2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
45 #include <asm/uaccess.h>
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
72 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
74 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
80 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
82 struct kvm_cpuid_entry2 __user
*entries
);
84 struct kvm_x86_ops
*kvm_x86_ops
;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
88 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
90 struct kvm_stats_debugfs_item debugfs_entries
[] = {
91 { "pf_fixed", VCPU_STAT(pf_fixed
) },
92 { "pf_guest", VCPU_STAT(pf_guest
) },
93 { "tlb_flush", VCPU_STAT(tlb_flush
) },
94 { "invlpg", VCPU_STAT(invlpg
) },
95 { "exits", VCPU_STAT(exits
) },
96 { "io_exits", VCPU_STAT(io_exits
) },
97 { "mmio_exits", VCPU_STAT(mmio_exits
) },
98 { "signal_exits", VCPU_STAT(signal_exits
) },
99 { "irq_window", VCPU_STAT(irq_window_exits
) },
100 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
101 { "halt_exits", VCPU_STAT(halt_exits
) },
102 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
103 { "hypercalls", VCPU_STAT(hypercalls
) },
104 { "request_irq", VCPU_STAT(request_irq_exits
) },
105 { "irq_exits", VCPU_STAT(irq_exits
) },
106 { "host_state_reload", VCPU_STAT(host_state_reload
) },
107 { "efer_reload", VCPU_STAT(efer_reload
) },
108 { "fpu_reload", VCPU_STAT(fpu_reload
) },
109 { "insn_emulation", VCPU_STAT(insn_emulation
) },
110 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
111 { "irq_injections", VCPU_STAT(irq_injections
) },
112 { "nmi_injections", VCPU_STAT(nmi_injections
) },
113 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
114 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
115 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
116 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
117 { "mmu_flooded", VM_STAT(mmu_flooded
) },
118 { "mmu_recycled", VM_STAT(mmu_recycled
) },
119 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
120 { "mmu_unsync", VM_STAT(mmu_unsync
) },
121 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
122 { "largepages", VM_STAT(lpages
) },
126 unsigned long segment_base(u16 selector
)
128 struct descriptor_table gdt
;
129 struct desc_struct
*d
;
130 unsigned long table_base
;
137 table_base
= gdt
.base
;
139 if (selector
& 4) { /* from ldt */
140 u16 ldt_selector
= kvm_read_ldt();
142 table_base
= segment_base(ldt_selector
);
144 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
145 v
= get_desc_base(d
);
147 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
148 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
152 EXPORT_SYMBOL_GPL(segment_base
);
154 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
156 if (irqchip_in_kernel(vcpu
->kvm
))
157 return vcpu
->arch
.apic_base
;
159 return vcpu
->arch
.apic_base
;
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
163 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
165 /* TODO: reserve bits check */
166 if (irqchip_in_kernel(vcpu
->kvm
))
167 kvm_lapic_set_base(vcpu
, data
);
169 vcpu
->arch
.apic_base
= data
;
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
173 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
175 WARN_ON(vcpu
->arch
.exception
.pending
);
176 vcpu
->arch
.exception
.pending
= true;
177 vcpu
->arch
.exception
.has_error_code
= false;
178 vcpu
->arch
.exception
.nr
= nr
;
180 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
182 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
185 ++vcpu
->stat
.pf_guest
;
187 if (vcpu
->arch
.exception
.pending
) {
188 switch(vcpu
->arch
.exception
.nr
) {
190 /* triple fault -> shutdown */
191 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
194 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
195 vcpu
->arch
.exception
.error_code
= 0;
198 /* replace previous exception with a new one in a hope
199 that instruction re-execution will regenerate lost
201 vcpu
->arch
.exception
.pending
= false;
205 vcpu
->arch
.cr2
= addr
;
206 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
209 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
211 vcpu
->arch
.nmi_pending
= 1;
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
215 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
217 WARN_ON(vcpu
->arch
.exception
.pending
);
218 vcpu
->arch
.exception
.pending
= true;
219 vcpu
->arch
.exception
.has_error_code
= true;
220 vcpu
->arch
.exception
.nr
= nr
;
221 vcpu
->arch
.exception
.error_code
= error_code
;
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
226 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
227 * a #GP and return false.
229 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
231 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
233 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
236 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
239 * Load the pae pdptrs. Return true is they are all valid.
241 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
243 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
244 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
247 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
249 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
250 offset
* sizeof(u64
), sizeof(pdpte
));
255 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
256 if (is_present_gpte(pdpte
[i
]) &&
257 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
264 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
265 __set_bit(VCPU_EXREG_PDPTR
,
266 (unsigned long *)&vcpu
->arch
.regs_avail
);
267 __set_bit(VCPU_EXREG_PDPTR
,
268 (unsigned long *)&vcpu
->arch
.regs_dirty
);
273 EXPORT_SYMBOL_GPL(load_pdptrs
);
275 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
277 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
281 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
284 if (!test_bit(VCPU_EXREG_PDPTR
,
285 (unsigned long *)&vcpu
->arch
.regs_avail
))
288 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
291 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
297 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
299 if (cr0
& CR0_RESERVED_BITS
) {
300 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
301 cr0
, vcpu
->arch
.cr0
);
302 kvm_inject_gp(vcpu
, 0);
306 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
307 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
308 kvm_inject_gp(vcpu
, 0);
312 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
313 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
314 "and a clear PE flag\n");
315 kvm_inject_gp(vcpu
, 0);
319 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
321 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
325 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
326 "in long mode while PAE is disabled\n");
327 kvm_inject_gp(vcpu
, 0);
330 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
332 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
333 "in long mode while CS.L == 1\n");
334 kvm_inject_gp(vcpu
, 0);
340 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
341 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
343 kvm_inject_gp(vcpu
, 0);
349 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
350 vcpu
->arch
.cr0
= cr0
;
352 kvm_mmu_reset_context(vcpu
);
355 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
357 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
359 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
361 EXPORT_SYMBOL_GPL(kvm_lmsw
);
363 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
365 unsigned long old_cr4
= vcpu
->arch
.cr4
;
366 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
368 if (cr4
& CR4_RESERVED_BITS
) {
369 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
370 kvm_inject_gp(vcpu
, 0);
374 if (is_long_mode(vcpu
)) {
375 if (!(cr4
& X86_CR4_PAE
)) {
376 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
378 kvm_inject_gp(vcpu
, 0);
381 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
382 && ((cr4
^ old_cr4
) & pdptr_bits
)
383 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
384 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
385 kvm_inject_gp(vcpu
, 0);
389 if (cr4
& X86_CR4_VMXE
) {
390 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
391 kvm_inject_gp(vcpu
, 0);
394 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
395 vcpu
->arch
.cr4
= cr4
;
396 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
397 kvm_mmu_reset_context(vcpu
);
399 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
401 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
403 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
404 kvm_mmu_sync_roots(vcpu
);
405 kvm_mmu_flush_tlb(vcpu
);
409 if (is_long_mode(vcpu
)) {
410 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
411 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
412 kvm_inject_gp(vcpu
, 0);
417 if (cr3
& CR3_PAE_RESERVED_BITS
) {
419 "set_cr3: #GP, reserved bits\n");
420 kvm_inject_gp(vcpu
, 0);
423 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
424 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
426 kvm_inject_gp(vcpu
, 0);
431 * We don't check reserved bits in nonpae mode, because
432 * this isn't enforced, and VMware depends on this.
437 * Does the new cr3 value map to physical memory? (Note, we
438 * catch an invalid cr3 even in real-mode, because it would
439 * cause trouble later on when we turn on paging anyway.)
441 * A real CPU would silently accept an invalid cr3 and would
442 * attempt to use it - with largely undefined (and often hard
443 * to debug) behavior on the guest side.
445 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
446 kvm_inject_gp(vcpu
, 0);
448 vcpu
->arch
.cr3
= cr3
;
449 vcpu
->arch
.mmu
.new_cr3(vcpu
);
452 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
454 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
456 if (cr8
& CR8_RESERVED_BITS
) {
457 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
458 kvm_inject_gp(vcpu
, 0);
461 if (irqchip_in_kernel(vcpu
->kvm
))
462 kvm_lapic_set_tpr(vcpu
, cr8
);
464 vcpu
->arch
.cr8
= cr8
;
466 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
468 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
470 if (irqchip_in_kernel(vcpu
->kvm
))
471 return kvm_lapic_get_cr8(vcpu
);
473 return vcpu
->arch
.cr8
;
475 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
477 static inline u32
bit(int bitno
)
479 return 1 << (bitno
& 31);
483 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
484 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
486 * This list is modified at module load time to reflect the
487 * capabilities of the host cpu.
489 static u32 msrs_to_save
[] = {
490 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
493 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
495 MSR_IA32_TSC
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
496 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
499 static unsigned num_msrs_to_save
;
501 static u32 emulated_msrs
[] = {
502 MSR_IA32_MISC_ENABLE
,
505 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
507 if (efer
& efer_reserved_bits
) {
508 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
510 kvm_inject_gp(vcpu
, 0);
515 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
516 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
517 kvm_inject_gp(vcpu
, 0);
521 if (efer
& EFER_FFXSR
) {
522 struct kvm_cpuid_entry2
*feat
;
524 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
525 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
526 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
527 kvm_inject_gp(vcpu
, 0);
532 if (efer
& EFER_SVME
) {
533 struct kvm_cpuid_entry2
*feat
;
535 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
536 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
537 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
538 kvm_inject_gp(vcpu
, 0);
543 kvm_x86_ops
->set_efer(vcpu
, efer
);
546 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
548 vcpu
->arch
.shadow_efer
= efer
;
550 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
551 kvm_mmu_reset_context(vcpu
);
554 void kvm_enable_efer_bits(u64 mask
)
556 efer_reserved_bits
&= ~mask
;
558 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
562 * Writes msr value into into the appropriate "register".
563 * Returns 0 on success, non-0 otherwise.
564 * Assumes vcpu_load() was already called.
566 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
568 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
572 * Adapt set_msr() to msr_io()'s calling convention
574 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
576 return kvm_set_msr(vcpu
, index
, *data
);
579 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
582 struct pvclock_wall_clock wc
;
583 struct timespec now
, sys
, boot
;
590 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
593 * The guest calculates current wall clock time by adding
594 * system time (updated by kvm_write_guest_time below) to the
595 * wall clock specified here. guest system time equals host
596 * system time for us, thus we must fill in host boot time here.
598 now
= current_kernel_time();
600 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
602 wc
.sec
= boot
.tv_sec
;
603 wc
.nsec
= boot
.tv_nsec
;
604 wc
.version
= version
;
606 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
609 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
612 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
614 uint32_t quotient
, remainder
;
616 /* Don't try to replace with do_div(), this one calculates
617 * "(dividend << 32) / divisor" */
619 : "=a" (quotient
), "=d" (remainder
)
620 : "0" (0), "1" (dividend
), "r" (divisor
) );
624 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
626 uint64_t nsecs
= 1000000000LL;
631 tps64
= tsc_khz
* 1000LL;
632 while (tps64
> nsecs
*2) {
637 tps32
= (uint32_t)tps64
;
638 while (tps32
<= (uint32_t)nsecs
) {
643 hv_clock
->tsc_shift
= shift
;
644 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
646 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
647 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
648 hv_clock
->tsc_to_system_mul
);
651 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
653 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
657 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
659 unsigned long this_tsc_khz
;
661 if ((!vcpu
->time_page
))
664 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
665 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
666 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
667 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
669 put_cpu_var(cpu_tsc_khz
);
671 /* Keep irq disabled to prevent changes to the clock */
672 local_irq_save(flags
);
673 kvm_get_msr(v
, MSR_IA32_TSC
, &vcpu
->hv_clock
.tsc_timestamp
);
675 local_irq_restore(flags
);
677 /* With all the info we got, fill in the values */
679 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
680 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
682 * The interface expects us to write an even number signaling that the
683 * update is finished. Since the guest won't see the intermediate
684 * state, we just increase by 2 at the end.
