x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / mtd / chips / cfi_cmdset_0020.c
blob0667a671525da07061b5fdb22bed940ff16687bc
1 /*
2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
8 * - completely revamped method functions so they are aware and
9 * independent of the flash geometry (buswidth, interleave, etc.)
10 * - scalability vs code size is completely set at compile-time
11 * (see include/linux/mtd/cfi.h for selection)
12 * - optimized write buffer method
13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
15 * (command set 0x0020)
16 * - added a writev function
17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
18 * - Plugged memory leak in cfi_staa_writev().
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/init.h>
26 #include <asm/io.h>
27 #include <asm/byteorder.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/mtd/map.h>
34 #include <linux/mtd/cfi.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/compatmac.h>
39 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
40 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
41 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
42 unsigned long count, loff_t to, size_t *retlen);
43 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
44 static void cfi_staa_sync (struct mtd_info *);
45 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
46 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
47 static int cfi_staa_suspend (struct mtd_info *);
48 static void cfi_staa_resume (struct mtd_info *);
50 static void cfi_staa_destroy(struct mtd_info *);
52 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
54 static struct mtd_info *cfi_staa_setup (struct map_info *);
56 static struct mtd_chip_driver cfi_staa_chipdrv = {
57 .probe = NULL, /* Not usable directly */
58 .destroy = cfi_staa_destroy,
59 .name = "cfi_cmdset_0020",
60 .module = THIS_MODULE
63 /* #define DEBUG_LOCK_BITS */
64 //#define DEBUG_CFI_FEATURES
66 #ifdef DEBUG_CFI_FEATURES
67 static void cfi_tell_features(struct cfi_pri_intelext *extp)
69 int i;
70 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
71 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
72 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
73 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
74 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
75 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
76 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
77 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
78 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
79 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
80 for (i=9; i<32; i++) {
81 if (extp->FeatureSupport & (1<<i))
82 printk(" - Unknown Bit %X: supported\n", i);
85 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
86 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
87 for (i=1; i<8; i++) {
88 if (extp->SuspendCmdSupport & (1<<i))
89 printk(" - Unknown Bit %X: supported\n", i);
92 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
93 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
94 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
95 for (i=2; i<16; i++) {
96 if (extp->BlkStatusRegMask & (1<<i))
97 printk(" - Unknown Bit %X Active: yes\n",i);
100 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
101 extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
102 if (extp->VppOptimal)
103 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
104 extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
106 #endif
108 /* This routine is made available to other mtd code via
109 * inter_module_register. It must only be accessed through
110 * inter_module_get which will bump the use count of this module. The
111 * addresses passed back in cfi are valid as long as the use count of
112 * this module is non-zero, i.e. between inter_module_get and
113 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
115 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
117 struct cfi_private *cfi = map->fldrv_priv;
118 int i;
120 if (cfi->cfi_mode) {
122 * It's a real CFI chip, not one for which the probe
123 * routine faked a CFI structure. So we read the feature
124 * table from it.
