2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 #include "kvm_cache_regs.h"
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
34 #include <asm/cmpxchg.h>
39 * When setting this variable to true it enables Two-Dimensional-Paging
40 * where the hardware walks 2 page tables:
41 * 1. the guest-virtual to guest-physical
42 * 2. while doing 1. it walks guest-physical to host-physical
43 * If the hardware supports that we don't need to do shadow paging.
45 bool tdp_enabled
= false;
52 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
54 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
59 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
60 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
64 #define pgprintk(x...) do { } while (0)
65 #define rmap_printk(x...) do { } while (0)
69 #if defined(MMU_DEBUG) || defined(AUDIT)
71 module_param(dbg
, bool, 0644);
74 static int oos_shadow
= 1;
75 module_param(oos_shadow
, bool, 0644);
78 #define ASSERT(x) do { } while (0)
82 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
83 __FILE__, __LINE__, #x); \
87 #define PT_FIRST_AVAIL_BITS_SHIFT 9
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
90 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
92 #define PT64_LEVEL_BITS 9
94 #define PT64_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
97 #define PT64_LEVEL_MASK(level) \
98 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
100 #define PT64_INDEX(address, level)\
101 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104 #define PT32_LEVEL_BITS 10
106 #define PT32_LEVEL_SHIFT(level) \
107 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109 #define PT32_LEVEL_MASK(level) \
110 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
139 #define PFERR_PRESENT_MASK (1U << 0)
140 #define PFERR_WRITE_MASK (1U << 1)
141 #define PFERR_USER_MASK (1U << 2)
142 #define PFERR_RSVD_MASK (1U << 3)
143 #define PFERR_FETCH_MASK (1U << 4)
145 #define PT_PDPE_LEVEL 3
146 #define PT_DIRECTORY_LEVEL 2
147 #define PT_PAGE_TABLE_LEVEL 1
151 #define ACC_EXEC_MASK 1
152 #define ACC_WRITE_MASK PT_WRITABLE_MASK
153 #define ACC_USER_MASK PT_USER_MASK
154 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156 #define CREATE_TRACE_POINTS
157 #include "mmutrace.h"
159 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
161 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
163 struct kvm_rmap_desc
{
164 u64
*sptes
[RMAP_EXT
];
165 struct kvm_rmap_desc
*more
;
168 struct kvm_shadow_walk_iterator
{
176 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
177 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
178 shadow_walk_okay(&(_walker)); \
179 shadow_walk_next(&(_walker)))
182 struct kvm_unsync_walk
{
183 int (*entry
) (struct kvm_mmu_page
*sp
, struct kvm_unsync_walk
*walk
);
186 typedef int (*mmu_parent_walk_fn
) (struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
);
188 static struct kmem_cache
*pte_chain_cache
;
189 static struct kmem_cache
*rmap_desc_cache
;
190 static struct kmem_cache
*mmu_page_header_cache
;
192 static u64 __read_mostly shadow_trap_nonpresent_pte
;
193 static u64 __read_mostly shadow_notrap_nonpresent_pte
;
194 static u64 __read_mostly shadow_base_present_pte
;
195 static u64 __read_mostly shadow_nx_mask
;
196 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
197 static u64 __read_mostly shadow_user_mask
;
198 static u64 __read_mostly shadow_accessed_mask
;
199 static u64 __read_mostly shadow_dirty_mask
;
201 static inline u64
rsvd_bits(int s
, int e
)
203 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
206 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte
, u64 notrap_pte
)
208 shadow_trap_nonpresent_pte
= trap_pte
;
209 shadow_notrap_nonpresent_pte
= notrap_pte
;
211 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes
);
213 void kvm_mmu_set_base_ptes(u64 base_pte
)
215 shadow_base_present_pte
= base_pte
;
217 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes
);
219 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
220 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
222 shadow_user_mask
= user_mask
;
223 shadow_accessed_mask
= accessed_mask
;
224 shadow_dirty_mask
= dirty_mask
;
225 shadow_nx_mask
= nx_mask
;
226 shadow_x_mask
= x_mask
;
228 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
230 static int is_write_protection(struct kvm_vcpu
*vcpu
)
232 return vcpu
->arch
.cr0
& X86_CR0_WP
;
235 static int is_cpuid_PSE36(void)
240 static int is_nx(struct kvm_vcpu
*vcpu
)
242 return vcpu
->arch
.shadow_efer
& EFER_NX
;
245 static int is_shadow_present_pte(u64 pte
)
247 return pte
!= shadow_trap_nonpresent_pte
248 && pte
!= shadow_notrap_nonpresent_pte
;
251 static int is_large_pte(u64 pte
)
253 return pte
& PT_PAGE_SIZE_MASK
;
256 static int is_writeble_pte(unsigned long pte
)
258 return pte
& PT_WRITABLE_MASK
;
261 static int is_dirty_gpte(unsigned long pte
)
263 return pte
& PT_DIRTY_MASK
;
266 static int is_rmap_spte(u64 pte
)
268 return is_shadow_present_pte(pte
);
271 static int is_last_spte(u64 pte
, int level
)
273 if (level
== PT_PAGE_TABLE_LEVEL
)
275 if (is_large_pte(pte
))
280 static pfn_t
spte_to_pfn(u64 pte
)
282 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
285 static gfn_t
pse36_gfn_delta(u32 gpte
)
287 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
289 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
292 static void __set_spte(u64
*sptep
, u64 spte
)
295 set_64bit((unsigned long *)sptep
, spte
);
297 set_64bit((unsigned long long *)sptep
, spte
);
301 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
302 struct kmem_cache
*base_cache
, int min
)
306 if (cache
->nobjs
>= min
)
308 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
309 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
312 cache
->objects
[cache
->nobjs
++] = obj
;
317 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
320 kfree(mc
->objects
[--mc
->nobjs
]);
323 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
328 if (cache
->nobjs
>= min
)
330 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
331 page
= alloc_page(GFP_KERNEL
);
334 set_page_private(page
, 0);
335 cache
->objects
[cache
->nobjs
++] = page_address(page
);
340 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
343 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
346 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
350 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
,
354 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
,
358 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
361 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
362 mmu_page_header_cache
, 4);
367 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
369 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
);
370 mmu_free_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
);
371 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
372 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
);
375 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
381 p
= mc
->objects
[--mc
->nobjs
];
385 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
387 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_chain_cache
,
388 sizeof(struct kvm_pte_chain
));
391 static void mmu_free_pte_chain(struct kvm_pte_chain
*pc
)
396 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
398 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_rmap_desc_cache
,
399 sizeof(struct kvm_rmap_desc
));
402 static void mmu_free_rmap_desc(struct kvm_rmap_desc
*rd
)
408 * Return the pointer to the largepage write count for a given
409 * gfn, handling slots that are not large page aligned.
411 static int *slot_largepage_idx(gfn_t gfn
,
412 struct kvm_memory_slot
*slot
,
417 idx
= (gfn
/ KVM_PAGES_PER_HPAGE(level
)) -
418 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE(level
));
419 return &slot
->lpage_info
[level
- 2][idx
].write_count
;
422 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
424 struct kvm_memory_slot
*slot
;
428 gfn
= unalias_gfn(kvm
, gfn
);
430 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
431 for (i
= PT_DIRECTORY_LEVEL
;
432 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
433 write_count
= slot_largepage_idx(gfn
, slot
, i
);
438 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
440 struct kvm_memory_slot
*slot
;
444 gfn
= unalias_gfn(kvm
, gfn
);
445 for (i
= PT_DIRECTORY_LEVEL
;
446 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
447 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
448 write_count
= slot_largepage_idx(gfn
, slot
, i
);
450 WARN_ON(*write_count
< 0);
454 static int has_wrprotected_page(struct kvm
*kvm
,
458 struct kvm_memory_slot
*slot
;
461 gfn
= unalias_gfn(kvm
, gfn
);
462 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
464 largepage_idx
= slot_largepage_idx(gfn
, slot
, level
);
465 return *largepage_idx
;
471 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
473 unsigned long page_size
= PAGE_SIZE
;
474 struct vm_area_struct
*vma
;
478 addr
= gfn_to_hva(kvm
, gfn
);
479 if (kvm_is_error_hva(addr
))
482 down_read(¤t
->mm
->mmap_sem
);
483 vma
= find_vma(current
->mm
, addr
);
487 page_size
= vma_kernel_pagesize(vma
);
490 up_read(¤t
->mm
->mmap_sem
);
492 for (i
= PT_PAGE_TABLE_LEVEL
;
493 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
494 if (page_size
>= KVM_HPAGE_SIZE(i
))
503 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
505 struct kvm_memory_slot
*slot
;
507 int level
= PT_PAGE_TABLE_LEVEL
;
509 slot
= gfn_to_memslot(vcpu
->kvm
, large_gfn
);
510 if (slot
&& slot
->dirty_bitmap
)
511 return PT_PAGE_TABLE_LEVEL
;
513 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
515 if (host_level
== PT_PAGE_TABLE_LEVEL
)
518 for (level
= PT_DIRECTORY_LEVEL
; level
<= host_level
; ++level
) {
520 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
528 * Take gfn and return the reverse mapping to it.
529 * Note: gfn must be unaliased before this function get called
532 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
534 struct kvm_memory_slot
*slot
;
537 slot
= gfn_to_memslot(kvm
, gfn
);
538 if (likely(level
== PT_PAGE_TABLE_LEVEL
))
539 return &slot
->rmap
[gfn
- slot
->base_gfn
];
541 idx
= (gfn
/ KVM_PAGES_PER_HPAGE(level
)) -
542 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE(level
));
544 return &slot
->lpage_info
[level
- 2][idx
].rmap_pde
;
548 * Reverse mapping data structures:
550 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
551 * that points to page_address(page).