686 vcpu
->hv_clock
.version
+= 2;
688 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
690 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
691 sizeof(vcpu
->hv_clock
));
693 kunmap_atomic(shared_kaddr
, KM_USER0
);
695 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
698 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
700 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
702 if (!vcpu
->time_page
)
704 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
708 static bool msr_mtrr_valid(unsigned msr
)
711 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
712 case MSR_MTRRfix64K_00000
:
713 case MSR_MTRRfix16K_80000
:
714 case MSR_MTRRfix16K_A0000
:
715 case MSR_MTRRfix4K_C0000
:
716 case MSR_MTRRfix4K_C8000
:
717 case MSR_MTRRfix4K_D0000
:
718 case MSR_MTRRfix4K_D8000
:
719 case MSR_MTRRfix4K_E0000
:
720 case MSR_MTRRfix4K_E8000
:
721 case MSR_MTRRfix4K_F0000
:
722 case MSR_MTRRfix4K_F8000
:
723 case MSR_MTRRdefType
:
724 case MSR_IA32_CR_PAT
:
732 static bool valid_pat_type(unsigned t
)
734 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
737 static bool valid_mtrr_type(unsigned t
)
739 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
742 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
746 if (!msr_mtrr_valid(msr
))
749 if (msr
== MSR_IA32_CR_PAT
) {
750 for (i
= 0; i
< 8; i
++)
751 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
754 } else if (msr
== MSR_MTRRdefType
) {
757 return valid_mtrr_type(data
& 0xff);
758 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
759 for (i
= 0; i
< 8 ; i
++)
760 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
766 return valid_mtrr_type(data
& 0xff);
769 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
771 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
773 if (!mtrr_valid(vcpu
, msr
, data
))
776 if (msr
== MSR_MTRRdefType
) {
777 vcpu
->arch
.mtrr_state
.def_type
= data
;
778 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
779 } else if (msr
== MSR_MTRRfix64K_00000
)
781 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
782 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
783 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
784 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
785 else if (msr
== MSR_IA32_CR_PAT
)
786 vcpu
->arch
.pat
= data
;
787 else { /* Variable MTRRs */
788 int idx
, is_mtrr_mask
;
791 idx
= (msr
- 0x200) / 2;
792 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
795 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
798 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
802 kvm_mmu_reset_context(vcpu
);
806 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
808 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
809 unsigned bank_num
= mcg_cap
& 0xff;
812 case MSR_IA32_MCG_STATUS
:
813 vcpu
->arch
.mcg_status
= data
;
815 case MSR_IA32_MCG_CTL
:
816 if (!(mcg_cap
& MCG_CTL_P
))
818 if (data
!= 0 && data
!= ~(u64
)0)
820 vcpu
->arch
.mcg_ctl
= data
;
823 if (msr
>= MSR_IA32_MC0_CTL
&&
824 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
825 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
826 /* only 0 or all 1s can be written to IA32_MCi_CTL */
827 if ((offset
& 0x3) == 0 &&
828 data
!= 0 && data
!= ~(u64
)0)
830 vcpu
->arch
.mce_banks
[offset
] = data
;
838 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
842 set_efer(vcpu
, data
);
845 data
&= ~(u64
)0x40; /* ignore flush filter disable */
847 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
852 case MSR_FAM10H_MMIO_CONF_BASE
:
854 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
859 case MSR_AMD64_NB_CFG
:
861 case MSR_IA32_DEBUGCTLMSR
:
863 /* We support the non-activated case already */
865 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
866 /* Values other than LBR and BTF are vendor-specific,
867 thus reserved and should throw a #GP */
870 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
873 case MSR_IA32_UCODE_REV
:
874 case MSR_IA32_UCODE_WRITE
:
875 case MSR_VM_HSAVE_PA
:
876 case MSR_AMD64_PATCH_LOADER
:
878 case 0x200 ... 0x2ff:
879 return set_msr_mtrr(vcpu
, msr
, data
);
880 case MSR_IA32_APICBASE
:
881 kvm_set_apic_base(vcpu
, data
);
883 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
884 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
885 case MSR_IA32_MISC_ENABLE
:
886 vcpu
->arch
.ia32_misc_enable_msr
= data
;
888 case MSR_KVM_WALL_CLOCK
:
889 vcpu
->kvm
->arch
.wall_clock
= data
;
890 kvm_write_wall_clock(vcpu
->kvm
, data
);
892 case MSR_KVM_SYSTEM_TIME
: {
893 if (vcpu
->arch
.time_page
) {
894 kvm_release_page_dirty(vcpu
->arch
.time_page
);
895 vcpu
->arch
.time_page
= NULL
;
898 vcpu
->arch
.time
= data
;
900 /* we verify if the enable bit is set... */
904 /* ...but clean it before doing the actual write */
905 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
907 vcpu
->arch
.time_page
=
908 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
910 if (is_error_page(vcpu
->arch
.time_page
)) {
911 kvm_release_page_clean(vcpu
->arch
.time_page
);
912 vcpu
->arch
.time_page
= NULL
;
915 kvm_request_guest_time_update(vcpu
);
918 case MSR_IA32_MCG_CTL
:
919 case MSR_IA32_MCG_STATUS
:
920 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
921 return set_msr_mce(vcpu
, msr
, data
);
923 /* Performance counters are not protected by a CPUID bit,
924 * so we should check all of them in the generic path for the sake of
925 * cross vendor migration.
926 * Writing a zero into the event select MSRs disables them,
927 * which we perfectly emulate ;-). Any other value should be at least
928 * reported, some guests depend on them.
930 case MSR_P6_EVNTSEL0
:
931 case MSR_P6_EVNTSEL1
:
932 case MSR_K7_EVNTSEL0
:
933 case MSR_K7_EVNTSEL1
:
934 case MSR_K7_EVNTSEL2
:
935 case MSR_K7_EVNTSEL3
:
937 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
938 "0x%x data 0x%llx\n", msr
, data
);
940 /* at least RHEL 4 unconditionally writes to the perfctr registers,
941 * so we ignore writes to make it happy.
943 case MSR_P6_PERFCTR0
:
944 case MSR_P6_PERFCTR1
:
945 case MSR_K7_PERFCTR0
:
946 case MSR_K7_PERFCTR1
:
947 case MSR_K7_PERFCTR2
:
948 case MSR_K7_PERFCTR3
:
949 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
950 "0x%x data 0x%llx\n", msr
, data
);
954 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
958 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
965 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
969 * Reads an msr value (of 'msr_index') into 'pdata'.
970 * Returns 0 on success, non-0 otherwise.
971 * Assumes vcpu_load() was already called.
973 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
975 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
978 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
980 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
982 if (!msr_mtrr_valid(msr
))
985 if (msr
== MSR_MTRRdefType
)
986 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
987 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
988 else if (msr
== MSR_MTRRfix64K_00000
)
990 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
991 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
992 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
993 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
994 else if (msr
== MSR_IA32_CR_PAT
)
995 *pdata
= vcpu
->arch
.pat
;
996 else { /* Variable MTRRs */
997 int idx
, is_mtrr_mask
;
1000 idx
= (msr
- 0x200) / 2;
1001 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1004 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1007 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1014 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1017 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1018 unsigned bank_num
= mcg_cap
& 0xff;
1021 case MSR_IA32_P5_MC_ADDR
:
1022 case MSR_IA32_P5_MC_TYPE
:
1025 case MSR_IA32_MCG_CAP
:
1026 data
= vcpu
->arch
.mcg_cap
;
1028 case MSR_IA32_MCG_CTL
:
1029 if (!(mcg_cap
& MCG_CTL_P
))
1031 data
= vcpu
->arch
.mcg_ctl
;
1033 case MSR_IA32_MCG_STATUS
:
1034 data
= vcpu
->arch
.mcg_status
;
1037 if (msr
>= MSR_IA32_MC0_CTL
&&
1038 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1039 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1040 data
= vcpu
->arch
.mce_banks
[offset
];
1049 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1054 case MSR_IA32_PLATFORM_ID
:
1055 case MSR_IA32_UCODE_REV
:
1056 case MSR_IA32_EBL_CR_POWERON
:
1057 case MSR_IA32_DEBUGCTLMSR
:
1058 case MSR_IA32_LASTBRANCHFROMIP
:
1059 case MSR_IA32_LASTBRANCHTOIP
:
1060 case MSR_IA32_LASTINTFROMIP
:
1061 case MSR_IA32_LASTINTTOIP
:
1064 case MSR_VM_HSAVE_PA
:
1065 case MSR_P6_PERFCTR0
:
1066 case MSR_P6_PERFCTR1
:
1067 case MSR_P6_EVNTSEL0
:
1068 case MSR_P6_EVNTSEL1
:
1069 case MSR_K7_EVNTSEL0
:
1070 case MSR_K7_PERFCTR0
:
1071 case MSR_K8_INT_PENDING_MSG
:
1072 case MSR_AMD64_NB_CFG
:
1073 case MSR_FAM10H_MMIO_CONF_BASE
:
1077 data
= 0x500 | KVM_NR_VAR_MTRR
;
1079 case 0x200 ... 0x2ff:
1080 return get_msr_mtrr(vcpu
, msr
, pdata
);
1081 case 0xcd: /* fsb frequency */
1084 case MSR_IA32_APICBASE
:
1085 data
= kvm_get_apic_base(vcpu
);
1087 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1088 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1090 case MSR_IA32_MISC_ENABLE
:
1091 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1093 case MSR_IA32_PERF_STATUS
:
1094 /* TSC increment by tick */
1096 /* CPU multiplier */
1097 data
|= (((uint64_t)4ULL) << 40);
1100 data
= vcpu
->arch
.shadow_efer
;
1102 case MSR_KVM_WALL_CLOCK
:
1103 data
= vcpu
->kvm
->arch
.wall_clock
;
1105 case MSR_KVM_SYSTEM_TIME
:
1106 data
= vcpu
->arch
.time
;
1108 case MSR_IA32_P5_MC_ADDR
:
1109 case MSR_IA32_P5_MC_TYPE
:
1110 case MSR_IA32_MCG_CAP
:
1111 case MSR_IA32_MCG_CTL
:
1112 case MSR_IA32_MCG_STATUS
:
1113 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1114 return get_msr_mce(vcpu
, msr
, pdata
);
1117 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1120 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1128 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1131 * Read or write a bunch of msrs. All parameters are kernel addresses.
1133 * @return number of msrs set successfully.
