2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 # define CHECK_DEVLOCK()
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 static inline int raid5_bi_phys_segments(struct bio
*bio
)
105 return bio
->bi_phys_segments
& 0xffff;
108 static inline int raid5_bi_hw_segments(struct bio
*bio
)
110 return (bio
->bi_phys_segments
>> 16) & 0xffff;
113 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
115 --bio
->bi_phys_segments
;
116 return raid5_bi_phys_segments(bio
);
119 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
121 unsigned short val
= raid5_bi_hw_segments(bio
);
124 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
128 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
130 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head
*sh
)
137 /* ddf always start from first device */
139 /* md starts just after Q block */
140 if (sh
->qd_idx
== sh
->disks
- 1)
143 return sh
->qd_idx
+ 1;
145 static inline int raid6_next_disk(int disk
, int raid_disks
)
148 return (disk
< raid_disks
) ? disk
: 0;
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152 * We need to map each disk to a 'slot', where the data disks are slot
153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154 * is raid_disks-1. This help does that mapping.
156 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
157 int *count
, int syndrome_disks
)
163 if (idx
== sh
->pd_idx
)
164 return syndrome_disks
;
165 if (idx
== sh
->qd_idx
)
166 return syndrome_disks
+ 1;
172 static void return_io(struct bio
*return_bi
)
174 struct bio
*bi
= return_bi
;
177 return_bi
= bi
->bi_next
;
185 static void print_raid5_conf (raid5_conf_t
*conf
);
187 static int stripe_operations_active(struct stripe_head
*sh
)
189 return sh
->check_state
|| sh
->reconstruct_state
||
190 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
191 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
194 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
196 if (atomic_dec_and_test(&sh
->count
)) {
197 BUG_ON(!list_empty(&sh
->lru
));
198 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
199 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
200 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
201 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
202 blk_plug_device(conf
->mddev
->queue
);
203 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
204 sh
->bm_seq
- conf
->seq_write
> 0) {
205 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
206 blk_plug_device(conf
->mddev
->queue
);
208 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
209 list_add_tail(&sh
->lru
, &conf
->handle_list
);
211 md_wakeup_thread(conf
->mddev
->thread
);
213 BUG_ON(stripe_operations_active(sh
));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
215 atomic_dec(&conf
->preread_active_stripes
);
216 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
217 md_wakeup_thread(conf
->mddev
->thread
);
219 atomic_dec(&conf
->active_stripes
);
220 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
221 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
222 wake_up(&conf
->wait_for_stripe
);
223 if (conf
->retry_read_aligned
)
224 md_wakeup_thread(conf
->mddev
->thread
);
230 static void release_stripe(struct stripe_head
*sh
)
232 raid5_conf_t
*conf
= sh
->raid_conf
;
235 spin_lock_irqsave(&conf
->device_lock
, flags
);
236 __release_stripe(conf
, sh
);
237 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
240 static inline void remove_hash(struct stripe_head
*sh
)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh
->sector
);
245 hlist_del_init(&sh
->hash
);
248 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
250 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh
->sector
);
256 hlist_add_head(&sh
->hash
, hp
);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
263 struct stripe_head
*sh
= NULL
;
264 struct list_head
*first
;
267 if (list_empty(&conf
->inactive_list
))
269 first
= conf
->inactive_list
.next
;
270 sh
= list_entry(first
, struct stripe_head
, lru
);
271 list_del_init(first
);
273 atomic_inc(&conf
->active_stripes
);
278 static void shrink_buffers(struct stripe_head
*sh
, int num
)
283 for (i
=0; i
<num
; i
++) {
287 sh
->dev
[i
].page
= NULL
;
292 static int grow_buffers(struct stripe_head
*sh
, int num
)
296 for (i
=0; i
<num
; i
++) {
299 if (!(page
= alloc_page(GFP_KERNEL
))) {
302 sh
->dev
[i
].page
= page
;
307 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
308 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
309 struct stripe_head
*sh
);
311 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
313 raid5_conf_t
*conf
= sh
->raid_conf
;
316 BUG_ON(atomic_read(&sh
->count
) != 0);
317 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
318 BUG_ON(stripe_operations_active(sh
));
321 pr_debug("init_stripe called, stripe %llu\n",
322 (unsigned long long)sh
->sector
);
326 sh
->generation
= conf
->generation
- previous
;
327 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
329 stripe_set_idx(sector
, conf
, previous
, sh
);
333 for (i
= sh
->disks
; i
--; ) {
334 struct r5dev
*dev
= &sh
->dev
[i
];
336 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
337 test_bit(R5_LOCKED
, &dev
->flags
)) {
338 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
339 (unsigned long long)sh
->sector
, i
, dev
->toread
,
340 dev
->read
, dev
->towrite
, dev
->written
,
341 test_bit(R5_LOCKED
, &dev
->flags
));
345 raid5_build_block(sh
, i
, previous
);
347 insert_hash(conf
, sh
);
350 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
353 struct stripe_head
*sh
;
354 struct hlist_node
*hn
;
357 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
358 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
359 if (sh
->sector
== sector
&& sh
->generation
== generation
)
361 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
365 static void unplug_slaves(mddev_t
*mddev
);
366 static void raid5_unplug_device(struct request_queue
*q
);
368 static struct stripe_head
*
369 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
370 int previous
, int noblock
, int noquiesce
)
372 struct stripe_head
*sh
;
374 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
376 spin_lock_irq(&conf
->device_lock
);
379 wait_event_lock_irq(conf
->wait_for_stripe
,
380 conf
->quiesce
== 0 || noquiesce
,
381 conf
->device_lock
, /* nothing */);
382 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
384 if (!conf
->inactive_blocked
)
385 sh
= get_free_stripe(conf
);
386 if (noblock
&& sh
== NULL
)
389 conf
->inactive_blocked
= 1;
390 wait_event_lock_irq(conf
->wait_for_stripe
,
391 !list_empty(&conf
->inactive_list
) &&
392 (atomic_read(&conf
->active_stripes
)
393 < (conf
->max_nr_stripes
*3/4)
394 || !conf
->inactive_blocked
),
396 raid5_unplug_device(conf
->mddev
->queue
)
398 conf
->inactive_blocked
= 0;
400 init_stripe(sh
, sector
, previous
);
402 if (atomic_read(&sh
->count
)) {
403 BUG_ON(!list_empty(&sh
->lru
)
404 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
406 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
407 atomic_inc(&conf
->active_stripes
);
408 if (list_empty(&sh
->lru
) &&
409 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
411 list_del_init(&sh
->lru
);
414 } while (sh
== NULL
);
417 atomic_inc(&sh
->count
);
419 spin_unlock_irq(&conf
->device_lock
);
424 raid5_end_read_request(struct bio
*bi
, int error
);
426 raid5_end_write_request(struct bio
*bi
, int error
);
428 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
430 raid5_conf_t
*conf
= sh
->raid_conf
;
431 int i
, disks
= sh
->disks
;
435 for (i
= disks
; i
--; ) {
439 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
441 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
446 bi
= &sh
->dev
[i
].req
;
450 bi
->bi_end_io
= raid5_end_write_request
;
452 bi
->bi_end_io
= raid5_end_read_request
;
455 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
456 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
459 atomic_inc(&rdev
->nr_pending
);
463 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
464 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
466 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
468 bi
->bi_bdev
= rdev
->bdev
;
469 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
470 __func__
, (unsigned long long)sh
->sector
,
472 atomic_inc(&sh
->count
);
473 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
474 bi
->bi_flags
= 1 << BIO_UPTODATE
;
478 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
479 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
480 bi
->bi_io_vec
[0].bv_offset
= 0;
481 bi
->bi_size
= STRIPE_SIZE
;
484 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
485 atomic_add(STRIPE_SECTORS
,
486 &rdev
->corrected_errors
);
487 generic_make_request(bi
);
490 set_bit(STRIPE_DEGRADED
, &sh
->state
);
491 pr_debug("skip op %ld on disc %d for sector %llu\n",
492 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
493 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
494 set_bit(STRIPE_HANDLE
, &sh
->state
);
499 static struct dma_async_tx_descriptor
*
500 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
501 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
504 struct page
*bio_page
;
507 struct async_submit_ctl submit
;
508 enum async_tx_flags flags
= 0;
510 if (bio
->bi_sector
>= sector
)
511 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
513 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
516 flags
|= ASYNC_TX_FENCE
;
517 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
519 bio_for_each_segment(bvl
, bio
, i
) {
520 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
524 if (page_offset
< 0) {
525 b_offset
= -page_offset
;
526 page_offset
+= b_offset
;
530 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
531 clen
= STRIPE_SIZE
- page_offset
;
536 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
537 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
539 tx
= async_memcpy(page
, bio_page
, page_offset
,
540 b_offset
, clen
, &submit
);
542 tx
= async_memcpy(bio_page
, page
, b_offset
,
543 page_offset
, clen
, &submit
);
545 /* chain the operations */
546 submit
.depend_tx
= tx
;
548 if (clen
< len
) /* hit end of page */
556 static void ops_complete_biofill(void *stripe_head_ref
)
558 struct stripe_head
*sh
= stripe_head_ref
;
559 struct bio
*return_bi
= NULL
;
560 raid5_conf_t
*conf
= sh
->raid_conf
;
563 pr_debug("%s: stripe %llu\n", __func__
,
564 (unsigned long long)sh
->sector
);
566 /* clear completed biofills */
567 spin_lock_irq(&conf
->device_lock
);
568 for (i
= sh
->disks
; i
--; ) {
569 struct r5dev
*dev
= &sh
->dev
[i
];
571 /* acknowledge completion of a biofill operation */
572 /* and check if we need to reply to a read request,
573 * new R5_Wantfill requests are held off until
574 * !STRIPE_BIOFILL_RUN
576 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
577 struct bio
*rbi
, *rbi2
;
582 while (rbi
&& rbi
->bi_sector
<
583 dev
->sector
+ STRIPE_SECTORS
) {
584 rbi2
= r5_next_bio(rbi
, dev
->sector
);
585 if (!raid5_dec_bi_phys_segments(rbi
)) {
586 rbi
->bi_next
= return_bi
;
593 spin_unlock_irq(&conf
->device_lock
);
594 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
596 return_io(return_bi
);
598 set_bit(STRIPE_HANDLE
, &sh
->state
);
602 static void ops_run_biofill(struct stripe_head
*sh
)
604 struct dma_async_tx_descriptor
*tx
= NULL
;
605 raid5_conf_t
*conf
= sh
->raid_conf
;
606 struct async_submit_ctl submit
;
609 pr_debug("%s: stripe %llu\n", __func__
,
610 (unsigned long long)sh
->sector
);
612 for (i
= sh
->disks
; i
--; ) {
613 struct r5dev
*dev
= &sh
->dev
[i
];
614 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
616 spin_lock_irq(&conf
->device_lock
);
617 dev
->read
= rbi
= dev
->toread
;
619 spin_unlock_irq(&conf
->device_lock
);
620 while (rbi
&& rbi
->bi_sector
<
621 dev
->sector
+ STRIPE_SECTORS
) {
622 tx
= async_copy_data(0, rbi
, dev
->page
,
624 rbi
= r5_next_bio(rbi
, dev
->sector
);
629 atomic_inc(&sh
->count
);
630 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
631 async_trigger_callback(&submit
);
634 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
641 tgt
= &sh
->dev
[target
];
642 set_bit(R5_UPTODATE
, &tgt
->flags
);
643 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
644 clear_bit(R5_Wantcompute
, &tgt
->flags
);
647 static void ops_complete_compute(void *stripe_head_ref
)
649 struct stripe_head
*sh
= stripe_head_ref
;
651 pr_debug("%s: stripe %llu\n", __func__
,
652 (unsigned long long)sh
->sector
);
654 /* mark the computed target(s) as uptodate */
655 mark_target_uptodate(sh
, sh
->ops
.target
);
656 mark_target_uptodate(sh
, sh
->ops
.target2
);
658 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
659 if (sh
->check_state
== check_state_compute_run
)
660 sh
->check_state
= check_state_compute_result
;
661 set_bit(STRIPE_HANDLE
, &sh
->state
);
665 /* return a pointer to the address conversion region of the scribble buffer */
666 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
667 struct raid5_percpu
*percpu
)
669 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
672 static struct dma_async_tx_descriptor
*
673 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
675 int disks
= sh
->disks
;
676 struct page
**xor_srcs
= percpu
->scribble
;
677 int target
= sh
->ops
.target
;
678 struct r5dev
*tgt
= &sh
->dev
[target
];
679 struct page
*xor_dest
= tgt
->page
;
681 struct dma_async_tx_descriptor
*tx
;
682 struct async_submit_ctl submit
;
685 pr_debug("%s: stripe %llu block: %d\n",
686 __func__
, (unsigned long long)sh
->sector
, target
);
687 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
689 for (i
= disks
; i
--; )
691 xor_srcs
[count
++] = sh
->dev
[i
].page
;
693 atomic_inc(&sh
->count
);
695 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
696 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
697 if (unlikely(count
== 1))
698 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
700 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
705 /* set_syndrome_sources - populate source buffers for gen_syndrome
706 * @srcs - (struct page *) array of size sh->disks
707 * @sh - stripe_head to parse
709 * Populates srcs in proper layout order for the stripe and returns the
710 * 'count' of sources to be used in a call to async_gen_syndrome. The P
711 * destination buffer is recorded in srcs[count] and the Q destination
712 * is recorded in srcs[count+1]].