553 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
554 * containing more mappings.
556 * Returns the number of rmap entries before the spte was added or zero if
557 * the spte was not added.
560 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
562 struct kvm_mmu_page
*sp
;
563 struct kvm_rmap_desc
*desc
;
564 unsigned long *rmapp
;
567 if (!is_rmap_spte(*spte
))
569 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
570 sp
= page_header(__pa(spte
));
571 sp
->gfns
[spte
- sp
->spt
] = gfn
;
572 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
574 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
575 *rmapp
= (unsigned long)spte
;
576 } else if (!(*rmapp
& 1)) {
577 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
578 desc
= mmu_alloc_rmap_desc(vcpu
);
579 desc
->sptes
[0] = (u64
*)*rmapp
;
580 desc
->sptes
[1] = spte
;
581 *rmapp
= (unsigned long)desc
| 1;
583 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
584 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
585 while (desc
->sptes
[RMAP_EXT
-1] && desc
->more
) {
589 if (desc
->sptes
[RMAP_EXT
-1]) {
590 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
593 for (i
= 0; desc
->sptes
[i
]; ++i
)
595 desc
->sptes
[i
] = spte
;
600 static void rmap_desc_remove_entry(unsigned long *rmapp
,
601 struct kvm_rmap_desc
*desc
,
603 struct kvm_rmap_desc
*prev_desc
)
607 for (j
= RMAP_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
609 desc
->sptes
[i
] = desc
->sptes
[j
];
610 desc
->sptes
[j
] = NULL
;
613 if (!prev_desc
&& !desc
->more
)
614 *rmapp
= (unsigned long)desc
->sptes
[0];
617 prev_desc
->more
= desc
->more
;
619 *rmapp
= (unsigned long)desc
->more
| 1;
620 mmu_free_rmap_desc(desc
);
623 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
625 struct kvm_rmap_desc
*desc
;
626 struct kvm_rmap_desc
*prev_desc
;
627 struct kvm_mmu_page
*sp
;
629 unsigned long *rmapp
;
632 if (!is_rmap_spte(*spte
))
634 sp
= page_header(__pa(spte
));
635 pfn
= spte_to_pfn(*spte
);
636 if (*spte
& shadow_accessed_mask
)
637 kvm_set_pfn_accessed(pfn
);
638 if (is_writeble_pte(*spte
))
639 kvm_set_pfn_dirty(pfn
);
640 rmapp
= gfn_to_rmap(kvm
, sp
->gfns
[spte
- sp
->spt
], sp
->role
.level
);
642 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
644 } else if (!(*rmapp
& 1)) {
645 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
646 if ((u64
*)*rmapp
!= spte
) {
647 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
653 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
654 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
657 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
)
658 if (desc
->sptes
[i
] == spte
) {
659 rmap_desc_remove_entry(rmapp
,
671 static u64
*rmap_next(struct kvm
*kvm
, unsigned long *rmapp
, u64
*spte
)
673 struct kvm_rmap_desc
*desc
;
674 struct kvm_rmap_desc
*prev_desc
;
680 else if (!(*rmapp
& 1)) {
682 return (u64
*)*rmapp
;
685 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
689 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
) {
690 if (prev_spte
== spte
)
691 return desc
->sptes
[i
];
692 prev_spte
= desc
->sptes
[i
];
699 static int rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
701 unsigned long *rmapp
;
703 int i
, write_protected
= 0;
705 gfn
= unalias_gfn(kvm
, gfn
);
706 rmapp
= gfn_to_rmap(kvm
, gfn
, PT_PAGE_TABLE_LEVEL
);
708 spte
= rmap_next(kvm
, rmapp
, NULL
);
711 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
712 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
713 if (is_writeble_pte(*spte
)) {
714 __set_spte(spte
, *spte
& ~PT_WRITABLE_MASK
);
717 spte
= rmap_next(kvm
, rmapp
, spte
);
719 if (write_protected
) {
722 spte
= rmap_next(kvm
, rmapp
, NULL
);
723 pfn
= spte_to_pfn(*spte
);
724 kvm_set_pfn_dirty(pfn
);
727 /* check for huge page mappings */
728 for (i
= PT_DIRECTORY_LEVEL
;
729 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
730 rmapp
= gfn_to_rmap(kvm
, gfn
, i
);
731 spte
= rmap_next(kvm
, rmapp
, NULL
);
734 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
735 BUG_ON((*spte
& (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
)) != (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
));
736 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte
, *spte
, gfn
);
737 if (is_writeble_pte(*spte
)) {
738 rmap_remove(kvm
, spte
);
740 __set_spte(spte
, shadow_trap_nonpresent_pte
);
744 spte
= rmap_next(kvm
, rmapp
, spte
);
748 return write_protected
;
751 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
755 int need_tlb_flush
= 0;
757 while ((spte
= rmap_next(kvm
, rmapp
, NULL
))) {
758 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
759 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte
, *spte
);
760 rmap_remove(kvm
, spte
);
761 __set_spte(spte
, shadow_trap_nonpresent_pte
);
764 return need_tlb_flush
;
767 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
772 pte_t
*ptep
= (pte_t
*)data
;
775 WARN_ON(pte_huge(*ptep
));
776 new_pfn
= pte_pfn(*ptep
);
777 spte
= rmap_next(kvm
, rmapp
, NULL
);
779 BUG_ON(!is_shadow_present_pte(*spte
));
780 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte
, *spte
);
782 if (pte_write(*ptep
)) {
783 rmap_remove(kvm
, spte
);
784 __set_spte(spte
, shadow_trap_nonpresent_pte
);
785 spte
= rmap_next(kvm
, rmapp
, NULL
);
787 new_spte
= *spte
&~ (PT64_BASE_ADDR_MASK
);
788 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
790 new_spte
&= ~PT_WRITABLE_MASK
;
791 new_spte
&= ~SPTE_HOST_WRITEABLE
;
792 if (is_writeble_pte(*spte
))
793 kvm_set_pfn_dirty(spte_to_pfn(*spte
));
794 __set_spte(spte
, new_spte
);
795 spte
= rmap_next(kvm
, rmapp
, spte
);
799 kvm_flush_remote_tlbs(kvm
);
804 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
806 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
813 * If mmap_sem isn't taken, we can look the memslots with only
814 * the mmu_lock by skipping over the slots with userspace_addr == 0.
816 for (i
= 0; i
< kvm
->nmemslots
; i
++) {
817 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
818 unsigned long start
= memslot
->userspace_addr
;
821 /* mmu_lock protects userspace_addr */
825 end
= start
+ (memslot
->npages
<< PAGE_SHIFT
);
826 if (hva
>= start
&& hva
< end
) {
827 gfn_t gfn_offset
= (hva
- start
) >> PAGE_SHIFT
;
829 retval
|= handler(kvm
, &memslot
->rmap
[gfn_offset
],
832 for (j
= 0; j
< KVM_NR_PAGE_SIZES
- 1; ++j
) {
833 int idx
= gfn_offset
;
834 idx
/= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL
+ j
);
835 retval
|= handler(kvm
,
836 &memslot
->lpage_info
[j
][idx
].rmap_pde
,
845 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
847 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
850 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
852 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
855 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
861 /* always return old for EPT */
862 if (!shadow_accessed_mask
)
865 spte
= rmap_next(kvm
, rmapp
, NULL
);
869 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
870 _young
= _spte
& PT_ACCESSED_MASK
;
873 clear_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
875 spte
= rmap_next(kvm
, rmapp
, spte
);
880 #define RMAP_RECYCLE_THRESHOLD 1000
882 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
884 unsigned long *rmapp
;
885 struct kvm_mmu_page
*sp
;
887 sp
= page_header(__pa(spte
));
889 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
890 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
892 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, 0);
893 kvm_flush_remote_tlbs(vcpu
->kvm
);
896 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
898 return kvm_handle_hva(kvm
, hva
, 0, kvm_age_rmapp
);
902 static int is_empty_shadow_page(u64
*spt
)
907 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
908 if (is_shadow_present_pte(*pos
)) {
909 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
917 static void kvm_mmu_free_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
919 ASSERT(is_empty_shadow_page(sp
->spt
));
921 __free_page(virt_to_page(sp
->spt
));
922 __free_page(virt_to_page(sp
->gfns
));
924 ++kvm
->arch
.n_free_mmu_pages
;
927 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
929 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
932 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
935 struct kvm_mmu_page
*sp
;
937 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
, sizeof *sp
);
938 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
939 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
940 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
941 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
942 INIT_LIST_HEAD(&sp
->oos_link
);
943 bitmap_zero(sp
->slot_bitmap
, KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
);
945 sp
->parent_pte
= parent_pte
;
946 --vcpu
->kvm
->arch
.n_free_mmu_pages
;
950 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
951 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
953 struct kvm_pte_chain
*pte_chain
;
954 struct hlist_node
*node
;
959 if (!sp
->multimapped
) {
960 u64
*old
= sp
->parent_pte
;
963 sp
->parent_pte
= parent_pte
;
967 pte_chain
= mmu_alloc_pte_chain(vcpu
);
968 INIT_HLIST_HEAD(&sp
->parent_ptes
);
969 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
970 pte_chain
->parent_ptes
[0] = old
;
972 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
) {
973 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
975 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
976 if (!pte_chain
->parent_ptes
[i
]) {
977 pte_chain
->parent_ptes
[i
] = parent_pte
;
981 pte_chain
= mmu_alloc_pte_chain(vcpu
);
983 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
984 pte_chain
->parent_ptes
[0] = parent_pte
;
987 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
990 struct kvm_pte_chain
*pte_chain
;
991 struct hlist_node
*node
;
994 if (!sp
->multimapped
) {
995 BUG_ON(sp
->parent_pte
!= parent_pte
);
996 sp
->parent_pte
= NULL
;
999 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1000 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1001 if (!pte_chain