126 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
127 struct cfi_pri_intelext *extp;
129 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
130 if (!extp)
131 return NULL;
133 if (extp->MajorVersion != '1' ||
134 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
135 printk(KERN_ERR " Unknown ST Microelectronics"
136 " Extended Query version %c.%c.\n",
137 extp->MajorVersion, extp->MinorVersion);
138 kfree(extp);
139 return NULL;
142 /* Do some byteswapping if necessary */
143 extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
144 extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
146 #ifdef DEBUG_CFI_FEATURES
147 /* Tell the user about it in lots of lovely detail */
148 cfi_tell_features(extp);
149 #endif
151 /* Install our own private info structure */
152 cfi->cmdset_priv = extp;
155 for (i=0; i< cfi->numchips; i++) {
156 cfi->chips[i].word_write_time = 128;
157 cfi->chips[i].buffer_write_time = 128;
158 cfi->chips[i].erase_time = 1024;
159 cfi->chips[i].ref_point_counter = 0;
160 init_waitqueue_head(&(cfi->chips[i].wq));
163 return cfi_staa_setup(map);
165 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
167 static struct mtd_info *cfi_staa_setup(struct map_info *map)
169 struct cfi_private *cfi = map->fldrv_priv;
170 struct mtd_info *mtd;
171 unsigned long offset = 0;
172 int i,j;
173 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
175 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
176 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
178 if (!mtd) {
179 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
180 kfree(cfi->cmdset_priv);
181 return NULL;
184 mtd->priv = map;
185 mtd->type = MTD_NORFLASH;
186 mtd->size = devsize * cfi->numchips;
188 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
189 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
190 * mtd->numeraseregions, GFP_KERNEL);
191 if (!mtd->eraseregions) {
192 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
193 kfree(cfi->cmdset_priv);
194 kfree(mtd);
195 return NULL;
198 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
199 unsigned long ernum, ersize;
200 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
201 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
203 if (mtd->erasesize < ersize) {
204 mtd->erasesize = ersize;
206 for (j=0; j<cfi->numchips; j++) {
207 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
208 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
209 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
211 offset += (ersize * ernum);
214 if (offset != devsize) {
215 /* Argh */
216 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
217 kfree(mtd->eraseregions);
218 kfree(cfi->cmdset_priv);
219 kfree(mtd);
220 return NULL;
223 for (i=0; i<mtd->numeraseregions;i++){
224 printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
225 i, (unsigned long long)mtd->eraseregions[i].offset,
226 mtd->eraseregions[i].erasesize,
227 mtd->eraseregions[i].numblocks);
230 /* Also select the correct geometry setup too */
231 mtd->erase = cfi_staa_erase_varsize;
232 mtd->read = cfi_staa_read;
233 mtd->write = cfi_staa_write_buffers;
234 mtd->writev = cfi_staa_writev;
235 mtd->sync = cfi_staa_sync;
236 mtd->lock = cfi_staa_lock;
237 mtd->unlock = cfi_staa_unlock;
238 mtd->suspend = cfi_staa_suspend;
239 mtd->resume = cfi_staa_resume;
240 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
241 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
242 map->fldrv = &cfi_staa_chipdrv;
243 __module_get(THIS_MODULE);
244 mtd->name = map->name;
245 return mtd;
249 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
251 map_word status, status_OK;
252 unsigned long timeo;
253 DECLARE_WAITQUEUE(wait, current);
254 int suspended = 0;
255 unsigned long cmd_addr;
256 struct cfi_private *cfi = map->fldrv_priv;
258 adr += chip->start;
260 /* Ensure cmd read/writes are aligned. */
261 cmd_addr = adr & ~(map_bankwidth(map)-1);
263 /* Let's determine this according to the interleave only once */
264 status_OK = CMD(0x80);
266 timeo = jiffies + HZ;
267 retry:
268 spin_lock_bh(chip->mutex);
270 /* Check that the chip's ready to talk to us.
271 * If it's in FL_ERASING state, suspend it and make it talk now.