714 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
716 int disks
= sh
->disks
;
717 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
718 int d0_idx
= raid6_d0(sh
);
722 for (i
= 0; i
< disks
; i
++)
728 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
730 srcs
[slot
] = sh
->dev
[i
].page
;
731 i
= raid6_next_disk(i
, disks
);
732 } while (i
!= d0_idx
);
734 return syndrome_disks
;
737 static struct dma_async_tx_descriptor
*
738 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
740 int disks
= sh
->disks
;
741 struct page
**blocks
= percpu
->scribble
;
743 int qd_idx
= sh
->qd_idx
;
744 struct dma_async_tx_descriptor
*tx
;
745 struct async_submit_ctl submit
;
751 if (sh
->ops
.target
< 0)
752 target
= sh
->ops
.target2
;
753 else if (sh
->ops
.target2
< 0)
754 target
= sh
->ops
.target
;
756 /* we should only have one valid target */
759 pr_debug("%s: stripe %llu block: %d\n",
760 __func__
, (unsigned long long)sh
->sector
, target
);
762 tgt
= &sh
->dev
[target
];
763 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
766 atomic_inc(&sh
->count
);
768 if (target
== qd_idx
) {
769 count
= set_syndrome_sources(blocks
, sh
);
770 blocks
[count
] = NULL
; /* regenerating p is not necessary */
771 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
772 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
773 ops_complete_compute
, sh
,
774 to_addr_conv(sh
, percpu
));
775 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
777 /* Compute any data- or p-drive using XOR */
779 for (i
= disks
; i
-- ; ) {
780 if (i
== target
|| i
== qd_idx
)
782 blocks
[count
++] = sh
->dev
[i
].page
;
785 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
786 NULL
, ops_complete_compute
, sh
,
787 to_addr_conv(sh
, percpu
));
788 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
794 static struct dma_async_tx_descriptor
*
795 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
797 int i
, count
, disks
= sh
->disks
;
798 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
799 int d0_idx
= raid6_d0(sh
);
800 int faila
= -1, failb
= -1;
801 int target
= sh
->ops
.target
;
802 int target2
= sh
->ops
.target2
;
803 struct r5dev
*tgt
= &sh
->dev
[target
];
804 struct r5dev
*tgt2
= &sh
->dev
[target2
];
805 struct dma_async_tx_descriptor
*tx
;
806 struct page
**blocks
= percpu
->scribble
;
807 struct async_submit_ctl submit
;
809 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
810 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
811 BUG_ON(target
< 0 || target2
< 0);
812 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
813 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
815 /* we need to open-code set_syndrome_sources to handle the
816 * slot number conversion for 'faila' and 'failb'
818 for (i
= 0; i
< disks
; i
++)
823 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
825 blocks
[slot
] = sh
->dev
[i
].page
;
831 i
= raid6_next_disk(i
, disks
);
832 } while (i
!= d0_idx
);
834 BUG_ON(faila
== failb
);
837 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
838 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
840 atomic_inc(&sh
->count
);
842 if (failb
== syndrome_disks
+1) {
843 /* Q disk is one of the missing disks */
844 if (faila
== syndrome_disks
) {
845 /* Missing P+Q, just recompute */
846 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
847 ops_complete_compute
, sh
,
848 to_addr_conv(sh
, percpu
));
849 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
850 STRIPE_SIZE
, &submit
);
854 int qd_idx
= sh
->qd_idx
;
856 /* Missing D+Q: recompute D from P, then recompute Q */
857 if (target
== qd_idx
)
858 data_target
= target2
;
860 data_target
= target
;
863 for (i
= disks
; i
-- ; ) {
864 if (i
== data_target
|| i
== qd_idx
)
866 blocks
[count
++] = sh
->dev
[i
].page
;
868 dest
= sh
->dev
[data_target
].page
;
869 init_async_submit(&submit
,
870 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
872 to_addr_conv(sh
, percpu
));
873 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
876 count
= set_syndrome_sources(blocks
, sh
);
877 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
878 ops_complete_compute
, sh
,
879 to_addr_conv(sh
, percpu
));
880 return async_gen_syndrome(blocks
, 0, count
+2,
881 STRIPE_SIZE
, &submit
);
884 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
885 ops_complete_compute
, sh
,
886 to_addr_conv(sh
, percpu
));
887 if (failb
== syndrome_disks
) {
888 /* We're missing D+P. */
889 return async_raid6_datap_recov(syndrome_disks
+2,
893 /* We're missing D+D. */
894 return async_raid6_2data_recov(syndrome_disks
+2,
895 STRIPE_SIZE
, faila
, failb
,
902 static void ops_complete_prexor(void *stripe_head_ref
)
904 struct stripe_head
*sh
= stripe_head_ref
;
906 pr_debug("%s: stripe %llu\n", __func__
,
907 (unsigned long long)sh
->sector
);
910 static struct dma_async_tx_descriptor
*
911 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
912 struct dma_async_tx_descriptor
*tx
)
914 int disks
= sh
->disks
;
915 struct page
**xor_srcs
= percpu
->scribble
;
916 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
917 struct async_submit_ctl submit
;
919 /* existing parity data subtracted */
920 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
922 pr_debug("%s: stripe %llu\n", __func__
,
923 (unsigned long long)sh
->sector
);
925 for (i
= disks
; i
--; ) {
926 struct r5dev
*dev
= &sh
->dev
[i
];
927 /* Only process blocks that are known to be uptodate */
928 if (test_bit(R5_Wantdrain
, &dev
->flags
))
929 xor_srcs
[count
++] = dev
->page
;
932 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
933 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
934 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
939 static struct dma_async_tx_descriptor
*
940 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
942 int disks
= sh
->disks
;
945 pr_debug("%s: stripe %llu\n", __func__
,
946 (unsigned long long)sh
->sector
);
948 for (i
= disks
; i
--; ) {
949 struct r5dev
*dev
= &sh
->dev
[i
];
952 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
955 spin_lock(&sh
->lock
);
956 chosen
= dev
->towrite
;
958 BUG_ON(dev
->written
);
959 wbi
= dev
->written
= chosen
;
960 spin_unlock(&sh
->lock
);
962 while (wbi
&& wbi
->bi_sector
<
963 dev
->sector
+ STRIPE_SECTORS
) {
964 tx
= async_copy_data(1, wbi
, dev
->page
,
966 wbi
= r5_next_bio(wbi
, dev
->sector
);
974 static void ops_complete_reconstruct(void *stripe_head_ref
)
976 struct stripe_head
*sh
= stripe_head_ref
;
977 int disks
= sh
->disks
;
978 int pd_idx
= sh
->pd_idx
;
979 int qd_idx
= sh
->qd_idx
;
982 pr_debug("%s: stripe %llu\n", __func__
,
983 (unsigned long long)sh
->sector
);
985 for (i
= disks
; i
--; ) {
986 struct r5dev
*dev
= &sh
->dev
[i
];
988 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
)
989 set_bit(R5_UPTODATE
, &dev
->flags
);
992 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
993 sh
->reconstruct_state
= reconstruct_state_drain_result
;
994 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
995 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
997 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
998 sh
->reconstruct_state
= reconstruct_state_result
;
1001 set_bit(STRIPE_HANDLE
, &sh
->state
);
1006 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1007 struct dma_async_tx_descriptor
*tx
)
1009 int disks
= sh
->disks
;
1010 struct page
**xor_srcs
= percpu
->scribble
;
1011 struct async_submit_ctl submit
;
1012 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1013 struct page
*xor_dest
;
1015 unsigned long flags
;
1017 pr_debug("%s: stripe %llu\n", __func__
,
1018 (unsigned long long)sh
->sector
);
1020 /* check if prexor is active which means only process blocks
1021 * that are part of a read-modify-write (written)
1023 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1025 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1026 for (i
= disks
; i
--; ) {
1027 struct r5dev
*dev
= &sh
->dev
[i
];
1029 xor_srcs
[count
++] = dev
->page
;
1032 xor_dest
= sh
->dev
[pd_idx
].page
;
1033 for (i
= disks
; i
--; ) {
1034 struct r5dev
*dev
= &sh
->dev
[i
];
1036 xor_srcs
[count
++] = dev
->page
;
1040 /* 1/ if we prexor'd then the dest is reused as a source
1041 * 2/ if we did not prexor then we are redoing the parity
1042 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1043 * for the synchronous xor case
1045 flags
= ASYNC_TX_ACK
|
1046 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1048 atomic_inc(&sh
->count
);
1050 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1051 to_addr_conv(sh
, percpu
));
1052 if (unlikely(count
== 1))
1053 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1055 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1059 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1060 struct dma_async_tx_descriptor
*tx
)
1062 struct async_submit_ctl submit
;
1063 struct page
**blocks
= percpu
->scribble
;
1066 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1068 count
= set_syndrome_sources(blocks
, sh
);
1070 atomic_inc(&sh
->count
);
1072 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1073 sh
, to_addr_conv(sh
, percpu
));
1074 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1077 static void ops_complete_check(void *stripe_head_ref
)
1079 struct stripe_head
*sh
= stripe_head_ref
;
1081 pr_debug("%s: stripe %llu\n", __func__
,
1082 (unsigned long long)sh
->sector
);
1084 sh
->check_state
= check_state_check_result
;
1085 set_bit(STRIPE_HANDLE
, &sh
->state
);
1089 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1091 int disks
= sh
->disks
;
1092 int pd_idx
= sh
->pd_idx
;
1093 int qd_idx
= sh
->qd_idx
;
1094 struct page
*xor_dest
;
1095 struct page
**xor_srcs
= percpu
->scribble
;
1096 struct dma_async_tx_descriptor
*tx
;
1097 struct async_submit_ctl submit
;
1101 pr_debug("%s: stripe %llu\n", __func__
,
1102 (unsigned long long)sh
->sector
);
1105 xor_dest
= sh
->dev
[pd_idx
].page
;
1106 xor_srcs
[count
++] = xor_dest
;
1107 for (i
= disks
; i
--; ) {
1108 if (i
== pd_idx
|| i
== qd_idx
)
1110 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1113 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1114 to_addr_conv(sh
, percpu
));
1115 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1116 &sh
->ops
.zero_sum_result
, &submit
);
1118 atomic_inc(&sh
->count
);
1119 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1120 tx
= async_trigger_callback(&submit
);
1123 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1125 struct page
**srcs
= percpu
->scribble
;
1126 struct async_submit_ctl submit
;
1129 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1130 (unsigned long long)sh
->sector
, checkp
);
1132 count
= set_syndrome_sources(srcs
, sh
);
1136 atomic_inc(&sh
->count
);
1137 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1138 sh
, to_addr_conv(sh
, percpu
));
1139 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1140 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1143 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1145 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1146 struct dma_async_tx_descriptor
*tx
= NULL
;
1147 raid5_conf_t
*conf
= sh
->raid_conf
;
1148 int level
= conf
->level
;
1149 struct raid5_percpu
*percpu
;
1153 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1154 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1155 ops_run_biofill(sh
);
1159 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1161 tx
= ops_run_compute5(sh
, percpu
);
1163 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1164 tx
= ops_run_compute6_1(sh
, percpu
);
1166 tx
= ops_run_compute6_2(sh
, percpu
);
1168 /* terminate the chain if reconstruct is not set to be run */
1169 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1173 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1174 tx
= ops_run_prexor(sh
, percpu
, tx
);
1176 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1177 tx
= ops_run_biodrain(sh
, tx
);
1181 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1183 ops_run_reconstruct5(sh
, percpu
, tx
);
1185 ops_run_reconstruct6(sh
, percpu
, tx
);
1188 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1189 if (sh
->check_state
== check_state_run
)
1190 ops_run_check_p(sh
, percpu
);
1191 else if (sh
->check_state
== check_state_run_q
)
1192 ops_run_check_pq(sh
, percpu
, 0);
1193 else if (sh
->check_state
== check_state_run_pq
)
1194 ops_run_check_pq(sh
, percpu
, 1);
1200 for (i
= disks
; i
--; ) {
1201 struct r5dev
*dev
= &sh
->dev
[i
];
1202 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1203 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1208 #ifdef CONFIG_MULTICORE_RAID456
1209 static void async_run_ops(void *param
, async_cookie_t cookie
)
1211 struct stripe_head
*sh
= param
;
1212 unsigned long ops_request
= sh
->ops
.request
;
1214 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1215 wake_up(&sh
->ops
.wait_for_ops
);
1217 __raid_run_ops(sh
, ops_request
);
1221 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1223 /* since handle_stripe can be called outside of raid5d context
1224 * we need to ensure sh->ops.request is de-staged before another
1227 wait_event(sh
->ops
.wait_for_ops
,
1228 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1229 sh
->ops
.request
= ops_request
;
1231 atomic_inc(&sh
->count
);
1232 async_schedule(async_run_ops
, sh
);
1235 #define raid_run_ops __raid_run_ops
1238 static int grow_one_stripe(raid5_conf_t
*conf
)
1240 struct stripe_head
*sh
;
1241 int disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1242 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
1245 memset(sh
, 0, sizeof(*sh
) + (disks
-1)*sizeof(struct r5dev
));
1246 sh
->raid_conf
= conf
;
1247 spin_lock_init(&sh
->lock
);
1248 #ifdef CONFIG_MULTICORE_RAID456
1249 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1252 if (grow_buffers(sh
, disks
)) {
1253 shrink_buffers(sh
, disks
);
1254 kmem_cache_free(conf
->slab_cache
, sh
);
1257 /* we just created an active stripe so... */
1258 atomic_set(&sh
->count
, 1);
1259 atomic_inc(&conf
->active_stripes
);
1260 INIT_LIST_HEAD(&sh
->lru
);
1265 static int grow_stripes(raid5_conf_t
*conf
, int num
)
1267 struct kmem_cache
*sc
;
1268 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1270 sprintf(conf
->cache_name
[0],
1271 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1272 sprintf(conf
->cache_name
[1],
1273 "raid%d-%s-alt", conf
->level
, mdname(conf
->mddev
));
1274 conf
->active_name
= 0;
1275 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1276 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1280 conf
->slab_cache
= sc
;
1281 conf
->pool_size
= devs
;
1283 if (!grow_one_stripe(conf
))
1289 * scribble_len - return the required size of the scribble region
1290 * @num - total number of disks in the array
1292 * The size must be enough to contain:
1293 * 1/ a struct page pointer for each device in the array +2
1294 * 2/ room to convert each entry in (1) to its corresponding dma
1295 * (dma_map_page()) or page (page_address()) address.
1297 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1298 * calculate over all devices (not just the data blocks), using zeros in place
1299 * of the P and Q blocks.
1301 static size_t scribble_len(int num
)
1305 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1310 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
1312 /* Make all the stripes able to hold 'newsize' devices.
1313 * New slots in each stripe get 'page' set to a new page.
1315 * This happens in stages:
1316 * 1/ create a new kmem_cache and allocate the required number of
1318 * 2/ gather all the old stripe_heads and tranfer the pages across
1319 * to the new stripe_heads. This will have the side effect of
1320 * freezing the array as once all stripe_heads have been collected,
1321 * no IO will be possible. Old stripe heads are freed once their
1322 * pages have been transferred over, and the old kmem_cache is
1323 * freed when all stripes are done.
1324 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1325 * we simple return a failre status - no need to clean anything up.
1326 * 4/ allocate new pages for the new slots in the new stripe_heads.
1327 * If this fails, we don't bother trying the shrink the
1328 * stripe_heads down again, we just leave them as they are.
1329 * As each stripe_head is processed the new one is released into
1332 * Once step2 is started, we cannot afford to wait for a write,
1333 * so we use GFP_NOIO allocations.
1335 struct stripe_head
*osh
, *nsh
;
1336 LIST_HEAD(newstripes
);
1337 struct disk_info
*ndisks
;
1340 struct kmem_cache
*sc
;
1343 if (newsize
<= conf
->pool_size
)
1344 return 0; /* never bother to shrink */
1346 err
= md_allow_write(conf
->mddev
);
1351 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1352 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1357 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1358 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1362 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1364 nsh
->raid_conf
= conf
;
1365 spin_lock_init(&nsh
->lock
);
1366 #ifdef CONFIG_MULTICORE_RAID456
1367 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1370 list_add(&nsh
->lru
, &newstripes
);
1373 /* didn't get enough, give up */
1374 while (!list_empty(&newstripes
)) {
1375 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1376 list_del(&nsh
->lru
);
1377 kmem_cache_free(sc
, nsh
);
1379 kmem_cache_destroy(sc
);
1382 /* Step 2 - Must use GFP_NOIO now.
1383 * OK, we have enough stripes, start collecting inactive
1384 * stripes and copying them over
1386 list_for_each_entry(nsh
, &newstripes
, lru
) {
1387 spin_lock_irq(&conf
->device_lock
);
1388 wait_event_lock_irq(conf
->wait_for_stripe
,
1389 !list_empty(&conf
->inactive_list
),
1391 unplug_slaves(conf
->mddev
)
1393 osh
= get_free_stripe(conf
);
1394 spin_unlock_irq(&conf
->device_lock
);
1395 atomic_set(&nsh
->count
, 1);
1396 for(i
=0; i
<conf
->pool_size
; i
++)
1397 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1398 for( ; i
<newsize
; i
++)
1399 nsh
->dev
[i
].page
= NULL
;
1400 kmem_cache_free(conf
->slab_cache
, osh
);
1402 kmem_cache_destroy(conf
->slab_cache
);
1405 * At this point, we are holding all the stripes so the array
1406 * is completely stalled, so now is a good time to resize
1407 * conf->disks and the scribble region
1409 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1411 for (i
=0; i
<conf
->raid_disks
; i
++)
1412 ndisks
[i
] = conf
->disks
[i
];
1414 conf
->disks
= ndisks
;
1419 conf
->scribble_len
= scribble_len(newsize
);
1420 for_each_present_cpu(cpu
) {
1421 struct raid5_percpu
*percpu
;
1424 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1425 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1428 kfree(percpu
->scribble
);
1429 percpu
->scribble
= scribble
;
1437 /* Step 4, return new stripes to service */
1438 while(!list_empty(&newstripes
)) {
1439 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1440 list_del_init(&nsh
->lru
);
1442 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1443 if (nsh
->dev
[i
].page
== NULL
) {
1444 struct page
*p
= alloc_page(GFP_NOIO
);
1445 nsh
->dev
[i
].page
= p
;
1449 release_stripe(nsh
);
1451 /* critical section pass, GFP_NOIO no longer needed */
1453 conf
->slab_cache
= sc
;
1454 conf
->active_name
= 1-conf
->active_name
;
1455 conf
->pool_size
= newsize
;
1459 static int drop_one_stripe(raid5_conf_t
*conf
)
1461 struct stripe_head
*sh
;
1463 spin_lock_irq(&conf
->device_lock
);
1464 sh
= get_free_stripe(conf
);
1465 spin_unlock_irq(&conf
->device_lock
);
1468 BUG_ON(atomic_read(&sh
->count
));
1469 shrink_buffers(sh
, conf
->pool_size
);
1470 kmem_cache_free(conf
->slab_cache
, sh
);
1471 atomic_dec(&conf
->active_stripes
);
1475 static void shrink_stripes(raid5_conf_t
*conf
)
1477 while (drop_one_stripe(conf
))
1480 if (conf
->slab_cache
)
1481 kmem_cache_destroy(conf
->slab_cache
);
1482 conf
->slab_cache
= NULL
;
1485 static void raid5_end_read_request(struct bio
* bi
, int error
)
1487 struct stripe_head
*sh
= bi
->bi_private
;
1488 raid5_conf_t
*conf
= sh
->raid_conf
;
1489 int disks
= sh
->disks
, i
;
1490 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1491 char b
[BDEVNAME_SIZE
];
1495 for (i
=0 ; i
<disks
; i
++)
1496 if (bi
== &sh
->dev
[i
].req
)
1499 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1500 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1508 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1509 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1510 rdev
= conf
->disks
[i
].rdev
;
1511 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1512 " (%lu sectors at %llu on %s)\n",
1513 mdname(conf
->mddev
), STRIPE_SECTORS
,
1514 (unsigned long long)(sh
->sector
1515 + rdev
->data_offset
),
1516 bdevname(rdev
->bdev
, b
));
1517 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1518 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1520 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1521 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1523 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1525 rdev
= conf
->disks
[i
].rdev
;
1527 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1528 atomic_inc(&rdev
->read_errors
);
1529 if (conf
->mddev
->degraded
)
1530 printk_rl(KERN_WARNING
1531 "raid5:%s: read error not correctable "
1532 "(sector %llu on %s).\n",
1533 mdname(conf
->mddev
),
1534 (unsigned long long)(sh
->sector
1535 + rdev
->data_offset
),
1537 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1539 printk_rl(KERN_WARNING
1540 "raid5:%s: read error NOT corrected!! "
1541 "(sector %llu on %s).\n",
1542 mdname(conf
->mddev
),
1543 (unsigned long long)(sh
->sector
1544 + rdev
->data_offset
),
1546 else if (atomic_read(&rdev
->read_errors
)
1547 > conf
->max_nr_stripes
)
1549 "raid5:%s: Too many read errors, failing device %s.\n",
1550 mdname(conf
->mddev
), bdn
);
1554 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1556 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1557 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1558 md_error(conf
->mddev
, rdev
);
1561 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1562 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1563 set_bit(STRIPE_HANDLE
, &sh
->state
);
1567 static void raid5_end_write_request(struct bio
*bi
, int error
)
1569 struct stripe_head
*sh
= bi
->bi_private
;
1570 raid5_conf_t
*conf
= sh
->raid_conf
;
1571 int disks
= sh
->disks
, i
;
1572 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1574 for (i
=0 ; i
<disks
; i
++)
1575 if (bi
== &sh
->dev
[i
].req
)
1578 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1579 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1587 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1589 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1591 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1592 set_bit(STRIPE_HANDLE
, &sh
->state
);
1597 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1599 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1601 struct r5dev
*dev
= &sh
->dev
[i
];
1603 bio_init(&dev
->req
);
1604 dev
->req
.bi_io_vec
= &dev
->vec
;
1606 dev
->req
.bi_max_vecs
++;
1607 dev
->vec
.bv_page
= dev
->page
;
1608 dev
->vec
.bv_len
= STRIPE_SIZE
;
1609 dev
->vec
.bv_offset
= 0;
1611 dev
->req
.bi_sector
= sh
->sector
;
1612 dev
->req
.bi_private
= sh
;
1615 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1618 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1620 char b
[BDEVNAME_SIZE
];
1621 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1622 pr_debug("raid5: error called\n");
1624 if (!test_bit(Faulty
, &rdev
->flags
)) {
1625 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1626 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1627 unsigned long flags
;
1628 spin_lock_irqsave(&conf
->device_lock
, flags
);
1630 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1632 * if recovery was running, make sure it aborts.