->parent_ptes
[i
])
1003 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
1005 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
1006 && pte_chain
->parent_ptes
[i
+ 1]) {
1007 pte_chain
->parent_ptes
[i
]
1008 = pte_chain
->parent_ptes
[i
+ 1];
1011 pte_chain
->parent_ptes
[i
] = NULL
;
1013 hlist_del(&pte_chain
->link
);
1014 mmu_free_pte_chain(pte_chain
);
1015 if (hlist_empty(&sp
->parent_ptes
)) {
1016 sp
->multimapped
= 0;
1017 sp
->parent_pte
= NULL
;
1026 static void mmu_parent_walk(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1027 mmu_parent_walk_fn fn
)
1029 struct kvm_pte_chain
*pte_chain
;
1030 struct hlist_node
*node
;
1031 struct kvm_mmu_page
*parent_sp
;
1034 if (!sp
->multimapped
&& sp
->parent_pte
) {
1035 parent_sp
= page_header(__pa(sp
->parent_pte
));
1036 fn(vcpu
, parent_sp
);
1037 mmu_parent_walk(vcpu
, parent_sp
, fn
);
1040 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1041 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1042 if (!pte_chain
->parent_ptes
[i
])
1044 parent_sp
= page_header(__pa(pte_chain
->parent_ptes
[i
]));
1045 fn(vcpu
, parent_sp
);
1046 mmu_parent_walk(vcpu
, parent_sp
, fn
);
1050 static void kvm_mmu_update_unsync_bitmap(u64
*spte
)
1053 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
1055 index
= spte
- sp
->spt
;
1056 if (!__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1057 sp
->unsync_children
++;
1058 WARN_ON(!sp
->unsync_children
);
1061 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page
*sp
)
1063 struct kvm_pte_chain
*pte_chain
;
1064 struct hlist_node
*node
;
1067 if (!sp
->parent_pte
)
1070 if (!sp
->multimapped
) {
1071 kvm_mmu_update_unsync_bitmap(sp
->parent_pte
);
1075 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1076 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1077 if (!pte_chain
->parent_ptes
[i
])
1079 kvm_mmu_update_unsync_bitmap(pte_chain
->parent_ptes
[i
]);
1083 static int unsync_walk_fn(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1085 kvm_mmu_update_parents_unsync(sp
);
1089 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu
*vcpu
,
1090 struct kvm_mmu_page
*sp
)
1092 mmu_parent_walk(vcpu
, sp
, unsync_walk_fn
);
1093 kvm_mmu_update_parents_unsync(sp
);
1096 static void nonpaging_prefetch_page(struct kvm_vcpu
*vcpu
,
1097 struct kvm_mmu_page
*sp
)
1101 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1102 sp
->spt
[i
] = shadow_trap_nonpresent_pte
;
1105 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1106 struct kvm_mmu_page
*sp
)
1111 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1115 #define KVM_PAGE_ARRAY_NR 16
1117 struct kvm_mmu_pages
{
1118 struct mmu_page_and_offset
{
1119 struct kvm_mmu_page
*sp
;
1121 } page
[KVM_PAGE_ARRAY_NR
];
1125 #define for_each_unsync_children(bitmap, idx) \
1126 for (idx = find_first_bit(bitmap, 512); \
1128 idx = find_next_bit(bitmap, 512, idx+1))
1130 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1136 for (i
=0; i
< pvec
->nr
; i
++)
1137 if (pvec
->page
[i
].sp
== sp
)
1140 pvec
->page
[pvec
->nr
].sp
= sp
;
1141 pvec
->page
[pvec
->nr
].idx
= idx
;
1143 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1146 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1147 struct kvm_mmu_pages
*pvec
)
1149 int i
, ret
, nr_unsync_leaf
= 0;
1151 for_each_unsync_children(sp
->unsync_child_bitmap
, i
) {
1152 u64 ent
= sp
->spt
[i
];
1154 if (is_shadow_present_pte(ent
) && !is_large_pte(ent
)) {
1155 struct kvm_mmu_page
*child
;
1156 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1158 if (child
->unsync_children
) {
1159 if (mmu_pages_add(pvec
, child
, i
))
1162 ret
= __mmu_unsync_walk(child
, pvec
);
1164 __clear_bit(i
, sp
->unsync_child_bitmap
);
1166 nr_unsync_leaf
+= ret
;
1171 if (child
->unsync
) {
1173 if (mmu_pages_add(pvec
, child
, i
))
1179 if (find_first_bit(sp
->unsync_child_bitmap
, 512) == 512)
1180 sp
->unsync_children
= 0;
1182 return nr_unsync_leaf
;
1185 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1186 struct kvm_mmu_pages
*pvec
)
1188 if (!sp
->unsync_children
)
1191 mmu_pages_add(pvec
, sp
, 0);
1192 return __mmu_unsync_walk(sp
, pvec
);
1195 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm
*kvm
, gfn_t gfn
)
1198 struct hlist_head
*bucket
;
1199 struct kvm_mmu_page
*sp
;
1200 struct hlist_node
*node
;
1202 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
1203 index
= kvm_page_table_hashfn(gfn
);
1204 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1205 hlist_for_each_entry(sp
, node
, bucket
, hash_link
)
1206 if (sp
->gfn
== gfn
&& !sp
->role
.direct
1207 && !sp
->role
.invalid
) {
1208 pgprintk("%s: found role %x\n",
1209 __func__
, sp
->role
.word
);
1215 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1217 WARN_ON(!sp
->unsync
);
1219 --kvm
->stat
.mmu_unsync
;
1222 static int kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
);
1224 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1226 if (sp
->role
.glevels
!= vcpu
->arch
.mmu
.root_level
) {
1227 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1231 trace_kvm_mmu_sync_page(sp
);
1232 if (rmap_write_protect(vcpu
->kvm
, sp
->gfn
))
1233 kvm_flush_remote_tlbs(vcpu
->kvm
);
1234 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1235 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1236 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1240 kvm_mmu_flush_tlb(vcpu
);
1244 struct mmu_page_path
{
1245 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1246 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1249 #define for_each_sp(pvec, sp, parents, i) \
1250 for (i = mmu_pages_next(&pvec, &parents, -1), \
1251 sp = pvec.page[i].sp; \
1252 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1253 i = mmu_pages_next(&pvec, &parents, i))
1255 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1256 struct mmu_page_path
*parents
,
1261 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1262 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1264 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1265 parents
->idx
[0] = pvec
->page
[n
].idx
;
1269 parents
->parent
[sp
->role
.level
-2] = sp
;
1270 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1276 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1278 struct kvm_mmu_page
*sp
;
1279 unsigned int level
= 0;
1282 unsigned int idx
= parents
->idx
[level
];
1284 sp
= parents
->parent
[level
];
1288 --sp
->unsync_children
;
1289 WARN_ON((int)sp
->unsync_children
< 0);
1290 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1292 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1295 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1296 struct mmu_page_path
*parents
,
1297 struct kvm_mmu_pages
*pvec
)
1299 parents
->parent
[parent
->role
.level
-1] = NULL
;
1303 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1304 struct kvm_mmu_page
*parent
)
1307 struct kvm_mmu_page
*sp
;
1308 struct mmu_page_path parents
;
1309 struct kvm_mmu_pages pages
;
1311 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1312 while (mmu_unsync_walk(parent
, &pages
)) {
1315 for_each_sp(pages
, sp
, parents
, i
)
1316 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1319 kvm_flush_remote_tlbs(vcpu
->kvm
);
1321 for_each_sp(pages
, sp
, parents
, i
) {
1322 kvm_sync_page(vcpu
, sp
);
1323 mmu_pages_clear_parents(&parents
);
1325 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1326 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1330 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1338 union kvm_mmu_page_role role
;
1341 struct hlist_head
*bucket
;
1342 struct kvm_mmu_page
*sp
;
1343 struct hlist_node
*node
, *tmp
;
1345 role
= vcpu
->arch
.mmu
.base_role
;
1347 role
.direct
= direct
;
1348 role
.access
= access
;
1349 if (vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1350 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1351 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1352 role
.quadrant
= quadrant
;
1354 index
= kvm_page_table_hashfn(gfn
);
1355 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1356 hlist_for_each_entry_safe(sp
, node
, tmp
, bucket
, hash_link
)
1357 if (sp
->gfn
== gfn
) {
1359 if (kvm_sync_page(vcpu
, sp
))
1362 if (sp
->role
.word
!= role
.word
)
1365 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1366 if (sp
->unsync_children
) {
1367 set_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
);
1368 kvm_mmu_mark_parents_unsync(vcpu
, sp
);
1370 trace_kvm_mmu_get_page(sp
, false);
1373 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1374 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
1379 hlist_add_head(&sp
->hash_link
, bucket
);
1381 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1382 kvm_flush_remote_tlbs(vcpu
->kvm
);
1383 account_shadowed(vcpu
->kvm
, gfn
);
1385 if (shadow_trap_nonpresent_pte
!= shadow_notrap_nonpresent_pte
)
1386 vcpu
->arch
.mmu
.prefetch_page(vcpu
, sp
);
1388 nonpaging_prefetch_page(vcpu
, sp
);
1389 trace_kvm_mmu_get_page(sp
, true);
1393 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1394 struct kvm_vcpu
*vcpu
, u64 addr
)
1396 iterator
->addr
= addr
;
1397 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1398 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1399 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
1400 iterator
->shadow_addr
1401 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
1402 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
1404 if (!iterator
->shadow_addr
)
1405 iterator
->level
= 0;
1409 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
1411 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
1414 if (iterator
->level
== PT_PAGE_TABLE_LEVEL
)
1415 if (is_large_pte(*iterator
->sptep
))
1418 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
1419 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
1423 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
1425 iterator
->shadow_addr
= *iterator
->sptep
& PT64_BASE_ADDR_MASK
;
1429 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