273 switch (chip->state) {
274 case FL_ERASING:
275 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
276 goto sleep; /* We don't support erase suspend */
278 map_write (map, CMD(0xb0), cmd_addr);
279 /* If the flash has finished erasing, then 'erase suspend'
280 * appears to make some (28F320) flash devices switch to
281 * 'read' mode. Make sure that we switch to 'read status'
282 * mode so we get the right data. --rmk
284 map_write(map, CMD(0x70), cmd_addr);
285 chip->oldstate = FL_ERASING;
286 chip->state = FL_ERASE_SUSPENDING;
287 // printk("Erase suspending at 0x%lx\n", cmd_addr);
288 for (;;) {
289 status = map_read(map, cmd_addr);
290 if (map_word_andequal(map, status, status_OK, status_OK))
291 break;
293 if (time_after(jiffies, timeo)) {
294 /* Urgh */
295 map_write(map, CMD(0xd0), cmd_addr);
296 /* make sure we're in 'read status' mode */
297 map_write(map, CMD(0x70), cmd_addr);
298 chip->state = FL_ERASING;
299 spin_unlock_bh(chip->mutex);
300 printk(KERN_ERR "Chip not ready after erase "
301 "suspended: status = 0x%lx\n", status.x[0]);
302 return -EIO;
305 spin_unlock_bh(chip->mutex);
306 cfi_udelay(1);
307 spin_lock_bh(chip->mutex);
310 suspended = 1;
311 map_write(map, CMD(0xff), cmd_addr);
312 chip->state = FL_READY;
313 break;
315 #if 0
316 case FL_WRITING:
317 /* Not quite yet */
318 #endif
320 case FL_READY:
321 break;
323 case FL_CFI_QUERY:
324 case FL_JEDEC_QUERY:
325 map_write(map, CMD(0x70), cmd_addr);
326 chip->state = FL_STATUS;
328 case FL_STATUS:
329 status = map_read(map, cmd_addr);
330 if (map_word_andequal(map, status, status_OK, status_OK)) {
331 map_write(map, CMD(0xff), cmd_addr);
332 chip->state = FL_READY;
333 break;
336 /* Urgh. Chip not yet ready to talk to us. */
337 if (time_after(jiffies, timeo)) {
338 spin_unlock_bh(chip->mutex);
339 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
340 return -EIO;
343 /* Latency issues. Drop the lock, wait a while and retry */
344 spin_unlock_bh(chip->mutex);
345 cfi_udelay(1);
346 goto retry;
348 default:
349 sleep:
350 /* Stick ourselves on a wait queue to be woken when
351 someone changes the status */
352 set_current_state(TASK_UNINTERRUPTIBLE);
353 add_wait_queue(&chip->wq, &wait);
354 spin_unlock_bh(chip->mutex);
355 schedule();
356 remove_wait_queue(&chip->wq, &wait);
357 timeo = jiffies + HZ;
358 goto retry;
361 map_copy_from(map, buf, adr, len);
363 if (suspended) {
364 chip->state = chip->oldstate;
365 /* What if one interleaved chip has finished and the
366 other hasn't? The old code would leave the finished
367 one in READY mode. That's bad, and caused -EROFS
368 errors to be returned from do_erase_oneblock because
369 that's the only bit it checked for at the time.
370 As the state machine appears to explicitly allow
371 sending the 0x70 (Read Status) command to an erasing
372 chip and expecting it to be ignored, that's what we
373 do. */
374 map_write(map, CMD(0xd0), cmd_addr);
375 map_write(map, CMD(0x70), cmd_addr);
378 wake_up(&chip->wq);
379 spin_unlock_bh(chip->mutex);
380 return 0;
383 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
385 struct map_info *map = mtd->priv;
386 struct cfi_private *cfi = map->fldrv_priv;
387 unsigned long ofs;
388 int chipnum;
389 int ret = 0;
391 /* ofs: offset within the first chip that the first read should start */
392 chipnum = (from >> cfi->chipshift);
393 ofs = from - (chipnum << cfi->chipshift);
395 *retlen = 0;
397 while (len) {
398 unsigned long thislen;
400 if (chipnum >= cfi->numchips)
401 break;
403 if ((len + ofs -1) >> cfi->chipshift)
404 thislen = (1<<cfi->chipshift) - ofs;
405 else
406 thislen = len;
408 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
409 if (ret)
410 break;
412 *retlen += thislen;
413 len -= thislen;
414 buf += thislen;
416 ofs = 0;
417 chipnum++;
419 return ret;
422 static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
423 unsigned long adr, const u_char *buf, int len)
425 struct cfi_private *cfi = map->fldrv_priv;
426 map_word status, status_OK;
427 unsigned long cmd_adr, timeo;
428 DECLARE_WAITQUEUE(wait, current);
429 int wbufsize, z;
431 /* M58LW064A requires bus alignment for buffer wriets -- saw */
432 if (adr & (map_bankwidth(map)-1))
433 return -EINVAL;
435 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
436 adr += chip->start;
437 cmd_adr = adr & ~(wbufsize-1);
439 /* Let's determine this according to the interleave only once */
440 status_OK = CMD(0x80);
442 timeo = jiffies + HZ;
443 retry:
445 #ifdef DEBUG_CFI_FEATURES
446 printk("%s: chip->state[%d]\n", __func__, chip->state);
447 #endif
448 spin_lock_bh(chip->mutex);
450 /* Check that the chip's ready to talk to us.
