2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
32 #include <linux/kvm_host.h>
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
40 #define mod_64(x, y) ((x) % (y))
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64
muldiv64(u64 a
, u32 b
, u32 c
)
60 rl
= (u64
)u
.l
.low
* (u64
)b
;
61 rh
= (u64
)u
.l
.high
* (u64
)b
;
63 res
.l
.high
= div64_u64(rh
, c
);
64 res
.l
.low
= div64_u64(((mod_64(rh
, c
) << 32) + (rl
& 0xffffffff)), c
);
68 static void pit_set_gate(struct kvm
*kvm
, int channel
, u32 val
)
70 struct kvm_kpit_channel_state
*c
=
71 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
73 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
79 /* XXX: just disable/enable counting */
85 /* Restart counting on rising edge. */
87 c
->count_load_time
= ktime_get();
94 static int pit_get_gate(struct kvm
*kvm
, int channel
)
96 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
98 return kvm
->arch
.vpit
->pit_state
.channels
[channel
].gate
;
101 static s64
__kpit_elapsed(struct kvm
*kvm
)
105 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
107 if (!ps
->pit_timer
.period
)
111 * The Counter does not stop when it reaches zero. In
112 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
113 * the highest count, either FFFF hex for binary counting
114 * or 9999 for BCD counting, and continues counting.
115 * Modes 2 and 3 are periodic; the Counter reloads
116 * itself with the initial count and continues counting
119 remaining
= hrtimer_get_remaining(&ps
->pit_timer
.timer
);
120 elapsed
= ps
->pit_timer
.period
- ktime_to_ns(remaining
);
121 elapsed
= mod_64(elapsed
, ps
->pit_timer
.period
);
126 static s64
kpit_elapsed(struct kvm
*kvm
, struct kvm_kpit_channel_state
*c
,
130 return __kpit_elapsed(kvm
);
132 return ktime_to_ns(ktime_sub(ktime_get(), c
->count_load_time
));
135 static int pit_get_count(struct kvm
*kvm
, int channel
)
137 struct kvm_kpit_channel_state
*c
=
138 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
142 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
144 t
= kpit_elapsed(kvm
, c
, channel
);
145 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
152 counter
= (c
->count
- d
) & 0xffff;
155 /* XXX: may be incorrect for odd counts */
156 counter
= c
->count
- (mod_64((2 * d
), c
->count
));
159 counter
= c
->count
- mod_64(d
, c
->count
);
165 static int pit_get_out(struct kvm
*kvm
, int channel
)
167 struct kvm_kpit_channel_state
*c
=
168 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
172 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
174 t
= kpit_elapsed(kvm
, c
, channel
);
175 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
180 out
= (d
>= c
->count
);
183 out
= (d
< c
->count
);
186 out
= ((mod_64(d
, c
->count
) == 0) && (d
!= 0));
189 out
= (mod_64(d
, c
->count
) < ((c
->count
+ 1) >> 1));
193 out
= (d
== c
->count
);
200 static void pit_latch_count(struct kvm
*kvm
, int channel
)
202 struct kvm_kpit_channel_state
*c
=
203 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
205 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
207 if (!c
->count_latched
) {
208 c
->latched_count
= pit_get_count(kvm
, channel
);
209 c
->count_latched
= c
->rw_mode
;
213 static void pit_latch_status(struct kvm
*kvm
, int channel
)
215 struct kvm_kpit_channel_state
*c
=
216 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
218 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
220 if (!c
->status_latched
) {
221 /* TODO: Return NULL COUNT (bit 6). */
222 c
->status
= ((pit_get_out(kvm
, channel
) << 7) |
226 c
->status_latched
= 1;
230 int pit_has_pending_timer(struct kvm_vcpu
*vcpu
)
232 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
234 if (pit
&& kvm_vcpu_is_bsp(vcpu
) && pit
->pit_state
.irq_ack
)
235 return atomic_read(&pit
->pit_state
.pit_timer