1430 struct kvm_mmu_page
*sp
)
1438 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1441 if (is_shadow_present_pte(ent
)) {
1442 if (!is_last_spte(ent
, sp
->role
.level
)) {
1443 ent
&= PT64_BASE_ADDR_MASK
;
1444 mmu_page_remove_parent_pte(page_header(ent
),
1447 if (is_large_pte(ent
))
1449 rmap_remove(kvm
, &pt
[i
]);
1452 pt
[i
] = shadow_trap_nonpresent_pte
;
1456 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1458 mmu_page_remove_parent_pte(sp
, parent_pte
);
1461 static void kvm_mmu_reset_last_pte_updated(struct kvm
*kvm
)
1464 struct kvm_vcpu
*vcpu
;
1466 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1467 vcpu
->arch
.last_pte_updated
= NULL
;
1470 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1474 while (sp
->multimapped
|| sp
->parent_pte
) {
1475 if (!sp
->multimapped
)
1476 parent_pte
= sp
->parent_pte
;
1478 struct kvm_pte_chain
*chain
;
1480 chain
= container_of(sp
->parent_ptes
.first
,
1481 struct kvm_pte_chain
, link
);
1482 parent_pte
= chain
->parent_ptes
[0];
1484 BUG_ON(!parent_pte
);
1485 kvm_mmu_put_page(sp
, parent_pte
);
1486 __set_spte(parent_pte
, shadow_trap_nonpresent_pte
);
1490 static int mmu_zap_unsync_children(struct kvm
*kvm
,
1491 struct kvm_mmu_page
*parent
)
1494 struct mmu_page_path parents
;
1495 struct kvm_mmu_pages pages
;
1497 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
1500 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1501 while (mmu_unsync_walk(parent
, &pages
)) {
1502 struct kvm_mmu_page
*sp
;
1504 for_each_sp(pages
, sp
, parents
, i
) {
1505 kvm_mmu_zap_page(kvm
, sp
);
1506 mmu_pages_clear_parents(&parents
);
1509 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1515 static int kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1519 trace_kvm_mmu_zap_page(sp
);
1520 ++kvm
->stat
.mmu_shadow_zapped
;
1521 ret
= mmu_zap_unsync_children(kvm
, sp
);
1522 kvm_mmu_page_unlink_children(kvm
, sp
);
1523 kvm_mmu_unlink_parents(kvm
, sp
);
1524 kvm_flush_remote_tlbs(kvm
);
1525 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
1526 unaccount_shadowed(kvm
, sp
->gfn
);
1528 kvm_unlink_unsync_page(kvm
, sp
);
1529 if (!sp
->root_count
) {
1530 hlist_del(&sp
->hash_link
);
1531 kvm_mmu_free_page(kvm
, sp
);
1533 sp
->role
.invalid
= 1;
1534 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
1535 kvm_reload_remote_mmus(kvm
);
1537 kvm_mmu_reset_last_pte_updated(kvm
);
1542 * Changing the number of mmu pages allocated to the vm
1543 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1545 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int kvm_nr_mmu_pages
)
1549 used_pages
= kvm
->arch
.n_alloc_mmu_pages
- kvm
->arch
.n_free_mmu_pages
;
1550 used_pages
= max(0, used_pages
);
1553 * If we set the number of mmu pages to be smaller be than the
1554 * number of actived pages , we must to free some mmu pages before we
1558 if (used_pages
> kvm_nr_mmu_pages
) {
1559 while (used_pages
> kvm_nr_mmu_pages
) {
1560 struct kvm_mmu_page
*page
;
1562 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
1563 struct kvm_mmu_page
, link
);
1564 kvm_mmu_zap_page(kvm
, page
);
1567 kvm
->arch
.n_free_mmu_pages
= 0;
1570 kvm
->arch
.n_free_mmu_pages
+= kvm_nr_mmu_pages
1571 - kvm
->arch
.n_alloc_mmu_pages
;
1573 kvm
->arch
.n_alloc_mmu_pages
= kvm_nr_mmu_pages
;
1576 static int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
1579 struct hlist_head
*bucket
;
1580 struct kvm_mmu_page
*sp
;
1581 struct hlist_node
*node
, *n
;
1584 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
1586 index
= kvm_page_table_hashfn(gfn
);
1587 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1588 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
)
1589 if (sp
->gfn
== gfn
&& !sp
->role
.direct
) {
1590 pgprintk("%s: gfn %lx role %x\n", __func__
, gfn
,
1593 if (kvm_mmu_zap_page(kvm
, sp
))
1599 static void mmu_unshadow(struct kvm
*kvm
, gfn_t gfn
)
1602 struct hlist_head
*bucket
;
1603 struct kvm_mmu_page
*sp
;
1604 struct hlist_node
*node
, *nn
;
1606 index
= kvm_page_table_hashfn(gfn
);
1607 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1608 hlist_for_each_entry_safe(sp
, node
, nn
, bucket
, hash_link
) {
1609 if (sp
->gfn
== gfn
&& !sp
->role
.direct
1610 && !sp
->role
.invalid
) {
1611 pgprintk("%s: zap %lx %x\n",
1612 __func__
, gfn
, sp
->role
.word
);
1613 kvm_mmu_zap_page(kvm
, sp
);
1618 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
1620 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gfn
));
1621 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
1623 __set_bit(slot
, sp
->slot_bitmap
);
1626 static void mmu_convert_notrap(struct kvm_mmu_page
*sp
)
1631 if (shadow_trap_nonpresent_pte
== shadow_notrap_nonpresent_pte
)
1634 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1635 if (pt
[i
] == shadow_notrap_nonpresent_pte
)
1636 __set_spte(&pt
[i
], shadow_trap_nonpresent_pte
);
1640 struct page
*gva_to_page(struct kvm_vcpu
*vcpu
, gva_t gva
)
1644 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
1646 if (gpa
== UNMAPPED_GVA
)
1649 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1655 * The function is based on mtrr_type_lookup() in
1656 * arch/x86/kernel/cpu/mtrr/generic.c
1658 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
1663 u8 prev_match
, curr_match
;
1664 int num_var_ranges
= KVM_NR_VAR_MTRR
;
1666 if (!mtrr_state
->enabled
)
1669 /* Make end inclusive end, instead of exclusive */
1672 /* Look in fixed ranges. Just return the type as per start */
1673 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
1676 if (start
< 0x80000) {
1678 idx
+= (start
>> 16);
1679 return mtrr_state
->fixed_ranges
[idx
];
1680 } else if (start
< 0xC0000) {
1682 idx
+= ((start
- 0x80000) >> 14);
1683 return mtrr_state
->fixed_ranges
[idx
];
1684 } else if (start
< 0x1000000) {
1686 idx
+= ((start
- 0xC0000) >> 12);
1687 return mtrr_state
->fixed_ranges
[idx
];
1692 * Look in variable ranges
1693 * Look of multiple ranges matching this address and pick type
1694 * as per MTRR precedence
1696 if (!(mtrr_state
->enabled
& 2))
1697 return mtrr_state
->def_type
;
1700 for (i
= 0; i
< num_var_ranges
; ++i
) {
1701 unsigned short start_state
, end_state
;
1703 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
1706 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
1707 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
1708 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
1709 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
1711 start_state
= ((start
& mask
) == (base
& mask
));
1712 end_state
= ((end
& mask
) == (base
& mask
));
1713 if (start_state
!= end_state
)
1716 if ((start
& mask
) != (base
& mask
))
1719 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
1720 if (prev_match
== 0xFF) {
1721 prev_match
= curr_match
;
1725 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
1726 curr_match
== MTRR_TYPE_UNCACHABLE
)
1727 return MTRR_TYPE_UNCACHABLE
;
1729 if ((prev_match
== MTRR_TYPE_WRBACK
&&
1730 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
1731 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
1732 curr_match
== MTRR_TYPE_WRBACK
)) {
1733 prev_match
= MTRR_TYPE_WRTHROUGH
;
1734 curr_match
= MTRR_TYPE_WRTHROUGH
;
1737 if (prev_match
!= curr_match
)
1738 return MTRR_TYPE_UNCACHABLE
;
1741 if (prev_match
!= 0xFF)
1744 return mtrr_state
->def_type
;
1747 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1751 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
1752 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
1753 if (mtrr
== 0xfe || mtrr
== 0xff)
1754 mtrr
= MTRR_TYPE_WRBACK
;
1757 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
1759 static int kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1762 struct hlist_head
*bucket
;
1763 struct kvm_mmu_page
*s
;
1764 struct hlist_node
*node
, *n
;
1766 trace_kvm_mmu_unsync_page(sp
);
1767 index
= kvm_page_table_hashfn(sp
->gfn
);
1768 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1769 /* don't unsync if pagetable is shadowed with multiple roles */
1770 hlist_for_each_entry_safe(s
, node
, n
, bucket
, hash_link
) {
1771 if (s
->gfn
!= sp
->gfn
|| s
->role
.direct
)
1773 if (s
->role
.word
!= sp
->role
.word
)
1776 ++vcpu
->kvm
->stat
.mmu_unsync
;
1779 kvm_mmu_mark_parents_unsync(vcpu
, sp
);
1781 mmu_convert_notrap(sp
);
1785 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1788 struct kvm_mmu_page
*shadow
;
1790 shadow
= kvm_mmu_lookup_page(vcpu
->kvm
, gfn
);
1792 if (shadow
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1796 if (can_unsync
&& oos_shadow
)
1797 return kvm_unsync_page(vcpu
, shadow
);
1803 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1804 unsigned pte_access
, int user_fault
,
1805 int write_fault
, int dirty
, int level
,
1806 gfn_t gfn
, pfn_t pfn
, bool speculative
,
1807 bool can_unsync
, bool reset_host_protection
)
1813 * We don't set the accessed bit, since we sometimes want to see
1814 * whether the guest actually used the pte (in order to detect
1817 spte
= shadow_base_present_pte
| shadow_dirty_mask
;
1819 spte
|= shadow_accessed_mask
;
1821 pte_access
&= ~ACC_WRITE_MASK
;
1822 if (pte_access
& ACC_EXEC_MASK
)
1823 spte
|= shadow_x_mask
;
1825 spte
|= shadow_nx_mask
;
1826 if (pte_access
& ACC_USER_MASK
)
1827 spte
|= shadow_user_mask
;
1828 if (level
> PT_PAGE_TABLE_LEVEL
)
1829 spte
|= PT_PAGE_SIZE_MASK
;
1831 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
1832 kvm_is_mmio_pfn(pfn
));
1834 if (reset_host_protection
)
1835 spte
|= SPTE_HOST_WRITEABLE
;
1837 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
1839 if ((pte_access
& ACC_WRITE_MASK
)
1840 || (write_fault
&& !is_write_protection(vcpu
) && !user_fault
)) {
1842 if (level
> PT_PAGE_TABLE_LEVEL
&&
1843 has_wrprotected_page(vcpu
->kvm
, gfn
, level
)) {
1845 spte
= shadow_trap_nonpresent_pte
;
1849 spte
|= PT_WRITABLE_MASK
;
1852 * Optimization: for pte sync, if spte was writable the hash
1853 * lookup is unnecessary (and expensive). Write protection
1854 * is responsibility of mmu_get_page / kvm_sync_page.
