_soft
= 0;
1720 newsk
->sk_priority
= 0;
1721 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1722 atomic64_set(&newsk
->sk_cookie
, 0);
1723 if (likely(newsk
->sk_net_refcnt
))
1724 sock_inuse_add(sock_net(newsk
), 1);
1727 * Before updating sk_refcnt, we must commit prior changes to memory
1728 * (Documentation/RCU/rculist_nulls.txt for details)
1731 refcount_set(&newsk
->sk_refcnt
, 2);
1734 * Increment the counter in the same struct proto as the master
1735 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1736 * is the same as sk->sk_prot->socks, as this field was copied
1739 * This _changes_ the previous behaviour, where
1740 * tcp_create_openreq_child always was incrementing the
1741 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1742 * to be taken into account in all callers. -acme
1744 sk_refcnt_debug_inc(newsk
);
1745 sk_set_socket(newsk
, NULL
);
1746 newsk
->sk_wq
= NULL
;
1748 if (newsk
->sk_prot
->sockets_allocated
)
1749 sk_sockets_allocated_inc(newsk
);
1751 if (sock_needs_netstamp(sk
) &&
1752 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1753 net_enable_timestamp();
1758 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1760 void sk_free_unlock_clone(struct sock
*sk
)
1762 /* It is still raw copy of parent, so invalidate
1763 * destructor and make plain sk_free() */
1764 sk
->sk_destruct
= NULL
;
1768 EXPORT_SYMBOL_GPL(sk_free_unlock_clone
);
1770 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1774 sk_dst_set(sk
, dst
);
1775 sk
->sk_route_caps
= dst
->dev
->features
| sk
->sk_route_forced_caps
;
1776 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1777 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1778 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1779 if (sk_can_gso(sk
)) {
1780 if (dst
->header_len
&& !xfrm_dst_offload_ok(dst
)) {
1781 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1783 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1784 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1785 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1788 sk
->sk_gso_max_segs
= max_segs
;
1790 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1793 * Simple resource managers for sockets.
1798 * Write buffer destructor automatically called from kfree_skb.
1800 void sock_wfree(struct sk_buff
*skb
)
1802 struct sock
*sk
= skb
->sk
;
1803 unsigned int len
= skb
->truesize
;
1805 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1807 * Keep a reference on sk_wmem_alloc, this will be released
1808 * after sk_write_space() call
1810 WARN_ON(refcount_sub_and_test(len
- 1, &sk
->sk_wmem_alloc
));
1811 sk
->sk_write_space(sk
);
1815 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1816 * could not do because of in-flight packets
1818 if (refcount_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1821 EXPORT_SYMBOL(sock_wfree
);
1823 /* This variant of sock_wfree() is used by TCP,
1824 * since it sets SOCK_USE_WRITE_QUEUE.
1826 void __sock_wfree(struct sk_buff
*skb
)
1828 struct sock
*sk
= skb
->sk
;
1830 if (refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1834 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1839 if (unlikely(!sk_fullsock(sk
))) {
1840 skb
->destructor
= sock_edemux
;
1845 skb
->destructor
= sock_wfree
;
1846 skb_set_hash_from_sk(skb
, sk
);
1848 * We used to take a refcount on sk, but following operation
1849 * is enough to guarantee sk_free() wont free this sock until
1850 * all in-flight packets are completed
1852 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1854 EXPORT_SYMBOL(skb_set_owner_w
);
1856 /* This helper is used by netem, as it can hold packets in its
1857 * delay queue. We want to allow the owner socket to send more
1858 * packets, as if they were already TX completed by a typical driver.
1859 * But we also want to keep skb->sk set because some packet schedulers
1860 * rely on it (sch_fq for example).
1862 void skb_orphan_partial(struct sk_buff
*skb
)
1864 if (skb_is_tcp_pure_ack(skb
))
1867 if (skb
->destructor
== sock_wfree
1869 || skb
->destructor
== tcp_wfree
1872 struct sock
*sk
= skb
->sk
;
1874 if (refcount_inc_not_zero(&sk
->sk_refcnt
)) {
1875 WARN_ON(refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
));
1876 skb
->destructor
= sock_efree
;
1882 EXPORT_SYMBOL(skb_orphan_partial
);
1885 * Read buffer destructor automatically called from kfree_skb.
1887 void sock_rfree(struct sk_buff
*skb
)
1889 struct sock
*sk
= skb
->sk
;
1890 unsigned int len
= skb
->truesize
;
1892 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1893 sk_mem_uncharge(sk
, len
);
1895 EXPORT_SYMBOL(sock_rfree
);
1898 * Buffer destructor for skbs that are not used directly in read or write
1899 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1901 void sock_efree(struct sk_buff
*skb
)
1905 EXPORT_SYMBOL(sock_efree
);
1907 kuid_t
sock_i_uid(struct sock
*sk
)
1911 read_lock_bh(&sk
->sk_callback_lock
);
1912 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1913 read_unlock_bh(&sk
->sk_callback_lock
);
1916 EXPORT_SYMBOL(sock_i_uid
);
1918 unsigned long sock_i_ino(struct sock
*sk
)
1922 read_lock_bh(&sk
->sk_callback_lock
);
1923 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1924 read_unlock_bh(&sk
->sk_callback_lock
);
1927 EXPORT_SYMBOL(sock_i_ino
);
1930 * Allocate a skb from the socket's send buffer.