451 * Later, we can actually think about interrupting it
452 * if it's in FL_ERASING state.
453 * Not just yet, though.
455 switch (chip->state) {
456 case FL_READY:
457 break;
459 case FL_CFI_QUERY:
460 case FL_JEDEC_QUERY:
461 map_write(map, CMD(0x70), cmd_adr);
462 chip->state = FL_STATUS;
463 #ifdef DEBUG_CFI_FEATURES
464 printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
465 #endif
467 case FL_STATUS:
468 status = map_read(map, cmd_adr);
469 if (map_word_andequal(map, status, status_OK, status_OK))
470 break;
471 /* Urgh. Chip not yet ready to talk to us. */
472 if (time_after(jiffies, timeo)) {
473 spin_unlock_bh(chip->mutex);
474 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
475 status.x[0], map_read(map, cmd_adr).x[0]);
476 return -EIO;
479 /* Latency issues. Drop the lock, wait a while and retry */
480 spin_unlock_bh(chip->mutex);
481 cfi_udelay(1);
482 goto retry;
484 default:
485 /* Stick ourselves on a wait queue to be woken when
486 someone changes the status */
487 set_current_state(TASK_UNINTERRUPTIBLE);
488 add_wait_queue(&chip->wq, &wait);
489 spin_unlock_bh(chip->mutex);
490 schedule();
491 remove_wait_queue(&chip->wq, &wait);
492 timeo = jiffies + HZ;
493 goto retry;
496 ENABLE_VPP(map);
497 map_write(map, CMD(0xe8), cmd_adr);
498 chip->state = FL_WRITING_TO_BUFFER;
500 z = 0;
501 for (;;) {
502 status = map_read(map, cmd_adr);
503 if (map_word_andequal(map, status, status_OK, status_OK))
504 break;
506 spin_unlock_bh(chip->mutex);
507 cfi_udelay(1);
508 spin_lock_bh(chip->mutex);
510 if (++z > 100) {
511 /* Argh. Not ready for write to buffer */
512 DISABLE_VPP(map);
513 map_write(map, CMD(0x70), cmd_adr);
514 chip->state = FL_STATUS;
515 spin_unlock_bh(chip->mutex);
516 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
517 return -EIO;
521 /* Write length of data to come */
522 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
524 /* Write data */
525 for (z = 0; z < len;
526 z += map_bankwidth(map), buf += map_bankwidth(map)) {
527 map_word d;
528 d = map_word_load(map, buf);
529 map_write(map, d, adr+z);
531 /* GO GO GO */
532 map_write(map, CMD(0xd0), cmd_adr);
533 chip->state = FL_WRITING;
535 spin_unlock_bh(chip->mutex);
536 cfi_udelay(chip->buffer_write_time);
537 spin_lock_bh(chip->mutex);
539 timeo = jiffies + (HZ/2);
540 z = 0;
541 for (;;) {
542 if (chip->state != FL_WRITING) {
543 /* Someone's suspended the write. Sleep */
544 set_current_state(TASK_UNINTERRUPTIBLE);
545 add_wait_queue(&chip->wq, &wait);
546 spin_unlock_bh(chip->mutex);
547 schedule();
548 remove_wait_queue(&chip->wq, &wait);
549 timeo = jiffies + (HZ / 2); /* FIXME */
550 spin_lock_bh(chip->mutex);
551 continue;
554 status = map_read(map, cmd_adr);
555 if (map_word_andequal(map, status, status_OK, status_OK))
556 break;
558 /* OK Still waiting */
559 if (time_after(jiffies, timeo)) {
560 /* clear status */
561 map_write(map, CMD(0x50), cmd_adr);
562 /* put back into read status register mode */
563 map_write(map, CMD(0x70), adr);