1135 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1136 struct kvm_msr_entry
*entries
,
1137 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1138 unsigned index
, u64
*data
))
1144 down_read(&vcpu
->kvm
->slots_lock
);
1145 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1146 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1148 up_read(&vcpu
->kvm
->slots_lock
);
1156 * Read or write a bunch of msrs. Parameters are user addresses.
1158 * @return number of msrs set successfully.
1160 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1161 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1162 unsigned index
, u64
*data
),
1165 struct kvm_msrs msrs
;
1166 struct kvm_msr_entry
*entries
;
1171 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1175 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1179 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1180 entries
= vmalloc(size
);
1185 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1188 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1193 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1204 int kvm_dev_ioctl_check_extension(long ext
)
1209 case KVM_CAP_IRQCHIP
:
1211 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1212 case KVM_CAP_SET_TSS_ADDR
:
1213 case KVM_CAP_EXT_CPUID
:
1214 case KVM_CAP_CLOCKSOURCE
:
1216 case KVM_CAP_NOP_IO_DELAY
:
1217 case KVM_CAP_MP_STATE
:
1218 case KVM_CAP_SYNC_MMU
:
1219 case KVM_CAP_REINJECT_CONTROL
:
1220 case KVM_CAP_IRQ_INJECT_STATUS
:
1221 case KVM_CAP_ASSIGN_DEV_IRQ
:
1223 case KVM_CAP_IOEVENTFD
:
1225 case KVM_CAP_PIT_STATE2
:
1226 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
1229 case KVM_CAP_COALESCED_MMIO
:
1230 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1233 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1235 case KVM_CAP_NR_VCPUS
:
1238 case KVM_CAP_NR_MEMSLOTS
:
1239 r
= KVM_MEMORY_SLOTS
;
1241 case KVM_CAP_PV_MMU
:
1248 r
= KVM_MAX_MCE_BANKS
;
1258 long kvm_arch_dev_ioctl(struct file
*filp
,
1259 unsigned int ioctl
, unsigned long arg
)
1261 void __user
*argp
= (void __user
*)arg
;
1265 case KVM_GET_MSR_INDEX_LIST
: {
1266 struct kvm_msr_list __user
*user_msr_list
= argp
;
1267 struct kvm_msr_list msr_list
;
1271 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1274 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1275 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1278 if (n
< msr_list
.nmsrs
)
1281 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1282 num_msrs_to_save
* sizeof(u32
)))
1284 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
1286 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1291 case KVM_GET_SUPPORTED_CPUID
: {
1292 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1293 struct kvm_cpuid2 cpuid
;
1296 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1298 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1299 cpuid_arg
->entries
);
1304 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1309 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
1312 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
1314 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
1326 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1328 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1329 kvm_request_guest_time_update(vcpu
);
1332 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1334 kvm_x86_ops
->vcpu_put(vcpu
);
1335 kvm_put_guest_fpu(vcpu
);
1338 static int is_efer_nx(void)
1340 unsigned long long efer
= 0;
1342 rdmsrl_safe(MSR_EFER
, &efer
);
1343 return efer
& EFER_NX
;
1346 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1349 struct kvm_cpuid_entry2
*e
, *entry
;
1352 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1353 e
= &vcpu
->arch
.cpuid_entries
[i
];
1354 if (e
->function
== 0x80000001) {
1359 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1360 entry
->edx
&= ~(1 << 20);
1361 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1365 /* when an old userspace process fills a new kernel module */
1366 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1367 struct kvm_cpuid
*cpuid
,
1368 struct kvm_cpuid_entry __user
*entries
)
1371 struct kvm_cpuid_entry
*cpuid_entries
;
1374 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1377 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1381 if (copy_from_user(cpuid_entries
, entries
,
1382 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1384 for (i
= 0; i
< cpuid
->nent
; i
++) {
1385 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1386 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1387 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1388 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1389 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1390 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1391 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1392 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1393 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1394 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1396 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1397 cpuid_fix_nx_cap(vcpu
);
1399 kvm_apic_set_version(vcpu
);
1402 vfree(cpuid_entries
);
1407 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1408 struct kvm_cpuid2
*cpuid
,
1409 struct kvm_cpuid_entry2 __user
*entries
)
1414 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1417 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1418 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1420 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1421 kvm_apic_set_version(vcpu
);
1428 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1429 struct kvm_cpuid2
*cpuid
,
1430 struct kvm_cpuid_entry2 __user
*entries
)
1435 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1438 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1439 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1444 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1448 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1451 entry
->function
= function
;
1452 entry
->index
= index
;
1453 cpuid_count(entry
->function
, entry
->index
,
1454 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1458 #define F(x) bit(X86_FEATURE_##x)
1460 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1461 u32 index
, int *nent
, int maxnent
)
1463 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1464 unsigned f_gbpages
= kvm_x86_ops
->gb_page_enable() ? F(GBPAGES
) : 0;
1465 #ifdef CONFIG_X86_64
1466 unsigned f_lm
= F(LM
);
1472 const u32 kvm_supported_word0_x86_features
=
1473 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1474 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1475 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1476 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1477 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1478 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1479 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1480 0 /* HTT, TM, Reserved, PBE */;
1481 /* cpuid 0x80000001.edx */
1482 const u32 kvm_supported_word1_x86_features
=
1483 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1484 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1485 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1486 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1487 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1488 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1489 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| 0 /* RDTSCP */ |
1490 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1492 const u32 kvm_supported_word4_x86_features
=
1493 F(XMM3
) | 0 /* Reserved, DTES64, MONITOR */ |
1494 0 /* DS-CPL, VMX, SMX, EST */ |
1495 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1496 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1497 0 /* Reserved, DCA */ | F(XMM4_1
) |
1498 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
1499 0 /* Reserved, XSAVE, OSXSAVE */;
1500 /* cpuid 0x80000001.ecx */
1501 const u32 kvm_supported_word6_x86_features
=
1502 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1503 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1504 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5
) |
1505 0 /* SKINIT */ | 0 /* WDT */;
1507 /* all calls to cpuid_count() should be made on the same cpu */
1509 do_cpuid_1_ent(entry
, function
, index
);
1514 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1517 entry
->edx
&= kvm_supported_word0_x86_features
;
1518 entry
->ecx
&= kvm_supported_word4_x86_features
;
1519 /* we support x2apic emulation even if host does not support
1520 * it since we emulate x2apic in software */
1521 entry
->ecx
|= F(X2APIC
);
1523 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1524 * may return different values. This forces us to get_cpu() before
1525 * issuing the first command, and also to emulate this annoying behavior
1526 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1528 int t
, times
= entry
->eax
& 0xff;
1530 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1531 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1532 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1533 do_cpuid_1_ent(&entry
[t
], function
, 0);
1534 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1539 /* function 4 and 0xb have additional index. */
1543 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1544 /* read more entries until cache_type is zero */
1545 for (i
= 1; *nent
< maxnent
; ++i
) {
1546 cache_type
= entry
[i
- 1].eax
& 0x1f;
1549 do_cpuid_1_ent(&entry
[i
], function
, i
);
1551 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1559 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1560 /* read more entries until level_type is zero */
1561 for (i
= 1; *nent
< maxnent
; ++i
) {
1562 level_type
= entry
[i
- 1].ecx
& 0xff00;
1565 do_cpuid_1_ent(&entry
[i
], function
, i
);
1567 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1573 entry
->eax
= min(entry
->eax
, 0x8000001a);
1576 entry
->edx
&= kvm_supported_word1_x86_features
;
1577 entry
->ecx
&= kvm_supported_word6_x86_features
;
1585 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1586 struct kvm_cpuid_entry2 __user
*entries
)
1588 struct kvm_cpuid_entry2
*cpuid_entries
;
1589 int limit
, nent
= 0, r
= -E2BIG
;
1592 if (cpuid
->nent
< 1)
1594 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1595 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
1597 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1601 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1602 limit
= cpuid_entries
[0].eax
;
1603 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1604 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1605 &nent
, cpuid
->nent
);
1607 if (nent
>= cpuid
->nent
)
1610 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1611 limit
= cpuid_entries
[nent
- 1].eax
;
1612 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1613 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1614 &nent
, cpuid
->nent
);
1616 if (nent
>= cpuid
->nent
)
1620 if (copy_to_user(entries
, cpuid_entries
,
1621 nent
* sizeof(struct kvm_cpuid_entry2
)))
1627 vfree(cpuid_entries
);
1632 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1633 struct kvm_lapic_state
*s
)
1636 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1642 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1643 struct kvm_lapic_state
*s
)
1646 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1647 kvm_apic_post_state_restore(vcpu
);
1648 update_cr8_intercept(vcpu
);
1654 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1655 struct kvm_interrupt
*irq
)
1657 if (irq
->irq
< 0 || irq
->irq
>= 256)
1659 if (irqchip_in_kernel(vcpu
->kvm
))
1663 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
1670 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1673 kvm_inject_nmi(vcpu
);
1679 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1680 struct kvm_tpr_access_ctl
*tac
)
1684 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1688 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
1692 unsigned bank_num
= mcg_cap
& 0xff, bank
;
1695 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
1697 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
1700 vcpu
->arch
.mcg_cap
= mcg_cap
;
1701 /* Init IA32_MCG_CTL to all 1s */
1702 if (mcg_cap
& MCG_CTL_P
)
1703 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
1704 /* Init IA32_MCi_CTL to all 1s */
1705 for (bank
= 0; bank
< bank_num
; bank
++)
1706 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
1711 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
1712 struct kvm_x86_mce
*mce
)
1714 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1715 unsigned bank_num
= mcg_cap
& 0xff;
1716 u64
*banks
= vcpu
->arch
.mce_banks
;
1718 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
1721 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1722 * reporting is disabled
1724 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
1725 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
1727 banks
+= 4 * mce
->bank
;
1729 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1730 * reporting is disabled for the bank
1732 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
1734 if (mce
->status
& MCI_STATUS_UC
) {
1735 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
1736 !(vcpu
->arch
.cr4
& X86_CR4_MCE
)) {
1737 printk(KERN_DEBUG
"kvm: set_mce: "
1738 "injects mce exception while "
1739 "previous one is in progress!\n");
1740 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
1743 if (banks
[1] & MCI_STATUS_VAL
)
1744 mce
->status
|= MCI_STATUS_OVER
;
1745 banks
[2] = mce
->addr
;
1746 banks
[3] = mce
->misc
;
1747 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
1748 banks
[1] = mce
->status
;
1749 kvm_queue_exception(vcpu
, MC_VECTOR
);
1750 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1751 || !(banks
[1] & MCI_STATUS_UC
)) {
1752 if (banks
[1] & MCI_STATUS_VAL
)
1753 mce
->status
|= MCI_STATUS_OVER
;
1754 banks
[2] = mce
->addr
;
1755 banks
[3] = mce
->misc
;
1756 banks
[1] = mce
->status
;
1758 banks
[1] |= MCI_STATUS_OVER
;
1762 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1763 unsigned int ioctl
, unsigned long arg
)
1765 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1766 void __user
*argp
= (void __user
*)arg
;
1768 struct kvm_lapic_state
*lapic
= NULL
;
1771 case KVM_GET_LAPIC
: {
1772 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1777 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1781 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1786 case KVM_SET_LAPIC
: {
1787 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1792 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1794 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1800 case KVM_INTERRUPT