1932 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1935 if (force
|| refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1936 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1938 skb_set_owner_w(skb
, sk
);
1944 EXPORT_SYMBOL(sock_wmalloc
);
1946 static void sock_ofree(struct sk_buff
*skb
)
1948 struct sock
*sk
= skb
->sk
;
1950 atomic_sub(skb
->truesize
, &sk
->sk_omem_alloc
);
1953 struct sk_buff
*sock_omalloc(struct sock
*sk
, unsigned long size
,
1956 struct sk_buff
*skb
;
1958 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1959 if (atomic_read(&sk
->sk_omem_alloc
) + SKB_TRUESIZE(size
) >
1963 skb
= alloc_skb(size
, priority
);
1967 atomic_add(skb
->truesize
, &sk
->sk_omem_alloc
);
1969 skb
->destructor
= sock_ofree
;
1974 * Allocate a memory block from the socket's option memory buffer.
1976 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1978 if ((unsigned int)size
<= sysctl_optmem_max
&&
1979 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1981 /* First do the add, to avoid the race if kmalloc
1984 atomic_add(size
, &sk
->sk_omem_alloc
);
1985 mem
= kmalloc(size
, priority
);
1988 atomic_sub(size
, &sk
->sk_omem_alloc
);
1992 EXPORT_SYMBOL(sock_kmalloc
);
1994 /* Free an option memory block. Note, we actually want the inline
1995 * here as this allows gcc to detect the nullify and fold away the
1996 * condition entirely.
1998 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
2001 if (WARN_ON_ONCE(!mem
))
2007 atomic_sub(size
, &sk
->sk_omem_alloc
);
2010 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
2012 __sock_kfree_s(sk
, mem
, size
, false);
2014 EXPORT_SYMBOL(sock_kfree_s
);
2016 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
2018 __sock_kfree_s(sk
, mem
, size
, true);
2020 EXPORT_SYMBOL(sock_kzfree_s
);
2022 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2023 I think, these locks should be removed for datagram sockets.
2025 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
2029 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2033 if (signal_pending(current
))
2035 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2036 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2037 if (refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
2039 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2043 timeo
= schedule_timeout(timeo
);
2045 finish_wait(sk_sleep(sk
), &wait
);
2051 * Generic send/receive buffer handlers
2054 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
2055 unsigned long data_len
, int noblock
,
2056 int *errcode
, int max_page_order
)
2058 struct sk_buff
*skb
;
2062 timeo
= sock_sndtimeo(sk
, noblock
);
2064 err
= sock_error(sk
);
2069 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2072 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
2075 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2076 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2080 if (signal_pending(current
))
2082 timeo
= sock_wait_for_wmem(sk
, timeo
);
2084 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
2085 errcode
, sk
->sk_allocation
);
2087 skb_set_owner_w(skb
, sk
);
2091 err
= sock_intr_errno(timeo
);
2096 EXPORT_SYMBOL(sock_alloc_send_pskb
);
2098 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
2099 int noblock
, int *errcode
)
2101 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
2103 EXPORT_SYMBOL(sock_alloc_send_skb
);
2105 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
2106 struct sockcm_cookie
*sockc
)
2110 switch (cmsg
->cmsg_type
) {
2112 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
2114 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2116 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
2118 case SO_TIMESTAMPING
:
2119 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2122 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
2123 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
2126 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
2127 sockc
->tsflags
|= tsflags
;
2130 if (!sock_flag(sk
, SOCK_TXTIME
))
2132 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u64
)))
2134 sockc
->transmit_time
= get_unaligned((u64
*)CMSG_DATA(cmsg
));
2136 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2138 case SCM_CREDENTIALS
:
2145 EXPORT_SYMBOL(__sock_cmsg_send
);
2147 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
2148 struct sockcm_cookie
*sockc
)
2150 struct cmsghdr
*cmsg
;
2153 for_each_cmsghdr(cmsg
, msg
) {
2154 if (!CMSG_OK(msg
, cmsg
))
2156 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
2158 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
2164 EXPORT_SYMBOL(sock_cmsg_send
);
2166 static void sk_enter_memory_pressure(struct sock
*sk
)
2168 if (!sk
->sk_prot
->enter_memory_pressure
)
2171 sk
->sk_prot
->enter_memory_pressure(sk
);
2174 static void sk_leave_memory_pressure(struct sock
*sk
)
2176 if (sk
->sk_prot
->leave_memory_pressure
) {
2177 sk
->sk_prot
->leave_memory_pressure(sk
);
2179 unsigned long *memory_pressure
= sk
->sk_prot
->memory_pressure
;
2181 if (memory_pressure
&& *memory_pressure
)
2182 *memory_pressure
= 0;
2186 /* On 32bit arches, an skb frag is limited to 2^15 */
2187 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2190 * skb_page_frag_refill - check that a page_frag contains enough room
2191 * @sz: minimum size of the fragment we want to get
2192 * @pfrag: pointer to page_frag
2193 * @gfp: priority for memory allocation
2195 * Note: While this allocator tries to use high order pages, there is
2196 * no guarantee that allocations succeed. Therefore, @sz MUST be
2197 * less or equal than PAGE_SIZE.