1634 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1636 set_bit(Faulty
, &rdev
->flags
);
1638 "raid5: Disk failure on %s, disabling device.\n"
1639 "raid5: Operation continuing on %d devices.\n",
1640 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1645 * Input: a 'big' sector number,
1646 * Output: index of the data and parity disk, and the sector # in them.
1648 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1649 int previous
, int *dd_idx
,
1650 struct stripe_head
*sh
)
1653 unsigned long chunk_number
;
1654 unsigned int chunk_offset
;
1657 sector_t new_sector
;
1658 int algorithm
= previous
? conf
->prev_algo
1660 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1661 : conf
->chunk_sectors
;
1662 int raid_disks
= previous
? conf
->previous_raid_disks
1664 int data_disks
= raid_disks
- conf
->max_degraded
;
1666 /* First compute the information on this sector */
1669 * Compute the chunk number and the sector offset inside the chunk
1671 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1672 chunk_number
= r_sector
;
1673 BUG_ON(r_sector
!= chunk_number
);
1676 * Compute the stripe number
1678 stripe
= chunk_number
/ data_disks
;
1681 * Compute the data disk and parity disk indexes inside the stripe
1683 *dd_idx
= chunk_number
% data_disks
;
1686 * Select the parity disk based on the user selected algorithm.
1688 pd_idx
= qd_idx
= ~0;
1689 switch(conf
->level
) {
1691 pd_idx
= data_disks
;
1694 switch (algorithm
) {
1695 case ALGORITHM_LEFT_ASYMMETRIC
:
1696 pd_idx
= data_disks
- stripe
% raid_disks
;
1697 if (*dd_idx
>= pd_idx
)
1700 case ALGORITHM_RIGHT_ASYMMETRIC
:
1701 pd_idx
= stripe
% raid_disks
;
1702 if (*dd_idx
>= pd_idx
)
1705 case ALGORITHM_LEFT_SYMMETRIC
:
1706 pd_idx
= data_disks
- stripe
% raid_disks
;
1707 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1709 case ALGORITHM_RIGHT_SYMMETRIC
:
1710 pd_idx
= stripe
% raid_disks
;
1711 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1713 case ALGORITHM_PARITY_0
:
1717 case ALGORITHM_PARITY_N
:
1718 pd_idx
= data_disks
;
1721 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1728 switch (algorithm
) {
1729 case ALGORITHM_LEFT_ASYMMETRIC
:
1730 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1731 qd_idx
= pd_idx
+ 1;
1732 if (pd_idx
== raid_disks
-1) {
1733 (*dd_idx
)++; /* Q D D D P */
1735 } else if (*dd_idx
>= pd_idx
)
1736 (*dd_idx
) += 2; /* D D P Q D */
1738 case ALGORITHM_RIGHT_ASYMMETRIC
:
1739 pd_idx
= stripe
% raid_disks
;
1740 qd_idx
= pd_idx
+ 1;
1741 if (pd_idx
== raid_disks
-1) {
1742 (*dd_idx
)++; /* Q D D D P */
1744 } else if (*dd_idx
>= pd_idx
)
1745 (*dd_idx
) += 2; /* D D P Q D */
1747 case ALGORITHM_LEFT_SYMMETRIC
:
1748 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1749 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1750 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1752 case ALGORITHM_RIGHT_SYMMETRIC
:
1753 pd_idx
= stripe
% raid_disks
;
1754 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1755 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1758 case ALGORITHM_PARITY_0
:
1763 case ALGORITHM_PARITY_N
:
1764 pd_idx
= data_disks
;
1765 qd_idx
= data_disks
+ 1;
1768 case ALGORITHM_ROTATING_ZERO_RESTART
:
1769 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1770 * of blocks for computing Q is different.
1772 pd_idx
= stripe
% raid_disks
;
1773 qd_idx
= pd_idx
+ 1;
1774 if (pd_idx
== raid_disks
-1) {
1775 (*dd_idx
)++; /* Q D D D P */
1777 } else if (*dd_idx
>= pd_idx
)
1778 (*dd_idx
) += 2; /* D D P Q D */
1782 case ALGORITHM_ROTATING_N_RESTART
:
1783 /* Same a left_asymmetric, by first stripe is
1784 * D D D P Q rather than
1787 pd_idx
= raid_disks
- 1 - ((stripe
+ 1) % raid_disks
);
1788 qd_idx
= pd_idx
+ 1;
1789 if (pd_idx
== raid_disks
-1) {
1790 (*dd_idx
)++; /* Q D D D P */
1792 } else if (*dd_idx
>= pd_idx
)
1793 (*dd_idx
) += 2; /* D D P Q D */
1797 case ALGORITHM_ROTATING_N_CONTINUE
:
1798 /* Same as left_symmetric but Q is before P */
1799 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1800 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1801 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1805 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1806 /* RAID5 left_asymmetric, with Q on last device */
1807 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1808 if (*dd_idx
>= pd_idx
)
1810 qd_idx
= raid_disks
- 1;
1813 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1814 pd_idx
= stripe
% (raid_disks
-1);
1815 if (*dd_idx
>= pd_idx
)
1817 qd_idx
= raid_disks
- 1;
1820 case ALGORITHM_LEFT_SYMMETRIC_6
:
1821 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1822 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1823 qd_idx
= raid_disks
- 1;
1826 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1827 pd_idx
= stripe
% (raid_disks
-1);
1828 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1829 qd_idx
= raid_disks
- 1;
1832 case ALGORITHM_PARITY_0_6
:
1835 qd_idx
= raid_disks
- 1;
1840 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1848 sh
->pd_idx
= pd_idx
;
1849 sh
->qd_idx
= qd_idx
;
1850 sh
->ddf_layout
= ddf_layout
;
1853 * Finally, compute the new sector number
1855 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1860 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1862 raid5_conf_t
*conf
= sh
->raid_conf
;
1863 int raid_disks
= sh
->disks
;
1864 int data_disks
= raid_disks
- conf
->max_degraded
;
1865 sector_t new_sector
= sh
->sector
, check
;
1866 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1867 : conf
->chunk_sectors
;
1868 int algorithm
= previous
? conf
->prev_algo
1872 int chunk_number
, dummy1
, dd_idx
= i
;
1874 struct stripe_head sh2
;
1877 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1878 stripe
= new_sector
;
1879 BUG_ON(new_sector
!= stripe
);
1881 if (i
== sh
->pd_idx
)
1883 switch(conf
->level
) {
1886 switch (algorithm
) {
1887 case ALGORITHM_LEFT_ASYMMETRIC
:
1888 case ALGORITHM_RIGHT_ASYMMETRIC
:
1892 case ALGORITHM_LEFT_SYMMETRIC
:
1893 case ALGORITHM_RIGHT_SYMMETRIC
:
1896 i
-= (sh
->pd_idx
+ 1);
1898 case ALGORITHM_PARITY_0
:
1901 case ALGORITHM_PARITY_N
:
1904 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1910 if (i
== sh
->qd_idx
)
1911 return 0; /* It is the Q disk */
1912 switch (algorithm
) {
1913 case ALGORITHM_LEFT_ASYMMETRIC
:
1914 case ALGORITHM_RIGHT_ASYMMETRIC
:
1915 case ALGORITHM_ROTATING_ZERO_RESTART
:
1916 case ALGORITHM_ROTATING_N_RESTART
:
1917 if (sh
->pd_idx
== raid_disks
-1)
1918 i
--; /* Q D D D P */
1919 else if (i
> sh
->pd_idx
)
1920 i
-= 2; /* D D P Q D */
1922 case ALGORITHM_LEFT_SYMMETRIC
:
1923 case ALGORITHM_RIGHT_SYMMETRIC
:
1924 if (sh
->pd_idx
== raid_disks
-1)
1925 i
--; /* Q D D D P */
1930 i
-= (sh
->pd_idx
+ 2);
1933 case ALGORITHM_PARITY_0
:
1936 case ALGORITHM_PARITY_N
:
1938 case ALGORITHM_ROTATING_N_CONTINUE
:
1939 /* Like left_symmetric, but P is before Q */
1940 if (sh
->pd_idx
== 0)
1941 i
--; /* P D D D Q */
1946 i
-= (sh
->pd_idx
+ 1);
1949 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1950 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1954 case ALGORITHM_LEFT_SYMMETRIC_6
:
1955 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1957 i
+= data_disks
+ 1;
1958 i
-= (sh
->pd_idx
+ 1);
1960 case ALGORITHM_PARITY_0_6
:
1964 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1971 chunk_number
= stripe
* data_disks
+ i
;
1972 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1974 check
= raid5_compute_sector(conf
, r_sector
,
1975 previous
, &dummy1
, &sh2
);
1976 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
1977 || sh2
.qd_idx
!= sh
->qd_idx
) {
1978 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1986 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1987 int rcw
, int expand
)
1989 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1990 raid5_conf_t
*conf
= sh
->raid_conf
;
1991 int level
= conf
->level
;
1994 /* if we are not expanding this is a proper write request, and
1995 * there will be bios with new data to be drained into the
1999 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2000 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2002 sh
->reconstruct_state
= reconstruct_state_run
;
2004 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2006 for (i
= disks
; i
--; ) {
2007 struct r5dev
*dev
= &sh
->dev
[i
];
2010 set_bit(R5_LOCKED
, &dev
->flags
);
2011 set_bit(R5_Wantdrain
, &dev
->flags
);
2013 clear_bit(R5_UPTODATE
, &dev
->flags
);
2017 if (s
->locked
+ conf
->max_degraded
== disks
)
2018 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2019 atomic_inc(&conf
->pending_full_writes
);
2022 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2023 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2025 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2026 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2027 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2028 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2030 for (i
= disks
; i
--; ) {
2031 struct r5dev
*dev
= &sh
->dev
[i
];
2036 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2037 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2038 set_bit(R5_Wantdrain
, &dev
->flags
);
2039 set_bit(R5_LOCKED
, &dev
->flags
);
2040 clear_bit(R5_UPTODATE
, &dev
->flags
);
2046 /* keep the parity disk(s) locked while asynchronous operations
2049 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2050 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2054 int qd_idx
= sh
->qd_idx
;
2055 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2057 set_bit(R5_LOCKED
, &dev
->flags
);
2058 clear_bit(R5_UPTODATE
, &dev
->flags
);
2062 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2063 __func__
, (unsigned long long)sh
->sector
,
2064 s
->locked
, s
->ops_request
);
2068 * Each stripe/dev can have one or more bion attached.
2069 * toread/towrite point to the first in a chain.
2070 * The bi_next chain must be in order.
2072 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2075 raid5_conf_t
*conf
= sh
->raid_conf
;
2078 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2079 (unsigned long long)bi
->bi_sector
,
2080 (unsigned long long)sh
->sector
);
2083 spin_lock(&sh
->lock
);
2084 spin_lock_irq(&conf
->device_lock
);
2086 bip
= &sh
->dev
[dd_idx
].towrite
;
2087 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2090 bip
= &sh
->dev
[dd_idx
].toread
;
2091 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2092 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2094 bip
= & (*bip
)->bi_next
;
2096 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2099 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2103 bi
->bi_phys_segments
++;
2104 spin_unlock_irq(&conf
->device_lock
);
2105 spin_unlock(&sh
->lock
);
2107 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2108 (unsigned long long)bi
->bi_sector
,
2109 (unsigned long long)sh
->sector
, dd_idx
);
2111 if (conf
->mddev
->bitmap
&& firstwrite
) {
2112 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2114 sh
->bm_seq
= conf
->seq_flush
+1;
2115 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2119 /* check if page is covered */
2120 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2121 for (bi
=sh
->dev
[dd_idx
].towrite
;
2122 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2123 bi
&& bi
->bi_sector
<= sector
;
2124 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2125 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2126 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2128 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2129 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2134 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2135 spin_unlock_irq(&conf
->device_lock
);
2136 spin_unlock(&sh
->lock
);
2140 static void end_reshape(raid5_conf_t
*conf
);
2142 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
2143 struct stripe_head
*sh
)
2145 int sectors_per_chunk
=
2146 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2148 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2149 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2151 raid5_compute_sector(conf
,
2152 stripe
* (disks
- conf
->max_degraded
)
2153 *sectors_per_chunk
+ chunk_offset
,
2159 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2160 struct stripe_head_state
*s
, int disks
,
2161 struct bio
**return_bi
)
2164 for (i
= disks
; i
--; ) {
2168 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2171 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2172 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2173 /* multiple read failures in one stripe */
2174 md_error(conf
->mddev
, rdev
);
2177 spin_lock_irq(&conf
->device_lock
);
2178 /* fail all writes first */
2179 bi
= sh
->dev
[i
].towrite
;
2180 sh
->dev
[i
].towrite
= NULL
;
2186 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2187 wake_up(&conf
->wait_for_overlap
);
2189 while (bi
&& bi
->bi_sector
<
2190 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2191 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2192 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2193 if (!raid5_dec_bi_phys_segments(bi
)) {
2194 md_write_end(conf
->mddev
);
2195 bi
->bi_next
= *return_bi
;
2200 /* and fail all 'written' */
2201 bi
= sh
->dev
[i
].written
;
2202 sh
->dev
[i
].written
= NULL
;
2203 if (bi
) bitmap_end
= 1;
2204 while (bi
&& bi
->bi_sector
<
2205 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2206 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2207 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2208 if (!raid5_dec_bi_phys_segments(bi
)) {
2209 md_write_end(conf
->mddev
);
2210 bi
->bi_next
= *return_bi
;
2216 /* fail any reads if this device is non-operational and
2217 * the data has not reached the cache yet.
2219 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2220 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2221 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2222 bi
= sh
->dev
[i
].toread
;
2223 sh
->dev
[i
].toread
= NULL
;
2224 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2225 wake_up(&conf
->wait_for_overlap
);
2226 if (bi
) s
->to_read
--;
2227 while (bi
&& bi
->bi_sector
<
2228 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2229 struct bio
*nextbi
=
2230 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2231 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2232 if (!raid5_dec_bi_phys_segments(bi
)) {
2233 bi
->bi_next
= *return_bi
;
2239 spin_unlock_irq(&conf
->device_lock
);
2241 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2242 STRIPE_SECTORS
, 0, 0);
2245 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2246 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2247 md_wakeup_thread(conf
->mddev
->thread
);
2250 /* fetch_block5 - checks the given member device to see if its data needs
2251 * to be read or computed to satisfy a request.
2253 * Returns 1 when no more member devices need to be checked, otherwise returns
2254 * 0 to tell the loop in handle_stripe_fill5 to continue
2256 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2257 int disk_idx
, int disks
)
2259 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2260 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2262 /* is the data in this block needed, and can we get it? */
2263 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2264 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2266 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2267 s
->syncing
|| s
->expanding
||
2269 (failed_dev
->toread
||
2270 (failed_dev
->towrite
&&
2271 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2272 /* We would like to get this block, possibly by computing it,
2273 * otherwise read it if the backing disk is insync
2275 if ((s
->uptodate
== disks
- 1) &&
2276 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2277 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2278 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2279 set_bit(R5_Wantcompute
, &dev
->flags
);
2280 sh
->ops
.target
= disk_idx
;
2281 sh
->ops
.target2
= -1;
2283 /* Careful: from this point on 'uptodate' is in the eye
2284 * of raid_run_ops which services 'compute' operations
2285 * before writes. R5_Wantcompute flags a block that will
2286 * be R5_UPTODATE by the time it is needed for a
2287 * subsequent operation.
2290 return 1; /* uptodate + compute == disks */
2291 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2292 set_bit(R5_LOCKED
, &dev
->flags
);
2293 set_bit(R5_Wantread
, &dev
->flags
);
2295 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2304 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2306 static void handle_stripe_fill5(struct stripe_head
*sh
,
2307 struct stripe_head_state
*s
, int disks
)
2311 /* look for blocks to read/compute, skip this if a compute
2312 * is already in flight, or if the stripe contents are in the
2313 * midst of changing due to a write
2315 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2316 !sh
->reconstruct_state
)
2317 for (i
= disks
; i
--; )
2318 if (fetch_block5(sh
, s
, i
, disks
))
2320 set_bit(STRIPE_HANDLE
, &sh
->state
);
2323 /* fetch_block6 - checks the given member device to see if its data needs
2324 * to be read or computed to satisfy a request.