: {
1801 struct kvm_interrupt irq
;
1804 if (copy_from_user(&irq
, argp
, sizeof irq
))
1806 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1813 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1819 case KVM_SET_CPUID
: {
1820 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1821 struct kvm_cpuid cpuid
;
1824 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1826 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1831 case KVM_SET_CPUID2
: {
1832 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1833 struct kvm_cpuid2 cpuid
;
1836 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1838 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1839 cpuid_arg
->entries
);
1844 case KVM_GET_CPUID2
: {
1845 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1846 struct kvm_cpuid2 cpuid
;
1849 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1851 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1852 cpuid_arg
->entries
);
1856 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1862 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1865 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1867 case KVM_TPR_ACCESS_REPORTING
: {
1868 struct kvm_tpr_access_ctl tac
;
1871 if (copy_from_user(&tac
, argp
, sizeof tac
))
1873 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1877 if (copy_to_user(argp
, &tac
, sizeof tac
))
1882 case KVM_SET_VAPIC_ADDR
: {
1883 struct kvm_vapic_addr va
;
1886 if (!irqchip_in_kernel(vcpu
->kvm
))
1889 if (copy_from_user(&va
, argp
, sizeof va
))
1892 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1895 case KVM_X86_SETUP_MCE
: {
1899 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
1901 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
1904 case KVM_X86_SET_MCE
: {
1905 struct kvm_x86_mce mce
;
1908 if (copy_from_user(&mce
, argp
, sizeof mce
))
1910 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
1921 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1925 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1927 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1931 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
1934 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
1938 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1939 u32 kvm_nr_mmu_pages
)
1941 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1944 down_write(&kvm
->slots_lock
);
1945 spin_lock(&kvm
->mmu_lock
);
1947 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1948 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1950 spin_unlock(&kvm
->mmu_lock
);
1951 up_write(&kvm
->slots_lock
);
1955 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1957 return kvm
->arch
.n_alloc_mmu_pages
;
1960 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1963 struct kvm_mem_alias
*alias
;
1965 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1966 alias
= &kvm
->arch
.aliases
[i
];
1967 if (gfn
>= alias
->base_gfn
1968 && gfn
< alias
->base_gfn
+ alias
->npages
)
1969 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1975 * Set a new alias region. Aliases map a portion of physical memory into
1976 * another portion. This is useful for memory windows, for example the PC
1979 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1980 struct kvm_memory_alias
*alias
)
1983 struct kvm_mem_alias
*p
;
1986 /* General sanity checks */
1987 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1989 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1991 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1993 if (alias
->guest_phys_addr
+ alias
->memory_size
1994 < alias
->guest_phys_addr
)
1996 if (alias
->target_phys_addr
+ alias
->memory_size
1997 < alias
->target_phys_addr
)
2000 down_write(&kvm
->slots_lock
);
2001 spin_lock(&kvm
->mmu_lock
);
2003 p
= &kvm
->arch
.aliases
[alias
->slot
];
2004 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
2005 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
2006 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
2008 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
2009 if (kvm
->arch
.aliases
[n
- 1].npages
)
2011 kvm
->arch
.naliases
= n
;
2013 spin_unlock(&kvm
->mmu_lock
);
2014 kvm_mmu_zap_all(kvm
);
2016 up_write(&kvm
->slots_lock
);
2024 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2029 switch (chip
->chip_id
) {
2030 case KVM_IRQCHIP_PIC_MASTER
:
2031 memcpy(&chip
->chip
.pic
,
2032 &pic_irqchip(kvm
)->pics
[0],
2033 sizeof(struct kvm_pic_state
));
2035 case KVM_IRQCHIP_PIC_SLAVE
:
2036 memcpy(&chip
->chip
.pic
,
2037 &pic_irqchip(kvm
)->pics
[1],
2038 sizeof(struct kvm_pic_state
));
2040 case KVM_IRQCHIP_IOAPIC
:
2041 memcpy(&chip
->chip
.ioapic
,
2042 ioapic_irqchip(kvm
),
2043 sizeof(struct kvm_ioapic_state
));
2052 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2057 switch (chip
->chip_id
) {
2058 case KVM_IRQCHIP_PIC_MASTER
:
2059 spin_lock(&pic_irqchip(kvm
)->lock
);
2060 memcpy(&pic_irqchip(kvm
)->pics
[0],
2062 sizeof(struct kvm_pic_state
));
2063 spin_unlock(&pic_irqchip(kvm
)->lock
);
2065 case KVM_IRQCHIP_PIC_SLAVE
:
2066 spin_lock(&pic_irqchip(kvm
)->lock
);
2067 memcpy(&pic_irqchip(kvm
)->pics
[1],
2069 sizeof(struct kvm_pic_state
));
2070 spin_unlock(&pic_irqchip(kvm
)->lock
);
2072 case KVM_IRQCHIP_IOAPIC
:
2073 mutex_lock(&kvm
->irq_lock
);
2074 memcpy(ioapic_irqchip(kvm
),
2076 sizeof(struct kvm_ioapic_state
));
2077 mutex_unlock(&kvm
->irq_lock
);
2083 kvm_pic_update_irq(pic_irqchip(kvm
));
2087 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2091 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2092 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2093 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2097 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2101 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2102 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2103 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
2104 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2108 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2112 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2113 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
2114 sizeof(ps
->channels
));
2115 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
2116 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2120 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2122 int r
= 0, start
= 0;
2123 u32 prev_legacy
, cur_legacy
;
2124 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2125 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2126 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2127 if (!prev_legacy
&& cur_legacy
)
2129 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
2130 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
2131 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
2132 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
2133 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2137 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2138 struct kvm_reinject_control
*control
)
2140 if (!kvm
->arch
.vpit
)
2142 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2143 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2144 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2149 * Get (and clear) the dirty memory log for a memory slot.
2151 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
2152 struct kvm_dirty_log
*log
)
2156 struct kvm_memory_slot
*memslot
;
2159 down_write(&kvm
->slots_lock
);
2161 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
2165 /* If nothing is dirty, don't bother messing with page tables. */
2167 spin_lock(&kvm
->mmu_lock
);
2168 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
2169 spin_unlock(&kvm
->mmu_lock
);
2170 memslot
= &kvm
->memslots
[log
->slot
];
2171 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
2172 memset(memslot
->dirty_bitmap
, 0, n
);
2176 up_write(&kvm
->slots_lock
);
2180 long kvm_arch_vm_ioctl(struct file
*filp
,
2181 unsigned int ioctl
, unsigned long arg
)
2183 struct kvm
*kvm
= filp
->private_data
;
2184 void __user
*argp
= (void __user
*)arg
;
2187 * This union makes it completely explicit to gcc-3.x
2188 * that these two variables' stack usage should be
2189 * combined, not added together.
2192 struct kvm_pit_state ps
;
2193 struct kvm_pit_state2 ps2
;
2194 struct kvm_memory_alias alias
;
2195 struct kvm_pit_config pit_config
;
2199 case KVM_SET_TSS_ADDR
:
2200 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
2204 case KVM_SET_IDENTITY_MAP_ADDR
: {
2208 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
2210 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
2215 case KVM_SET_MEMORY_REGION
: {
2216 struct kvm_memory_region kvm_mem
;
2217 struct kvm_userspace_memory_region kvm_userspace_mem
;
2220 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
2222 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
2223 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
2224 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
2225 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
2226 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2231 case KVM_SET_NR_MMU_PAGES
:
2232 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
2236 case KVM_GET_NR_MMU_PAGES
:
2237 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
2239 case KVM_SET_MEMORY_ALIAS
:
2241 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
2243 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
2247 case KVM_CREATE_IRQCHIP
:
2249 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
2250 if (kvm
->arch
.vpic
) {
2251 r
= kvm_ioapic_init(kvm
);
2253 kfree(kvm
->arch
.vpic
);
2254 kvm
->arch
.vpic
= NULL
;
2259 r
= kvm_setup_default_irq_routing(kvm
);
2261 kfree(kvm
->arch
.vpic
);
2262 kfree(kvm
->arch
.vioapic
);
2266 case KVM_CREATE_PIT
:
2267 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
2269 case KVM_CREATE_PIT2
:
2271 if (copy_from_user(&u
.pit_config
, argp
,
2272 sizeof(struct kvm_pit_config
)))
2275 down_write(&kvm
->slots_lock
);
2278 goto create_pit_unlock
;
2280 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
2284 up_write(&kvm
->slots_lock
);
2286 case KVM_IRQ_LINE_STATUS
:
2287 case KVM_IRQ_LINE
: {
2288 struct kvm_irq_level irq_event
;
2291 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2293 if (irqchip_in_kernel(kvm
)) {
2295 mutex_lock(&kvm
->irq_lock
);
2296 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
2297 irq_event
.irq
, irq_event
.level
);
2298 mutex_unlock(&kvm
->irq_lock
);
2299 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2300 irq_event
.status
= status
;
2301 if (copy_to_user(argp
, &irq_event
,
2309 case KVM_GET_IRQCHIP
: {
2310 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2311 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2317 if (copy_from_user(chip
, argp
, sizeof *chip
))
2318 goto get_irqchip_out
;
2320 if (!irqchip_in_kernel(kvm
))
2321 goto get_irqchip_out
;
2322 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
2324 goto get_irqchip_out
;
2326 if (copy_to_user(argp
, chip
, sizeof *chip
))
2327 goto get_irqchip_out
;
2335 case KVM_SET_IRQCHIP
: {
2336 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2337 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2343 if (copy_from_user(chip
, argp
, sizeof *chip
))
2344 goto set_irqchip_out
;
2346 if (!irqchip_in_kernel(kvm
))
2347 goto set_irqchip_out
;
2348 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
2350 goto set_irqchip_out
;
2360 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
2363 if (!kvm
->arch
.vpit
)
2365 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
2369 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
2376 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2379 if (!kvm
->arch
.vpit
)
2381 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2387 case KVM_GET_PIT2
: {
2389 if (!kvm
->arch
.vpit
)
2391 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
2395 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
2400 case KVM_SET_PIT2
: {
2402 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
2405 if (!kvm
->arch
.vpit
)
2407 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
2413 case KVM_REINJECT_CONTROL
: {
2414 struct kvm_reinject_control control
;
2416 if (copy_from_user(&control
, argp
, sizeof(control
)))
2418 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2431 static void kvm_init_msr_list(void)
2436 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2437 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2440 msrs_to_save
[j
] = msrs_to_save
[i
];
2443 num_msrs_to_save
= j
;
2446 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
2449 if (vcpu
->arch
.apic
&&
2450 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2453 return kvm_io_bus_write(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2456 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
2458 if (vcpu
->arch
.apic
&&
2459 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2462 return kvm_io_bus_read(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2465 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2466 struct kvm_vcpu
*vcpu
)
2469 int r
= X86EMUL_CONTINUE
;
2472 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2473 unsigned offset
= addr
& (PAGE_SIZE
-1);
2474 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2477 if (gpa
== UNMAPPED_GVA
) {
2478 r
= X86EMUL_PROPAGATE_FAULT
;
2481 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2483 r
= X86EMUL_UNHANDLEABLE
;
2495 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2496 struct kvm_vcpu
*vcpu
)
2499 int r
= X86EMUL_CONTINUE
;
2502 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2503 unsigned offset
= addr
& (PAGE_SIZE
-1);
2504 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2507 if (gpa
== UNMAPPED_GVA
) {
2508 r
= X86EMUL_PROPAGATE_FAULT
;
2511 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2513 r
= X86EMUL_UNHANDLEABLE
;
2526 static int emulator_read_emulated(unsigned long addr
,
2529 struct kvm_vcpu
*vcpu
)
2533 if (vcpu
->mmio_read_completed
) {
2534 memcpy(val
, vcpu
->mmio_data
, bytes
);
2535 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
2536 vcpu
->mmio_phys_addr
, *(u64
*)val
);
2537 vcpu
->mmio_read_completed
= 0;
2538 return X86EMUL_CONTINUE
;
2541 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2543 /* For APIC access vmexit */
2544 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2547 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2548 == X86EMUL_CONTINUE
)
2549 return X86EMUL_CONTINUE
;
2550 if (gpa
== UNMAPPED_GVA
)
2551 return X86EMUL_PROPAGATE_FAULT
;
2555 * Is this MMIO handled locally?