.pending
);
239 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier
*kian
)
241 struct kvm_kpit_state
*ps
= container_of(kian
, struct kvm_kpit_state
,
243 spin_lock(&ps
->inject_lock
);
244 if (atomic_dec_return(&ps
->pit_timer
.pending
) < 0)
245 atomic_inc(&ps
->pit_timer
.pending
);
247 spin_unlock(&ps
->inject_lock
);
250 void __kvm_migrate_pit_timer(struct kvm_vcpu
*vcpu
)
252 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
253 struct hrtimer
*timer
;
255 if (!kvm_vcpu_is_bsp(vcpu
) || !pit
)
258 timer
= &pit
->pit_state
.pit_timer
.timer
;
259 if (hrtimer_cancel(timer
))
260 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
263 static void destroy_pit_timer(struct kvm_timer
*pt
)
265 pr_debug("pit: execute del timer!\n");
266 hrtimer_cancel(&pt
->timer
);
269 static bool kpit_is_periodic(struct kvm_timer
*ktimer
)
271 struct kvm_kpit_state
*ps
= container_of(ktimer
, struct kvm_kpit_state
,
273 return ps
->is_periodic
;
276 static struct kvm_timer_ops kpit_ops
= {
277 .is_periodic
= kpit_is_periodic
,
280 static void create_pit_timer(struct kvm_kpit_state
*ps
, u32 val
, int is_period
)
282 struct kvm_timer
*pt
= &ps
->pit_timer
;
285 interval
= muldiv64(val
, NSEC_PER_SEC
, KVM_PIT_FREQ
);
287 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval
);
289 /* TODO The new value only affected after the retriggered */
290 hrtimer_cancel(&pt
->timer
);
291 pt
->period
= interval
;
292 ps
->is_periodic
= is_period
;
294 pt
->timer
.function
= kvm_timer_fn
;
295 pt
->t_ops
= &kpit_ops
;
296 pt
->kvm
= ps
->pit
->kvm
;
297 pt
->vcpu
= pt
->kvm
->bsp_vcpu
;
299 atomic_set(&pt
->pending
, 0);
302 hrtimer_start(&pt
->timer
, ktime_add_ns(ktime_get(), interval
),
306 static void pit_load_count(struct kvm
*kvm
, int channel
, u32 val
)
308 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
310 WARN_ON(!mutex_is_locked(&ps
->lock
));
312 pr_debug("pit: load_count val is %d, channel is %d\n", val
, channel
);
315 * The largest possible initial count is 0; this is equivalent
316 * to 216 for binary counting and 104 for BCD counting.
321 ps
->channels
[channel
].count
= val
;
324 ps
->channels
[channel
].count_load_time
= ktime_get();
328 /* Two types of timer
329 * mode 1 is one shot, mode 2 is period, otherwise del timer */
330 switch (ps
->channels
[0].mode
) {
333 /* FIXME: enhance mode 4 precision */
335 if (!(ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
)) {
336 create_pit_timer(ps
, val
, 0);
341 if (!(ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
)){
342 create_pit_timer(ps
, val
, 1);
346 destroy_pit_timer(&ps
->pit_timer
);
350 void kvm_pit_load_count(struct kvm
*kvm
, int channel
, u32 val
, int hpet_legacy_start
)
353 if (hpet_legacy_start
) {
354 /* save existing mode for later reenablement */
355 saved_mode
= kvm
->arch
.vpit
->pit_state
.channels
[0].mode
;
356 kvm
->arch
.vpit
->pit_state
.channels
[0].mode
= 0xff; /* disable timer */
357 pit_load_count(kvm
, channel
, val
);
358 kvm
->arch
.vpit
->pit_state
.channels
[0].mode
= saved_mode
;
360 pit_load_count(kvm
, channel
, val
);
364 static inline struct kvm_pit
*dev_to_pit(struct kvm_io_device
*dev
)
366 return container_of(dev
, struct kvm_pit
, dev
);
369 static inline struct kvm_pit
*speaker_to_pit(struct kvm_io_device
*dev
)
371 return container_of(dev
, struct kvm_pit
, speaker_dev
);
374 static inline int pit_in_range(gpa_t addr
)
376 return ((addr
>= KVM_PIT_BASE_ADDRESS
) &&
377 (addr
< KVM_PIT_BASE_ADDRESS
+ KVM_PIT_MEM_LENGTH
));
380 static int pit_ioport_write(struct kvm_io_device
*this,
381 gpa_t addr
, int len
, const void *data
)
383 struct kvm_pit
*pit
= dev_to_pit(this);
384 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
385 struct kvm
*kvm
= pit
->kvm
;
387 struct kvm_kpit_channel_state
*s
;
388 u32 val
= *(u32
*) data
;