2326 * Returns 1 when no more member devices need to be checked, otherwise returns
2327 * 0 to tell the loop in handle_stripe_fill6 to continue
2329 static int fetch_block6(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2330 struct r6_state
*r6s
, int disk_idx
, int disks
)
2332 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2333 struct r5dev
*fdev
[2] = { &sh
->dev
[r6s
->failed_num
[0]],
2334 &sh
->dev
[r6s
->failed_num
[1]] };
2336 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2337 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2339 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2340 s
->syncing
|| s
->expanding
||
2342 (fdev
[0]->toread
|| s
->to_write
)) ||
2344 (fdev
[1]->toread
|| s
->to_write
)))) {
2345 /* we would like to get this block, possibly by computing it,
2346 * otherwise read it if the backing disk is insync
2348 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2349 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2350 if ((s
->uptodate
== disks
- 1) &&
2351 (s
->failed
&& (disk_idx
== r6s
->failed_num
[0] ||
2352 disk_idx
== r6s
->failed_num
[1]))) {
2353 /* have disk failed, and we're requested to fetch it;
2356 pr_debug("Computing stripe %llu block %d\n",
2357 (unsigned long long)sh
->sector
, disk_idx
);
2358 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2359 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2360 set_bit(R5_Wantcompute
, &dev
->flags
);
2361 sh
->ops
.target
= disk_idx
;
2362 sh
->ops
.target2
= -1; /* no 2nd target */
2366 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2367 /* Computing 2-failure is *very* expensive; only
2368 * do it if failed >= 2
2371 for (other
= disks
; other
--; ) {
2372 if (other
== disk_idx
)
2374 if (!test_bit(R5_UPTODATE
,
2375 &sh
->dev
[other
].flags
))
2379 pr_debug("Computing stripe %llu blocks %d,%d\n",
2380 (unsigned long long)sh
->sector
,
2382 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2383 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2384 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2385 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2386 sh
->ops
.target
= disk_idx
;
2387 sh
->ops
.target2
= other
;
2391 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2392 set_bit(R5_LOCKED
, &dev
->flags
);
2393 set_bit(R5_Wantread
, &dev
->flags
);
2395 pr_debug("Reading block %d (sync=%d)\n",
2396 disk_idx
, s
->syncing
);
2404 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2406 static void handle_stripe_fill6(struct stripe_head
*sh
,
2407 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2412 /* look for blocks to read/compute, skip this if a compute
2413 * is already in flight, or if the stripe contents are in the
2414 * midst of changing due to a write
2416 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2417 !sh
->reconstruct_state
)
2418 for (i
= disks
; i
--; )
2419 if (fetch_block6(sh
, s
, r6s
, i
, disks
))
2421 set_bit(STRIPE_HANDLE
, &sh
->state
);
2425 /* handle_stripe_clean_event
2426 * any written block on an uptodate or failed drive can be returned.
2427 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2428 * never LOCKED, so we don't need to test 'failed' directly.
2430 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2431 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2436 for (i
= disks
; i
--; )
2437 if (sh
->dev
[i
].written
) {
2439 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2440 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2441 /* We can return any write requests */
2442 struct bio
*wbi
, *wbi2
;
2444 pr_debug("Return write for disc %d\n", i
);
2445 spin_lock_irq(&conf
->device_lock
);
2447 dev
->written
= NULL
;
2448 while (wbi
&& wbi
->bi_sector
<
2449 dev
->sector
+ STRIPE_SECTORS
) {
2450 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2451 if (!raid5_dec_bi_phys_segments(wbi
)) {
2452 md_write_end(conf
->mddev
);
2453 wbi
->bi_next
= *return_bi
;
2458 if (dev
->towrite
== NULL
)
2460 spin_unlock_irq(&conf
->device_lock
);
2462 bitmap_endwrite(conf
->mddev
->bitmap
,
2465 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2470 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2471 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2472 md_wakeup_thread(conf
->mddev
->thread
);
2475 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2476 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2478 int rmw
= 0, rcw
= 0, i
;
2479 for (i
= disks
; i
--; ) {
2480 /* would I have to read this buffer for read_modify_write */
2481 struct r5dev
*dev
= &sh
->dev
[i
];
2482 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2483 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2484 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2485 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2486 if (test_bit(R5_Insync
, &dev
->flags
))
2489 rmw
+= 2*disks
; /* cannot read it */
2491 /* Would I have to read this buffer for reconstruct_write */
2492 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2493 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2494 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2495 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2496 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2501 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2502 (unsigned long long)sh
->sector
, rmw
, rcw
);
2503 set_bit(STRIPE_HANDLE
, &sh
->state
);
2504 if (rmw
< rcw
&& rmw
> 0)
2505 /* prefer read-modify-write, but need to get some data */
2506 for (i
= disks
; i
--; ) {
2507 struct r5dev
*dev
= &sh
->dev
[i
];
2508 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2509 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2510 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2511 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2512 test_bit(R5_Insync
, &dev
->flags
)) {
2514 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2515 pr_debug("Read_old block "
2516 "%d for r-m-w\n", i
);
2517 set_bit(R5_LOCKED
, &dev
->flags
);
2518 set_bit(R5_Wantread
, &dev
->flags
);
2521 set_bit(STRIPE_DELAYED
, &sh
->state
);
2522 set_bit(STRIPE_HANDLE
, &sh
->state
);
2526 if (rcw
<= rmw
&& rcw
> 0)
2527 /* want reconstruct write, but need to get some data */
2528 for (i
= disks
; i
--; ) {
2529 struct r5dev
*dev
= &sh
->dev
[i
];
2530 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2532 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2533 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2534 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2535 test_bit(R5_Insync
, &dev
->flags
)) {
2537 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2538 pr_debug("Read_old block "
2539 "%d for Reconstruct\n", i
);
2540 set_bit(R5_LOCKED
, &dev
->flags
);
2541 set_bit(R5_Wantread
, &dev
->flags
);
2544 set_bit(STRIPE_DELAYED
, &sh
->state
);
2545 set_bit(STRIPE_HANDLE
, &sh
->state
);
2549 /* now if nothing is locked, and if we have enough data,
2550 * we can start a write request
2552 /* since handle_stripe can be called at any time we need to handle the
2553 * case where a compute block operation has been submitted and then a
2554 * subsequent call wants to start a write request. raid_run_ops only
2555 * handles the case where compute block and reconstruct are requested
2556 * simultaneously. If this is not the case then new writes need to be
2557 * held off until the compute completes.
2559 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2560 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2561 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2562 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2565 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2566 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2567 struct r6_state
*r6s
, int disks
)
2569 int rcw
= 0, pd_idx
= sh
->pd_idx
, i
;
2570 int qd_idx
= sh
->qd_idx
;
2572 set_bit(STRIPE_HANDLE
, &sh
->state
);
2573 for (i
= disks
; i
--; ) {
2574 struct r5dev
*dev
= &sh
->dev
[i
];
2575 /* check if we haven't enough data */
2576 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2577 i
!= pd_idx
&& i
!= qd_idx
&&
2578 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2579 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2580 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2582 if (!test_bit(R5_Insync
, &dev
->flags
))
2583 continue; /* it's a failed drive */
2586 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2587 pr_debug("Read_old stripe %llu "
2588 "block %d for Reconstruct\n",
2589 (unsigned long long)sh
->sector
, i
);
2590 set_bit(R5_LOCKED
, &dev
->flags
);
2591 set_bit(R5_Wantread
, &dev
->flags
);
2594 pr_debug("Request delayed stripe %llu "
2595 "block %d for Reconstruct\n",
2596 (unsigned long long)sh
->sector
, i
);
2597 set_bit(STRIPE_DELAYED
, &sh
->state
);
2598 set_bit(STRIPE_HANDLE
, &sh
->state
);
2602 /* now if nothing is locked, and if we have enough data, we can start a
2605 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2606 s
->locked
== 0 && rcw
== 0 &&
2607 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2608 schedule_reconstruction(sh
, s
, 1, 0);
2612 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2613 struct stripe_head_state
*s
, int disks
)
2615 struct r5dev
*dev
= NULL
;
2617 set_bit(STRIPE_HANDLE
, &sh
->state
);
2619 switch (sh
->check_state
) {
2620 case check_state_idle
:
2621 /* start a new check operation if there are no failures */
2622 if (s
->failed
== 0) {
2623 BUG_ON(s
->uptodate
!= disks
);
2624 sh
->check_state
= check_state_run
;
2625 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2626 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2630 dev
= &sh
->dev
[s
->failed_num
];
2632 case check_state_compute_result
:
2633 sh
->check_state
= check_state_idle
;
2635 dev
= &sh
->dev
[sh
->pd_idx
];
2637 /* check that a write has not made the stripe insync */
2638 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2641 /* either failed parity check, or recovery is happening */
2642 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2643 BUG_ON(s
->uptodate
!= disks
);
2645 set_bit(R5_LOCKED
, &dev
->flags
);
2647 set_bit(R5_Wantwrite
, &dev
->flags
);
2649 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2650 set_bit(STRIPE_INSYNC
, &sh
->state
);
2652 case check_state_run
:
2653 break; /* we will be called again upon completion */
2654 case check_state_check_result
:
2655 sh
->check_state
= check_state_idle
;
2657 /* if a failure occurred during the check operation, leave
2658 * STRIPE_INSYNC not set and let the stripe be handled again
2663 /* handle a successful check operation, if parity is correct
2664 * we are done. Otherwise update the mismatch count and repair
2665 * parity if !MD_RECOVERY_CHECK
2667 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2668 /* parity is correct (on disc,
2669 * not in buffer any more)
2671 set_bit(STRIPE_INSYNC
, &sh
->state
);
2673 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2674 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2675 /* don't try to repair!! */
2676 set_bit(STRIPE_INSYNC
, &sh
->state
);
2678 sh
->check_state
= check_state_compute_run
;
2679 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2680 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2681 set_bit(R5_Wantcompute
,
2682 &sh
->dev
[sh
->pd_idx
].flags
);
2683 sh
->ops
.target
= sh
->pd_idx
;
2684 sh
->ops
.target2
= -1;
2689 case check_state_compute_run
:
2692 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2693 __func__
, sh
->check_state
,
2694 (unsigned long long) sh
->sector
);
2700 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2701 struct stripe_head_state
*s
,
2702 struct r6_state
*r6s
, int disks
)
2704 int pd_idx
= sh
->pd_idx
;
2705 int qd_idx
= sh
->qd_idx
;
2708 set_bit(STRIPE_HANDLE
, &sh
->state
);
2710 BUG_ON(s
->failed
> 2);
2712 /* Want to check and possibly repair P and Q.
2713 * However there could be one 'failed' device, in which
2714 * case we can only check one of them, possibly using the
2715 * other to generate missing data
2718 switch (sh
->check_state
) {
2719 case check_state_idle
:
2720 /* start a new check operation if there are < 2 failures */
2721 if (s
->failed
== r6s
->q_failed
) {
2722 /* The only possible failed device holds Q, so it
2723 * makes sense to check P (If anything else were failed,
2724 * we would have used P to recreate it).
2726 sh
->check_state
= check_state_run
;
2728 if (!r6s
->q_failed
&& s
->failed
< 2) {
2729 /* Q is not failed, and we didn't use it to generate
2730 * anything, so it makes sense to check it
2732 if (sh
->check_state
== check_state_run
)
2733 sh
->check_state
= check_state_run_pq
;
2735 sh
->check_state
= check_state_run_q
;
2738 /* discard potentially stale zero_sum_result */
2739 sh
->ops
.zero_sum_result
= 0;
2741 if (sh
->check_state
== check_state_run
) {
2742 /* async_xor_zero_sum destroys the contents of P */
2743 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2746 if (sh
->check_state
>= check_state_run
&&
2747 sh
->check_state
<= check_state_run_pq
) {
2748 /* async_syndrome_zero_sum preserves P and Q, so
2749 * no need to mark them !uptodate here
2751 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2755 /* we have 2-disk failure */
2756 BUG_ON(s
->failed
!= 2);
2758 case check_state_compute_result
:
2759 sh
->check_state
= check_state_idle
;
2761 /* check that a write has not made the stripe insync */
2762 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2765 /* now write out any block on a failed drive,
2766 * or P or Q if they were recomputed
2768 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2769 if (s
->failed
== 2) {
2770 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2772 set_bit(R5_LOCKED
, &dev
->flags
);
2773 set_bit(R5_Wantwrite
, &dev
->flags
);
2775 if (s
->failed
>= 1) {
2776 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2778 set_bit(R5_LOCKED
, &dev
->flags
);
2779 set_bit(R5_Wantwrite
, &dev
->flags
);
2781 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2782 dev
= &sh
->dev
[pd_idx
];
2784 set_bit(R5_LOCKED
, &dev
->flags
);
2785 set_bit(R5_Wantwrite
, &dev
->flags
);
2787 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2788 dev
= &sh
->dev
[qd_idx
];
2790 set_bit(R5_LOCKED
, &dev
->flags
);
2791 set_bit(R5_Wantwrite
, &dev
->flags
);
2793 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2795 set_bit(STRIPE_INSYNC
, &sh
->state
);
2797 case check_state_run
:
2798 case check_state_run_q
:
2799 case check_state_run_pq
:
2800 break; /* we will be called again upon completion */
2801 case check_state_check_result
:
2802 sh
->check_state
= check_state_idle
;
2804 /* handle a successful check operation, if parity is correct
2805 * we are done. Otherwise update the mismatch count and repair
2806 * parity if !MD_RECOVERY_CHECK
2808 if (sh
->ops
.zero_sum_result
== 0) {
2809 /* both parities are correct */
2811 set_bit(STRIPE_INSYNC
, &sh
->state
);
2813 /* in contrast to the raid5 case we can validate
2814 * parity, but still have a failure to write
2817 sh
->check_state
= check_state_compute_result
;
2818 /* Returning at this point means that we may go
2819 * off and bring p and/or q uptodate again so
2820 * we make sure to check zero_sum_result again
2821 * to verify if p or q need writeback
2825 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2826 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2827 /* don't try to repair!! */
2828 set_bit(STRIPE_INSYNC
, &sh
->state
);
2830 int *target
= &sh
->ops
.target
;
2832 sh
->ops
.target
= -1;
2833 sh
->ops
.target2
= -1;
2834 sh
->check_state
= check_state_compute_run
;
2835 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2836 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2837 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2838 set_bit(R5_Wantcompute
,
2839 &sh
->dev
[pd_idx
].flags
);
2841 target
= &sh
->ops
.target2
;
2844 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2845 set_bit(R5_Wantcompute
,
2846 &sh
->dev
[qd_idx
].flags
);
2853 case check_state_compute_run
:
2856 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2857 __func__
, sh
->check_state
,
2858 (unsigned long long) sh
->sector
);
2863 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2864 struct r6_state
*r6s
)
2868 /* We have read all the blocks in this stripe and now we need to
2869 * copy some of them into a target stripe for expand.
2871 struct dma_async_tx_descriptor
*tx
= NULL
;
2872 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2873 for (i
= 0; i
< sh
->disks
; i
++)
2874 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2876 struct stripe_head
*sh2
;
2877 struct async_submit_ctl submit
;
2879 sector_t bn
= compute_blocknr(sh
, i
, 1);
2880 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2882 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2884 /* so far only the early blocks of this stripe
2885 * have been requested. When later blocks
2886 * get requested, we will try again
2889 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2890 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2891 /* must have already done this block */
2892 release_stripe(sh2
);
2896 /* place all the copies on one channel */
2897 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2898 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2899 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2902 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2903 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2904 for (j
= 0; j
< conf
->raid_disks
; j
++)
2905 if (j
!= sh2
->pd_idx
&&
2906 (!r6s
|| j
!= sh2
->qd_idx
) &&
2907 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2909 if (j
== conf
->raid_disks
) {
2910 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2911 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2913 release_stripe(sh2
);
2916 /* done submitting copies, wait for them to complete */
2919 dma_wait_for_async_tx(tx
);
2925 * handle_stripe - do things to a stripe.
2927 * We lock the stripe and then examine the state of various bits
2928 * to see what needs to be done.
2930 * return some read request which now have data
2931 * return some write requests which are safely on disc
2932 * schedule a read on some buffers
2933 * schedule a write of some buffers
2934 * return confirmation of parity correctness
2936 * buffers are taken off read_list or write_list, and bh_cache buffers
2937 * get BH_Lock set before the stripe lock is released.