2557 if (!vcpu_mmio_read(vcpu
, gpa
, bytes
, val
)) {
2558 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
, gpa
, *(u64
*)val
);
2559 return X86EMUL_CONTINUE
;
2562 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
2564 vcpu
->mmio_needed
= 1;
2565 vcpu
->mmio_phys_addr
= gpa
;
2566 vcpu
->mmio_size
= bytes
;
2567 vcpu
->mmio_is_write
= 0;
2569 return X86EMUL_UNHANDLEABLE
;
2572 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2573 const void *val
, int bytes
)
2577 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2580 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2584 static int emulator_write_emulated_onepage(unsigned long addr
,
2587 struct kvm_vcpu
*vcpu
)
2591 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2593 if (gpa
== UNMAPPED_GVA
) {
2594 kvm_inject_page_fault(vcpu
, addr
, 2);
2595 return X86EMUL_PROPAGATE_FAULT
;
2598 /* For APIC access vmexit */
2599 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2602 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2603 return X86EMUL_CONTINUE
;
2606 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
2608 * Is this MMIO handled locally?
2610 if (!vcpu_mmio_write(vcpu
, gpa
, bytes
, val
))
2611 return X86EMUL_CONTINUE
;
2613 vcpu
->mmio_needed
= 1;
2614 vcpu
->mmio_phys_addr
= gpa
;
2615 vcpu
->mmio_size
= bytes
;
2616 vcpu
->mmio_is_write
= 1;
2617 memcpy(vcpu
->mmio_data
, val
, bytes
);
2619 return X86EMUL_CONTINUE
;
2622 int emulator_write_emulated(unsigned long addr
,
2625 struct kvm_vcpu
*vcpu
)
2627 /* Crossing a page boundary? */
2628 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2631 now
= -addr
& ~PAGE_MASK
;
2632 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2633 if (rc
!= X86EMUL_CONTINUE
)
2639 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2641 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2643 static int emulator_cmpxchg_emulated(unsigned long addr
,
2647 struct kvm_vcpu
*vcpu
)
2649 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
2650 #ifndef CONFIG_X86_64
2651 /* guests cmpxchg8b have to be emulated atomically */
2658 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2660 if (gpa
== UNMAPPED_GVA
||
2661 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2664 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2669 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2671 kaddr
= kmap_atomic(page
, KM_USER0
);
2672 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2673 kunmap_atomic(kaddr
, KM_USER0
);
2674 kvm_release_page_dirty(page
);
2679 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2682 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2684 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2687 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2689 kvm_mmu_invlpg(vcpu
, address
);
2690 return X86EMUL_CONTINUE
;
2693 int emulate_clts(struct kvm_vcpu
*vcpu
)
2695 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2696 return X86EMUL_CONTINUE
;
2699 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2701 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2705 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2706 return X86EMUL_CONTINUE
;
2708 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2709 return X86EMUL_UNHANDLEABLE
;
2713 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2715 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2718 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2720 /* FIXME: better handling */
2721 return X86EMUL_UNHANDLEABLE
;
2723 return X86EMUL_CONTINUE
;
2726 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2729 unsigned long rip
= kvm_rip_read(vcpu
);
2730 unsigned long rip_linear
;
2732 if (!printk_ratelimit())
2735 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2737 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2739 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2740 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2742 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2744 static struct x86_emulate_ops emulate_ops
= {
2745 .read_std
= kvm_read_guest_virt
,
2746 .read_emulated
= emulator_read_emulated
,
2747 .write_emulated
= emulator_write_emulated
,
2748 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2751 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2753 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2754 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2755 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2756 vcpu
->arch
.regs_dirty
= ~0;
2759 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2760 struct kvm_run
*run
,
2766 struct decode_cache
*c
;
2768 kvm_clear_exception_queue(vcpu
);
2769 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2771 * TODO: fix emulate.c to use guest_read/write_register
2772 * instead of direct ->regs accesses, can save hundred cycles
2773 * on Intel for instructions that don't read/change RSP, for
2776 cache_all_regs(vcpu
);
2778 vcpu
->mmio_is_write
= 0;
2779 vcpu
->arch
.pio
.string
= 0;
2781 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2783 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2785 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2786 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2787 vcpu
->arch
.emulate_ctxt
.mode
=
2788 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2789 ? X86EMUL_MODE_REAL
: cs_l
2790 ? X86EMUL_MODE_PROT64
: cs_db
2791 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2793 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2795 /* Only allow emulation of specific instructions on #UD
2796 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2797 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2798 if (emulation_type
& EMULTYPE_TRAP_UD
) {
2800 return EMULATE_FAIL
;
2802 case 0x01: /* VMMCALL */
2803 if (c
->modrm_mod
!= 3 || c
->modrm_rm
!= 1)
2804 return EMULATE_FAIL
;
2806 case 0x34: /* sysenter */
2807 case 0x35: /* sysexit */
2808 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2809 return EMULATE_FAIL
;
2811 case 0x05: /* syscall */
2812 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2813 return EMULATE_FAIL
;
2816 return EMULATE_FAIL
;
2819 if (!(c
->modrm_reg
== 0 || c
->modrm_reg
== 3))
2820 return EMULATE_FAIL
;
2823 ++vcpu
->stat
.insn_emulation
;
2825 ++vcpu
->stat
.insn_emulation_fail
;
2826 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2827 return EMULATE_DONE
;
2828 return EMULATE_FAIL
;
2832 if (emulation_type
& EMULTYPE_SKIP
) {
2833 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
2834 return EMULATE_DONE
;
2837 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2838 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
2841 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
2843 if (vcpu
->arch
.pio
.string
)
2844 return EMULATE_DO_MMIO
;
2846 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2847 run
->exit_reason
= KVM_EXIT_MMIO
;
2848 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2849 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2850 run
->mmio
.len
= vcpu
->mmio_size
;
2851 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2855 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2856 return EMULATE_DONE
;
2857 if (!vcpu
->mmio_needed
) {
2858 kvm_report_emulation_failure(vcpu
, "mmio");
2859 return EMULATE_FAIL
;
2861 return EMULATE_DO_MMIO
;
2864 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2866 if (vcpu
->mmio_is_write
) {
2867 vcpu
->mmio_needed
= 0;
2868 return EMULATE_DO_MMIO
;
2871 return EMULATE_DONE
;
2873 EXPORT_SYMBOL_GPL(emulate_instruction
);
2875 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2877 void *p
= vcpu
->arch
.pio_data
;
2878 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2882 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2883 if (vcpu
->arch
.pio
.in
)
2884 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2886 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2890 int complete_pio(struct kvm_vcpu
*vcpu
)
2892 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2899 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2900 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2901 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2905 r
= pio_copy_data(vcpu
);
2912 delta
*= io
->cur_count
;
2914 * The size of the register should really depend on
2915 * current address size.
2917 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2919 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2925 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2927 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2929 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2931 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2935 io
->count
-= io
->cur_count
;
2941 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
2943 /* TODO: String I/O for in kernel device */
2946 if (vcpu
->arch
.pio
.in
)
2947 r
= kvm_io_bus_read(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
2948 vcpu
->arch
.pio
.size
, pd
);
2950 r
= kvm_io_bus_write(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
2951 vcpu
->arch
.pio
.size
, pd
);
2955 static int pio_string_write(struct kvm_vcpu
*vcpu
)
2957 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2958 void *pd
= vcpu
->arch
.pio_data
;
2961 for (i
= 0; i
< io
->cur_count
; i
++) {
2962 if (kvm_io_bus_write(&vcpu
->kvm
->pio_bus
,
2963 io
->port
, io
->size
, pd
)) {
2972 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2973 int size
, unsigned port
)
2977 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2978 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2979 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2980 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2981 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2982 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2983 vcpu
->arch
.pio
.in
= in
;
2984 vcpu
->arch
.pio
.string
= 0;
2985 vcpu
->arch
.pio
.down
= 0;
2986 vcpu
->arch
.pio
.rep
= 0;
2988 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
2991 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2992 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2994 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3000 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
3002 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
3003 int size
, unsigned long count
, int down
,
3004 gva_t address
, int rep
, unsigned port
)
3006 unsigned now
, in_page
;
3009 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3010 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
3011 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
3012 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3013 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
3014 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
3015 vcpu
->arch
.pio
.in
= in
;
3016 vcpu
->arch
.pio
.string
= 1;
3017 vcpu
->arch
.pio
.down
= down
;
3018 vcpu
->arch
.pio
.rep
= rep
;
3020 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
3024 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3029 in_page
= PAGE_SIZE
- offset_in_page(address
);
3031 in_page
= offset_in_page(address
) + size
;
3032 now
= min(count
, (unsigned long)in_page
/ size
);
3037 * String I/O in reverse. Yuck. Kill the guest, fix later.
3039 pr_unimpl(vcpu
, "guest string pio down\n");
3040 kvm_inject_gp(vcpu
, 0);
3043 vcpu
->run
->io
.count
= now
;
3044 vcpu
->arch
.pio
.cur_count
= now
;
3046 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
3047 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3049 vcpu
->arch
.pio
.guest_gva
= address
;
3051 if (!vcpu
->arch
.pio
.in
) {
3052 /* string PIO write */
3053 ret
= pio_copy_data(vcpu
);
3054 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
3055 kvm_inject_gp(vcpu
, 0);
3058 if (ret
== 0 && !pio_string_write(vcpu
)) {
3060 if (vcpu
->arch
.pio
.count
== 0)
3064 /* no string PIO read support yet */
3068 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
3070 static void bounce_off(void *info
)
3075 static unsigned int ref_freq
;
3076 static unsigned long tsc_khz_ref
;
3078 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
3081 struct cpufreq_freqs
*freq
= data
;
3083 struct kvm_vcpu
*vcpu
;
3084 int i
, send_ipi
= 0;
3087 ref_freq
= freq
->old
;
3089 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
3091 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
3093 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
3095 spin_lock(&kvm_lock
);
3096 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3097 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
3098 if (vcpu
->cpu
!= freq
->cpu
)
3100 if (!kvm_request_guest_time_update(vcpu
))
3102 if (vcpu
->cpu
!= smp_processor_id())
3106 spin_unlock(&kvm_lock
);
3108 if (freq
->old
< freq
->new && send_ipi
) {
3110 * We upscale the frequency. Must make the guest
3111 * doesn't see old kvmclock values while running with
3112 * the new frequency, otherwise we risk the guest sees
3113 * time go backwards.