2199 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
2202 if (page_ref_count(pfrag
->page
) == 1) {
2206 if (pfrag
->offset
+ sz
<= pfrag
->size
)
2208 put_page(pfrag
->page
);
2212 if (SKB_FRAG_PAGE_ORDER
) {
2213 /* Avoid direct reclaim but allow kswapd to wake */
2214 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
2215 __GFP_COMP
| __GFP_NOWARN
|
2217 SKB_FRAG_PAGE_ORDER
);
2218 if (likely(pfrag
->page
)) {
2219 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
2223 pfrag
->page
= alloc_page(gfp
);
2224 if (likely(pfrag
->page
)) {
2225 pfrag
->size
= PAGE_SIZE
;
2230 EXPORT_SYMBOL(skb_page_frag_refill
);
2232 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2234 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2237 sk_enter_memory_pressure(sk
);
2238 sk_stream_moderate_sndbuf(sk
);
2241 EXPORT_SYMBOL(sk_page_frag_refill
);
2243 static void __lock_sock(struct sock
*sk
)
2244 __releases(&sk
->sk_lock
.slock
)
2245 __acquires(&sk
->sk_lock
.slock
)
2250 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2251 TASK_UNINTERRUPTIBLE
);
2252 spin_unlock_bh(&sk
->sk_lock
.slock
);
2254 spin_lock_bh(&sk
->sk_lock
.slock
);
2255 if (!sock_owned_by_user(sk
))
2258 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2261 void __release_sock(struct sock
*sk
)
2262 __releases(&sk
->sk_lock
.slock
)
2263 __acquires(&sk
->sk_lock
.slock
)
2265 struct sk_buff
*skb
, *next
;
2267 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2268 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2270 spin_unlock_bh(&sk
->sk_lock
.slock
);
2275 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2276 skb_mark_not_on_list(skb
);
2277 sk_backlog_rcv(sk
, skb
);
2282 } while (skb
!= NULL
);
2284 spin_lock_bh(&sk
->sk_lock
.slock
);
2288 * Doing the zeroing here guarantee we can not loop forever
2289 * while a wild producer attempts to flood us.
2291 sk
->sk_backlog
.len
= 0;
2294 void __sk_flush_backlog(struct sock
*sk
)
2296 spin_lock_bh(&sk
->sk_lock
.slock
);
2298 spin_unlock_bh(&sk
->sk_lock
.slock
);
2302 * sk_wait_data - wait for data to arrive at sk_receive_queue
2303 * @sk: sock to wait on
2304 * @timeo: for how long
2305 * @skb: last skb seen on sk_receive_queue
2307 * Now socket state including sk->sk_err is changed only under lock,
2308 * hence we may omit checks after joining wait queue.
2309 * We check receive queue before schedule() only as optimization;
2310 * it is very likely that release_sock() added new data.
2312 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2314 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
2317 add_wait_queue(sk_sleep(sk
), &wait
);
2318 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2319 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
, &wait
);
2320 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2321 remove_wait_queue(sk_sleep(sk
), &wait
);
2324 EXPORT_SYMBOL(sk_wait_data
);
2327 * __sk_mem_raise_allocated - increase memory_allocated
2329 * @size: memory size to allocate
2330 * @amt: pages to allocate
2331 * @kind: allocation type
2333 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2335 int __sk_mem_raise_allocated(struct sock
*sk
, int size
, int amt
, int kind
)
2337 struct proto
*prot
= sk
->sk_prot
;
2338 long allocated
= sk_memory_allocated_add(sk
, amt
);
2339 bool charged
= true;
2341 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2342 !(charged
= mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
)))
2343 goto suppress_allocation
;
2346 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2347 sk_leave_memory_pressure(sk
);
2351 /* Under pressure. */
2352 if (allocated
> sk_prot_mem_limits(sk
, 1))
2353 sk_enter_memory_pressure(sk
);
2355 /* Over hard limit. */
2356 if (allocated
> sk_prot_mem_limits(sk
, 2))
2357 goto suppress_allocation
;
2359 /* guarantee minimum buffer size under pressure */
2360 if (kind
== SK_MEM_RECV
) {
2361 if (atomic_read(&sk
->sk_rmem_alloc
) < sk_get_rmem0(sk
, prot
))
2364 } else { /* SK_MEM_SEND */
2365 int wmem0
= sk_get_wmem0(sk
, prot
);
2367 if (sk
->sk_type
== SOCK_STREAM
) {
2368 if (sk
->sk_wmem_queued
< wmem0
)
2370 } else if (refcount_read(&sk
->sk_wmem_alloc
) < wmem0
) {
2375 if (sk_has_memory_pressure(sk
)) {
2378 if (!sk_under_memory_pressure(sk
))
2380 alloc
= sk_sockets_allocated_read_positive(sk
);
2381 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2382 sk_mem_pages(sk
->sk_wmem_queued
+
2383 atomic_read(&sk
->sk_rmem_alloc
) +
2384 sk
->sk_forward_alloc
))
2388 suppress_allocation
:
2390 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2391 sk_stream_moderate_sndbuf(sk
);
2393 /* Fail only if socket is _under_ its sndbuf.
2394 * In this case we cannot block, so that we have to fail.