389 if (!pit_in_range(addr
))
393 addr
&= KVM_PIT_CHANNEL_MASK
;
395 mutex_lock(&pit_state
->lock
);
398 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
399 (unsigned int)addr
, len
, val
);
404 /* Read-Back Command. */
405 for (channel
= 0; channel
< 3; channel
++) {
406 s
= &pit_state
->channels
[channel
];
407 if (val
& (2 << channel
)) {
409 pit_latch_count(kvm
, channel
);
411 pit_latch_status(kvm
, channel
);
415 /* Select Counter <channel>. */
416 s
= &pit_state
->channels
[channel
];
417 access
= (val
>> 4) & KVM_PIT_CHANNEL_MASK
;
419 pit_latch_count(kvm
, channel
);
422 s
->read_state
= access
;
423 s
->write_state
= access
;
424 s
->mode
= (val
>> 1) & 7;
432 s
= &pit_state
->channels
[addr
];
433 switch (s
->write_state
) {
436 pit_load_count(kvm
, addr
, val
);
439 pit_load_count(kvm
, addr
, val
<< 8);
442 s
->write_latch
= val
;
443 s
->write_state
= RW_STATE_WORD1
;
446 pit_load_count(kvm
, addr
, s
->write_latch
| (val
<< 8));
447 s
->write_state
= RW_STATE_WORD0
;
452 mutex_unlock(&pit_state
->lock
);
456 static int pit_ioport_read(struct kvm_io_device
*this,
457 gpa_t addr
, int len
, void *data
)
459 struct kvm_pit
*pit
= dev_to_pit(this);
460 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
461 struct kvm
*kvm
= pit
->kvm
;
463 struct kvm_kpit_channel_state
*s
;
464 if (!pit_in_range(addr
))
467 addr
&= KVM_PIT_CHANNEL_MASK
;
468 s
= &pit_state
->channels
[addr
];
470 mutex_lock(&pit_state
->lock
);
472 if (s
->status_latched
) {
473 s
->status_latched
= 0;
475 } else if (s
->count_latched
) {
476 switch (s
->count_latched
) {
479 ret
= s
->latched_count
& 0xff;
480 s
->count_latched
= 0;
483 ret
= s
->latched_count
>> 8;
484 s
->count_latched
= 0;
487 ret
= s
->latched_count
& 0xff;
488 s
->count_latched
= RW_STATE_MSB
;
492 switch (s
->read_state
) {
495 count
= pit_get_count(kvm
, addr
);
499 count
= pit_get_count(kvm
, addr
);
500 ret
= (count
>> 8) & 0xff;
503 count
= pit_get_count(kvm
, addr
);
505 s
->read_state
= RW_STATE_WORD1
;
508 count
= pit_get_count(kvm
, addr
);
509 ret
= (count
>> 8) & 0xff;
510 s
->read_state
= RW_STATE_WORD0
;
515 if (len
> sizeof(ret
))
517 memcpy(data
, (char *)&ret
, len
);
519 mutex_unlock(&pit_state
->lock
);
523 static int speaker_ioport_write(struct kvm_io_device
*this,
524 gpa_t addr
, int len
, const void *data
)
526 struct kvm_pit
*pit
= speaker_to_pit(this);
527 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
528 struct kvm
*kvm
= pit
->kvm
;
529 u32 val
= *(u32
*) data
;
530 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
533 mutex_lock(&pit_state
->lock
);
534 pit_state
->speaker_data_on
= (val
>> 1) & 1;
535 pit_set_gate(kvm
, 2, val
& 1);
536 mutex_unlock(&pit_state
->lock
);
540 static int speaker_ioport_read(struct kvm_io_device
*this,
541 gpa_t addr
, int len
, void *data
)
543 struct kvm_pit
*pit
= speaker_to_pit(this);
544 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
545 struct kvm
*kvm
= pit
->kvm
;
546 unsigned int refresh_clock
;
548 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
551 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
552 refresh_clock
= ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
554 mutex_lock(&pit_state
->lock
);
555 ret
= ((pit_state
->speaker_data_on
<< 1) | pit_get_gate(kvm
, 2) |
556 (pit_get_out(kvm
, 2) << 5) | (refresh_clock
<< 4));
557 if (len
> sizeof(ret
))
559 memcpy(data
, (char *)&ret
, len
);
560 mutex_unlock(&pit_state
->lock
);
564 void kvm_pit_reset(struct kvm_pit
*pit
)
567 struct kvm_kpit_channel_state
*c
;
569 mutex_lock(&pit
->pit_state
.lock
);
570 pit
->pit_state
.flags
= 0;
571 for (i
= 0; i
< 3; i
++) {
572 c
= &pit
->pit_state
.channels
[i
];
575 pit_load_count(pit
->kvm
, i
, 0);
577 mutex_unlock(&pit
->pit_state
.lock
);
579 atomic_set(&pit
->pit_state
.pit_timer
.pending
, 0);
580 pit
