x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / arch / x86 / kernel / i8253.c
blob23c167925a5c078bcd387b6bce8e34f7a6dca694
1 /*
2 * 8253/PIT functions
4 */
5 #include <linux/clockchips.h>
6 #include <linux/interrupt.h>
7 #include <linux/spinlock.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/timex.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/io.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17 #include <asm/smp.h>
19 DEFINE_SPINLOCK(i8253_lock);
20 EXPORT_SYMBOL(i8253_lock);
23 * HPET replaces the PIT, when enabled. So we need to know, which of
24 * the two timers is used
26 struct clock_event_device *global_clock_event;
29 * Initialize the PIT timer.
31 * This is also called after resume to bring the PIT into operation again.
33 static void init_pit_timer(enum clock_event_mode mode,
34 struct clock_event_device *evt)
36 spin_lock(&i8253_lock);
38 switch (mode) {
39 case CLOCK_EVT_MODE_PERIODIC:
40 /* binary, mode 2, LSB/MSB, ch 0 */
41 outb_pit(0x34, PIT_MODE);
42 outb_pit(LATCH & 0xff , PIT_CH0); /* LSB */
43 outb_pit(LATCH >> 8 , PIT_CH0); /* MSB */
44 break;
46 case CLOCK_EVT_MODE_SHUTDOWN:
47 case CLOCK_EVT_MODE_UNUSED:
48 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
49 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
50 outb_pit(0x30, PIT_MODE);
51 outb_pit(0, PIT_CH0);
52 outb_pit(0, PIT_CH0);
54 break;
56 case CLOCK_EVT_MODE_ONESHOT:
57 /* One shot setup */
58 outb_pit(0x38, PIT_MODE);
59 break;
61 case CLOCK_EVT_MODE_RESUME:
62 /* Nothing to do here */
63 break;
65 spin_unlock(&i8253_lock);
69 * Program the next event in oneshot mode
71 * Delta is given in PIT ticks
73 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
75 spin_lock(&i8253_lock);
76 outb_pit(delta & 0xff , PIT_CH0); /* LSB */
77 outb_pit(delta >> 8 , PIT_CH0); /* MSB */
78 spin_unlock(&i8253_lock);
80 return 0;
84 * On UP the PIT can serve all of the possible timer functions. On SMP systems
85 * it can be solely used for the global tick.
87 * The profiling and update capabilities are switched off once the local apic is
88 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
89 * !using_apic_timer decisions in do_timer_interrupt_hook()
91 static struct clock_event_device pit_ce = {
92 .name = "pit",
93 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
94 .set_mode = init_pit_timer,
95 .set_next_event = pit_next_event,
96 .shift = 32,
97 .irq = 0,
101 * Initialize the conversion factor and the min/max deltas of the clock event
102 * structure and register the clock event source with the framework.
104 void __init setup_pit_timer(void)
107 * Start pit with the boot cpu mask and make it global after the
108 * IO_APIC has been initialized.
110 pit_ce.cpumask = cpumask_of(smp_processor_id());
111 pit_ce.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, pit_ce.shift);
112 pit_ce.max_delta_ns = clockevent_delta2ns(0x7FFF, &pit_ce);
113 pit_ce.min_delta_ns = clockevent_delta2ns(0xF, &pit_ce);
115 clockevents_register_device(&pit_ce);
116 global_clock_event = &pit_ce;
119 #ifndef CONFIG_X86_64
121 * Since the PIT overflows every tick, its not very useful
122 * to just read by itself. So use jiffies to emulate a free
123 * running counter:
125 static cycle_t pit_read(struct clocksource *cs)
127 static int old_count;
128 static u32 old_jifs;
129 unsigned long flags;
130 int count;
131 u32 jifs;
133 spin_lock_irqsave(&i8253_lock, flags);
135 * Although our caller may have the read side of xtime_lock,
136 * this is now a seqlock, and we are cheating in this routine
137 * by having side effects on state that we cannot undo if
138 * there is a collision on the seqlock and our caller has to
139 * retry. (Namely, old_jifs and old_count.) So we must treat
140 * jiffies as volatile despite the lock. We read jiffies
141 * before latching the timer count to guarantee that although
142 * the jiffies value might be older than the count (that is,
143 * the counter may underflow between the last point where
144 * jiffies was incremented and the point where we latch the
145 * count), it cannot be newer.
147 jifs = jiffies;
148 outb_pit(0x00, PIT_MODE); /* latch the count ASAP */
149 count = inb_pit(PIT_CH0); /* read the latched count */
150 count |= inb_pit(PIT_CH0) << 8;
152 /* VIA686a test code... reset the latch if count > max + 1 */
153 if (count > LATCH) {
154 outb_pit(0x34, PIT_MODE);
155 outb_pit(LATCH & 0xff, PIT_CH0);
156 outb_pit(LATCH >> 8, PIT_CH0);
157 count = LATCH - 1;
161 * It's possible for count to appear to go the wrong way for a
162 * couple of reasons:
164 * 1. The timer counter underflows, but we haven't handled the
165 * resulting interrupt and incremented jiffies yet.
166 * 2. Hardware problem with the timer, not giving us continuous time,
167 * the counter does small "jumps" upwards on some Pentium systems,
168 * (see c't 95/10 page 335 for Neptun bug.)
170 * Previous attempts to handle these cases intelligently were
171 * buggy, so we just do the simple thing now.
173 if (count > old_count && jifs == old_jifs)
174 count = old_count;
176 old_count = count;
177 old_jifs = jifs;
179 spin_unlock_irqrestore(&i8253_lock, flags);
181 count = (LATCH - 1) - count;
183 return (cycle_t)(jifs * LATCH) + count;
186 static struct clocksource pit_cs = {
187 .name = "pit",
188 .rating = 110,
189 .read = pit_read,
190 .mask = CLOCKSOURCE_MASK(32),
191 .mult = 0,
192 .shift = 20,
195 static int __init init_pit_clocksource(void)
198 * Several reasons not to register PIT as a clocksource:
200 * - On SMP PIT does not scale due to i8253_lock
201 * - when HPET is enabled
202 * - when local APIC timer is active (PIT is switched off)
204 if (num_possible_cpus() > 1 || is_hpet_enabled() ||
205 pit_ce.mode != CLOCK_EVT_MODE_PERIODIC)
206 return 0;
208 pit_cs.mult = clocksource_hz2mult(CLOCK_TICK_RATE, pit_cs.shift);
210 return clocksource_register(&pit_cs);
212 arch_initcall(init_pit_clocksource);
214 #endif /* !CONFIG_X86_64 */