2396 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2400 if (kind
== SK_MEM_SEND
|| (kind
== SK_MEM_RECV
&& charged
))
2401 trace_sock_exceed_buf_limit(sk
, prot
, allocated
, kind
);
2403 sk_memory_allocated_sub(sk
, amt
);
2405 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2406 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2410 EXPORT_SYMBOL(__sk_mem_raise_allocated
);
2413 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2415 * @size: memory size to allocate
2416 * @kind: allocation type
2418 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2419 * rmem allocation. This function assumes that protocols which have
2420 * memory_pressure use sk_wmem_queued as write buffer accounting.
2422 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2424 int ret
, amt
= sk_mem_pages(size
);
2426 sk
->sk_forward_alloc
+= amt
<< SK_MEM_QUANTUM_SHIFT
;
2427 ret
= __sk_mem_raise_allocated(sk
, size
, amt
, kind
);
2429 sk
->sk_forward_alloc
-= amt
<< SK_MEM_QUANTUM_SHIFT
;
2432 EXPORT_SYMBOL(__sk_mem_schedule
);
2435 * __sk_mem_reduce_allocated - reclaim memory_allocated
2437 * @amount: number of quanta
2439 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2441 void __sk_mem_reduce_allocated(struct sock
*sk
, int amount
)
2443 sk_memory_allocated_sub(sk
, amount
);
2445 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2446 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2448 if (sk_under_memory_pressure(sk
) &&
2449 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2450 sk_leave_memory_pressure(sk
);
2452 EXPORT_SYMBOL(__sk_mem_reduce_allocated
);
2455 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2457 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2459 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2461 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2462 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2463 __sk_mem_reduce_allocated(sk
, amount
);
2465 EXPORT_SYMBOL(__sk_mem_reclaim
);
2467 int sk_set_peek_off(struct sock
*sk
, int val
)
2469 sk
->sk_peek_off
= val
;
2472 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2475 * Set of default routines for initialising struct proto_ops when
2476 * the protocol does not support a particular function. In certain
2477 * cases where it makes no sense for a protocol to have a "do nothing"
2478 * function, some default processing is provided.
2481 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2485 EXPORT_SYMBOL(sock_no_bind
);
2487 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2492 EXPORT_SYMBOL(sock_no_connect
);
2494 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2498 EXPORT_SYMBOL(sock_no_socketpair
);
2500 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
2505 EXPORT_SYMBOL(sock_no_accept
);
2507 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2512 EXPORT_SYMBOL(sock_no_getname
);
2514 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2518 EXPORT_SYMBOL(sock_no_ioctl
);
2520 int sock_no_listen(struct socket
*sock
, int backlog
)
2524 EXPORT_SYMBOL(sock_no_listen
);
2526 int sock_no_shutdown(struct socket
*sock
, int how
)
2530 EXPORT_SYMBOL(sock_no_shutdown
);
2532 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2533 char __user
*optval
, unsigned int optlen
)
2537 EXPORT_SYMBOL(sock_no_setsockopt
);
2539 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2540 char __user
*optval
, int __user
*optlen
)
2544 EXPORT_SYMBOL(sock_no_getsockopt
);
2546 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2550 EXPORT_SYMBOL(sock_no_sendmsg
);
2552 int sock_no_sendmsg_locked(struct sock
*sk
, struct msghdr
*m
, size_t len
)
2556 EXPORT_SYMBOL(sock_no_sendmsg_locked
);
2558 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2563 EXPORT_SYMBOL(sock_no_recvmsg
);
2565 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2567 /* Mirror missing mmap method error code */
2570 EXPORT_SYMBOL(sock_no_mmap
);
2572 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2575 struct msghdr msg
= {.msg_flags
= flags
};
2577 char *kaddr
= kmap(page
);
2578 iov
.iov_base
= kaddr
+ offset
;
2580 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2584 EXPORT_SYMBOL(sock_no_sendpage
);
2586 ssize_t
sock_no_sendpage_locked(struct sock
*sk
, struct page
*page
,
2587 int offset
, size_t size
, int flags
)
2590 struct msghdr msg
= {.msg_flags
= flags
};
2592 char *kaddr
= kmap(page
);
2594 iov
.iov_base
= kaddr
+ offset
;
2596 res
= kernel_sendmsg_locked(sk
, &msg
, &iov
, 1, size
);
2600 EXPORT_SYMBOL(sock_no_sendpage_locked
);
2603 * Default Socket Callbacks
2606 static void sock_def_wakeup(struct sock
*sk
)