1855 * Same reasoning can be applied to dirty page accounting.
1857 if (!can_unsync
&& is_writeble_pte(*sptep
))
1860 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
1861 pgprintk("%s: found shadow page for %lx, marking ro\n",
1864 pte_access
&= ~ACC_WRITE_MASK
;
1865 if (is_writeble_pte(spte
))
1866 spte
&= ~PT_WRITABLE_MASK
;
1870 if (pte_access
& ACC_WRITE_MASK
)
1871 mark_page_dirty(vcpu
->kvm
, gfn
);
1874 __set_spte(sptep
, spte
);
1878 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1879 unsigned pt_access
, unsigned pte_access
,
1880 int user_fault
, int write_fault
, int dirty
,
1881 int *ptwrite
, int level
, gfn_t gfn
,
1882 pfn_t pfn
, bool speculative
,
1883 bool reset_host_protection
)
1885 int was_rmapped
= 0;
1886 int was_writeble
= is_writeble_pte(*sptep
);
1889 pgprintk("%s: spte %llx access %x write_fault %d"
1890 " user_fault %d gfn %lx\n",
1891 __func__
, *sptep
, pt_access
,
1892 write_fault
, user_fault
, gfn
);
1894 if (is_rmap_spte(*sptep
)) {
1896 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1897 * the parent of the now unreachable PTE.
1899 if (level
> PT_PAGE_TABLE_LEVEL
&&
1900 !is_large_pte(*sptep
)) {
1901 struct kvm_mmu_page
*child
;
1904 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1905 mmu_page_remove_parent_pte(child
, sptep
);
1906 } else if (pfn
!= spte_to_pfn(*sptep
)) {
1907 pgprintk("hfn old %lx new %lx\n",
1908 spte_to_pfn(*sptep
), pfn
);
1909 rmap_remove(vcpu
->kvm
, sptep
);
1914 if (set_spte(vcpu
, sptep
, pte_access
, user_fault
, write_fault
,
1915 dirty
, level
, gfn
, pfn
, speculative
, true,
1916 reset_host_protection
)) {
1919 kvm_x86_ops
->tlb_flush(vcpu
);
1922 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
1923 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1924 is_large_pte(*sptep
)? "2MB" : "4kB",
1925 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
1927 if (!was_rmapped
&& is_large_pte(*sptep
))
1928 ++vcpu
->kvm
->stat
.lpages
;
1930 page_header_update_slot(vcpu
->kvm
, sptep
, gfn
);
1932 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
1933 kvm_release_pfn_clean(pfn
);
1934 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
1935 rmap_recycle(vcpu
, sptep
, gfn
);
1938 kvm_release_pfn_dirty(pfn
);
1940 kvm_release_pfn_clean(pfn
);
1943 vcpu
->arch
.last_pte_updated
= sptep
;
1944 vcpu
->arch
.last_pte_gfn
= gfn
;
1948 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
1952 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
1953 int level
, gfn_t gfn
, pfn_t pfn
)
1955 struct kvm_shadow_walk_iterator iterator
;
1956 struct kvm_mmu_page
*sp
;
1960 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
1961 if (iterator
.level
== level
) {
1962 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
, ACC_ALL
,
1963 0, write
, 1, &pt_write
,
1964 level
, gfn
, pfn
, false, true);
1965 ++vcpu
->stat
.pf_fixed
;
1969 if (*iterator
.sptep
== shadow_trap_nonpresent_pte
) {
1970 pseudo_gfn
= (iterator
.addr
& PT64_DIR_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
1971 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
1973 1, ACC_ALL
, iterator
.sptep
);
1975 pgprintk("nonpaging_map: ENOMEM\n");
1976 kvm_release_pfn_clean(pfn
);
1980 __set_spte(iterator
.sptep
,
1982 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
1983 | shadow_user_mask
| shadow_x_mask
);
1989 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, int write
, gfn_t gfn
)
1994 unsigned long mmu_seq
;
1996 level
= mapping_level(vcpu
, gfn
);
1999 * This path builds a PAE pagetable - so we can map 2mb pages at
2000 * maximum. Therefore check if the level is larger than that.
2002 if (level
> PT_DIRECTORY_LEVEL
)
2003 level
= PT_DIRECTORY_LEVEL
;
2005 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2007 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2009 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2012 if (is_error_pfn(pfn
)) {
2013 kvm_release_pfn_clean(pfn
);
2017 spin_lock(&vcpu
->kvm
->mmu_lock
);
2018 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2020 kvm_mmu_free_some_pages(vcpu
);
2021 r
= __direct_map(vcpu
, v
, write
, level
, gfn
, pfn
);
2022 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2028 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2029 kvm_release_pfn_clean(pfn
);
2034 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2037 struct kvm_mmu_page
*sp
;
2039 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2041 spin_lock(&vcpu
->kvm
->mmu_lock
);
2042 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2043 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2045 sp
= page_header(root
);
2047 if (!sp
->root_count
&& sp
->role
.invalid
)
2048 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2049 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2050 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2053 for (i
= 0; i
< 4; ++i
) {
2054 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2057 root
&= PT64_BASE_ADDR_MASK
;
2058 sp
= page_header(root
);
2060 if (!sp
->root_count
&& sp
->role
.invalid
)
2061 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2063 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2065 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2066 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2069 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
2073 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
2074 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
2081 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
2085 struct kvm_mmu_page
*sp
;
2089 root_gfn
= vcpu
->arch
.cr3
>> PAGE_SHIFT
;
2091 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2092 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2094 ASSERT(!VALID_PAGE(root
));
2097 if (mmu_check_root(vcpu
, root_gfn
))
2099 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
2100 PT64_ROOT_LEVEL
, direct
,
2102 root
= __pa(sp
->spt
);
2104 vcpu
->arch
.mmu
.root_hpa
= root
;
2107 direct
= !is_paging(vcpu
);
2110 for (i
= 0; i
< 4; ++i
) {
2111 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2113 ASSERT(!VALID_PAGE(root
));
2114 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
2115 pdptr
= kvm_pdptr_read(vcpu
, i
);
2116 if (!is_present_gpte(pdptr
)) {
2117 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
2120 root_gfn
= pdptr
>> PAGE_SHIFT
;
2121 } else if (vcpu
->arch
.mmu
.root_level
== 0)
2123 if (mmu_check_root(vcpu
, root_gfn
))
2125 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
2126 PT32_ROOT_LEVEL
, direct
,
2128 root
= __pa(sp
->spt
);
2130 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
2132 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
2136 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2139 struct kvm_mmu_page
*sp
;
2141 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2143 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2144 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2145 sp
= page_header(root
);
2146 mmu_sync_children(vcpu
, sp
);
2149 for (i
= 0; i
< 4; ++i
) {
2150 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2152 if (root
&& VALID_PAGE(root
)) {
2153 root
&= PT64_BASE_ADDR_MASK
;
2154 sp
= page_header(root
);
2155 mmu_sync_children(vcpu
, sp
);
2160 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2162 spin_lock(&vcpu
->kvm
->mmu_lock
);
2163 mmu_sync_roots(vcpu
);
2164 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2167 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
)
2172 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
2178 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
2179 r
= mmu_topup_memory_caches(vcpu
);
2184 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2186 gfn
= gva
>> PAGE_SHIFT
;
2188 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
2189 error_code
& PFERR_WRITE_MASK
, gfn
);
2192 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
,
2198 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2199 unsigned long mmu_seq
;
2202 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2204 r
= mmu_topup_memory_caches(vcpu
);
2208 level
= mapping_level(vcpu
, gfn
);
2210 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2212 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2214 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2215 if (is_error_pfn(pfn
)) {
2216 kvm_release_pfn_clean(pfn
);
2219 spin_lock(&vcpu
->kvm
->mmu_lock
);
2220 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2222 kvm_mmu_free_some_pages(vcpu
);
2223 r
= __direct_map(vcpu
, gpa
, error_code
& PFERR_WRITE_MASK
,
2225 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2230 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2231 kvm_release_pfn_clean(pfn
);
2235 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
2237 mmu_free_roots(vcpu
);
2240 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
2242 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2244 context
->new_cr3
= nonpaging_new_cr3
;
2245 context
->page_fault
= nonpaging_page_fault
;
2246 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2247 context
->free
= nonpaging_free
;
2248 context
->prefetch_page
= nonpaging_prefetch_page
;
2249 context
->sync_page
= nonpaging_sync_page
;
2250 context
->invlpg
= nonpaging_invlpg
;
2251 context
->root_level
= 0;
2252 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2253 context