564 chip->state = FL_STATUS;
565 DISABLE_VPP(map);
566 spin_unlock_bh(chip->mutex);
567 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
568 return -EIO;
571 /* Latency issues. Drop the lock, wait a while and retry */
572 spin_unlock_bh(chip->mutex);
573 cfi_udelay(1);
574 z++;
575 spin_lock_bh(chip->mutex);
577 if (!z) {
578 chip->buffer_write_time--;
579 if (!chip->buffer_write_time)
580 chip->buffer_write_time++;
582 if (z > 1)
583 chip->buffer_write_time++;
585 /* Done and happy. */
586 DISABLE_VPP(map);
587 chip->state = FL_STATUS;
589 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
590 if (map_word_bitsset(map, status, CMD(0x3a))) {
591 #ifdef DEBUG_CFI_FEATURES
592 printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
593 #endif
594 /* clear status */
595 map_write(map, CMD(0x50), cmd_adr);
596 /* put back into read status register mode */
597 map_write(map, CMD(0x70), adr);
598 wake_up(&chip->wq);
599 spin_unlock_bh(chip->mutex);
600 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
602 wake_up(&chip->wq);
603 spin_unlock_bh(chip->mutex);
605 return 0;
608 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
609 size_t len, size_t *retlen, const u_char *buf)
611 struct map_info *map = mtd->priv;
612 struct cfi_private *cfi = map->fldrv_priv;
613 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
614 int ret = 0;
615 int chipnum;
616 unsigned long ofs;
618 *retlen = 0;
619 if (!len)
620 return 0;
622 chipnum = to >> cfi->chipshift;
623 ofs = to - (chipnum << cfi->chipshift);
625 #ifdef DEBUG_CFI_FEATURES
626 printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
627 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
628 printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
629 #endif
631 /* Write buffer is worth it only if more than one word to write... */
632 while (len > 0) {
633 /* We must not cross write block boundaries */
634 int size = wbufsize - (ofs & (wbufsize-1));
636 if (size > len)
637 size = len;
639 ret = do_write_buffer(map, &cfi->chips[chipnum],
640 ofs, buf, size);
641 if (ret)
642 return ret;
644 ofs += size;
645 buf += size;
646 (*retlen) += size;
647 len -= size;
649 if (ofs >> cfi->chipshift) {
650 chipnum ++;
651 ofs = 0;
652 if (chipnum == cfi->numchips)
653 return 0;
657 return 0;
661 * Writev for ECC-Flashes is a little more complicated. We need to maintain
662 * a small buffer for this.
663 * XXX: If the buffer size is not a multiple of 2, this will break
665 #define ECCBUF_SIZE (mtd->writesize)
666 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
667 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
668 static int
669 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
670 unsigned long count, loff_t to, size_t *retlen)
672 unsigned long i;
673 size_t totlen = 0, thislen;
674 int ret = 0;
675 size_t buflen = 0;
676 static char *buffer;
678 if (!ECCBUF_SIZE) {
679 /* We should fall back to a general writev implementation.
680 * Until that is written, just break.