2608 struct socket_wq
*wq
;
2611 wq
= rcu_dereference(sk
->sk_wq
);
2612 if (skwq_has_sleeper(wq
))
2613 wake_up_interruptible_all(&wq
->wait
);
2617 static void sock_def_error_report(struct sock
*sk
)
2619 struct socket_wq
*wq
;
2622 wq
= rcu_dereference(sk
->sk_wq
);
2623 if (skwq_has_sleeper(wq
))
2624 wake_up_interruptible_poll(&wq
->wait
, EPOLLERR
);
2625 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2629 static void sock_def_readable(struct sock
*sk
)
2631 struct socket_wq
*wq
;
2634 wq
= rcu_dereference(sk
->sk_wq
);
2635 if (skwq_has_sleeper(wq
))
2636 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLIN
| EPOLLPRI
|
2637 EPOLLRDNORM
| EPOLLRDBAND
);
2638 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2642 static void sock_def_write_space(struct sock
*sk
)
2644 struct socket_wq
*wq
;
2648 /* Do not wake up a writer until he can make "significant"
2651 if ((refcount_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2652 wq
= rcu_dereference(sk
->sk_wq
);
2653 if (skwq_has_sleeper(wq
))
2654 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLOUT
|
2655 EPOLLWRNORM
| EPOLLWRBAND
);
2657 /* Should agree with poll, otherwise some programs break */
2658 if (sock_writeable(sk
))
2659 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2665 static void sock_def_destruct(struct sock
*sk
)
2669 void sk_send_sigurg(struct sock
*sk
)
2671 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2672 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2673 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2675 EXPORT_SYMBOL(sk_send_sigurg
);
2677 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2678 unsigned long expires
)
2680 if (!mod_timer(timer
, expires
))
2683 EXPORT_SYMBOL(sk_reset_timer
);
2685 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2687 if (del_timer(timer
))
2690 EXPORT_SYMBOL(sk_stop_timer
);
2692 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2695 sk
->sk_send_head
= NULL
;
2697 timer_setup(&sk
->sk_timer
, NULL
, 0);
2699 sk
->sk_allocation
= GFP_KERNEL
;
2700 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2701 sk
->sk_sndbuf
= sysctl_wmem_default
;
2702 sk
->sk_state
= TCP_CLOSE
;
2703 sk_set_socket(sk
, sock
);
2705 sock_set_flag(sk
, SOCK_ZAPPED
);
2708 sk
->sk_type
= sock
->type
;
2709 sk
->sk_wq
= sock
->wq
;
2711 sk
->sk_uid
= SOCK_INODE(sock
)->i_uid
;
2714 sk
->sk_uid
= make_kuid(sock_net(sk
)->user_ns
, 0);
2717 rwlock_init(&sk
->sk_callback_lock
);
2718 if (sk
->sk_kern_sock
)
2719 lockdep_set_class_and_name(
2720 &sk
->sk_callback_lock
,
2721 af_kern_callback_keys
+ sk
->sk_family
,
2722 af_family_kern_clock_key_strings
[sk
->sk_family
]);
2724 lockdep_set_class_and_name(
2725 &sk
->sk_callback_lock
,
2726 af_callback_keys
+ sk
->sk_family
,
2727 af_family_clock_key_strings
[sk
->sk_family
]);
2729 sk
->sk_state_change
= sock_def_wakeup
;
2730 sk
->sk_data_ready
= sock_def_readable
;
2731 sk
->sk_write_space
= sock_def_write_space
;
2732 sk
->sk_error_report
= sock_def_error_report
;
2733 sk
->sk_destruct
= sock_def_destruct
;
2735 sk
->sk_frag
.page
= NULL
;
2736 sk
->sk_frag
.offset
= 0;
2737 sk
->sk_peek_off
= -1;
2739 sk
->sk_peer_pid
= NULL
;
2740 sk
->sk_peer_cred
= NULL
;
2741 sk
->sk_write_pending
= 0;
2742 sk
->sk_rcvlowat
= 1;
2743 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2744 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2746 sk
->sk_stamp
= SK_DEFAULT_STAMP
;
2747 #if BITS_PER_LONG==32
2748 seqlock_init(&sk
->sk_stamp_seq
);
2750 atomic_set(&sk
->sk_zckey
, 0);
2752 #ifdef CONFIG_NET_RX_BUSY_POLL
2754 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2757 sk
->sk_max_pacing_rate
= ~0UL;
2758 sk
->sk_pacing_rate
= ~0UL;
2759 sk
->sk_pacing_shift
= 10;
2760 sk
->sk_incoming_cpu
= -1;
2762 sk_rx_queue_clear(sk
);
2764 * Before updating sk_refcnt, we must commit prior changes to memory
2765 * (Documentation/RCU/rculist_nulls.txt for details)
2768 refcount_set(&sk
->sk_refcnt
, 1);
2769 atomic_set(&sk
->sk_drops
, 0);
2771 EXPORT_SYMBOL(sock_init_data
);
2773 void lock_sock_nested(struct sock
*sk
, int subclass
)
2776 spin_lock_bh(&sk
->sk_lock
.slock
);
2777 if (sk
->sk_lock
.owned
)
2779 sk
->sk_lock
.owned
= 1;
2780 spin_unlock(&sk
->sk_lock
.slock
);
2782 * The sk_lock has mutex_lock() semantics here:
2784 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2787 EXPORT_SYMBOL(lock_sock_nested
);
2789 void release_sock(struct sock
*sk
)
2791 spin_lock_bh(&sk
->sk_lock
.slock
);
2792 if (sk
->sk_backlog
.tail
)
2795 /* Warning : release_cb() might need to release sk ownership,
2796 * ie call sock_release_ownership(sk) before us.