->root_hpa
= INVALID_PAGE
;
2257 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
2259 ++vcpu
->stat
.tlb_flush
;
2260 kvm_x86_ops
->tlb_flush(vcpu
);
2263 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
2265 pgprintk("%s: cr3 %lx\n", __func__
, vcpu
->arch
.cr3
);
2266 mmu_free_roots(vcpu
);
2269 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
2273 kvm_inject_page_fault(vcpu
, addr
, err_code
);
2276 static void paging_free(struct kvm_vcpu
*vcpu
)
2278 nonpaging_free(vcpu
);
2281 static bool is_rsvd_bits_set(struct kvm_vcpu
*vcpu
, u64 gpte
, int level
)
2285 bit7
= (gpte
>> 7) & 1;
2286 return (gpte
& vcpu
->arch
.mmu
.rsvd_bits_mask
[bit7
][level
-1]) != 0;
2290 #include "paging_tmpl.h"
2294 #include "paging_tmpl.h"
2297 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
, int level
)
2299 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2300 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
2301 u64 exb_bit_rsvd
= 0;
2304 exb_bit_rsvd
= rsvd_bits(63, 63);
2306 case PT32_ROOT_LEVEL
:
2307 /* no rsvd bits for 2 level 4K page table entries */
2308 context
->rsvd_bits_mask
[0][1] = 0;
2309 context
->rsvd_bits_mask
[0][0] = 0;
2310 if (is_cpuid_PSE36())
2311 /* 36bits PSE 4MB page */
2312 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
2314 /* 32 bits PSE 4MB page */
2315 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
2316 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2318 case PT32E_ROOT_LEVEL
:
2319 context
->rsvd_bits_mask
[0][2] =
2320 rsvd_bits(maxphyaddr
, 63) |
2321 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2322 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2323 rsvd_bits(maxphyaddr
, 62); /* PDE */
2324 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2325 rsvd_bits(maxphyaddr
, 62); /* PTE */
2326 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2327 rsvd_bits(maxphyaddr
, 62) |
2328 rsvd_bits(13, 20); /* large page */
2329 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2331 case PT64_ROOT_LEVEL
:
2332 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
2333 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2334 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
2335 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2336 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2337 rsvd_bits(maxphyaddr
, 51);
2338 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2339 rsvd_bits(maxphyaddr
, 51);
2340 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
2341 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
2342 rsvd_bits(maxphyaddr
, 51) |
2344 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2345 rsvd_bits(maxphyaddr
, 51) |
2346 rsvd_bits(13, 20); /* large page */
2347 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2352 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
2354 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2356 ASSERT(is_pae(vcpu
));
2357 context
->new_cr3
= paging_new_cr3
;
2358 context
->page_fault
= paging64_page_fault
;
2359 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2360 context
->prefetch_page
= paging64_prefetch_page
;
2361 context
->sync_page
= paging64_sync_page
;
2362 context
->invlpg
= paging64_invlpg
;
2363 context
->free
= paging_free
;
2364 context
->root_level
= level
;
2365 context
->shadow_root_level
= level
;
2366 context
->root_hpa
= INVALID_PAGE
;
2370 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
2372 reset_rsvds_bits_mask(vcpu
, PT64_ROOT_LEVEL
);
2373 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
2376 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
2378 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2380 reset_rsvds_bits_mask(vcpu
, PT32_ROOT_LEVEL
);
2381 context
->new_cr3
= paging_new_cr3
;
2382 context
->page_fault
= paging32_page_fault
;
2383 context
->gva_to_gpa
= paging32_gva_to_gpa
;
2384 context
->free
= paging_free
;
2385 context
->prefetch_page
= paging32_prefetch_page
;
2386 context
->sync_page
= paging32_sync_page
;
2387 context
->invlpg
= paging32_invlpg
;
2388 context
->root_level
= PT32_ROOT_LEVEL
;
2389 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2390 context
->root_hpa
= INVALID_PAGE
;
2394 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
2396 reset_rsvds_bits_mask(vcpu
, PT32E_ROOT_LEVEL
);
2397 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
2400 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
2402 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2404 context
->new_cr3
= nonpaging_new_cr3
;
2405 context
->page_fault
= tdp_page_fault
;
2406 context
->free
= nonpaging_free
;
2407 context
->prefetch_page
= nonpaging_prefetch_page
;
2408 context
->sync_page
= nonpaging_sync_page
;
2409 context
->invlpg
= nonpaging_invlpg
;
2410 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
2411 context
->root_hpa
= INVALID_PAGE
;
2413 if (!is_paging(vcpu
)) {
2414 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2415 context
->root_level
= 0;
2416 } else if (is_long_mode(vcpu
)) {
2417 reset_rsvds_bits_mask(vcpu
, PT64_ROOT_LEVEL
);
2418 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2419 context
->root_level
= PT64_ROOT_LEVEL
;
2420 } else if (is_pae(vcpu
)) {
2421 reset_rsvds_bits_mask(vcpu
, PT32E_ROOT_LEVEL
);
2422 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2423 context
->root_level
= PT32E_ROOT_LEVEL
;
2425 reset_rsvds_bits_mask(vcpu
, PT32_ROOT_LEVEL
);
2426 context
->gva_to_gpa
= paging32_gva_to_gpa
;
2427 context
->root_level
= PT32_ROOT_LEVEL
;
2433 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
2438 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2440 if (!is_paging(vcpu
))
2441 r
= nonpaging_init_context(vcpu
);
2442 else if (is_long_mode(vcpu
))
2443 r
= paging64_init_context(vcpu
);
2444 else if (is_pae(vcpu
))
2445 r
= paging32E_init_context(vcpu
);
2447 r
= paging32_init_context(vcpu
);
2449 vcpu
->arch
.mmu
.base_role
.glevels
= vcpu
->arch
.mmu
.root_level
;
2454 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
2456 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
2459 return init_kvm_tdp_mmu(vcpu
);
2461 return init_kvm_softmmu(vcpu
);
2464 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
2467 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
)) {
2468 vcpu
->arch
.mmu
.free(vcpu
);
2469 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2473 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
2475 destroy_kvm_mmu(vcpu
);
2476 return init_kvm_mmu(vcpu
);
2478 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
2480 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
2484 r
= mmu_topup_memory_caches(vcpu
);
2487 spin_lock(&vcpu
->kvm
->mmu_lock
);
2488 kvm_mmu_free_some_pages(vcpu
);
2489 r
= mmu_alloc_roots(vcpu
);
2490 mmu_sync_roots(vcpu
);
2491 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2494 /* set_cr3() should ensure TLB has been flushed */
2495 kvm_x86_ops
->set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
2499 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
2501 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
2503 mmu_free_roots(vcpu
);
2506 static void mmu_pte_write_zap_pte(struct kvm_vcpu
*vcpu
,
2507 struct kvm_mmu_page
*sp
,
2511 struct kvm_mmu_page
*child
;
2514 if (is_shadow_present_pte(pte
)) {
2515 if (is_last_spte(pte
, sp
->role
.level
))
2516 rmap_remove(vcpu
->kvm
, spte
);
2518 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2519 mmu_page_remove_parent_pte(child
, spte
);
2522 __set_spte(spte
, shadow_trap_nonpresent_pte
);
2523 if (is_large_pte(pte
))
2524 --vcpu
->kvm
->stat
.lpages
;
2527 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
2528 struct kvm_mmu_page
*sp
,
2532 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
2533 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
2537 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
2538 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
)
2539 paging32_update_pte(vcpu
, sp
, spte
, new);
2541 paging64_update_pte(vcpu
, sp
, spte
, new);
2544 static bool need_remote_flush(u64 old
, u64
new)
2546 if (!is_shadow_present_pte(old
))
2548 if (!is_shadow_present_pte(new))
2550 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
2552 old
^= PT64_NX_MASK
;
2553 new ^= PT64_NX_MASK
;
2554 return (old
& ~new & PT64_PERM_MASK
) != 0;
2557 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, u64 old
, u64
new)
2559 if (need_remote_flush(old
, new))
2560 kvm_flush_remote_tlbs(vcpu
->kvm
);
2562 kvm_mmu_flush_tlb(vcpu
);
2565 static bool last_updated_pte_accessed(struct kvm_vcpu
*vcpu
)
2567 u64
*spte
= vcpu
->arch
.last_pte_updated
;
2569 return !!(spte
&& (*spte
& shadow_accessed_mask
));
2572 static void mmu_guess_page_from_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2573 const u8
*new, int bytes
)
2580 if (bytes
!= 4 && bytes
!= 8)
2584 * Assume that the pte write on a page table of the same type
2585 * as the current vcpu paging mode. This is nearly always true
2586 * (might be false while changing modes). Note it is verified later
2590 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2591 if ((bytes
== 4) && (gpa
% 4 == 0)) {
2592 r
= kvm_read_guest(vcpu
->kvm
, gpa
& ~(u64
)7, &gpte
, 8);
2595 memcpy((void *)&gpte
+ (gpa
% 8), new, 4);
2596 } else if ((bytes
== 8) && (gpa
% 8 == 0)) {