2941 static void handle_stripe5(struct stripe_head
*sh
)
2943 raid5_conf_t
*conf
= sh
->raid_conf
;
2944 int disks
= sh
->disks
, i
;
2945 struct bio
*return_bi
= NULL
;
2946 struct stripe_head_state s
;
2948 mdk_rdev_t
*blocked_rdev
= NULL
;
2951 memset(&s
, 0, sizeof(s
));
2952 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2953 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2954 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2955 sh
->reconstruct_state
);
2957 spin_lock(&sh
->lock
);
2958 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2959 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2961 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2962 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2963 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2965 /* Now to look around and see what can be done */
2967 for (i
=disks
; i
--; ) {
2971 clear_bit(R5_Insync
, &dev
->flags
);
2973 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2974 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2975 dev
->towrite
, dev
->written
);
2977 /* maybe we can request a biofill operation
2979 * new wantfill requests are only permitted while
2980 * ops_complete_biofill is guaranteed to be inactive
2982 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2983 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2984 set_bit(R5_Wantfill
, &dev
->flags
);
2986 /* now count some things */
2987 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2988 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2989 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2991 if (test_bit(R5_Wantfill
, &dev
->flags
))
2993 else if (dev
->toread
)
2997 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3002 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3003 if (blocked_rdev
== NULL
&&
3004 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3005 blocked_rdev
= rdev
;
3006 atomic_inc(&rdev
->nr_pending
);
3008 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3009 /* The ReadError flag will just be confusing now */
3010 clear_bit(R5_ReadError
, &dev
->flags
);
3011 clear_bit(R5_ReWrite
, &dev
->flags
);
3013 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3014 || test_bit(R5_ReadError
, &dev
->flags
)) {
3018 set_bit(R5_Insync
, &dev
->flags
);
3022 if (unlikely(blocked_rdev
)) {
3023 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3024 s
.to_write
|| s
.written
) {
3025 set_bit(STRIPE_HANDLE
, &sh
->state
);
3028 /* There is nothing for the blocked_rdev to block */
3029 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3030 blocked_rdev
= NULL
;
3033 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3034 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3035 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3038 pr_debug("locked=%d uptodate=%d to_read=%d"
3039 " to_write=%d failed=%d failed_num=%d\n",
3040 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
3041 s
.failed
, s
.failed_num
);
3042 /* check if the array has lost two devices and, if so, some requests might
3045 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
3046 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3047 if (s
.failed
> 1 && s
.syncing
) {
3048 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3049 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3053 /* might be able to return some write requests if the parity block
3054 * is safe, or on a failed drive
3056 dev
= &sh
->dev
[sh
->pd_idx
];
3058 ((test_bit(R5_Insync
, &dev
->flags
) &&
3059 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3060 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
3061 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
3062 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3064 /* Now we might consider reading some blocks, either to check/generate
3065 * parity, or to satisfy requests
3066 * or to load a block that is being partially written.
3068 if (s
.to_read
|| s
.non_overwrite
||
3069 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3070 handle_stripe_fill5(sh
, &s
, disks
);
3072 /* Now we check to see if any write operations have recently
3076 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3078 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3079 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3080 sh
->reconstruct_state
= reconstruct_state_idle
;
3082 /* All the 'written' buffers and the parity block are ready to
3083 * be written back to disk
3085 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3086 for (i
= disks
; i
--; ) {
3088 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3089 (i
== sh
->pd_idx
|| dev
->written
)) {
3090 pr_debug("Writing block %d\n", i
);
3091 set_bit(R5_Wantwrite
, &dev
->flags
);
3094 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3095 (i
== sh
->pd_idx
&& s
.failed
== 0))
3096 set_bit(STRIPE_INSYNC
, &sh
->state
);
3099 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
3100 atomic_dec(&conf
->preread_active_stripes
);
3101 if (atomic_read(&conf
->preread_active_stripes
) <
3103 md_wakeup_thread(conf
->mddev
->thread
);
3107 /* Now to consider new write requests and what else, if anything
3108 * should be read. We do not handle new writes when:
3109 * 1/ A 'write' operation (copy+xor) is already in flight.
3110 * 2/ A 'check' operation is in flight, as it may clobber the parity
3113 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3114 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
3116 /* maybe we need to check and possibly fix the parity for this stripe
3117 * Any reads will already have been scheduled, so we just see if enough
3118 * data is available. The parity check is held off while parity
3119 * dependent operations are in flight.
3121 if (sh
->check_state
||
3122 (s
.syncing
&& s
.locked
== 0 &&
3123 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3124 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3125 handle_parity_checks5(conf
, sh
, &s
, disks
);
3127 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3128 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3129 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3132 /* If the failed drive is just a ReadError, then we might need to progress
3133 * the repair/check process
3135 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
3136 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
3137 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
3138 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
3140 dev
= &sh
->dev
[s
.failed_num
];
3141 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3142 set_bit(R5_Wantwrite
, &dev
->flags
);
3143 set_bit(R5_ReWrite
, &dev
->flags
);
3144 set_bit(R5_LOCKED
, &dev
->flags
);
3147 /* let's read it back */
3148 set_bit(R5_Wantread
, &dev
->flags
);
3149 set_bit(R5_LOCKED
, &dev
->flags
);
3154 /* Finish reconstruct operations initiated by the expansion process */
3155 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3156 struct stripe_head
*sh2
3157 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3158 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3159 /* sh cannot be written until sh2 has been read.
3160 * so arrange for sh to be delayed a little
3162 set_bit(STRIPE_DELAYED
, &sh
->state
);
3163 set_bit(STRIPE_HANDLE
, &sh
->state
);
3164 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3166 atomic_inc(&conf
->preread_active_stripes
);
3167 release_stripe(sh2
);
3171 release_stripe(sh2
);
3173 sh
->reconstruct_state
= reconstruct_state_idle
;
3174 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3175 for (i
= conf
->raid_disks
; i
--; ) {
3176 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3177 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3182 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3183 !sh
->reconstruct_state
) {
3184 /* Need to write out all blocks after computing parity */
3185 sh
->disks
= conf
->raid_disks
;
3186 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3187 schedule_reconstruction(sh
, &s
, 1, 1);
3188 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3189 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3190 atomic_dec(&conf
->reshape_stripes
);
3191 wake_up(&conf
->wait_for_overlap
);
3192 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3195 if (s
.expanding
&& s
.locked
== 0 &&
3196 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3197 handle_stripe_expansion(conf
, sh
, NULL
);
3200 spin_unlock(&sh
->lock
);
3202 /* wait for this device to become unblocked */
3203 if (unlikely(blocked_rdev
))
3204 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3207 raid_run_ops(sh
, s
.ops_request
);
3211 return_io(return_bi
);
3214 static void handle_stripe6(struct stripe_head
*sh
)
3216 raid5_conf_t
*conf
= sh
->raid_conf
;
3217 int disks
= sh
->disks
;
3218 struct bio
*return_bi
= NULL
;
3219 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3220 struct stripe_head_state s
;
3221 struct r6_state r6s
;
3222 struct r5dev
*dev
, *pdev
, *qdev
;
3223 mdk_rdev_t
*blocked_rdev
= NULL
;
3225 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3226 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3227 (unsigned long long)sh
->sector
, sh
->state
,
3228 atomic_read(&sh
->count
), pd_idx
, qd_idx
,
3229 sh
->check_state
, sh
->reconstruct_state
);
3230 memset(&s
, 0, sizeof(s
));
3232 spin_lock(&sh
->lock
);
3233 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3234 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3236 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3237 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3238 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3239 /* Now to look around and see what can be done */
3242 for (i
=disks
; i
--; ) {
3245 clear_bit(R5_Insync
, &dev
->flags
);
3247 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3248 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3249 /* maybe we can reply to a read
3251 * new wantfill requests are only permitted while
3252 * ops_complete_biofill is guaranteed to be inactive
3254 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3255 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3256 set_bit(R5_Wantfill
, &dev
->flags
);
3258 /* now count some things */
3259 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3260 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3261 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3263 BUG_ON(s
.compute
> 2);
3266 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
3268 } else if (dev
->toread
)
3272 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3277 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3278 if (blocked_rdev
== NULL
&&
3279 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3280 blocked_rdev
= rdev
;
3281 atomic_inc(&rdev
->nr_pending
);
3283 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3284 /* The ReadError flag will just be confusing now */
3285 clear_bit(R5_ReadError
, &dev
->flags
);
3286 clear_bit(R5_ReWrite
, &dev
->flags
);
3288 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3289 || test_bit(R5_ReadError
, &dev
->flags
)) {
3291 r6s
.failed_num
[s
.failed
] = i
;
3294 set_bit(R5_Insync
, &dev
->flags
);
3298 if (unlikely(blocked_rdev
)) {
3299 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3300 s
.to_write
|| s
.written
) {
3301 set_bit(STRIPE_HANDLE
, &sh
->state
);
3304 /* There is nothing for the blocked_rdev to block */
3305 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3306 blocked_rdev
= NULL
;
3309 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3310 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3311 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3314 pr_debug("locked=%d uptodate=%d to_read=%d"
3315 " to_write=%d failed=%d failed_num=%d,%d\n",
3316 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3317 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3318 /* check if the array has lost >2 devices and, if so, some requests
3319 * might need to be failed
3321 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3322 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3323 if (s
.failed
> 2 && s
.syncing
) {
3324 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3325 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3330 * might be able to return some write requests if the parity blocks
3331 * are safe, or on a failed drive
3333 pdev
= &sh
->dev
[pd_idx
];
3334 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3335 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3336 qdev
= &sh
->dev
[qd_idx
];
3337 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3338 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3341 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3342 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3343 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3344 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3345 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3346 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3347 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3349 /* Now we might consider reading some blocks, either to check/generate
3350 * parity, or to satisfy requests
3351 * or to load a block that is being partially written.
3353 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3354 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3355 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3357 /* Now we check to see if any write operations have recently
3360 if (sh
->reconstruct_state
== reconstruct_state_drain_result
) {
3361 int qd_idx
= sh
->qd_idx
;
3363 sh
->reconstruct_state
= reconstruct_state_idle
;
3364 /* All the 'written' buffers and the parity blocks are ready to
3365 * be written back to disk
3367 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3368 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
));
3369 for (i
= disks
; i
--; ) {
3371 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3372 (i
== sh
->pd_idx
|| i
== qd_idx
||
3374 pr_debug("Writing block %d\n", i
);
3375 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3376 set_bit(R5_Wantwrite
, &dev
->flags
);
3377 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3378 ((i
== sh
->pd_idx
|| i
== qd_idx
) &&
3380 set_bit(STRIPE_INSYNC
, &sh
->state
);
3383 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
3384 atomic_dec(&conf
->preread_active_stripes
);
3385 if (atomic_read(&conf
->preread_active_stripes
) <
3387 md_wakeup_thread(conf
->mddev
->thread
);
3391 /* Now to consider new write requests and what else, if anything
3392 * should be read. We do not handle new writes when:
3393 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3394 * 2/ A 'check' operation is in flight, as it may clobber the parity
3397 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3398 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3400 /* maybe we need to check and possibly fix the parity for this stripe
3401 * Any reads will already have been scheduled, so we just see if enough
3402 * data is available. The parity check is held off while parity
3403 * dependent operations are in flight.
3405 if (sh
->check_state
||
3406 (s
.syncing
&& s
.locked
== 0 &&
3407 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3408 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3409 handle_parity_checks6(conf
, sh
, &s
, &r6s
, disks
);
3411 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3412 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3413 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3416 /* If the failed drives are just a ReadError, then we might need
3417 * to progress the repair/check process
3419 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3420 for (i
= 0; i
< s
.failed
; i
++) {
3421 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3422 if (test_bit(R5_ReadError
, &dev
->flags
)
3423 && !test_bit(R5_LOCKED
, &dev
->flags
)
3424 && test_bit(R5_UPTODATE
, &dev
->flags
)
3426 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3427 set_bit(R5_Wantwrite
, &dev
->flags
);
3428 set_bit(R5_ReWrite
, &dev
->flags
);
3429 set_bit(R5_LOCKED
, &dev
->flags
);
3432 /* let's read it back */
3433 set_bit(R5_Wantread
, &dev
->flags
);
3434 set_bit(R5_LOCKED
, &dev
->flags
);
3440 /* Finish reconstruct operations initiated by the expansion process */
3441 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3442 sh
->reconstruct_state
= reconstruct_state_idle
;
3443 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3444 for (i
= conf
->raid_disks
; i
--; ) {
3445 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3446 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3451 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3452 !sh
->reconstruct_state
) {
3453 struct stripe_head
*sh2
3454 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3455 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3456 /* sh cannot be written until sh2 has been read.
3457 * so arrange for sh to be delayed a little
3459 set_bit(STRIPE_DELAYED
, &sh
->state
);
3460 set_bit(STRIPE_HANDLE
, &sh
->state
);
3461 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3463 atomic_inc(&conf
->preread_active_stripes
);
3464 release_stripe(sh2
);
3468 release_stripe(sh2
);
3470 /* Need to write out all blocks after computing P&Q */
3471 sh
->disks
= conf
->raid_disks
;
3472 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3473 schedule_reconstruction(sh
, &s
, 1, 1);
3474 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3475 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3476 atomic_dec(&conf
->reshape_stripes
);
3477 wake_up(&conf
->wait_for_overlap
);
3478 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3481 if (s
.expanding
&& s
.locked
== 0 &&
3482 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3483 handle_stripe_expansion(conf
, sh
, &r6s
);
3486 spin_unlock(&sh
->lock
);
3488 /* wait for this device to become unblocked */
3489 if (unlikely(blocked_rdev
))
3490 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3493 raid_run_ops(sh
, s
.ops_request
);
3497 return_io(return_bi
);
3500 static void handle_stripe(struct stripe_head
*sh
)
3502 if (sh
->raid_conf
->level
== 6)
3508 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3510 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3511 while (!list_empty(&conf
->delayed_list
)) {
3512 struct list_head
*l
= conf
->delayed_list
.next
;
3513 struct stripe_head
*sh
;
3514 sh
= list_entry(l
, struct stripe_head
, lru
);
3516 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3517 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3518 atomic_inc(&conf
->preread_active_stripes
);
3519 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3522 blk_plug_device(conf
->mddev
->queue
);
3525 static void activate_bit_delay(raid5_conf_t
*conf
)
3527 /* device_lock is held */
3528 struct list_head head
;
3529 list_add(&head
, &conf
->bitmap_list
);
3530 list_del_init(&conf
->bitmap_list
);
3531 while (!list_empty(&head
)) {
3532 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3533 list_del_init(&sh
->lru
);
3534 atomic_inc(&sh
->count
);
3535 __release_stripe(conf
, sh
);
3539 static void unplug_slaves(mddev_t
*mddev
)
3541 raid5_conf_t
*conf
= mddev
->private;
3543 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
3546 for (i
= 0; i
< devs
; i
++) {
3547 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3548 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3549 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3551 atomic_inc(&rdev
->nr_pending
);
3554 blk_unplug(r_queue
);
3556 rdev_dec_pending(rdev
, mddev
);
3563 static void raid5_unplug_device(struct request_queue
*q
)
3565 mddev_t
*mddev
= q
->queuedata
;
3566 raid5_conf_t
*conf
= mddev
->private;
3567 unsigned long flags
;
3569 spin_lock_irqsave(&conf
->device_lock
, flags
);
3571 if (blk_remove_plug(q
)) {
3573 raid5_activate_delayed(conf
);
3575 md_wakeup_thread(mddev
->thread
);
3577 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3579 unplug_slaves(mddev
);
3582 static int raid5_congested(void *data
, int bits
)
3584 mddev_t
*mddev
= data
;
3585 raid5_conf_t
*conf
= mddev
->private;
3587 /* No difference between reads and writes. Just check
3588 * how busy the stripe_cache is
3591 if (mddev_congested(mddev
, bits
))
3593 if (conf
->inactive_blocked
)
3597 if (list_empty_careful(&conf
->inactive_list
))
3603 /* We want read requests to align with chunks where possible,
3604 * but write requests don't need to.
3606 static int raid5_mergeable_bvec(struct request_queue
*q
,
3607 struct bvec_merge_data
*bvm
,
3608 struct bio_vec
*biovec
)
3610 mddev_t
*mddev
= q
->queuedata
;
3611 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3613 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3614 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3616 if ((bvm
->bi_rw
& 1) == WRITE
)
3617 return biovec
->bv_len
; /* always allow writes to be mergeable */
3619 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3620 chunk_sectors
= mddev
->new_chunk_sectors
;
3621 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3622 if (max
< 0) max
= 0;
3623 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3624 return biovec
->bv_len
;
3630 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3632 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3633 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3634 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3636 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3637 chunk_sectors
= mddev
->new_chunk_sectors
;
3638 return chunk_sectors
>=
3639 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3643 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3644 * later sampled by raid5d.
3646 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3648 unsigned long flags
;
3650 spin_lock_irqsave(&conf
->device_lock
, flags
);
3652 bi
->bi_next
= conf
->retry_read_aligned_list
;
3653 conf
->retry_read_aligned_list
= bi
;
3655 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3656 md_wakeup_thread(conf
->mddev
->thread
);
3660 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3664 bi
= conf
->retry_read_aligned
;
3666 conf
->retry_read_aligned
= NULL
;
3669 bi
= conf
->retry_read_aligned_list
;
3671 conf
->retry_read_aligned_list
= bi
->bi_next
;
3674 * this sets the active strip count to 1 and the processed
3675 * strip count to zero (upper 8 bits)
3677 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3685 * The "raid5_align_endio" should check if the read succeeded and if it
3686 * did, call bio_endio on the original bio (having bio_put the new bio
3688 * If the read failed..