3115 * In case we update the frequency for another cpu
3116 * (which might be in guest context) send an interrupt
3117 * to kick the cpu out of guest context. Next time
3118 * guest context is entered kvmclock will be updated,
3119 * so the guest will not see stale values.
3121 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
3126 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
3127 .notifier_call
= kvmclock_cpufreq_notifier
3130 int kvm_arch_init(void *opaque
)
3133 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
3136 printk(KERN_ERR
"kvm: already loaded the other module\n");
3141 if (!ops
->cpu_has_kvm_support()) {
3142 printk(KERN_ERR
"kvm: no hardware support\n");
3146 if (ops
->disabled_by_bios()) {
3147 printk(KERN_ERR
"kvm: disabled by bios\n");
3152 r
= kvm_mmu_module_init();
3156 kvm_init_msr_list();
3159 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3160 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
3161 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
3162 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
3164 for_each_possible_cpu(cpu
)
3165 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
3166 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
3167 tsc_khz_ref
= tsc_khz
;
3168 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
3169 CPUFREQ_TRANSITION_NOTIFIER
);
3178 void kvm_arch_exit(void)
3180 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
3181 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
3182 CPUFREQ_TRANSITION_NOTIFIER
);
3184 kvm_mmu_module_exit();
3187 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
3189 ++vcpu
->stat
.halt_exits
;
3190 if (irqchip_in_kernel(vcpu
->kvm
)) {
3191 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
3194 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
3198 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
3200 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
3203 if (is_long_mode(vcpu
))
3206 return a0
| ((gpa_t
)a1
<< 32);
3209 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
3211 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
3214 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3215 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3216 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3217 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3218 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3220 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
3222 if (!is_long_mode(vcpu
)) {
3230 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
3236 case KVM_HC_VAPIC_POLL_IRQ
:
3240 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
3247 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
3248 ++vcpu
->stat
.hypercalls
;
3251 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
3253 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
3255 char instruction
[3];
3257 unsigned long rip
= kvm_rip_read(vcpu
);
3261 * Blow out the MMU to ensure that no other VCPU has an active mapping
3262 * to ensure that the updated hypercall appears atomically across all
3265 kvm_mmu_zap_all(vcpu
->kvm
);
3267 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
3268 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
3269 != X86EMUL_CONTINUE
)
3275 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
3277 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
3280 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3282 struct descriptor_table dt
= { limit
, base
};
3284 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3287 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3289 struct descriptor_table dt
= { limit
, base
};
3291 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3294 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
3295 unsigned long *rflags
)
3297 kvm_lmsw(vcpu
, msw
);
3298 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3301 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
3303 unsigned long value
;
3305 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3308 value
= vcpu
->arch
.cr0
;
3311 value
= vcpu
->arch
.cr2
;
3314 value
= vcpu
->arch
.cr3
;
3317 value
= vcpu
->arch
.cr4
;
3320 value
= kvm_get_cr8(vcpu
);
3323 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3330 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
3331 unsigned long *rflags
)
3335 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
3336 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3339 vcpu
->arch
.cr2
= val
;
3342 kvm_set_cr3(vcpu
, val
);
3345 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
3348 kvm_set_cr8(vcpu
, val
& 0xfUL
);
3351 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3355 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
3357 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
3358 int j
, nent
= vcpu
->arch
.cpuid_nent
;
3360 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
3361 /* when no next entry is found, the current entry[i] is reselected */
3362 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
3363 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
3364 if (ej
->function
== e
->function
) {
3365 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3369 return 0; /* silence gcc, even though control never reaches here */
3372 /* find an entry with matching function, matching index (if needed), and that
3373 * should be read next (if it's stateful) */
3374 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3375 u32 function
, u32 index
)
3377 if (e
->function
!= function
)
3379 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3381 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3382 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3387 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3388 u32 function
, u32 index
)
3391 struct kvm_cpuid_entry2
*best
= NULL
;
3393 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3394 struct kvm_cpuid_entry2
*e
;
3396 e
= &vcpu
->arch
.cpuid_entries
[i
];
3397 if (is_matching_cpuid_entry(e
, function
, index
)) {
3398 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3399 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3404 * Both basic or both extended?
3406 if (((e
->function
^ function
) & 0x80000000) == 0)
3407 if (!best
|| e
->function
> best
->function
)
3413 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
3415 struct kvm_cpuid_entry2
*best
;
3417 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
3419 return best
->eax
& 0xff;
3423 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3425 u32 function
, index
;
3426 struct kvm_cpuid_entry2
*best
;
3428 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3429 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3430 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3431 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3432 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3433 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3434 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3436 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3437 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3438 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3439 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3441 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3442 trace_kvm_cpuid(function
,
3443 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3444 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3445 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3446 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
3448 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3451 * Check if userspace requested an interrupt window, and that the
3452 * interrupt window is open.
3454 * No need to exit to userspace if we already have an interrupt queued.
3456 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3457 struct kvm_run
*kvm_run
)
3459 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
3460 kvm_run
->request_interrupt_window
&&
3461 kvm_arch_interrupt_allowed(vcpu
));
3464 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3465 struct kvm_run
*kvm_run
)
3467 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3468 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3469 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3470 if (irqchip_in_kernel(vcpu
->kvm
))
3471 kvm_run
->ready_for_interrupt_injection
= 1;
3473 kvm_run
->ready_for_interrupt_injection
=
3474 kvm_arch_interrupt_allowed(vcpu
) &&
3475 !kvm_cpu_has_interrupt(vcpu
) &&
3476 !kvm_event_needs_reinjection(vcpu
);
3479 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3481 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3484 if (!apic
|| !apic
->vapic_addr
)
3487 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3489 vcpu
->arch
.apic
->vapic_page
= page
;
3492 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3494 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3496 if (!apic
|| !apic
->vapic_addr
)
3499 down_read(&vcpu
->kvm
->slots_lock
);
3500 kvm_release_page_dirty(apic
->vapic_page
);
3501 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3502 up_read(&vcpu
->kvm
->slots_lock
);
3505 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
3509 if (!kvm_x86_ops
->update_cr8_intercept
)
3512 if (!vcpu
->arch
.apic
)
3515 if (!vcpu
->arch
.apic
->vapic_addr
)
3516 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
3523 tpr
= kvm_lapic_get_cr8(vcpu
);
3525 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
3528 static void inject_pending_event(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3530 /* try to reinject previous events if any */
3531 if (vcpu
->arch
.exception
.pending
) {
3532 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
3533 vcpu
->arch
.exception
.has_error_code
,
3534 vcpu
->arch
.exception
.error_code
);
3538 if (vcpu
->arch
.nmi_injected
) {
3539 kvm_x86_ops
->set_nmi(vcpu
);
3543 if (vcpu
->arch
.interrupt
.pending
) {
3544 kvm_x86_ops
->set_irq(vcpu
);
3548 /* try to inject new event if pending */
3549 if (vcpu
->arch
.nmi_pending
) {
3550 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
3551 vcpu
->arch
.nmi_pending
= false;
3552 vcpu
->arch
.nmi_injected
= true;
3553 kvm_x86_ops
->set_nmi(vcpu
);
3555 } else if (kvm_cpu_has_interrupt(vcpu
)) {
3556 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
3557 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
3559 kvm_x86_ops
->set_irq(vcpu
);
3564 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3567 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
3568 kvm_run
->request_interrupt_window
;
3571 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3572 kvm_mmu_unload(vcpu
);
3574 r
= kvm_mmu_reload(vcpu
);
3578 if (vcpu
->requests
) {
3579 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3580 __kvm_migrate_timers(vcpu
);
3581 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3582 kvm_write_guest_time(vcpu
);
3583 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3584 kvm_mmu_sync_roots(vcpu
);
3585 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3586 kvm_x86_ops
->tlb_flush(vcpu
);
3587 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3589 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3593 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3594 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3602 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3603 kvm_load_guest_fpu(vcpu
);
3605 local_irq_disable();
3607 clear_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3608 smp_mb__after_clear_bit();
3610 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3611 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3618 inject_pending_event(vcpu
, kvm_run
);
3620 /* enable NMI/IRQ window open exits if needed */
3621 if (vcpu
->arch
.nmi_pending
)
3622 kvm_x86_ops
->enable_nmi_window(vcpu
);
3623 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
3624 kvm_x86_ops
->enable_irq_window(vcpu
);
3626 if (kvm_lapic_enabled(vcpu
)) {
3627 update_cr8_intercept(vcpu
);
3628 kvm_lapic_sync_to_vapic(vcpu
);
3631 up_read(&vcpu
->kvm
->slots_lock
);
3635 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3637 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3638 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3639 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3640 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3643 trace_kvm_entry(vcpu
->vcpu_id
);
3644 kvm_x86_ops
->run(vcpu
, kvm_run
);
3646 if (unlikely(vcpu
->arch
.switch_db_regs
|| test_thread_flag(TIF_DEBUG
))) {
3647 set_debugreg(current
->thread
.debugreg0
, 0);
3648 set_debugreg(current
->thread
.debugreg1
, 1);
3649 set_debugreg(current
->thread
.debugreg2
, 2);
3650 set_debugreg(current
->thread
.debugreg3
, 3);
3651 set_debugreg(current
->thread
.debugreg6
, 6);
3652 set_debugreg(current
->thread
.debugreg7
, 7);
3655 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3661 * We must have an instruction between local_irq_enable() and
3662 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3663 * the interrupt shadow. The stat.exits increment will do nicely.