2597 memcpy((void *)&gpte
, new, 8);
2600 if ((bytes
== 4) && (gpa
% 4 == 0))
2601 memcpy((void *)&gpte
, new, 4);
2603 if (!is_present_gpte(gpte
))
2605 gfn
= (gpte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
2607 vcpu
->arch
.update_pte
.mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2609 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2611 if (is_error_pfn(pfn
)) {
2612 kvm_release_pfn_clean(pfn
);
2615 vcpu
->arch
.update_pte
.gfn
= gfn
;
2616 vcpu
->arch
.update_pte
.pfn
= pfn
;
2619 static void kvm_mmu_access_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2621 u64
*spte
= vcpu
->arch
.last_pte_updated
;
2624 && vcpu
->arch
.last_pte_gfn
== gfn
2625 && shadow_accessed_mask
2626 && !(*spte
& shadow_accessed_mask
)
2627 && is_shadow_present_pte(*spte
))
2628 set_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
2631 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2632 const u8
*new, int bytes
,
2633 bool guest_initiated
)
2635 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2636 struct kvm_mmu_page
*sp
;
2637 struct hlist_node
*node
, *n
;
2638 struct hlist_head
*bucket
;
2642 unsigned offset
= offset_in_page(gpa
);
2644 unsigned page_offset
;
2645 unsigned misaligned
;
2652 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
2653 mmu_guess_page_from_pte_write(vcpu
, gpa
, new, bytes
);
2654 spin_lock(&vcpu
->kvm
->mmu_lock
);
2655 kvm_mmu_access_page(vcpu
, gfn
);
2656 kvm_mmu_free_some_pages(vcpu
);
2657 ++vcpu
->kvm
->stat
.mmu_pte_write
;
2658 kvm_mmu_audit(vcpu
, "pre pte write");
2659 if (guest_initiated
) {
2660 if (gfn
== vcpu
->arch
.last_pt_write_gfn
2661 && !last_updated_pte_accessed(vcpu
)) {
2662 ++vcpu
->arch
.last_pt_write_count
;
2663 if (vcpu
->arch
.last_pt_write_count
>= 3)
2666 vcpu
->arch
.last_pt_write_gfn
= gfn
;
2667 vcpu
->arch
.last_pt_write_count
= 1;
2668 vcpu
->arch
.last_pte_updated
= NULL
;
2671 index
= kvm_page_table_hashfn(gfn
);
2672 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
2673 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
) {
2674 if (sp
->gfn
!= gfn
|| sp
->role
.direct
|| sp
->role
.invalid
)
2676 pte_size
= sp
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
2677 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
2678 misaligned
|= bytes
< 4;
2679 if (misaligned
|| flooded
) {
2681 * Misaligned accesses are too much trouble to fix
2682 * up; also, they usually indicate a page is not used
2685 * If we're seeing too many writes to a page,
2686 * it may no longer be a page table, or we may be
2687 * forking, in which case it is better to unmap the
2690 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2691 gpa
, bytes
, sp
->role
.word
);
2692 if (kvm_mmu_zap_page(vcpu
->kvm
, sp
))
2694 ++vcpu
->kvm
->stat
.mmu_flooded
;
2697 page_offset
= offset
;
2698 level
= sp
->role
.level
;
2700 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
) {
2701 page_offset
<<= 1; /* 32->64 */
2703 * A 32-bit pde maps 4MB while the shadow pdes map
2704 * only 2MB. So we need to double the offset again
2705 * and zap two pdes instead of one.
2707 if (level
== PT32_ROOT_LEVEL
) {
2708 page_offset
&= ~7; /* kill rounding error */
2712 quadrant
= page_offset
>> PAGE_SHIFT
;
2713 page_offset
&= ~PAGE_MASK
;
2714 if (quadrant
!= sp
->role
.quadrant
)
2717 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
2718 if ((gpa
& (pte_size
- 1)) || (bytes
< pte_size
)) {
2720 r
= kvm_read_guest_atomic(vcpu
->kvm
,
2721 gpa
& ~(u64
)(pte_size
- 1),
2723 new = (const void *)&gentry
;
2729 mmu_pte_write_zap_pte(vcpu
, sp
, spte
);
2731 mmu_pte_write_new_pte(vcpu
, sp
, spte
, new);
2732 mmu_pte_write_flush_tlb(vcpu
, entry
, *spte
);
2736 kvm_mmu_audit(vcpu
, "post pte write");
2737 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2738 if (!is_error_pfn(vcpu
->arch
.update_pte
.pfn
)) {
2739 kvm_release_pfn_clean(vcpu
->arch
.update_pte
.pfn
);
2740 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
2744 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
2752 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
2754 spin_lock(&vcpu
->kvm
->mmu_lock
);
2755 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2756 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2759 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
2761 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
2763 while (vcpu
->kvm
->arch
.n_free_mmu_pages
< KVM_REFILL_PAGES
&&
2764 !list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
2765 struct kvm_mmu_page
*sp
;
2767 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
2768 struct kvm_mmu_page
, link
);
2769 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2770 ++vcpu
->kvm
->stat
.mmu_recycled
;
2774 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
)
2777 enum emulation_result er
;
2779 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
);
2788 r
= mmu_topup_memory_caches(vcpu
);
2792 er
= emulate_instruction(vcpu
, vcpu
->run
, cr2
, error_code
, 0);
2797 case EMULATE_DO_MMIO
:
2798 ++vcpu
->stat
.mmio_exits
;
2801 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2802 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2810 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
2812 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
2814 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
2815 kvm_mmu_flush_tlb(vcpu
);
2816 ++vcpu
->stat
.invlpg
;
2818 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
2820 void kvm_enable_tdp(void)
2824 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
2826 void kvm_disable_tdp(void)
2828 tdp_enabled
= false;
2830 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
2832 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
2834 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
2837 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
2845 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2846 * Therefore we need to allocate shadow page tables in the first
2847 * 4GB of memory, which happens to fit the DMA32 zone.
2849 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
2852 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
2853 for (i
= 0; i
< 4; ++i
)
2854 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2859 free_mmu_pages(vcpu
);
2863 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
2866 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2868 return alloc_mmu_pages(vcpu
);
2871 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
2874 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2876 return init_kvm_mmu(vcpu
);
2879 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
2883 destroy_kvm_mmu(vcpu
);
2884 free_mmu_pages(vcpu
);
2885 mmu_free_memory_caches(vcpu
);
2888 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
2890 struct kvm_mmu_page
*sp
;
2892 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
2896 if (!test_bit(slot
, sp
->slot_bitmap
))
2900 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2902 if (pt
[i
] & PT_WRITABLE_MASK
)
2903 pt
[i
] &= ~PT_WRITABLE_MASK
;
2905 kvm_flush_remote_tlbs(kvm
);
2908 void kvm_mmu_zap_all(struct kvm
*kvm
)
2910 struct kvm_mmu_page
*sp
, *node
;
2912 spin_lock(&kvm
->mmu_lock
);
2913 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
2914 if (kvm_mmu_zap_page(kvm
, sp
))
2915 node
= container_of(kvm
->arch
.active_mmu_pages
.next
,
2916 struct kvm_mmu_page
, link
);
2917 spin_unlock(&kvm
->mmu_lock
);
2919 kvm_flush_remote_tlbs(kvm
);
2922 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm
*kvm
)
2924 struct kvm_mmu_page
*page
;
2926 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
2927 struct kvm_mmu_page
, link
);
2928 kvm_mmu_zap_page(kvm
, page
);
2931 static int mmu_shrink(int nr_to_scan
, gfp_t gfp_mask
)
2934 struct kvm
*kvm_freed
= NULL
;
2935 int cache_count
= 0;
2937 spin_lock(&kvm_lock
);
2939 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2942 if (!down_read_trylock(&kvm
->slots_lock
))
2944 spin_lock(&kvm
->mmu_lock
);
2945 npages
= kvm
->arch
.n_alloc_mmu_pages
-
2946 kvm
->arch
.n_free_mmu_pages
;
2947 cache_count
+= npages
;
2948 if (!kvm_freed
&& nr_to_scan
> 0 && npages
> 0) {
2949 kvm_mmu_remove_one_alloc_mmu_page(kvm
);
2955 spin_unlock(&kvm
->mmu_lock
);
2956 up_read(&kvm
->slots_lock
);
2959 list_move_tail(&kvm_freed
->vm_list
, &vm_list
);
2961 spin_unlock(&kvm_lock
);
2966 static struct shrinker mmu_shrinker
= {
2967 .shrink
= mmu_shrink
,
2968 .seeks
= DEFAULT_SEEKS
* 10,
2971 static void mmu_destroy_caches(void)
2973 if (pte_chain_cache
)
2974 kmem_cache_destroy(pte_chain_cache
);
2975 if (rmap_desc_cache
)
2976 kmem_cache_destroy(rmap_desc_cache
);
2977 if (mmu_page_header_cache
)
2978 kmem_cache_destroy(mmu_page_header_cache
);
2981 void kvm_mmu_module_exit(void)
2983 mmu_destroy_caches();
2984 unregister_shrinker(&mmu_shrinker
);
2987 int kvm_mmu_module_init(void)
2989 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
2990 sizeof(struct kvm_pte_chain
),
2992 if (!pte_chain_cache
)
2994 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
2995 sizeof(struct kvm_rmap_desc
),
2997 if (!rmap_desc_cache
)
3000 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
3001 sizeof(struct kvm_mmu_page
),
3003 if (!mmu_page_header_cache
)
3006 register_shrinker(&mmu_shrinker
);
3011 mmu_destroy_caches();
3016 * Caculate mmu pages needed for kvm.