682 return -EIO;
684 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
685 if (!buffer)
686 return -ENOMEM;
688 for (i=0; i<count; i++) {
689 size_t elem_len = vecs[i].iov_len;
690 void *elem_base = vecs[i].iov_base;
691 if (!elem_len) /* FIXME: Might be unnecessary. Check that */
692 continue;
693 if (buflen) { /* cut off head */
694 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
695 memcpy(buffer+buflen, elem_base, elem_len);
696 buflen += elem_len;
697 continue;
699 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
700 ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
701 totlen += thislen;
702 if (ret || thislen != ECCBUF_SIZE)
703 goto write_error;
704 elem_len -= thislen-buflen;
705 elem_base += thislen-buflen;
706 to += ECCBUF_SIZE;
708 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
709 ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
710 totlen += thislen;
711 if (ret || thislen != ECCBUF_DIV(elem_len))
712 goto write_error;
713 to += thislen;
715 buflen = ECCBUF_MOD(elem_len); /* cut off tail */
716 if (buflen) {
717 memset(buffer, 0xff, ECCBUF_SIZE);
718 memcpy(buffer, elem_base + thislen, buflen);
721 if (buflen) { /* flush last page, even if not full */
722 /* This is sometimes intended behaviour, really */
723 ret = mtd->write(mtd, to, buflen, &thislen, buffer);
724 totlen += thislen;
725 if (ret || thislen != ECCBUF_SIZE)
726 goto write_error;
728 write_error:
729 if (retlen)
730 *retlen = totlen;
731 kfree(buffer);
732 return ret;
736 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
738 struct cfi_private *cfi = map->fldrv_priv;
739 map_word status, status_OK;
740 unsigned long timeo;
741 int retries = 3;
742 DECLARE_WAITQUEUE(wait, current);
743 int ret = 0;
745 adr += chip->start;
747 /* Let's determine this according to the interleave only once */
748 status_OK = CMD(0x80);
750 timeo = jiffies + HZ;
751 retry:
752 spin_lock_bh(chip->mutex);
754 /* Check that the chip's ready to talk to us. */
755 switch (chip->state) {
756 case FL_CFI_QUERY:
757 case FL_JEDEC_QUERY:
758 case FL_READY:
759 map_write(map, CMD(0x70), adr);
760 chip->state = FL_STATUS;
762 case FL_STATUS:
763 status = map_read(map, adr);
764 if (map_word_andequal(map, status, status_OK, status_OK))
765 break;
767 /* Urgh. Chip not yet ready to talk to us. */
768 if (time_after(jiffies, timeo)) {
769 spin_unlock_bh(chip->mutex);
770 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
771 return -EIO;
774 /* Latency issues. Drop the lock, wait a while and retry */
775 spin_unlock_bh(chip->mutex);
776 cfi_udelay(1);
777 goto retry;
779 default:
780 /* Stick ourselves on a wait queue to be woken when
781 someone changes the status */
782 set_current_state(TASK_UNINTERRUPTIBLE);
783 add_wait_queue(&chip->wq, &wait);
784 spin_unlock_bh(chip->mutex);
785 schedule();
786 remove_wait_queue(&chip->wq, &wait);
787 timeo = jiffies + HZ;
788 goto retry;
791 ENABLE_VPP(map);
792 /* Clear the status register first */
793 map_write(map, CMD(0x50), adr);
795 /* Now erase */
796 map_write(map, CMD(0x20), adr);
797 map_write(map, CMD(0xD0), adr);
798 chip->state = FL_ERASING;
800 spin_unlock_bh(chip->mutex);
801 msleep(1000);
802 spin_lock_bh(chip->mutex);
804 /* FIXME. Use a timer to check this, and return immediately. */
805 /* Once the state machine's known to be working I'll do that */
807 timeo = jiffies + (HZ*20);
808 for (;;) {
809 if (chip->state != FL_ERASING) {
810 /* Someone's suspended the erase. Sleep */