3690 static void raid5_align_endio(struct bio
*bi
, int error
)
3692 struct bio
* raid_bi
= bi
->bi_private
;
3695 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3700 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3701 conf
= mddev
->private;
3702 rdev
= (void*)raid_bi
->bi_next
;
3703 raid_bi
->bi_next
= NULL
;
3705 rdev_dec_pending(rdev
, conf
->mddev
);
3707 if (!error
&& uptodate
) {
3708 bio_endio(raid_bi
, 0);
3709 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3710 wake_up(&conf
->wait_for_stripe
);
3715 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3717 add_bio_to_retry(raid_bi
, conf
);
3720 static int bio_fits_rdev(struct bio
*bi
)
3722 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3724 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3726 blk_recount_segments(q
, bi
);
3727 if (bi
->bi_phys_segments
> queue_max_phys_segments(q
))
3730 if (q
->merge_bvec_fn
)
3731 /* it's too hard to apply the merge_bvec_fn at this stage,
3740 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3742 mddev_t
*mddev
= q
->queuedata
;
3743 raid5_conf_t
*conf
= mddev
->private;
3744 unsigned int dd_idx
;
3745 struct bio
* align_bi
;
3748 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3749 pr_debug("chunk_aligned_read : non aligned\n");
3753 * use bio_clone to make a copy of the bio
3755 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3759 * set bi_end_io to a new function, and set bi_private to the
3762 align_bi
->bi_end_io
= raid5_align_endio
;
3763 align_bi
->bi_private
= raid_bio
;
3767 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3772 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3773 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3774 atomic_inc(&rdev
->nr_pending
);
3776 raid_bio
->bi_next
= (void*)rdev
;
3777 align_bi
->bi_bdev
= rdev
->bdev
;
3778 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3779 align_bi
->bi_sector
+= rdev
->data_offset
;
3781 if (!bio_fits_rdev(align_bi
)) {
3782 /* too big in some way */
3784 rdev_dec_pending(rdev
, mddev
);
3788 spin_lock_irq(&conf
->device_lock
);
3789 wait_event_lock_irq(conf
->wait_for_stripe
,
3791 conf
->device_lock
, /* nothing */);
3792 atomic_inc(&conf
->active_aligned_reads
);
3793 spin_unlock_irq(&conf
->device_lock
);
3795 generic_make_request(align_bi
);
3804 /* __get_priority_stripe - get the next stripe to process
3806 * Full stripe writes are allowed to pass preread active stripes up until
3807 * the bypass_threshold is exceeded. In general the bypass_count
3808 * increments when the handle_list is handled before the hold_list; however, it
3809 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3810 * stripe with in flight i/o. The bypass_count will be reset when the
3811 * head of the hold_list has changed, i.e. the head was promoted to the
3814 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3816 struct stripe_head
*sh
;
3818 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3820 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3821 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3822 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3824 if (!list_empty(&conf
->handle_list
)) {
3825 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3827 if (list_empty(&conf
->hold_list
))
3828 conf
->bypass_count
= 0;
3829 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3830 if (conf
->hold_list
.next
== conf
->last_hold
)
3831 conf
->bypass_count
++;
3833 conf
->last_hold
= conf
->hold_list
.next
;
3834 conf
->bypass_count
-= conf
->bypass_threshold
;
3835 if (conf
->bypass_count
< 0)
3836 conf
->bypass_count
= 0;
3839 } else if (!list_empty(&conf
->hold_list
) &&
3840 ((conf
->bypass_threshold
&&
3841 conf
->bypass_count
> conf
->bypass_threshold
) ||
3842 atomic_read(&conf
->pending_full_writes
) == 0)) {
3843 sh
= list_entry(conf
->hold_list
.next
,
3845 conf
->bypass_count
-= conf
->bypass_threshold
;
3846 if (conf
->bypass_count
< 0)
3847 conf
->bypass_count
= 0;
3851 list_del_init(&sh
->lru
);
3852 atomic_inc(&sh
->count
);
3853 BUG_ON(atomic_read(&sh
->count
) != 1);
3857 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3859 mddev_t
*mddev
= q
->queuedata
;
3860 raid5_conf_t
*conf
= mddev
->private;
3862 sector_t new_sector
;
3863 sector_t logical_sector
, last_sector
;
3864 struct stripe_head
*sh
;
3865 const int rw
= bio_data_dir(bi
);
3868 if (unlikely(bio_rw_flagged(bi
, BIO_RW_BARRIER
))) {
3869 bio_endio(bi
, -EOPNOTSUPP
);
3873 md_write_start(mddev
, bi
);
3875 cpu
= part_stat_lock();
3876 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
3877 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
3882 mddev
->reshape_position
== MaxSector
&&
3883 chunk_aligned_read(q
,bi
))
3886 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3887 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3889 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3891 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3893 int disks
, data_disks
;
3898 disks
= conf
->raid_disks
;
3899 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3900 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3901 /* spinlock is needed as reshape_progress may be
3902 * 64bit on a 32bit platform, and so it might be
3903 * possible to see a half-updated value
3904 * Ofcourse reshape_progress could change after
3905 * the lock is dropped, so once we get a reference
3906 * to the stripe that we think it is, we will have
3909 spin_lock_irq(&conf
->device_lock
);
3910 if (mddev
->delta_disks
< 0
3911 ? logical_sector
< conf
->reshape_progress
3912 : logical_sector
>= conf
->reshape_progress
) {
3913 disks
= conf
->previous_raid_disks
;
3916 if (mddev
->delta_disks
< 0
3917 ? logical_sector
< conf
->reshape_safe
3918 : logical_sector
>= conf
->reshape_safe
) {
3919 spin_unlock_irq(&conf
->device_lock
);
3924 spin_unlock_irq(&conf
->device_lock
);
3926 data_disks
= disks
- conf
->max_degraded
;
3928 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3931 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3932 (unsigned long long)new_sector
,
3933 (unsigned long long)logical_sector
);
3935 sh
= get_active_stripe(conf
, new_sector
, previous
,
3936 (bi
->bi_rw
&RWA_MASK
), 0);
3938 if (unlikely(previous
)) {
3939 /* expansion might have moved on while waiting for a
3940 * stripe, so we must do the range check again.
3941 * Expansion could still move past after this
3942 * test, but as we are holding a reference to
3943 * 'sh', we know that if that happens,
3944 * STRIPE_EXPANDING will get set and the expansion
3945 * won't proceed until we finish with the stripe.
3948 spin_lock_irq(&conf
->device_lock
);
3949 if (mddev
->delta_disks
< 0
3950 ? logical_sector
>= conf
->reshape_progress
3951 : logical_sector
< conf
->reshape_progress
)
3952 /* mismatch, need to try again */
3954 spin_unlock_irq(&conf
->device_lock
);
3962 if (bio_data_dir(bi
) == WRITE
&&
3963 logical_sector
>= mddev
->suspend_lo
&&
3964 logical_sector
< mddev
->suspend_hi
) {
3966 /* As the suspend_* range is controlled by
3967 * userspace, we want an interruptible
3970 flush_signals(current
);
3971 prepare_to_wait(&conf
->wait_for_overlap
,
3972 &w
, TASK_INTERRUPTIBLE
);
3973 if (logical_sector
>= mddev
->suspend_lo
&&
3974 logical_sector
< mddev
->suspend_hi
)
3979 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3980 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3981 /* Stripe is busy expanding or
3982 * add failed due to overlap. Flush everything
3985 raid5_unplug_device(mddev
->queue
);
3990 finish_wait(&conf
->wait_for_overlap
, &w
);
3991 set_bit(STRIPE_HANDLE
, &sh
->state
);
3992 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3995 /* cannot get stripe for read-ahead, just give-up */
3996 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3997 finish_wait(&conf
->wait_for_overlap
, &w
);
4002 spin_lock_irq(&conf
->device_lock
);
4003 remaining
= raid5_dec_bi_phys_segments(bi
);
4004 spin_unlock_irq(&conf
->device_lock
);
4005 if (remaining
== 0) {
4008 md_write_end(mddev
);
4015 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
4017 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
4019 /* reshaping is quite different to recovery/resync so it is
4020 * handled quite separately ... here.
4022 * On each call to sync_request, we gather one chunk worth of
4023 * destination stripes and flag them as expanding.
4024 * Then we find all the source stripes and request reads.
4025 * As the reads complete, handle_stripe will copy the data
4026 * into the destination stripe and release that stripe.
4028 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4029 struct stripe_head
*sh
;
4030 sector_t first_sector
, last_sector
;
4031 int raid_disks
= conf
->previous_raid_disks
;
4032 int data_disks
= raid_disks
- conf
->max_degraded
;
4033 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4036 sector_t writepos
, readpos
, safepos
;
4037 sector_t stripe_addr
;
4038 int reshape_sectors
;
4039 struct list_head stripes
;
4041 if (sector_nr
== 0) {
4042 /* If restarting in the middle, skip the initial sectors */
4043 if (mddev
->delta_disks
< 0 &&
4044 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4045 sector_nr
= raid5_size(mddev
, 0, 0)
4046 - conf
->reshape_progress
;
4047 } else if (mddev
->delta_disks
>= 0 &&
4048 conf
->reshape_progress
> 0)
4049 sector_nr
= conf
->reshape_progress
;
4050 sector_div(sector_nr
, new_data_disks
);
4052 mddev
->curr_resync_completed
= sector_nr
;
4053 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4059 /* We need to process a full chunk at a time.
4060 * If old and new chunk sizes differ, we need to process the
4063 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4064 reshape_sectors
= mddev
->new_chunk_sectors
;
4066 reshape_sectors
= mddev
->chunk_sectors
;
4068 /* we update the metadata when there is more than 3Meg
4069 * in the block range (that is rather arbitrary, should
4070 * probably be time based) or when the data about to be
4071 * copied would over-write the source of the data at
4072 * the front of the range.
4073 * i.e. one new_stripe along from reshape_progress new_maps
4074 * to after where reshape_safe old_maps to
4076 writepos
= conf
->reshape_progress
;
4077 sector_div(writepos
, new_data_disks
);
4078 readpos
= conf
->reshape_progress
;
4079 sector_div(readpos
, data_disks
);
4080 safepos
= conf
->reshape_safe
;
4081 sector_div(safepos
, data_disks
);
4082 if (mddev
->delta_disks
< 0) {
4083 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4084 readpos
+= reshape_sectors
;
4085 safepos
+= reshape_sectors
;
4087 writepos
+= reshape_sectors
;
4088 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4089 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4092 /* 'writepos' is the most advanced device address we might write.
4093 * 'readpos' is the least advanced device address we might read.
4094 * 'safepos' is the least address recorded in the metadata as having
4096 * If 'readpos' is behind 'writepos', then there is no way that we can
4097 * ensure safety in the face of a crash - that must be done by userspace
4098 * making a backup of the data. So in that case there is no particular
4099 * rush to update metadata.
4100 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4101 * update the metadata to advance 'safepos' to match 'readpos' so that
4102 * we can be safe in the event of a crash.
4103 * So we insist on updating metadata if safepos is behind writepos and
4104 * readpos is beyond writepos.
4105 * In any case, update the metadata every 10 seconds.
4106 * Maybe that number should be configurable, but I'm not sure it is
4107 * worth it.... maybe it could be a multiple of safemode_delay???
4109 if ((mddev
->delta_disks
< 0
4110 ? (safepos
> writepos
&& readpos
< writepos
)
4111 : (safepos
< writepos
&& readpos
> writepos
)) ||
4112 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4113 /* Cannot proceed until we've updated the superblock... */
4114 wait_event(conf
->wait_for_overlap
,
4115 atomic_read(&conf
->reshape_stripes
)==0);
4116 mddev
->reshape_position
= conf
->reshape_progress
;
4117 mddev
->curr_resync_completed
= mddev
->curr_resync
;
4118 conf
->reshape_checkpoint
= jiffies
;
4119 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4120 md_wakeup_thread(mddev
->thread
);
4121 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4122 kthread_should_stop());
4123 spin_lock_irq(&conf
->device_lock
);
4124 conf
->reshape_safe
= mddev
->reshape_position
;
4125 spin_unlock_irq(&conf
->device_lock
);
4126 wake_up(&conf
->wait_for_overlap
);
4127 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4130 if (mddev
->delta_disks
< 0) {
4131 BUG_ON(conf
->reshape_progress
== 0);
4132 stripe_addr
= writepos
;
4133 BUG_ON((mddev
->dev_sectors
&
4134 ~((sector_t
)reshape_sectors
- 1))
4135 - reshape_sectors
- stripe_addr
4138 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4139 stripe_addr
= sector_nr
;
4141 INIT_LIST_HEAD(&stripes
);
4142 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4144 int skipped_disk
= 0;
4145 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4146 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4147 atomic_inc(&conf
->reshape_stripes
);
4148 /* If any of this stripe is beyond the end of the old
4149 * array, then we need to zero those blocks
4151 for (j
=sh
->disks
; j
--;) {
4153 if (j
== sh
->pd_idx
)
4155 if (conf
->level
== 6 &&
4158 s
= compute_blocknr(sh
, j
, 0);
4159 if (s
< raid5_size(mddev
, 0, 0)) {
4163 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4164 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4165 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4167 if (!skipped_disk
) {
4168 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4169 set_bit(STRIPE_HANDLE
, &sh
->state
);
4171 list_add(&sh
->lru
, &stripes
);
4173 spin_lock_irq(&conf
->device_lock
);
4174 if (mddev
->delta_disks
< 0)
4175 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4177 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4178 spin_unlock_irq(&conf
->device_lock
);
4179 /* Ok, those stripe are ready. We can start scheduling
4180 * reads on the source stripes.
4181 * The source stripes are determined by mapping the first and last
4182 * block on the destination stripes.
4185 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4188 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4189 * new_data_disks
- 1),
4191 if (last_sector
>= mddev
->dev_sectors
)
4192 last_sector
= mddev
->dev_sectors
- 1;
4193 while (first_sector
<= last_sector
) {
4194 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4195 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4196 set_bit(STRIPE_HANDLE
, &sh
->state
);
4198 first_sector
+= STRIPE_SECTORS
;
4200 /* Now that the sources are clearly marked, we can release
4201 * the destination stripes
4203 while (!list_empty(&stripes
)) {
4204 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4205 list_del_init(&sh
->lru
);
4208 /* If this takes us to the resync_max point where we have to pause,
4209 * then we need to write out the superblock.
4211 sector_nr
+= reshape_sectors
;
4212 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4213 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4214 /* Cannot proceed until we've updated the superblock... */
4215 wait_event(conf
->wait_for_overlap
,
4216 atomic_read(&conf
->reshape_stripes
) == 0);
4217 mddev
->reshape_position
= conf
->reshape_progress
;
4218 mddev
->curr_resync_completed
= mddev
->curr_resync
+ reshape_sectors
;
4219 conf
->reshape_checkpoint
= jiffies
;
4220 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4221 md_wakeup_thread(mddev
->thread
);
4222 wait_event(mddev
->sb_wait
,
4223 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4224 || kthread_should_stop());
4225 spin_lock_irq(&conf
->device_lock
);
4226 conf
->reshape_safe
= mddev
->reshape_position
;
4227 spin_unlock_irq(&conf
->device_lock
);
4228 wake_up(&conf
->wait_for_overlap
);
4229 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4231 return reshape_sectors
;
4234 /* FIXME go_faster isn't used */
4235 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4237 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4238 struct stripe_head
*sh
;
4239 sector_t max_sector
= mddev
->dev_sectors
;
4241 int still_degraded
= 0;
4244 if (sector_nr
>= max_sector
) {
4245 /* just being told to finish up .. nothing much to do */
4246 unplug_slaves(mddev
);
4248 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4253 if (mddev
->curr_resync
< max_sector
) /* aborted */
4254 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4256 else /* completed sync */
4258 bitmap_close_sync(mddev
->bitmap
);
4263 /* Allow raid5_quiesce to complete */
4264 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4266 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4267 return reshape_request(mddev
, sector_nr
, skipped
);
4269 /* No need to check resync_max as we never do more than one
4270 * stripe, and as resync_max will always be on a chunk boundary,
4271 * if the check in md_do_sync didn't fire, there is no chance
4272 * of overstepping resync_max here
4275 /* if there is too many failed drives and we are trying
4276 * to resync, then assert that we are finished, because there is
4277 * nothing we can do.
4279 if (mddev
->degraded
>= conf
->max_degraded
&&
4280 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4281 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4285 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4286 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4287 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4288 /* we can skip this block, and probably more */
4289 sync_blocks
/= STRIPE_SECTORS
;
4291 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4295 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4297 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4299 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4300 /* make sure we don't swamp the stripe cache if someone else
4301 * is trying to get access
4303 schedule_timeout_uninterruptible(1);
4305 /* Need to check if array will still be degraded after recovery/resync
4306 * We don't need to check the 'failed' flag as when that gets set,
4309 for (i
= 0; i
< conf
->raid_disks
; i
++)
4310 if (conf
->disks
[i
].rdev
== NULL
)
4313 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4315 spin_lock(&sh
->lock
);
4316 set_bit(STRIPE_SYNCING
, &sh
->state
);
4317 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4318 spin_unlock(&sh
->lock
);
4323 return STRIPE_SECTORS
;
4326 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4328 /* We may not be able to submit a whole bio at once as there
4329 * may not be enough stripe_heads available.
4330 * We cannot pre-allocate enough stripe_heads as we may need
4331 * more than exist in the cache (if we allow ever large chunks).
4332 * So we do one stripe head at a time and record in
4333 * ->bi_hw_segments how many have been done.
4335 * We *know* that this entire raid_bio is in one chunk, so
4336 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4338 struct stripe_head
*sh
;
4340 sector_t sector
, logical_sector
, last_sector
;
4345 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4346 sector
= raid5_compute_sector(conf
, logical_sector
,
4348 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4350 for (; logical_sector
< last_sector
;
4351 logical_sector
+= STRIPE_SECTORS
,
4352 sector
+= STRIPE_SECTORS
,
4355 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4356 /* already done this stripe */
4359 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4362 /* failed to get a stripe - must wait */
4363 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4364 conf
->retry_read_aligned
= raid_bio
;
4368 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4369 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4371 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4372 conf
->retry_read_aligned
= raid_bio
;
4380 spin_lock_irq(&conf
->device_lock
);
4381 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4382 spin_unlock_irq(&conf
->device_lock
);
4384 bio_endio(raid_bio
, 0);
4385 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4386 wake_up(&conf
->wait_for_stripe
);
4392 * This is our raid5 kernel thread.