2798 if (sk
->sk_prot
->release_cb
)
2799 sk
->sk_prot
->release_cb(sk
);
2801 sock_release_ownership(sk
);
2802 if (waitqueue_active(&sk
->sk_lock
.wq
))
2803 wake_up(&sk
->sk_lock
.wq
);
2804 spin_unlock_bh(&sk
->sk_lock
.slock
);
2806 EXPORT_SYMBOL(release_sock
);
2809 * lock_sock_fast - fast version of lock_sock
2812 * This version should be used for very small section, where process wont block
2813 * return false if fast path is taken:
2815 * sk_lock.slock locked, owned = 0, BH disabled
2817 * return true if slow path is taken:
2819 * sk_lock.slock unlocked, owned = 1, BH enabled
2821 bool lock_sock_fast(struct sock
*sk
)
2824 spin_lock_bh(&sk
->sk_lock
.slock
);
2826 if (!sk
->sk_lock
.owned
)
2828 * Note : We must disable BH
2833 sk
->sk_lock
.owned
= 1;
2834 spin_unlock(&sk
->sk_lock
.slock
);
2836 * The sk_lock has mutex_lock() semantics here:
2838 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2842 EXPORT_SYMBOL(lock_sock_fast
);
2844 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2848 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2849 tv
= ktime_to_timeval(sock_read_timestamp(sk
));
2850 if (tv
.tv_sec
== -1)
2852 if (tv
.tv_sec
== 0) {
2853 ktime_t kt
= ktime_get_real();
2854 sock_write_timestamp(sk
, kt
);
2855 tv
= ktime_to_timeval(kt
);
2857 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2859 EXPORT_SYMBOL(sock_get_timestamp
);
2861 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2865 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2866 ts
= ktime_to_timespec(sock_read_timestamp(sk
));
2867 if (ts
.tv_sec
== -1)
2869 if (ts
.tv_sec
== 0) {
2870 ktime_t kt
= ktime_get_real();
2871 sock_write_timestamp(sk
, kt
);
2872 ts
= ktime_to_timespec(sk
->sk_stamp
);
2874 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2876 EXPORT_SYMBOL(sock_get_timestampns
);
2878 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2880 if (!sock_flag(sk
, flag
)) {
2881 unsigned long previous_flags
= sk
->sk_flags
;
2883 sock_set_flag(sk
, flag
);
2885 * we just set one of the two flags which require net
2886 * time stamping, but time stamping might have been on
2887 * already because of the other one
2889 if (sock_needs_netstamp(sk
) &&
2890 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2891 net_enable_timestamp();
2895 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2896 int level
, int type
)
2898 struct sock_exterr_skb
*serr
;
2899 struct sk_buff
*skb
;
2903 skb
= sock_dequeue_err_skb(sk
);
2909 msg
->msg_flags
|= MSG_TRUNC
;
2912 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2916 sock_recv_timestamp(msg
, sk
, skb
);
2918 serr
= SKB_EXT_ERR(skb
);
2919 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2921 msg
->msg_flags
|= MSG_ERRQUEUE
;
2929 EXPORT_SYMBOL(sock_recv_errqueue
);
2932 * Get a socket option on an socket.
2934 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2935 * asynchronous errors should be reported by getsockopt. We assume
2936 * this means if you specify SO_ERROR (otherwise whats the point of it).
2938 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2939 char __user
*optval
, int __user
*optlen
)
2941 struct sock
*sk
= sock
->sk
;
2943 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2945 EXPORT_SYMBOL(sock_common_getsockopt
);
2947 #ifdef CONFIG_COMPAT
2948 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2949 char __user
*optval
, int __user
*optlen
)
2951 struct sock
*sk
= sock
->sk
;
2953 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2954 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2956 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2958 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2961 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
2964 struct sock
*sk
= sock
->sk
;
2968 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2969 flags
& ~MSG_DONTWAIT
, &addr_len
);
2971 msg
->msg_namelen
= addr_len
;
2974 EXPORT_SYMBOL(sock_common_recvmsg
);
2977 * Set socket options on an inet socket.
2979 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2980 char __user
*optval
, unsigned int optlen
)
2982 struct sock
*sk
= sock
->sk
;
2984 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2986 EXPORT_SYMBOL(sock_common_setsockopt
);
2988 #ifdef CONFIG_COMPAT
2989 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2990 char __user
*optval
, unsigned int optlen
)
2992 struct sock
*sk
= sock
->sk
;
2994 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2995 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2997 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2999 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
3002 void sk_common_release(struct sock
*sk
)
3004 if (sk
->sk_prot
->destroy
)
3005 sk
->sk_prot
->destroy(sk
);
3008 * Observation: when sock_common_release is called, processes have
3009 * no access to socket. But net still has.
3010 * Step one, detach it from networking:
3012 * A. Remove from hash tables.
3015 sk
->sk_prot
->unhash(sk
);
3018 * In this point socket cannot receive new packets, but it is possible
3019 * that some packets are in flight because some CPU runs receiver and
3020 * did hash table lookup before we unhashed socket. They will achieve
3021 * receive queue and will be purged by socket destructor.
3023 * Also we still have packets pending on receive queue and probably,
3024 * our own packets waiting in device queues. sock_destroy will drain
3025 * receive queue, but transmitted packets will delay socket destruction
3026 * until the last reference will be released.