811 set_current_state(TASK_UNINTERRUPTIBLE);
812 add_wait_queue(&chip->wq, &wait);
813 spin_unlock_bh(chip->mutex);
814 schedule();
815 remove_wait_queue(&chip->wq, &wait);
816 timeo = jiffies + (HZ*20); /* FIXME */
817 spin_lock_bh(chip->mutex);
818 continue;
821 status = map_read(map, adr);
822 if (map_word_andequal(map, status, status_OK, status_OK))
823 break;
825 /* OK Still waiting */
826 if (time_after(jiffies, timeo)) {
827 map_write(map, CMD(0x70), adr);
828 chip->state = FL_STATUS;
829 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
830 DISABLE_VPP(map);
831 spin_unlock_bh(chip->mutex);
832 return -EIO;
835 /* Latency issues. Drop the lock, wait a while and retry */
836 spin_unlock_bh(chip->mutex);
837 cfi_udelay(1);
838 spin_lock_bh(chip->mutex);
841 DISABLE_VPP(map);
842 ret = 0;
844 /* We've broken this before. It doesn't hurt to be safe */
845 map_write(map, CMD(0x70), adr);
846 chip->state = FL_STATUS;
847 status = map_read(map, adr);
849 /* check for lock bit */
850 if (map_word_bitsset(map, status, CMD(0x3a))) {
851 unsigned char chipstatus = status.x[0];
852 if (!map_word_equal(map, status, CMD(chipstatus))) {
853 int i, w;
854 for (w=0; w<map_words(map); w++) {
855 for (i = 0; i<cfi_interleave(cfi); i++) {
856 chipstatus |= status.x[w] >> (cfi->device_type * 8);
859 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
860 status.x[0], chipstatus);
862 /* Reset the error bits */
863 map_write(map, CMD(0x50), adr);
864 map_write(map, CMD(0x70), adr);
866 if ((chipstatus & 0x30) == 0x30) {
867 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
868 ret = -EIO;
869 } else if (chipstatus & 0x02) {
870 /* Protection bit set */
871 ret = -EROFS;
872 } else if (chipstatus & 0x8) {
873 /* Voltage */
874 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
875 ret = -EIO;
876 } else if (chipstatus & 0x20) {
877 if (retries--) {
878 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
879 timeo = jiffies + HZ;
880 chip->state = FL_STATUS;
881 spin_unlock_bh(chip->mutex);
882 goto retry;
884 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
885 ret = -EIO;
889 wake_up(&chip->wq);
890 spin_unlock_bh(chip->mutex);
891 return ret;
894 static int cfi_staa_erase_varsize(struct mtd_info *mtd,
895 struct erase_info *instr)
896 { struct map_info *map = mtd->priv;
897 struct cfi_private *cfi = map->fldrv_priv;
898 unsigned long adr, len;
899 int chipnum, ret = 0;
900 int i, first;
901 struct mtd_erase_region_info *regions = mtd->eraseregions;
903 if (instr->addr > mtd->size)
904 return -EINVAL;
906 if ((instr->len + instr->addr) > mtd->size)
907 return -EINVAL;
909 /* Check that both start and end of the requested erase are
910 * aligned with the erasesize at the appropriate addresses.
913 i = 0;
915 /* Skip all erase regions which are ended before the start of
916 the requested erase. Actually, to save on the calculations,
917 we skip to the first erase region which starts after the
918 start of the requested erase, and then go back one.
921 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
922 i++;
923 i--;
925 /* OK, now i is pointing at the erase region in which this
926 erase request starts. Check the start of the requested
927 erase range is aligned with the erase size which is in
928 effect here.
931 if (instr->addr & (regions[i].erasesize-1))
932 return -EINVAL;
934 /* Remember the erase region we start on */
935 first = i;
937 /* Next, check that the end of the requested erase is aligned
938 * with the erase region at that address.