->pit_state
.irq_ack
= 1;
583 static void pit_mask_notifer(struct kvm_irq_mask_notifier
*kimn
, bool mask
)
585 struct kvm_pit
*pit
= container_of(kimn
, struct kvm_pit
, mask_notifier
);
588 atomic_set(&pit
->pit_state
.pit_timer
.pending
, 0);
589 pit
->pit_state
.irq_ack
= 1;
593 static const struct kvm_io_device_ops pit_dev_ops
= {
594 .read
= pit_ioport_read
,
595 .write
= pit_ioport_write
,
598 static const struct kvm_io_device_ops speaker_dev_ops
= {
599 .read
= speaker_ioport_read
,
600 .write
= speaker_ioport_write
,
603 /* Caller must have writers lock on slots_lock */
604 struct kvm_pit
*kvm_create_pit(struct kvm
*kvm
, u32 flags
)
607 struct kvm_kpit_state
*pit_state
;
610 pit
= kzalloc(sizeof(struct kvm_pit
), GFP_KERNEL
);
614 pit
->irq_source_id
= kvm_request_irq_source_id(kvm
);
615 if (pit
->irq_source_id
< 0) {
620 mutex_init(&pit
->pit_state
.lock
);
621 mutex_lock(&pit
->pit_state
.lock
);
622 spin_lock_init(&pit
->pit_state
.inject_lock
);
624 kvm
->arch
.vpit
= pit
;
627 pit_state
= &pit
->pit_state
;
628 pit_state
->pit
= pit
;
629 hrtimer_init(&pit_state
->pit_timer
.timer
,
630 CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
631 pit_state
->irq_ack_notifier
.gsi
= 0;
632 pit_state
->irq_ack_notifier
.irq_acked
= kvm_pit_ack_irq
;
633 kvm_register_irq_ack_notifier(kvm
, &pit_state
->irq_ack_notifier
);
634 pit_state
->pit_timer
.reinject
= true;
635 mutex_unlock(&pit
->pit_state
.lock
);
639 pit
->mask_notifier
.func
= pit_mask_notifer
;
640 kvm_register_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
642 kvm_iodevice_init(&pit
->dev
, &pit_dev_ops
);
643 ret
= __kvm_io_bus_register_dev(&kvm
->pio_bus
, &pit
->dev
);
647 if (flags
& KVM_PIT_SPEAKER_DUMMY
) {
648 kvm_iodevice_init(&pit
->speaker_dev
, &speaker_dev_ops
);
649 ret
= __kvm_io_bus_register_dev(&kvm
->pio_bus
,
652 goto fail_unregister
;
658 __kvm_io_bus_unregister_dev(&kvm
->pio_bus
, &pit
->dev
);
661 if (pit
->irq_source_id
>= 0)
662 kvm_free_irq_source_id(kvm
, pit
->irq_source_id
);
668 void kvm_free_pit(struct kvm
*kvm
)
670 struct hrtimer
*timer
;
672 if (kvm
->arch
.vpit
) {
673 kvm_unregister_irq_mask_notifier(kvm
, 0,
674 &kvm
->arch
.vpit
->mask_notifier
);
675 kvm_unregister_irq_ack_notifier(kvm
,
676 &kvm
->arch
.vpit
->pit_state
.irq_ack_notifier
);
677 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
678 timer
= &kvm
->arch
.vpit
->pit_state
.pit_timer
.timer
;
679 hrtimer_cancel(timer
);
680 kvm_free_irq_source_id(kvm
, kvm
->arch
.vpit
->irq_source_id
);
681 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
682 kfree(kvm
->arch
.vpit
);
686 static void __inject_pit_timer_intr(struct kvm
*kvm
)
688 struct kvm_vcpu
*vcpu
;
691 mutex_lock(&kvm
->irq_lock
);
692 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 1);
693 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 0);
694 mutex_unlock(&kvm
->irq_lock
);
697 * Provides NMI watchdog support via Virtual Wire mode.
698 * The route is: PIT -> PIC -> LVT0 in NMI mode.
700 * Note: Our Virtual Wire implementation is simplified, only
701 * propagating PIT interrupts to all VCPUs when they have set
702 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
703 * VCPU0, and only if its LVT0 is in EXTINT mode.
705 if (kvm
->arch
.vapics_in_nmi_mode
> 0)
706 kvm_for_each_vcpu(i
, vcpu
, kvm
)
707 kvm_apic_nmi_wd_deliver(vcpu
);
710 void kvm_inject_pit_timer_irqs(struct kvm_vcpu
*vcpu
)
712 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
713 struct kvm
*kvm
= vcpu
->kvm
;
714 struct kvm_kpit_state
*ps
;
718 ps
= &pit
->pit_state
;
720 /* Try to inject pending interrupts when
721 * last one has been acked.
723 spin_lock(&ps
->inject_lock
);
724 if (atomic_read(&ps
->pit_timer
.pending
) && ps
->irq_ack
) {
728 spin_unlock(&ps
->inject_lock
);
730 __inject_pit_timer_intr(kvm
);