3031 xfrm_sk_free_policy(sk
);
3033 sk_refcnt_debug_release(sk
);
3037 EXPORT_SYMBOL(sk_common_release
);
3039 void sk_get_meminfo(const struct sock
*sk
, u32
*mem
)
3041 memset(mem
, 0, sizeof(*mem
) * SK_MEMINFO_VARS
);
3043 mem
[SK_MEMINFO_RMEM_ALLOC
] = sk_rmem_alloc_get(sk
);
3044 mem
[SK_MEMINFO_RCVBUF
] = sk
->sk_rcvbuf
;
3045 mem
[SK_MEMINFO_WMEM_ALLOC
] = sk_wmem_alloc_get(sk
);
3046 mem
[SK_MEMINFO_SNDBUF
] = sk
->sk_sndbuf
;
3047 mem
[SK_MEMINFO_FWD_ALLOC
] = sk
->sk_forward_alloc
;
3048 mem
[SK_MEMINFO_WMEM_QUEUED
] = sk
->sk_wmem_queued
;
3049 mem
[SK_MEMINFO_OPTMEM
] = atomic_read(&sk
->sk_omem_alloc
);
3050 mem
[SK_MEMINFO_BACKLOG
] = sk
->sk_backlog
.len
;
3051 mem
[SK_MEMINFO_DROPS
] = atomic_read(&sk
->sk_drops
);
3054 #ifdef CONFIG_PROC_FS
3055 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3057 int val
[PROTO_INUSE_NR
];
3060 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
3062 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
3064 __this_cpu_add(net
->core
.prot_inuse
->val
[prot
->inuse_idx
], val
);
3066 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
3068 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
3070 int cpu
, idx
= prot
->inuse_idx
;
3073 for_each_possible_cpu(cpu
)
3074 res
+= per_cpu_ptr(net
->core
.prot_inuse
, cpu
)->val
[idx
];
3076 return res
>= 0 ? res
: 0;
3078 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
3080 static void sock_inuse_add(struct net
*net
, int val
)
3082 this_cpu_add(*net
->core
.sock_inuse
, val
);
3085 int sock_inuse_get(struct net
*net
)
3089 for_each_possible_cpu(cpu
)
3090 res
+= *per_cpu_ptr(net
->core
.sock_inuse
, cpu
);
3095 EXPORT_SYMBOL_GPL(sock_inuse_get
);
3097 static int __net_init
sock_inuse_init_net(struct net
*net
)
3099 net
->core
.prot_inuse
= alloc_percpu(struct prot_inuse
);
3100 if (net
->core
.prot_inuse
== NULL
)
3103 net
->core
.sock_inuse
= alloc_percpu(int);
3104 if (net
->core
.sock_inuse
== NULL
)
3110 free_percpu(net
->core
.prot_inuse
);
3114 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
3116 free_percpu(net
->core
.prot_inuse
);
3117 free_percpu(net
->core
.sock_inuse
);
3120 static struct pernet_operations net_inuse_ops
= {
3121 .init
= sock_inuse_init_net
,
3122 .exit
= sock_inuse_exit_net
,
3125 static __init
int net_inuse_init(void)
3127 if (register_pernet_subsys(&net_inuse_ops
))
3128 panic("Cannot initialize net inuse counters");
3133 core_initcall(net_inuse_init
);
3135 static void assign_proto_idx(struct proto
*prot
)
3137 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
3139 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
3140 pr_err("PROTO_INUSE_NR exhausted\n");
3144 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
3147 static void release_proto_idx(struct proto
*prot
)
3149 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
3150 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
3153 static inline void assign_proto_idx(struct proto
*prot
)
3157 static inline void release_proto_idx(struct proto
*prot
)
3161 static void sock_inuse_add(struct net
*net
, int val
)
3166 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
3170 kfree(rsk_prot
->slab_name
);
3171 rsk_prot
->slab_name
= NULL
;
3172 kmem_cache_destroy(rsk_prot
->slab
);
3173 rsk_prot
->slab
= NULL
;
3176 static int req_prot_init(const struct proto
*prot
)
3178 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
3183 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
3185 if (!rsk_prot
->slab_name
)
3188 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
3189 rsk_prot
->obj_size
, 0,
3190 SLAB_ACCOUNT
| prot
->slab_flags
,
3193 if (!rsk_prot
->slab
) {
3194 pr_crit("%s: Can't create request sock SLAB cache!\n",
3201 int proto_register(struct proto
*prot
, int alloc_slab
)
3204 prot
->slab
= kmem_cache_create_usercopy(prot
->name
,
3206 SLAB_HWCACHE_ALIGN
| SLAB_ACCOUNT
|
3208 prot
->useroffset
, prot
->usersize
,
3211 if (prot
->slab
== NULL
) {
3212 pr_crit("%s: Can't create sock SLAB cache!\n",
3217 if (req_prot_init(prot
))
3218 goto out_free_request_sock_slab
;
3220 if (prot
->twsk_prot
!= NULL
) {
3221 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
3223 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
3224 goto out_free_request_sock_slab
;
3226 prot
->twsk_prot
->twsk_slab
=
3227 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
3228 prot
->twsk_prot
->twsk_obj_size
,
3233 if (prot
->twsk_prot
->twsk_slab
== NULL
)
3234 goto out_free_timewait_sock_slab_name
;
3238 mutex_lock(&proto_list_mutex
);
3239 list_add(&prot
->node
, &proto_list
);
3240 assign_proto_idx(prot
);
3241 mutex_unlock(&proto_list_mutex
);
3244 out_free_timewait_sock_slab_name
:
3245 kfree(prot
->twsk_prot
->twsk_slab_name
);
3246 out_free_request_sock_slab
:
3247 req_prot_cleanup(prot
->rsk_prot
);
3249 kmem_cache_destroy(prot
->slab
);
3254 EXPORT_SYMBOL(proto_register
);
3256 void proto_unregister(struct proto
*prot
)
3258 mutex_lock(&proto_list_mutex
);
3259 release_proto_idx(prot
);
3260 list_del(&prot
->node
);
3261 mutex_unlock(&proto_list_mutex
);
3263 kmem_cache_destroy(prot
->slab
);
3266 req_prot_cleanup(prot
->rsk_prot
);
3268 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
3269 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
3270 kfree(prot
->twsk_prot
->twsk_slab_name
);
3271 prot
->twsk_prot
->twsk_slab
= NULL
;
3274 EXPORT_SYMBOL(proto_unregister
);
3276 int sock_load_diag_module(int family
, int protocol
)
3279 if (!sock_is_registered(family
))
3282 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK
,
3283 NETLINK_SOCK_DIAG
, family
);
3287 if (family
== AF_INET
&&
3288 protocol
!= IPPROTO_RAW
&&
3289 !rcu_access_pointer(inet_protos
[protocol
]))
3293 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK
,
3294 NETLINK_SOCK_DIAG
, family
, protocol
);
3296 EXPORT_SYMBOL(sock_load_diag_module
);
3298 #ifdef CONFIG_PROC_FS
3299 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
3300 __acquires(proto_list_mutex
)
3302 mutex_lock(&proto_list_mutex
);
3303 return seq_list_start_head(&proto_list
, *pos
);
3306 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
3308 return seq_list_next(v
, &proto_list
, pos
);
3311 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
3312 __releases(proto_list_mutex
)
3314 mutex_unlock(&proto_list_mutex
);
3317 static char proto_method_implemented(const void *method
)
3319 return method
== NULL
? 'n' : 'y';
3321 static long sock_prot_memory_allocated(struct proto
*proto
)
3323 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
3326 static char *sock_prot_memory_pressure(struct proto
*proto
)
3328 return proto
->memory_pressure
!= NULL
?
3329 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
3332 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
3335 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3336 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3339 sock_prot_inuse_get(seq_file_net(seq
), proto
),
3340 sock_prot_memory_allocated(proto
),
3341 sock_prot_memory_pressure(proto
),
3343 proto
->slab
== NULL
? "no" : "yes",
3344 module_name(proto
->owner
),
3345 proto_method_implemented(proto
->close
),
3346 proto_method_implemented(proto
->connect
),
3347 proto_method_implemented(proto
->disconnect
),
3348 proto_method_implemented(proto
->accept
),
3349 proto_method_implemented(proto
->ioctl
),
3350 proto_method_implemented(proto
->init
),
3351 proto_method_implemented(proto
->destroy
),
3352 proto_method_implemented(proto
->shutdown
),
3353 proto_method_implemented(proto
->setsockopt
),
3354 proto_method_implemented(proto
->getsockopt
),
3355 proto_method_implemented(proto
->sendmsg
),
3356 proto_method_implemented(proto
->recvmsg
),
3357 proto_method_implemented(proto
->sendpage
),
3358 proto_method_implemented(proto
->bind
),
3359 proto_method_implemented(proto
->backlog_rcv
),
3360 proto_method_implemented(proto
->hash
),
3361 proto_method_implemented(proto
->unhash
),
3362 proto_method_implemented(proto
->get_port
),
3363 proto_method_implemented(proto
->enter_memory_pressure
));
3366 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3368 if (v
== &proto_list
)
3369 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3378 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3380 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3384 static const struct seq_operations proto_seq_ops
= {
3385 .start
= proto_seq_start
,
3386 .next
= proto_seq_next
,
3387 .stop
= proto_seq_stop
,
3388 .show
= proto_seq_show
,
3391 static __net_init
int proto_init_net(struct net
*net
)
3393 if (!proc_create_net("protocols", 0444, net
->proc_net
, &proto_seq_ops
,
3394 sizeof(struct seq_net_private
)))
3400 static __net_exit
void proto_exit_net(struct net
*net
)
3402 remove_proc_entry("protocols", net
->proc_net
);
3406 static __net_initdata
struct pernet_operations proto_net_ops
= {
3407 .init
= proto_init_net
,
3408 .exit
= proto_exit_net
,
3411 static int __init
proto_init(void)
3413 return register_pernet_subsys(&proto_net_ops
);
3416 subsys_initcall(proto_init
);
3418 #endif /* PROC_FS */
3420 #ifdef CONFIG_NET_RX_BUSY_POLL
3421 bool sk_busy_loop_end(void *p
, unsigned long start_time
)
3423 struct sock
*sk
= p
;
3425 return !skb_queue_empty(&sk
->sk_receive_queue
) ||
3426 sk_busy_loop_timeout(sk
, start_time
);
3428 EXPORT_SYMBOL(sk_busy_loop_end
);
3429 #endif /* CONFIG_NET_RX_BUSY_POLL */