4394 * We scan the hash table for stripes which can be handled now.
4395 * During the scan, completed stripes are saved for us by the interrupt
4396 * handler, so that they will not have to wait for our next wakeup.
4398 static void raid5d(mddev_t
*mddev
)
4400 struct stripe_head
*sh
;
4401 raid5_conf_t
*conf
= mddev
->private;
4404 pr_debug("+++ raid5d active\n");
4406 md_check_recovery(mddev
);
4409 spin_lock_irq(&conf
->device_lock
);
4413 if (conf
->seq_flush
!= conf
->seq_write
) {
4414 int seq
= conf
->seq_flush
;
4415 spin_unlock_irq(&conf
->device_lock
);
4416 bitmap_unplug(mddev
->bitmap
);
4417 spin_lock_irq(&conf
->device_lock
);
4418 conf
->seq_write
= seq
;
4419 activate_bit_delay(conf
);
4422 while ((bio
= remove_bio_from_retry(conf
))) {
4424 spin_unlock_irq(&conf
->device_lock
);
4425 ok
= retry_aligned_read(conf
, bio
);
4426 spin_lock_irq(&conf
->device_lock
);
4432 sh
= __get_priority_stripe(conf
);
4436 spin_unlock_irq(&conf
->device_lock
);
4443 spin_lock_irq(&conf
->device_lock
);
4445 pr_debug("%d stripes handled\n", handled
);
4447 spin_unlock_irq(&conf
->device_lock
);
4449 async_tx_issue_pending_all();
4450 unplug_slaves(mddev
);
4452 pr_debug("--- raid5d inactive\n");
4456 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4458 raid5_conf_t
*conf
= mddev
->private;
4460 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4466 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4468 raid5_conf_t
*conf
= mddev
->private;
4472 if (len
>= PAGE_SIZE
)
4477 if (strict_strtoul(page
, 10, &new))
4479 if (new <= 16 || new > 32768)
4481 while (new < conf
->max_nr_stripes
) {
4482 if (drop_one_stripe(conf
))
4483 conf
->max_nr_stripes
--;
4487 err
= md_allow_write(mddev
);
4490 while (new > conf
->max_nr_stripes
) {
4491 if (grow_one_stripe(conf
))
4492 conf
->max_nr_stripes
++;
4498 static struct md_sysfs_entry
4499 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4500 raid5_show_stripe_cache_size
,
4501 raid5_store_stripe_cache_size
);
4504 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4506 raid5_conf_t
*conf
= mddev
->private;
4508 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4514 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4516 raid5_conf_t
*conf
= mddev
->private;
4518 if (len
>= PAGE_SIZE
)
4523 if (strict_strtoul(page
, 10, &new))
4525 if (new > conf
->max_nr_stripes
)
4527 conf
->bypass_threshold
= new;
4531 static struct md_sysfs_entry
4532 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4534 raid5_show_preread_threshold
,
4535 raid5_store_preread_threshold
);
4538 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4540 raid5_conf_t
*conf
= mddev
->private;
4542 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4547 static struct md_sysfs_entry
4548 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4550 static struct attribute
*raid5_attrs
[] = {
4551 &raid5_stripecache_size
.attr
,
4552 &raid5_stripecache_active
.attr
,
4553 &raid5_preread_bypass_threshold
.attr
,
4556 static struct attribute_group raid5_attrs_group
= {
4558 .attrs
= raid5_attrs
,
4562 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4564 raid5_conf_t
*conf
= mddev
->private;
4567 sectors
= mddev
->dev_sectors
;
4569 /* size is defined by the smallest of previous and new size */
4570 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4572 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4573 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4574 return sectors
* (raid_disks
- conf
->max_degraded
);
4577 static void raid5_free_percpu(raid5_conf_t
*conf
)
4579 struct raid5_percpu
*percpu
;
4586 for_each_possible_cpu(cpu
) {
4587 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4588 safe_put_page(percpu
->spare_page
);
4589 kfree(percpu
->scribble
);
4591 #ifdef CONFIG_HOTPLUG_CPU
4592 unregister_cpu_notifier(&conf
->cpu_notify
);
4596 free_percpu(conf
->percpu
);
4599 static void free_conf(raid5_conf_t
*conf
)
4601 shrink_stripes(conf
);
4602 raid5_free_percpu(conf
);
4604 kfree(conf
->stripe_hashtbl
);
4608 #ifdef CONFIG_HOTPLUG_CPU
4609 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4612 raid5_conf_t
*conf
= container_of(nfb
, raid5_conf_t
, cpu_notify
);
4613 long cpu
= (long)hcpu
;
4614 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4617 case CPU_UP_PREPARE
:
4618 case CPU_UP_PREPARE_FROZEN
:
4619 if (conf
->level
== 6 && !percpu
->spare_page
)
4620 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4621 if (!percpu
->scribble
)
4622 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4624 if (!percpu
->scribble
||
4625 (conf
->level
== 6 && !percpu
->spare_page
)) {
4626 safe_put_page(percpu
->spare_page
);
4627 kfree(percpu
->scribble
);
4628 pr_err("%s: failed memory allocation for cpu%ld\n",
4634 case CPU_DEAD_FROZEN
:
4635 safe_put_page(percpu
->spare_page
);
4636 kfree(percpu
->scribble
);
4637 percpu
->spare_page
= NULL
;
4638 percpu
->scribble
= NULL
;
4647 static int raid5_alloc_percpu(raid5_conf_t
*conf
)
4650 struct page
*spare_page
;
4651 struct raid5_percpu
*allcpus
;
4655 allcpus
= alloc_percpu(struct raid5_percpu
);
4658 conf
->percpu
= allcpus
;
4662 for_each_present_cpu(cpu
) {
4663 if (conf
->level
== 6) {
4664 spare_page
= alloc_page(GFP_KERNEL
);
4669 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4671 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4676 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4678 #ifdef CONFIG_HOTPLUG_CPU
4679 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4680 conf
->cpu_notify
.priority
= 0;
4682 err
= register_cpu_notifier(&conf
->cpu_notify
);
4689 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4692 int raid_disk
, memory
, max_disks
;
4694 struct disk_info
*disk
;
4696 if (mddev
->new_level
!= 5
4697 && mddev
->new_level
!= 4
4698 && mddev
->new_level
!= 6) {
4699 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4700 mdname(mddev
), mddev
->new_level
);
4701 return ERR_PTR(-EIO
);
4703 if ((mddev
->new_level
== 5
4704 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4705 (mddev
->new_level
== 6
4706 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4707 printk(KERN_ERR
"raid5: %s: layout %d not supported\n",
4708 mdname(mddev
), mddev
->new_layout
);
4709 return ERR_PTR(-EIO
);
4711 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4712 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4713 mdname(mddev
), mddev
->raid_disks
);
4714 return ERR_PTR(-EINVAL
);
4717 if (!mddev
->new_chunk_sectors
||
4718 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4719 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4720 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4721 mddev
->new_chunk_sectors
<< 9, mdname(mddev
));
4722 return ERR_PTR(-EINVAL
);
4725 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4728 spin_lock_init(&conf
->device_lock
);
4729 init_waitqueue_head(&conf
->wait_for_stripe
);
4730 init_waitqueue_head(&conf
->wait_for_overlap
);
4731 INIT_LIST_HEAD(&conf
->handle_list
);
4732 INIT_LIST_HEAD(&conf
->hold_list
);
4733 INIT_LIST_HEAD(&conf
->delayed_list
);
4734 INIT_LIST_HEAD(&conf
->bitmap_list
);
4735 INIT_LIST_HEAD(&conf
->inactive_list
);
4736 atomic_set(&conf
->active_stripes
, 0);
4737 atomic_set(&conf
->preread_active_stripes
, 0);
4738 atomic_set(&conf
->active_aligned_reads
, 0);
4739 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4741 conf
->raid_disks
= mddev
->raid_disks
;
4742 if (mddev
->reshape_position
== MaxSector
)
4743 conf
->previous_raid_disks
= mddev
->raid_disks
;
4745 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4746 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4747 conf
->scribble_len
= scribble_len(max_disks
);
4749 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4754 conf
->mddev
= mddev
;
4756 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4759 conf
->level
= mddev
->new_level
;
4760 if (raid5_alloc_percpu(conf
) != 0)
4763 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4765 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4766 raid_disk
= rdev
->raid_disk
;
4767 if (raid_disk
>= max_disks
4770 disk
= conf
->disks
+ raid_disk
;
4774 if (test_bit(In_sync
, &rdev
->flags
)) {
4775 char b
[BDEVNAME_SIZE
];
4776 printk(KERN_INFO
"raid5: device %s operational as raid"
4777 " disk %d\n", bdevname(rdev
->bdev
,b
),
4780 /* Cannot rely on bitmap to complete recovery */
4784 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4785 conf
->level
= mddev
->new_level
;
4786 if (conf
->level
== 6)
4787 conf
->max_degraded
= 2;
4789 conf
->max_degraded
= 1;
4790 conf
->algorithm
= mddev
->new_layout
;
4791 conf
->max_nr_stripes
= NR_STRIPES
;
4792 conf
->reshape_progress
= mddev
->reshape_position
;
4793 if (conf
->reshape_progress
!= MaxSector
) {
4794 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4795 conf
->prev_algo
= mddev
->layout
;
4798 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4799 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4800 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4802 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4805 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4806 memory
, mdname(mddev
));
4808 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4809 if (!conf
->thread
) {
4811 "raid5: couldn't allocate thread for %s\n",
4821 return ERR_PTR(-EIO
);
4823 return ERR_PTR(-ENOMEM
);
4826 static int run(mddev_t
*mddev
)
4829 int working_disks
= 0, chunk_size
;
4832 if (mddev
->recovery_cp
!= MaxSector
)
4833 printk(KERN_NOTICE
"raid5: %s is not clean"
4834 " -- starting background reconstruction\n",
4836 if (mddev
->reshape_position
!= MaxSector
) {
4837 /* Check that we can continue the reshape.
4838 * Currently only disks can change, it must
4839 * increase, and we must be past the point where
4840 * a stripe over-writes itself
4842 sector_t here_new
, here_old
;
4844 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4846 if (mddev
->new_level
!= mddev
->level
) {
4847 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4848 "required - aborting.\n",
4852 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4853 /* reshape_position must be on a new-stripe boundary, and one
4854 * further up in new geometry must map after here in old
4857 here_new
= mddev
->reshape_position
;
4858 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4859 (mddev
->raid_disks
- max_degraded
))) {
4860 printk(KERN_ERR
"raid5: reshape_position not "
4861 "on a stripe boundary\n");
4864 /* here_new is the stripe we will write to */
4865 here_old
= mddev
->reshape_position
;
4866 sector_div(here_old
, mddev
->chunk_sectors
*
4867 (old_disks
-max_degraded
));
4868 /* here_old is the first stripe that we might need to read
4870 if (mddev
->delta_disks
== 0) {
4871 /* We cannot be sure it is safe to start an in-place
4872 * reshape. It is only safe if user-space if monitoring
4873 * and taking constant backups.
4874 * mdadm always starts a situation like this in
4875 * readonly mode so it can take control before
4876 * allowing any writes. So just check for that.
4878 if ((here_new
* mddev
->new_chunk_sectors
!=
4879 here_old
* mddev
->chunk_sectors
) ||
4881 printk(KERN_ERR
"raid5: in-place reshape must be started"
4882 " in read-only mode - aborting\n");
4885 } else if (mddev
->delta_disks
< 0
4886 ? (here_new
* mddev
->new_chunk_sectors
<=
4887 here_old
* mddev
->chunk_sectors
)
4888 : (here_new
* mddev
->new_chunk_sectors
>=
4889 here_old
* mddev
->chunk_sectors
)) {
4890 /* Reading from the same stripe as writing to - bad */
4891 printk(KERN_ERR
"raid5: reshape_position too early for "
4892 "auto-recovery - aborting.\n");
4895 printk(KERN_INFO
"raid5: reshape will continue\n");
4896 /* OK, we should be able to continue; */
4898 BUG_ON(mddev
->level
!= mddev
->new_level
);
4899 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4900 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4901 BUG_ON(mddev
->delta_disks
!= 0);
4904 if (mddev
->private == NULL
)
4905 conf
= setup_conf(mddev
);
4907 conf
= mddev
->private;
4910 return PTR_ERR(conf
);
4912 mddev
->thread
= conf
->thread
;
4913 conf
->thread
= NULL
;
4914 mddev
->private = conf
;
4917 * 0 for a fully functional array, 1 or 2 for a degraded array.
4919 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4920 if (rdev
->raid_disk
>= 0 &&
4921 test_bit(In_sync
, &rdev
->flags
))
4924 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
4927 if (mddev
->degraded
> conf
->max_degraded
) {
4928 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4929 " (%d/%d failed)\n",
4930 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4934 /* device size must be a multiple of chunk size */
4935 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
4936 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4938 if (mddev
->degraded
> 0 &&
4939 mddev
->recovery_cp
!= MaxSector
) {
4940 if (mddev
->ok_start_degraded
)
4942 "raid5: starting dirty degraded array: %s"
4943 "- data corruption possible.\n",
4947 "raid5: cannot start dirty degraded array for %s\n",
4953 if (mddev
->degraded
== 0)
4954 printk("raid5: raid level %d set %s active with %d out of %d"
4955 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4956 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4959 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4960 " out of %d devices, algorithm %d\n", conf
->level
,
4961 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4962 mddev
->raid_disks
, mddev
->new_layout
);
4964 print_raid5_conf(conf
);
4966 if (conf
->reshape_progress
!= MaxSector
) {
4967 printk("...ok start reshape thread\n");
4968 conf
->reshape_safe
= conf
->reshape_progress
;
4969 atomic_set(&conf
->reshape_stripes
, 0);
4970 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4971 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4972 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4973 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4974 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4978 /* read-ahead size must cover two whole stripes, which is
4979 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4982 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4983 int stripe
= data_disks
*
4984 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4985 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4986 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4989 /* Ok, everything is just fine now */
4990 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4992 "raid5: failed to create sysfs attributes for %s\n",
4995 mddev
->queue
->queue_lock
= &conf
->device_lock
;
4997 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4998 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4999 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5001 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5003 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5004 chunk_size
= mddev
->chunk_sectors
<< 9;
5005 blk_queue_io_min(mddev
->queue
, chunk_size
);
5006 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5007 (conf
->raid_disks
- conf
->max_degraded
));
5009 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5010 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5011 rdev
->data_offset
<< 9);
5015 md_unregister_thread(mddev
->thread
);
5016 mddev
->thread
= NULL
;
5018 print_raid5_conf(conf
);
5021 mddev
->private = NULL
;
5022 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
5028 static int stop(mddev_t
*mddev
)
5030 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
5032 md_unregister_thread(mddev
->thread
);
5033 mddev
->thread
= NULL
;
5034 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5035 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
5036 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
5038 mddev
->private = NULL
;
5043 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
5047 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
5048 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
5049 seq_printf(seq
, "sh %llu, count %d.\n",
5050 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
5051 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
5052 for (i
= 0; i
< sh
->disks
; i
++) {
5053 seq_printf(seq
, "(cache%d: %p %ld) ",
5054 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
5056 seq_printf(seq
, "\n");
5059 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
5061 struct stripe_head
*sh
;
5062 struct hlist_node
*hn
;
5065 spin_lock_irq(&conf
->device_lock
);
5066 for (i
= 0; i
< NR_HASH
; i
++) {
5067 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
5068 if (sh
->raid_conf
!= conf
)
5073 spin_unlock_irq(&conf
->device_lock
);
5077 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
5079 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
5082 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5083 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5084 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5085 for (i
= 0; i
< conf
->raid_disks
; i
++)
5086 seq_printf (seq
, "%s",
5087 conf
->disks
[i
].rdev
&&
5088 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5089 seq_printf (seq
, "]");
5091 seq_printf (seq
, "\n");
5092 printall(seq
, conf
);
5096 static void print_raid5_conf (raid5_conf_t
*conf
)
5099 struct disk_info
*tmp
;
5101 printk("RAID5 conf printout:\n");
5103 printk("(conf==NULL)\n");
5106 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
5107 conf
->raid_disks
- conf
->mddev
->degraded
);
5109 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5110 char b
[BDEVNAME_SIZE
];
5111 tmp
= conf
->disks
+ i
;
5113 printk(" disk %d, o:%d, dev:%s\n",
5114 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5115 bdevname(tmp
->rdev
->bdev
,b
));
5119 static int raid5_spare_active(mddev_t
*mddev
)
5122 raid5_conf_t
*conf
= mddev
->private;
5123 struct disk_info
*tmp
;
5125 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5126 tmp
= conf
->disks
+ i
;
5128 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5129 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5130 unsigned long flags
;
5131 spin_lock_irqsave(&conf
->device_lock
, flags
);
5133 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5136 print_raid5_conf(conf
);
5140 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
5142 raid5_conf_t
*conf
= mddev
->private;
5145 struct disk_info
*p
= conf
->disks
+ number
;
5147 print_raid5_conf(conf
);
5150 if (number
>= conf
->raid_disks
&&
5151 conf
->reshape_progress
== MaxSector
)
5152 clear_bit(In_sync
, &rdev
->flags
);
5154 if (test_bit(In_sync
, &rdev
->flags
) ||
5155 atomic_read(&rdev
->nr_pending
)) {
5159 /* Only remove non-faulty devices if recovery
5162 if (!test_bit(Faulty
, &rdev
->flags
) &&
5163 mddev
->degraded
<= conf
->max_degraded
&&
5164 number
< conf
->raid_disks
) {
5170 if (atomic_read(&rdev
->nr_pending
)) {
5171 /* lost the race, try later */
5178 print_raid5_conf(conf
);
5182 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
5184 raid5_conf_t
*conf
= mddev
->private;
5187 struct disk_info
*p
;
5189 int last
= conf
->raid_disks
- 1;
5191 if (mddev
->degraded
> conf
->max_degraded
)
5192 /* no point adding a device */
5195 if (rdev
->raid_disk
>= 0)
5196 first
= last
= rdev
->raid_disk
;
5199 * find the disk ... but prefer rdev->saved_raid_disk
5202 if (rdev
->saved_raid_disk
>= 0 &&
5203 rdev
->saved_raid_disk
>= first
&&
5204 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5205 disk
= rdev
->saved_raid_disk
;
5208 for ( ; disk
<= last
; disk
++)
5209 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5210 clear_bit(In_sync
, &rdev
->flags
);
5211 rdev
->raid_disk
= disk
;
5213 if (rdev
->saved_raid_disk
!= disk
)
5215 rcu_assign_pointer(p
->rdev
, rdev
);
5218 print_raid5_conf(conf
);
5222 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
5224 /* no resync is happening, and there is enough space
5225 * on all devices, so we can resize.