3664 * But we need to prevent reordering, hence this barrier():
3672 down_read(&vcpu
->kvm
->slots_lock
);
3675 * Profile KVM exit RIPs:
3677 if (unlikely(prof_on
== KVM_PROFILING
)) {
3678 unsigned long rip
= kvm_rip_read(vcpu
);
3679 profile_hit(KVM_PROFILING
, (void *)rip
);
3683 kvm_lapic_sync_from_vapic(vcpu
);
3685 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3691 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3695 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3696 pr_debug("vcpu %d received sipi with vector # %x\n",
3697 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3698 kvm_lapic_reset(vcpu
);
3699 r
= kvm_arch_vcpu_reset(vcpu
);
3702 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3705 down_read(&vcpu
->kvm
->slots_lock
);
3710 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3711 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3713 up_read(&vcpu
->kvm
->slots_lock
);
3714 kvm_vcpu_block(vcpu
);
3715 down_read(&vcpu
->kvm
->slots_lock
);
3716 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3718 switch(vcpu
->arch
.mp_state
) {
3719 case KVM_MP_STATE_HALTED
:
3720 vcpu
->arch
.mp_state
=
3721 KVM_MP_STATE_RUNNABLE
;
3722 case KVM_MP_STATE_RUNNABLE
:
3724 case KVM_MP_STATE_SIPI_RECEIVED
:
3735 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3736 if (kvm_cpu_has_pending_timer(vcpu
))
3737 kvm_inject_pending_timer_irqs(vcpu
);
3739 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3741 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3742 ++vcpu
->stat
.request_irq_exits
;
3744 if (signal_pending(current
)) {
3746 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3747 ++vcpu
->stat
.signal_exits
;
3749 if (need_resched()) {
3750 up_read(&vcpu
->kvm
->slots_lock
);
3752 down_read(&vcpu
->kvm
->slots_lock
);
3756 up_read(&vcpu
->kvm
->slots_lock
);
3757 post_kvm_run_save(vcpu
, kvm_run
);
3764 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3771 if (vcpu
->sigset_active
)
3772 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3774 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3775 kvm_vcpu_block(vcpu
);
3776 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3781 /* re-sync apic's tpr */
3782 if (!irqchip_in_kernel(vcpu
->kvm
))
3783 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3785 if (vcpu
->arch
.pio
.cur_count
) {
3786 r
= complete_pio(vcpu
);
3790 #if CONFIG_HAS_IOMEM
3791 if (vcpu
->mmio_needed
) {
3792 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3793 vcpu
->mmio_read_completed
= 1;
3794 vcpu
->mmio_needed
= 0;
3796 down_read(&vcpu
->kvm
->slots_lock
);
3797 r
= emulate_instruction(vcpu
, kvm_run
,
3798 vcpu
->arch
.mmio_fault_cr2
, 0,
3799 EMULTYPE_NO_DECODE
);
3800 up_read(&vcpu
->kvm
->slots_lock
);
3801 if (r
== EMULATE_DO_MMIO
) {
3803 * Read-modify-write. Back to userspace.
3810 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3811 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3812 kvm_run
->hypercall
.ret
);
3814 r
= __vcpu_run(vcpu
, kvm_run
);
3817 if (vcpu
->sigset_active
)
3818 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3824 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3828 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3829 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3830 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3831 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3832 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3833 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3834 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3835 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3836 #ifdef CONFIG_X86_64
3837 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3838 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3839 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3840 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3841 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3842 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3843 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3844 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3847 regs
->rip
= kvm_rip_read(vcpu
);
3848 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3851 * Don't leak debug flags in case they were set for guest debugging
3853 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3854 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3861 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3865 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3866 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3867 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3868 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3869 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3870 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3871 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3872 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3873 #ifdef CONFIG_X86_64
3874 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3875 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3876 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3877 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3878 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3879 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3880 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3881 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3885 kvm_rip_write(vcpu
, regs
->rip
);
3886 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3889 vcpu
->arch
.exception
.pending
= false;
3896 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3897 struct kvm_segment
*var
, int seg
)
3899 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3902 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3904 struct kvm_segment cs
;
3906 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3910 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3912 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3913 struct kvm_sregs
*sregs
)
3915 struct descriptor_table dt
;
3919 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3920 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3921 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3922 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3923 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3924 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3926 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3927 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3929 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3930 sregs
->idt
.limit
= dt
.limit
;
3931 sregs
->idt
.base
= dt
.base
;
3932 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3933 sregs
->gdt
.limit
= dt
.limit
;
3934 sregs
->gdt
.base
= dt
.base
;
3936 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3937 sregs
->cr0
= vcpu
->arch
.cr0
;
3938 sregs
->cr2
= vcpu
->arch
.cr2
;
3939 sregs
->cr3
= vcpu
->arch
.cr3
;
3940 sregs
->cr4
= vcpu
->arch
.cr4
;
3941 sregs
->cr8
= kvm_get_cr8(vcpu
);
3942 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3943 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3945 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
3947 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
3948 set_bit(vcpu
->arch
.interrupt
.nr
,
3949 (unsigned long *)sregs
->interrupt_bitmap
);
3956 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3957 struct kvm_mp_state
*mp_state
)
3960 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3965 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3966 struct kvm_mp_state
*mp_state
)
3969 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3974 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3975 struct kvm_segment
*var
, int seg
)
3977 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3980 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3981 struct kvm_segment
*kvm_desct
)
3983 kvm_desct
->base
= get_desc_base(seg_desc
);
3984 kvm_desct
->limit
= get_desc_limit(seg_desc
);
3986 kvm_desct
->limit
<<= 12;
3987 kvm_desct
->limit
|= 0xfff;
3989 kvm_desct
->selector
= selector
;
3990 kvm_desct
->type
= seg_desc
->type
;
3991 kvm_desct
->present
= seg_desc
->p
;
3992 kvm_desct
->dpl
= seg_desc
->dpl
;
3993 kvm_desct
->db
= seg_desc
->d
;
3994 kvm_desct
->s
= seg_desc
->s
;
3995 kvm_desct
->l
= seg_desc
->l
;
3996 kvm_desct
->g
= seg_desc
->g
;
3997 kvm_desct
->avl
= seg_desc
->avl
;
3999 kvm_desct
->unusable
= 1;
4001 kvm_desct
->unusable
= 0;
4002 kvm_desct
->padding
= 0;
4005 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
4007 struct descriptor_table
*dtable
)
4009 if (selector
& 1 << 2) {
4010 struct kvm_segment kvm_seg
;
4012 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
4014 if (kvm_seg
.unusable
)
4017 dtable
->limit
= kvm_seg
.limit
;
4018 dtable
->base
= kvm_seg
.base
;
4021 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
4024 /* allowed just for 8 bytes segments */
4025 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4026 struct desc_struct
*seg_desc
)
4028 struct descriptor_table dtable
;
4029 u16 index
= selector
>> 3;
4031 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4033 if (dtable
.limit
< index
* 8 + 7) {
4034 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
4037 return kvm_read_guest_virt(dtable
.base
+ index
*8, seg_desc
, sizeof(*seg_desc
), vcpu
);
4040 /* allowed just for 8 bytes segments */
4041 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4042 struct desc_struct
*seg_desc
)
4044 struct descriptor_table dtable
;
4045 u16 index
= selector
>> 3;
4047 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4049 if (dtable
.limit
< index
* 8 + 7)
4051 return kvm_write_guest_virt(dtable
.base
+ index
*8, seg_desc
, sizeof(*seg_desc
), vcpu
);
4054 static gpa_t
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
4055 struct desc_struct
*seg_desc
)
4057 u32 base_addr
= get_desc_base(seg_desc
);
4059 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
4062 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
4064 struct kvm_segment kvm_seg
;
4066 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4067 return kvm_seg
.selector
;
4070 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
4072 struct kvm_segment
*kvm_seg
)
4074 struct desc_struct seg_desc
;
4076 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
4078 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
4082 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
4084 struct kvm_segment segvar
= {
4085 .base
= selector
<< 4,
4087 .selector
= selector
,
4098 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
4102 static int is_vm86_segment(struct kvm_vcpu
*vcpu
, int seg
)
4104 return (seg
!= VCPU_SREG_LDTR
) &&
4105 (seg
!= VCPU_SREG_TR
) &&
4106 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_VM
);
4109 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4110 int type_bits
, int seg
)
4112 struct kvm_segment kvm_seg
;
4114 if (is_vm86_segment(vcpu
, seg
) || !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4115 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
4116 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
4118 kvm_seg
.type
|= type_bits
;
4120 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
4121 seg
!= VCPU_SREG_LDTR
)
4123 kvm_seg
.unusable
= 1;
4125 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4129 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
4130 struct tss_segment_32
*tss
)
4132 tss
->cr3
= vcpu
->arch
.cr3
;
4133 tss
->eip
= kvm_rip_read(vcpu
);
4134 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4135 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4136 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4137 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4138 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4139 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4140 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4141 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4142 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4143 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4144 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4145 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4146 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4147 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
4148 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
4149 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4152 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
4153 struct tss_segment_32
*tss
)
4155 kvm_set_cr3(vcpu
, tss
->cr3
);
4157 kvm_rip_write(vcpu
, tss
->eip
);
4158 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
4160 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
4161 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
4162 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
4163 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
4164 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
4165 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
4166 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
4167 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
4169 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
4172 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4175 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4178 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4181 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4184 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
4187 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
4192 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
4193 struct tss_segment_16
*tss
)
4195 tss
->ip
= kvm_rip_read(vcpu
);
4196 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
4197 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4198 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4199 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4200 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4201 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4202 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4203 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4204 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4206 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4207 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4208 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4209 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4210 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4211 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4214 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
4215 struct tss_segment_16
*tss
)
4217 kvm_rip_write(vcpu
, tss
->ip
);
4218 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
4219 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
4220 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
4221 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
4222 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
4223 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
4224 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
4225 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
4226 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
4228 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
4231 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4234 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4237 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4240 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4245 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4246 u16 old_tss_sel
, u32 old_tss_base
,
4247 struct desc_struct
*nseg_desc
)
4249 struct tss_segment_16 tss_segment_16
;
4252 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4253 sizeof tss_segment_16
))
4256 save_state_to_tss16(vcpu
, &tss_segment_16
);
4258 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4259 sizeof tss_segment_16
))
4262 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4263 &tss_segment_16
, sizeof tss_segment_16
))
4266 if (old_tss_sel
!= 0xffff) {
4267 tss_segment_16
.prev_task_link
= old_tss_sel
;
4269 if (kvm_write_guest(vcpu
->kvm
,
4270 get_tss_base_addr(vcpu
, nseg_desc
),
4271 &tss_segment_16
.prev_task_link
,
4272 sizeof tss_segment_16
.prev_task_link
))
4276 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
4284 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4285 u16 old_tss_sel
, u32 old_tss_base
,
4286 struct desc_struct
*nseg_desc
)
4288 struct tss_segment_32 tss_segment_32
;
4291 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4292 sizeof tss_segment_32
))
4295 save_state_to_tss32(vcpu
, &tss_segment_32
);
4297 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4298 sizeof tss_segment_32
))
4301 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4302 &tss_segment_32
, sizeof tss_segment_32
))
4305 if (old_tss_sel
!= 0xffff) {
4306 tss_segment_32
.prev_task_link
= old_tss_sel
;
4308 if (kvm_write_guest(vcpu
->kvm
,
4309 get_tss_base_addr(vcpu
, nseg_desc
),
4310 &tss_segment_32
.prev_task_link
,
4311 sizeof tss_segment_32
.prev_task_link
))
4315 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
4323 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
4325 struct kvm_segment tr_seg
;
4326 struct desc_struct cseg_desc
;
4327 struct desc_struct nseg_desc
;
4329 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
4330 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4332 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
4334 /* FIXME: Handle errors. Failure to read either TSS or their
4335 * descriptors should generate a pagefault.