3018 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
3021 unsigned int nr_mmu_pages
;
3022 unsigned int nr_pages
= 0;
3024 for (i
= 0; i
< kvm
->nmemslots
; i
++)
3025 nr_pages
+= kvm
->memslots
[i
].npages
;
3027 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
3028 nr_mmu_pages
= max(nr_mmu_pages
,
3029 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
3031 return nr_mmu_pages
;
3034 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3037 if (len
> buffer
->len
)
3042 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3047 ret
= pv_mmu_peek_buffer(buffer
, len
);
3052 buffer
->processed
+= len
;
3056 static int kvm_pv_mmu_write(struct kvm_vcpu
*vcpu
,
3057 gpa_t addr
, gpa_t value
)
3062 if (!is_long_mode(vcpu
) && !is_pae(vcpu
))
3065 r
= mmu_topup_memory_caches(vcpu
);
3069 if (!emulator_write_phys(vcpu
, addr
, &value
, bytes
))
3075 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3077 kvm_set_cr3(vcpu
, vcpu
->arch
.cr3
);
3081 static int kvm_pv_mmu_release_pt(struct kvm_vcpu
*vcpu
, gpa_t addr
)
3083 spin_lock(&vcpu
->kvm
->mmu_lock
);
3084 mmu_unshadow(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
3085 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3089 static int kvm_pv_mmu_op_one(struct kvm_vcpu
*vcpu
,
3090 struct kvm_pv_mmu_op_buffer
*buffer
)
3092 struct kvm_mmu_op_header
*header
;
3094 header
= pv_mmu_peek_buffer(buffer
, sizeof *header
);
3097 switch (header
->op
) {
3098 case KVM_MMU_OP_WRITE_PTE
: {
3099 struct kvm_mmu_op_write_pte
*wpte
;
3101 wpte
= pv_mmu_read_buffer(buffer
, sizeof *wpte
);
3104 return kvm_pv_mmu_write(vcpu
, wpte
->pte_phys
,
3107 case KVM_MMU_OP_FLUSH_TLB
: {
3108 struct kvm_mmu_op_flush_tlb
*ftlb
;
3110 ftlb
= pv_mmu_read_buffer(buffer
, sizeof *ftlb
);
3113 return kvm_pv_mmu_flush_tlb(vcpu
);
3115 case KVM_MMU_OP_RELEASE_PT
: {
3116 struct kvm_mmu_op_release_pt
*rpt
;
3118 rpt
= pv_mmu_read_buffer(buffer
, sizeof *rpt
);
3121 return kvm_pv_mmu_release_pt(vcpu
, rpt
->pt_phys
);
3127 int kvm_pv_mmu_op(struct kvm_vcpu
*vcpu
, unsigned long bytes
,
3128 gpa_t addr
, unsigned long *ret
)
3131 struct kvm_pv_mmu_op_buffer
*buffer
= &vcpu
->arch
.mmu_op_buffer
;
3133 buffer
->ptr
= buffer
->buf
;
3134 buffer
->len
= min_t(unsigned long, bytes
, sizeof buffer
->buf
);
3135 buffer
->processed
= 0;
3137 r
= kvm_read_guest(vcpu
->kvm
, addr
, buffer
->buf
, buffer
->len
);
3141 while (buffer
->len
) {
3142 r
= kvm_pv_mmu_op_one(vcpu
, buffer
);
3151 *ret
= buffer
->processed
;
3155 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
3157 struct kvm_shadow_walk_iterator iterator
;
3160 spin_lock(&vcpu
->kvm
->mmu_lock
);
3161 for_each_shadow_entry(vcpu
, addr
, iterator
) {
3162 sptes
[iterator
.level
-1] = *iterator
.sptep
;
3164 if (!is_shadow_present_pte(*iterator
.sptep
))
3167 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3171 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
3175 static const char *audit_msg
;
3177 static gva_t
canonicalize(gva_t gva
)
3179 #ifdef CONFIG_X86_64
3180 gva
= (long long)(gva
<< 16) >> 16;
3186 typedef void (*inspect_spte_fn
) (struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
3189 static void __mmu_spte_walk(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
3194 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
3195 u64 ent
= sp
->spt
[i
];
3197 if (is_shadow_present_pte(ent
)) {
3198 if (!is_last_spte(ent
, sp
->role
.level
)) {
3199 struct kvm_mmu_page
*child
;
3200 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
3201 __mmu_spte_walk(kvm
, child
, fn
);
3203 fn(kvm
, sp
, &sp
->spt
[i
]);
3208 static void mmu_spte_walk(struct kvm_vcpu
*vcpu
, inspect_spte_fn fn
)
3211 struct kvm_mmu_page
*sp
;
3213 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3215 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3216 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3217 sp
= page_header(root
);
3218 __mmu_spte_walk(vcpu
->kvm
, sp
, fn
);
3221 for (i
= 0; i
< 4; ++i
) {
3222 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3224 if (root
&& VALID_PAGE(root
)) {
3225 root
&= PT64_BASE_ADDR_MASK
;
3226 sp
= page_header(root
);
3227 __mmu_spte_walk(vcpu
->kvm
, sp
, fn
);
3233 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
3234 gva_t va
, int level
)
3236 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
3238 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
3240 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
3243 if (ent
== shadow_trap_nonpresent_pte
)
3246 va
= canonicalize(va
);
3247 if (is_shadow_present_pte(ent
) && !is_last_spte(ent
, level
))
3248 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
3250 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, va
);
3251 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3252 pfn_t pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
3253 hpa_t hpa
= (hpa_t
)pfn
<< PAGE_SHIFT
;
3255 if (is_error_pfn(pfn
)) {
3256 kvm_release_pfn_clean(pfn
);
3260 if (is_shadow_present_pte(ent
)
3261 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
3262 printk(KERN_ERR
"xx audit error: (%s) levels %d"
3263 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3264 audit_msg
, vcpu
->arch
.mmu
.root_level
,
3266 is_shadow_present_pte(ent
));
3267 else if (ent
== shadow_notrap_nonpresent_pte
3268 && !is_error_hpa(hpa
))
3269 printk(KERN_ERR
"audit: (%s) notrap shadow,"
3270 " valid guest gva %lx\n", audit_msg
, va
);
3271 kvm_release_pfn_clean(pfn
);
3277 static void audit_mappings(struct kvm_vcpu
*vcpu
)
3281 if (vcpu
->arch
.mmu
.root_level
== 4)
3282 audit_mappings_page(vcpu
, vcpu
->arch
.mmu
.root_hpa
, 0, 4);
3284 for (i
= 0; i
< 4; ++i
)
3285 if (vcpu
->arch
.mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
3286 audit_mappings_page(vcpu
,
3287 vcpu
->arch
.mmu
.pae_root
[i
],
3292 static int count_rmaps(struct kvm_vcpu
*vcpu
)
3297 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
3298 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
3299 struct kvm_rmap_desc
*d
;
3301 for (j
= 0; j
< m
->npages
; ++j
) {
3302 unsigned long *rmapp
= &m
->rmap
[j
];
3306 if (!(*rmapp
& 1)) {
3310 d
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
3312 for (k
= 0; k
< RMAP_EXT
; ++k
)
3324 void inspect_spte_has_rmap(struct kvm
*kvm
, struct kvm_mmu_page
*sp
, u64
*sptep
)
3326 unsigned long *rmapp
;
3327 struct kvm_mmu_page
*rev_sp
;
3330 if (*sptep
& PT_WRITABLE_MASK
) {
3331 rev_sp
= page_header(__pa(sptep
));
3332 gfn
= rev_sp
->gfns
[sptep
- rev_sp
->spt
];
3334 if (!gfn_to_memslot(kvm
, gfn
)) {
3335 if (!printk_ratelimit())
3337 printk(KERN_ERR
"%s: no memslot for gfn %ld\n",
3339 printk(KERN_ERR
"%s: index %ld of sp (gfn=%lx)\n",
3340 audit_msg
, sptep
- rev_sp
->spt
,
3346 rmapp
= gfn_to_rmap(kvm
, rev_sp
->gfns
[sptep
- rev_sp
->spt
],
3347 is_large_pte(*sptep
));
3349 if (!printk_ratelimit())
3351 printk(KERN_ERR
"%s: no rmap for writable spte %llx\n",
3359 void audit_writable_sptes_have_rmaps(struct kvm_vcpu
*vcpu
)
3361 mmu_spte_walk(vcpu
, inspect_spte_has_rmap
);
3364 static void check_writable_mappings_rmap(struct kvm_vcpu
*vcpu
)
3366 struct kvm_mmu_page
*sp
;
3369 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
3372 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
3375 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
3378 if (!(ent
& PT_PRESENT_MASK
))
3380 if (!(ent
& PT_WRITABLE_MASK
))
3382 inspect_spte_has_rmap(vcpu
->kvm
, sp
, &pt
[i
]);
3388 static void audit_rmap(struct kvm_vcpu
*vcpu
)
3390 check_writable_mappings_rmap(vcpu
);
3394 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
3396 struct kvm_mmu_page
*sp
;
3397 struct kvm_memory_slot
*slot
;
3398 unsigned long *rmapp
;
3402 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
3403 if (sp
->role
.direct
)
3408 gfn
= unalias_gfn(vcpu
->kvm
, sp
->gfn
);
3409 slot
= gfn_to_memslot_unaliased(vcpu
->kvm
, sp
->gfn
);
3410 rmapp
= &slot
->rmap
[gfn
- slot
->base_gfn
];
3412 spte
= rmap_next(vcpu
->kvm
, rmapp
, NULL
);
3414 if (*spte
& PT_WRITABLE_MASK
)
3415 printk(KERN_ERR
"%s: (%s) shadow page has "
3416 "writable mappings: gfn %lx role %x\n",
3417 __func__
, audit_msg
, sp
->gfn
,
3419 spte
= rmap_next(vcpu
->kvm
, rmapp
, spte
);
3424 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
3431 audit_write_protection(vcpu
);
3432 if (strcmp("pre pte write", audit_msg
) != 0)
3433 audit_mappings(vcpu
);
3434 audit_writable_sptes_have_rmaps(vcpu
);