5226 * We need to make sure resync covers any new space.
5227 * If the array is shrinking we should possibly wait until
5228 * any io in the removed space completes, but it hardly seems
5231 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5232 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5233 mddev
->raid_disks
));
5234 if (mddev
->array_sectors
>
5235 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5237 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5239 revalidate_disk(mddev
->gendisk
);
5240 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
5241 mddev
->recovery_cp
= mddev
->dev_sectors
;
5242 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5244 mddev
->dev_sectors
= sectors
;
5245 mddev
->resync_max_sectors
= sectors
;
5249 static int check_stripe_cache(mddev_t
*mddev
)
5251 /* Can only proceed if there are plenty of stripe_heads.
5252 * We need a minimum of one full stripe,, and for sensible progress
5253 * it is best to have about 4 times that.
5254 * If we require 4 times, then the default 256 4K stripe_heads will
5255 * allow for chunk sizes up to 256K, which is probably OK.
5256 * If the chunk size is greater, user-space should request more
5257 * stripe_heads first.
5259 raid5_conf_t
*conf
= mddev
->private;
5260 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5261 > conf
->max_nr_stripes
||
5262 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5263 > conf
->max_nr_stripes
) {
5264 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
5265 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5272 static int check_reshape(mddev_t
*mddev
)
5274 raid5_conf_t
*conf
= mddev
->private;
5276 if (mddev
->delta_disks
== 0 &&
5277 mddev
->new_layout
== mddev
->layout
&&
5278 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5279 return 0; /* nothing to do */
5281 /* Cannot grow a bitmap yet */
5283 if (mddev
->degraded
> conf
->max_degraded
)
5285 if (mddev
->delta_disks
< 0) {
5286 /* We might be able to shrink, but the devices must
5287 * be made bigger first.
5288 * For raid6, 4 is the minimum size.
5289 * Otherwise 2 is the minimum
5292 if (mddev
->level
== 6)
5294 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5298 if (!check_stripe_cache(mddev
))
5301 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5304 static int raid5_start_reshape(mddev_t
*mddev
)
5306 raid5_conf_t
*conf
= mddev
->private;
5309 int added_devices
= 0;
5310 unsigned long flags
;
5312 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5315 if (!check_stripe_cache(mddev
))
5318 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5319 if (rdev
->raid_disk
< 0 &&
5320 !test_bit(Faulty
, &rdev
->flags
))
5323 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5324 /* Not enough devices even to make a degraded array
5329 /* Refuse to reduce size of the array. Any reductions in
5330 * array size must be through explicit setting of array_size
5333 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5334 < mddev
->array_sectors
) {
5335 printk(KERN_ERR
"md: %s: array size must be reduced "
5336 "before number of disks\n", mdname(mddev
));
5340 atomic_set(&conf
->reshape_stripes
, 0);
5341 spin_lock_irq(&conf
->device_lock
);
5342 conf
->previous_raid_disks
= conf
->raid_disks
;
5343 conf
->raid_disks
+= mddev
->delta_disks
;
5344 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5345 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5346 conf
->prev_algo
= conf
->algorithm
;
5347 conf
->algorithm
= mddev
->new_layout
;
5348 if (mddev
->delta_disks
< 0)
5349 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5351 conf
->reshape_progress
= 0;
5352 conf
->reshape_safe
= conf
->reshape_progress
;
5354 spin_unlock_irq(&conf
->device_lock
);
5356 /* Add some new drives, as many as will fit.
5357 * We know there are enough to make the newly sized array work.
5359 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5360 if (rdev
->raid_disk
< 0 &&
5361 !test_bit(Faulty
, &rdev
->flags
)) {
5362 if (raid5_add_disk(mddev
, rdev
) == 0) {
5364 set_bit(In_sync
, &rdev
->flags
);
5366 rdev
->recovery_offset
= 0;
5367 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5368 if (sysfs_create_link(&mddev
->kobj
,
5371 "raid5: failed to create "
5372 " link %s for %s\n",
5378 if (mddev
->delta_disks
> 0) {
5379 spin_lock_irqsave(&conf
->device_lock
, flags
);
5380 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
)
5382 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5384 mddev
->raid_disks
= conf
->raid_disks
;
5385 mddev
->reshape_position
= conf
->reshape_progress
;
5386 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5388 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5389 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5390 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5391 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5392 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5394 if (!mddev
->sync_thread
) {
5395 mddev
->recovery
= 0;
5396 spin_lock_irq(&conf
->device_lock
);
5397 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5398 conf
->reshape_progress
= MaxSector
;
5399 spin_unlock_irq(&conf
->device_lock
);
5402 conf
->reshape_checkpoint
= jiffies
;
5403 md_wakeup_thread(mddev
->sync_thread
);
5404 md_new_event(mddev
);
5408 /* This is called from the reshape thread and should make any
5409 * changes needed in 'conf'
5411 static void end_reshape(raid5_conf_t
*conf
)
5414 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5416 spin_lock_irq(&conf
->device_lock
);
5417 conf
->previous_raid_disks
= conf
->raid_disks
;
5418 conf
->reshape_progress
= MaxSector
;
5419 spin_unlock_irq(&conf
->device_lock
);
5420 wake_up(&conf
->wait_for_overlap
);
5422 /* read-ahead size must cover two whole stripes, which is
5423 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5426 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5427 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5429 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5430 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5435 /* This is called from the raid5d thread with mddev_lock held.
5436 * It makes config changes to the device.
5438 static void raid5_finish_reshape(mddev_t
*mddev
)
5440 raid5_conf_t
*conf
= mddev
->private;
5442 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5444 if (mddev
->delta_disks
> 0) {
5445 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5446 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5448 revalidate_disk(mddev
->gendisk
);
5451 mddev
->degraded
= conf
->raid_disks
;
5452 for (d
= 0; d
< conf
->raid_disks
; d
++)
5453 if (conf
->disks
[d
].rdev
&&
5455 &conf
->disks
[d
].rdev
->flags
))
5457 for (d
= conf
->raid_disks
;
5458 d
< conf
->raid_disks
- mddev
->delta_disks
;
5460 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5461 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5463 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5464 sysfs_remove_link(&mddev
->kobj
, nm
);
5465 rdev
->raid_disk
= -1;
5469 mddev
->layout
= conf
->algorithm
;
5470 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5471 mddev
->reshape_position
= MaxSector
;
5472 mddev
->delta_disks
= 0;
5476 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5478 raid5_conf_t
*conf
= mddev
->private;
5481 case 2: /* resume for a suspend */
5482 wake_up(&conf
->wait_for_overlap
);
5485 case 1: /* stop all writes */
5486 spin_lock_irq(&conf
->device_lock
);
5487 /* '2' tells resync/reshape to pause so that all
5488 * active stripes can drain
5491 wait_event_lock_irq(conf
->wait_for_stripe
,
5492 atomic_read(&conf
->active_stripes
) == 0 &&
5493 atomic_read(&conf
->active_aligned_reads
) == 0,
5494 conf
->device_lock
, /* nothing */);
5496 spin_unlock_irq(&conf
->device_lock
);
5497 /* allow reshape to continue */
5498 wake_up(&conf
->wait_for_overlap
);
5501 case 0: /* re-enable writes */
5502 spin_lock_irq(&conf
->device_lock
);
5504 wake_up(&conf
->wait_for_stripe
);
5505 wake_up(&conf
->wait_for_overlap
);
5506 spin_unlock_irq(&conf
->device_lock
);
5512 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5516 if (mddev
->raid_disks
!= 2 ||
5517 mddev
->degraded
> 1)
5518 return ERR_PTR(-EINVAL
);
5520 /* Should check if there are write-behind devices? */
5522 chunksect
= 64*2; /* 64K by default */
5524 /* The array must be an exact multiple of chunksize */
5525 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5528 if ((chunksect
<<9) < STRIPE_SIZE
)
5529 /* array size does not allow a suitable chunk size */
5530 return ERR_PTR(-EINVAL
);
5532 mddev
->new_level
= 5;
5533 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5534 mddev
->new_chunk_sectors
= chunksect
;
5536 return setup_conf(mddev
);
5539 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5543 switch (mddev
->layout
) {
5544 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5545 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5547 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5548 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5550 case ALGORITHM_LEFT_SYMMETRIC_6
:
5551 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5553 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5554 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5556 case ALGORITHM_PARITY_0_6
:
5557 new_layout
= ALGORITHM_PARITY_0
;
5559 case ALGORITHM_PARITY_N
:
5560 new_layout
= ALGORITHM_PARITY_N
;
5563 return ERR_PTR(-EINVAL
);
5565 mddev
->new_level
= 5;
5566 mddev
->new_layout
= new_layout
;
5567 mddev
->delta_disks
= -1;
5568 mddev
->raid_disks
-= 1;
5569 return setup_conf(mddev
);
5573 static int raid5_check_reshape(mddev_t
*mddev
)
5575 /* For a 2-drive array, the layout and chunk size can be changed
5576 * immediately as not restriping is needed.
5577 * For larger arrays we record the new value - after validation
5578 * to be used by a reshape pass.
5580 raid5_conf_t
*conf
= mddev
->private;
5581 int new_chunk
= mddev
->new_chunk_sectors
;
5583 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5585 if (new_chunk
> 0) {
5586 if (!is_power_of_2(new_chunk
))
5588 if (new_chunk
< (PAGE_SIZE
>>9))
5590 if (mddev
->array_sectors
& (new_chunk
-1))
5591 /* not factor of array size */
5595 /* They look valid */
5597 if (mddev
->raid_disks
== 2) {
5598 /* can make the change immediately */
5599 if (mddev
->new_layout
>= 0) {
5600 conf
->algorithm
= mddev
->new_layout
;
5601 mddev
->layout
= mddev
->new_layout
;
5603 if (new_chunk
> 0) {
5604 conf
->chunk_sectors
= new_chunk
;
5605 mddev
->chunk_sectors
= new_chunk
;
5607 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5608 md_wakeup_thread(mddev
->thread
);
5610 return check_reshape(mddev
);
5613 static int raid6_check_reshape(mddev_t
*mddev
)
5615 int new_chunk
= mddev
->new_chunk_sectors
;
5617 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5619 if (new_chunk
> 0) {
5620 if (!is_power_of_2(new_chunk
))
5622 if (new_chunk
< (PAGE_SIZE
>> 9))
5624 if (mddev
->array_sectors
& (new_chunk
-1))
5625 /* not factor of array size */
5629 /* They look valid */
5630 return check_reshape(mddev
);
5633 static void *raid5_takeover(mddev_t
*mddev
)
5635 /* raid5 can take over:
5636 * raid0 - if all devices are the same - make it a raid4 layout
5637 * raid1 - if there are two drives. We need to know the chunk size
5638 * raid4 - trivial - just use a raid4 layout.
5639 * raid6 - Providing it is a *_6 layout
5642 if (mddev
->level
== 1)
5643 return raid5_takeover_raid1(mddev
);
5644 if (mddev
->level
== 4) {
5645 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5646 mddev
->new_level
= 5;
5647 return setup_conf(mddev
);
5649 if (mddev
->level
== 6)
5650 return raid5_takeover_raid6(mddev
);
5652 return ERR_PTR(-EINVAL
);
5656 static struct mdk_personality raid5_personality
;
5658 static void *raid6_takeover(mddev_t
*mddev
)
5660 /* Currently can only take over a raid5. We map the
5661 * personality to an equivalent raid6 personality
5662 * with the Q block at the end.
5666 if (mddev
->pers
!= &raid5_personality
)
5667 return ERR_PTR(-EINVAL
);
5668 if (mddev
->degraded
> 1)
5669 return ERR_PTR(-EINVAL
);
5670 if (mddev
->raid_disks
> 253)
5671 return ERR_PTR(-EINVAL
);
5672 if (mddev
->raid_disks
< 3)
5673 return ERR_PTR(-EINVAL
);
5675 switch (mddev
->layout
) {
5676 case ALGORITHM_LEFT_ASYMMETRIC
:
5677 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5679 case ALGORITHM_RIGHT_ASYMMETRIC
:
5680 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5682 case ALGORITHM_LEFT_SYMMETRIC
:
5683 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5685 case ALGORITHM_RIGHT_SYMMETRIC
:
5686 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5688 case ALGORITHM_PARITY_0
:
5689 new_layout
= ALGORITHM_PARITY_0_6
;
5691 case ALGORITHM_PARITY_N
:
5692 new_layout
= ALGORITHM_PARITY_N
;
5695 return ERR_PTR(-EINVAL
);
5697 mddev
->new_level
= 6;
5698 mddev
->new_layout
= new_layout
;
5699 mddev
->delta_disks
= 1;
5700 mddev
->raid_disks
+= 1;
5701 return setup_conf(mddev
);
5705 static struct mdk_personality raid6_personality
=
5709 .owner
= THIS_MODULE
,
5710 .make_request
= make_request
,
5714 .error_handler
= error
,
5715 .hot_add_disk
= raid5_add_disk
,
5716 .hot_remove_disk
= raid5_remove_disk
,
5717 .spare_active
= raid5_spare_active
,
5718 .sync_request
= sync_request
,
5719 .resize
= raid5_resize
,
5721 .check_reshape
= raid6_check_reshape
,
5722 .start_reshape
= raid5_start_reshape
,
5723 .finish_reshape
= raid5_finish_reshape
,
5724 .quiesce
= raid5_quiesce
,
5725 .takeover
= raid6_takeover
,
5727 static struct mdk_personality raid5_personality
=
5731 .owner
= THIS_MODULE
,
5732 .make_request
= make_request
,
5736 .error_handler
= error
,
5737 .hot_add_disk
= raid5_add_disk
,
5738 .hot_remove_disk
= raid5_remove_disk
,
5739 .spare_active
= raid5_spare_active
,
5740 .sync_request
= sync_request
,
5741 .resize
= raid5_resize
,
5743 .check_reshape
= raid5_check_reshape
,
5744 .start_reshape
= raid5_start_reshape
,
5745 .finish_reshape
= raid5_finish_reshape
,
5746 .quiesce
= raid5_quiesce
,
5747 .takeover
= raid5_takeover
,
5750 static struct mdk_personality raid4_personality
=
5754 .owner
= THIS_MODULE
,
5755 .make_request
= make_request
,
5759 .error_handler
= error
,
5760 .hot_add_disk
= raid5_add_disk
,
5761 .hot_remove_disk
= raid5_remove_disk
,
5762 .spare_active
= raid5_spare_active
,
5763 .sync_request
= sync_request
,
5764 .resize
= raid5_resize
,
5766 .check_reshape
= raid5_check_reshape
,
5767 .start_reshape
= raid5_start_reshape
,
5768 .finish_reshape
= raid5_finish_reshape
,
5769 .quiesce
= raid5_quiesce
,
5772 static int __init
raid5_init(void)
5774 register_md_personality(&raid6_personality
);
5775 register_md_personality(&raid5_personality
);
5776 register_md_personality(&raid4_personality
);
5780 static void raid5_exit(void)
5782 unregister_md_personality(&raid6_personality
);
5783 unregister_md_personality(&raid5_personality
);
5784 unregister_md_personality(&raid4_personality
);
5787 module_init(raid5_init
);
5788 module_exit(raid5_exit
);
5789 MODULE_LICENSE("GPL");
5790 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5791 MODULE_ALIAS("md-raid5");
5792 MODULE_ALIAS("md-raid4");
5793 MODULE_ALIAS("md-level-5");
5794 MODULE_ALIAS("md-level-4");
5795 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5796 MODULE_ALIAS("md-raid6");
5797 MODULE_ALIAS("md-level-6");
5799 /* This used to be two separate modules, they were: */
5800 MODULE_ALIAS("raid5");
5801 MODULE_ALIAS("raid6");