4337 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
4340 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
4343 if (reason
!= TASK_SWITCH_IRET
) {
4346 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
4347 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
4348 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
4353 if (!nseg_desc
.p
|| get_desc_limit(&nseg_desc
) < 0x67) {
4354 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
4358 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
4359 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
4360 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
4363 if (reason
== TASK_SWITCH_IRET
) {
4364 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4365 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
4368 /* set back link to prev task only if NT bit is set in eflags
4369 note that old_tss_sel is not used afetr this point */
4370 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4371 old_tss_sel
= 0xffff;
4373 /* set back link to prev task only if NT bit is set in eflags
4374 note that old_tss_sel is not used afetr this point */
4375 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4376 old_tss_sel
= 0xffff;
4378 if (nseg_desc
.type
& 8)
4379 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_sel
,
4380 old_tss_base
, &nseg_desc
);
4382 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_sel
,
4383 old_tss_base
, &nseg_desc
);
4385 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
4386 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4387 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
4390 if (reason
!= TASK_SWITCH_IRET
) {
4391 nseg_desc
.type
|= (1 << 1);
4392 save_guest_segment_descriptor(vcpu
, tss_selector
,
4396 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
4397 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
4399 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
4403 EXPORT_SYMBOL_GPL(kvm_task_switch
);
4405 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
4406 struct kvm_sregs
*sregs
)
4408 int mmu_reset_needed
= 0;
4409 int pending_vec
, max_bits
;
4410 struct descriptor_table dt
;
4414 dt
.limit
= sregs
->idt
.limit
;
4415 dt
.base
= sregs
->idt
.base
;
4416 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4417 dt
.limit
= sregs
->gdt
.limit
;
4418 dt
.base
= sregs
->gdt
.base
;
4419 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4421 vcpu
->arch
.cr2
= sregs
->cr2
;
4422 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
4423 vcpu
->arch
.cr3
= sregs
->cr3
;
4425 kvm_set_cr8(vcpu
, sregs
->cr8
);
4427 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4428 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4429 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4431 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4433 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4434 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4435 vcpu
->arch
.cr0
= sregs
->cr0
;
4437 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4438 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4439 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4440 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4442 if (mmu_reset_needed
)
4443 kvm_mmu_reset_context(vcpu
);
4445 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4446 pending_vec
= find_first_bit(
4447 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
4448 if (pending_vec
< max_bits
) {
4449 kvm_queue_interrupt(vcpu
, pending_vec
, false);
4450 pr_debug("Set back pending irq %d\n", pending_vec
);
4451 if (irqchip_in_kernel(vcpu
->kvm
))
4452 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4455 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4456 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4457 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4458 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4459 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4460 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4462 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4463 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4465 update_cr8_intercept(vcpu
);
4467 /* Older userspace won't unhalt the vcpu on reset. */
4468 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
4469 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4470 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4471 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4478 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4479 struct kvm_guest_debug
*dbg
)
4485 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4486 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4487 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4488 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4489 vcpu
->arch
.switch_db_regs
=
4490 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4492 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4493 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4494 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4497 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4499 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4500 kvm_queue_exception(vcpu
, DB_VECTOR
);
4501 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4502 kvm_queue_exception(vcpu
, BP_VECTOR
);
4510 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4511 * we have asm/x86/processor.h
4522 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4523 #ifdef CONFIG_X86_64
4524 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4526 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4531 * Translate a guest virtual address to a guest physical address.
4533 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4534 struct kvm_translation
*tr
)
4536 unsigned long vaddr
= tr
->linear_address
;
4540 down_read(&vcpu
->kvm
->slots_lock
);
4541 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4542 up_read(&vcpu
->kvm
->slots_lock
);
4543 tr
->physical_address
= gpa
;
4544 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4552 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4554 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4558 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4559 fpu
->fcw
= fxsave
->cwd
;
4560 fpu
->fsw
= fxsave
->swd
;
4561 fpu
->ftwx
= fxsave
->twd
;
4562 fpu
->last_opcode
= fxsave
->fop
;
4563 fpu
->last_ip
= fxsave
->rip
;
4564 fpu
->last_dp
= fxsave
->rdp
;
4565 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4572 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4574 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4578 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4579 fxsave
->cwd
= fpu
->fcw
;
4580 fxsave
->swd
= fpu
->fsw
;
4581 fxsave
->twd
= fpu
->ftwx
;
4582 fxsave
->fop
= fpu
->last_opcode
;
4583 fxsave
->rip
= fpu
->last_ip
;
4584 fxsave
->rdp
= fpu
->last_dp
;
4585 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4592 void fx_init(struct kvm_vcpu
*vcpu
)
4594 unsigned after_mxcsr_mask
;
4597 * Touch the fpu the first time in non atomic context as if
4598 * this is the first fpu instruction the exception handler
4599 * will fire before the instruction returns and it'll have to
4600 * allocate ram with GFP_KERNEL.
4603 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4605 /* Initialize guest FPU by resetting ours and saving into guest's */
4607 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4609 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4610 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4613 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4614 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4615 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4616 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4617 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4619 EXPORT_SYMBOL_GPL(fx_init
);
4621 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4623 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4626 vcpu
->guest_fpu_loaded
= 1;
4627 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4628 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4630 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4632 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4634 if (!vcpu
->guest_fpu_loaded
)
4637 vcpu
->guest_fpu_loaded
= 0;
4638 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4639 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4640 ++vcpu
->stat
.fpu_reload
;
4642 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4644 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4646 if (vcpu
->arch
.time_page
) {
4647 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4648 vcpu
->arch
.time_page
= NULL
;
4651 kvm_x86_ops
->vcpu_free(vcpu
);
4654 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4657 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4660 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4664 /* We do fxsave: this must be aligned. */
4665 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4667 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4669 r
= kvm_arch_vcpu_reset(vcpu
);
4671 r
= kvm_mmu_setup(vcpu
);
4678 kvm_x86_ops
->vcpu_free(vcpu
);
4682 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4685 kvm_mmu_unload(vcpu
);
4688 kvm_x86_ops
->vcpu_free(vcpu
);
4691 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4693 vcpu
->arch
.nmi_pending
= false;
4694 vcpu
->arch
.nmi_injected
= false;
4696 vcpu
->arch
.switch_db_regs
= 0;
4697 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4698 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4699 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4701 return kvm_x86_ops
->vcpu_reset(vcpu
);
4704 void kvm_arch_hardware_enable(void *garbage
)
4706 kvm_x86_ops
->hardware_enable(garbage
);
4709 void kvm_arch_hardware_disable(void *garbage
)
4711 kvm_x86_ops
->hardware_disable(garbage
);
4714 int kvm_arch_hardware_setup(void)
4716 return kvm_x86_ops
->hardware_setup();
4719 void kvm_arch_hardware_unsetup(void)
4721 kvm_x86_ops
->hardware_unsetup();
4724 void kvm_arch_check_processor_compat(void *rtn
)
4726 kvm_x86_ops
->check_processor_compatibility(rtn
);
4729 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4735 BUG_ON(vcpu
->kvm
== NULL
);
4738 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4739 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
4740 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4742 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4744 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4749 vcpu
->arch
.pio_data
= page_address(page
);
4751 r
= kvm_mmu_create(vcpu
);
4753 goto fail_free_pio_data
;
4755 if (irqchip_in_kernel(kvm
)) {
4756 r
= kvm_create_lapic(vcpu
);
4758 goto fail_mmu_destroy
;
4761 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
4763 if (!vcpu
->arch
.mce_banks
) {
4765 goto fail_mmu_destroy
;
4767 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
4772 kvm_mmu_destroy(vcpu
);
4774 free_page((unsigned long)vcpu
->arch
.pio_data
);
4779 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4781 kvm_free_lapic(vcpu
);
4782 down_read(&vcpu
->kvm
->slots_lock
);
4783 kvm_mmu_destroy(vcpu
);
4784 up_read(&vcpu
->kvm
->slots_lock
);
4785 free_page((unsigned long)vcpu
->arch
.pio_data
);
4788 struct kvm
*kvm_arch_create_vm(void)
4790 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4793 return ERR_PTR(-ENOMEM
);
4795 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4796 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4798 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4799 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4801 rdtscll(kvm
->arch
.vm_init_tsc
);
4806 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4809 kvm_mmu_unload(vcpu
);
4813 static void kvm_free_vcpus(struct kvm
*kvm
)
4816 struct kvm_vcpu
*vcpu
;
4819 * Unpin any mmu pages first.
4821 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4822 kvm_unload_vcpu_mmu(vcpu
);
4823 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4824 kvm_arch_vcpu_free(vcpu
);
4826 mutex_lock(&kvm
->lock
);
4827 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
4828 kvm
->vcpus
[i
] = NULL
;
4830 atomic_set(&kvm
->online_vcpus
, 0);
4831 mutex_unlock(&kvm
->lock
);
4834 void kvm_arch_sync_events(struct kvm
*kvm
)
4836 kvm_free_all_assigned_devices(kvm
);
4839 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4841 kvm_iommu_unmap_guest(kvm
);
4843 kfree(kvm
->arch
.vpic
);
4844 kfree(kvm
->arch
.vioapic
);
4845 kvm_free_vcpus(kvm
);
4846 kvm_free_physmem(kvm
);
4847 if (kvm
->arch
.apic_access_page
)
4848 put_page(kvm
->arch
.apic_access_page
);
4849 if (kvm
->arch
.ept_identity_pagetable
)
4850 put_page(kvm
->arch
.ept_identity_pagetable
);
4854 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4855 struct kvm_userspace_memory_region
*mem
,
4856 struct kvm_memory_slot old
,
4859 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4860 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4862 /*To keep backward compatibility with older userspace,
4863 *x86 needs to hanlde !user_alloc case.
4866 if (npages
&& !old
.rmap
) {
4867 unsigned long userspace_addr
;
4869 down_write(¤t
->mm
->mmap_sem
);
4870 userspace_addr
= do_mmap(NULL
, 0,
4872 PROT_READ
| PROT_WRITE
,
4873 MAP_PRIVATE
| MAP_ANONYMOUS
,
4875 up_write(¤t
->mm
->mmap_sem
);
4877 if (IS_ERR((void *)userspace_addr
))
4878 return PTR_ERR((void *)userspace_addr
);
4880 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4881 spin_lock(&kvm
->mmu_lock
);
4882 memslot
->userspace_addr
= userspace_addr
;
4883 spin_unlock(&kvm
->mmu_lock
);
4885 if (!old
.user_alloc
&& old
.rmap
) {
4888 down_write(¤t
->mm
->mmap_sem
);
4889 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4890 old
.npages
* PAGE_SIZE
);
4891 up_write(¤t
->mm
->mmap_sem
);
4894 "kvm_vm_ioctl_set_memory_region: "
4895 "failed to munmap memory\n");
4900 spin_lock(&kvm
->mmu_lock
);
4901 if (!kvm
->arch
.n_requested_mmu_pages
) {
4902 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4903 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4906 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4907 spin_unlock(&kvm
->mmu_lock
);
4912 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4914 kvm_mmu_zap_all(kvm
);
4915 kvm_reload_remote_mmus(kvm
);
4918 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4920 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4921 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4922 || vcpu
->arch
.nmi_pending
||
4923 (kvm_arch_interrupt_allowed(vcpu
) &&
4924 kvm_cpu_has_interrupt(vcpu
));
4927 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4930 int cpu
= vcpu
->cpu
;
4932 if (waitqueue_active(&vcpu
->wq
)) {
4933 wake_up_interruptible(&vcpu
->wq
);
4934 ++vcpu
->stat
.halt_wakeup
;
4938 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
4939 if (!test_and_set_bit(KVM_REQ_KICK
, &vcpu
->requests
))
4940 smp_send_reschedule(cpu
);
4944 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4946 return kvm_x86_ops
->interrupt_allowed(vcpu
);
4949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
4950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
4951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
4952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
4953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);