941 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
942 i++;
944 /* As before, drop back one to point at the region in which
945 the address actually falls
947 i--;
949 if ((instr->addr + instr->len) & (regions[i].erasesize-1))
950 return -EINVAL;
952 chipnum = instr->addr >> cfi->chipshift;
953 adr = instr->addr - (chipnum << cfi->chipshift);
954 len = instr->len;
956 i=first;
958 while(len) {
959 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
961 if (ret)
962 return ret;
964 adr += regions[i].erasesize;
965 len -= regions[i].erasesize;
967 if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
968 i++;
970 if (adr >> cfi->chipshift) {
971 adr = 0;
972 chipnum++;
974 if (chipnum >= cfi->numchips)
975 break;
979 instr->state = MTD_ERASE_DONE;
980 mtd_erase_callback(instr);
982 return 0;
985 static void cfi_staa_sync (struct mtd_info *mtd)
987 struct map_info *map = mtd->priv;
988 struct cfi_private *cfi = map->fldrv_priv;
989 int i;
990 struct flchip *chip;
991 int ret = 0;
992 DECLARE_WAITQUEUE(wait, current);
994 for (i=0; !ret && i<cfi->numchips; i++) {
995 chip = &cfi->chips[i];
997 retry:
998 spin_lock_bh(chip->mutex);
1000 switch(chip->state) {
1001 case FL_READY:
1002 case FL_STATUS:
1003 case FL_CFI_QUERY:
1004 case FL_JEDEC_QUERY:
1005 chip->oldstate = chip->state;
1006 chip->state = FL_SYNCING;
1007 /* No need to wake_up() on this state change -
1008 * as the whole point is that nobody can do anything
1009 * with the chip now anyway.
1011 case FL_SYNCING:
1012 spin_unlock_bh(chip->mutex);
1013 break;
1015 default:
1016 /* Not an idle state */
1017 set_current_state(TASK_UNINTERRUPTIBLE);
1018 add_wait_queue(&chip->wq, &wait);
1020 spin_unlock_bh(chip->mutex);
1021 schedule();
1022 remove_wait_queue(&chip->wq, &wait);
1024 goto retry;
1028 /* Unlock the chips again */
1030 for (i--; i >=0; i--) {
1031 chip = &cfi->chips[i];
1033 spin_lock_bh(chip->mutex);
1035 if (chip->state == FL_SYNCING) {
1036 chip->state = chip->oldstate;
1037 wake_up(&chip->wq);
1039 spin_unlock_bh(chip->mutex);
1043 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1045 struct cfi_private *cfi = map->fldrv_priv;
1046 map_word status, status_OK;
1047 unsigned long timeo = jiffies + HZ;
1048 DECLARE_WAITQUEUE(wait, current);
1050 adr += chip->start;
1052 /* Let's determine this according to the interleave only once */
1053 status_OK = CMD(0x80);
1055 timeo = jiffies + HZ;
1056 retry:
1057 spin_lock_bh(chip->mutex);
1059 /* Check that the chip's ready to talk to us. */
1060 switch (chip->state) {
1061 case FL_CFI_QUERY:
1062 case FL_JEDEC_QUERY:
1063 case FL_READY:
1064 map_write(map, CMD(0x70), adr);
1065 chip->state = FL_STATUS;
1067 case FL_STATUS:
1068 status = map_read(map, adr);
1069 if (map_word_andequal(map, status, status_OK, status_OK))
1070 break;
1072 /* Urgh. Chip not yet ready to talk to us. */
1073 if (time_after(jiffies, timeo)) {
1074 spin_unlock_bh(chip->mutex);
1075 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1076 return -EIO;
1079 /* Latency issues. Drop the lock, wait a while and retry */
1080 spin_unlock_bh(chip->mutex);
1081 cfi_udelay(1);
1082 goto retry;
1084 default:
1085 /* Stick ourselves on a wait queue to be woken when
1086 someone changes the status */
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 add_wait_queue(&chip->wq, &wait);
1089 spin_unlock_bh(chip->mutex);
1090 schedule();
1091 remove_wait_queue(&chip->wq, &wait);
1092 timeo = jiffies + HZ;
1093 goto retry;
1096 ENABLE_VPP(map);
1097 map_write(map, CMD(0x60), adr);
1098 map_write(map, CMD(0x01), adr);
1099 chip->state = FL_LOCKING;
1101 spin_unlock_bh(chip->mutex);
1102 msleep(1000);
1103 spin_lock_bh(chip->mutex);
1105 /* FIXME. Use a timer to check this, and return immediately. */
1106 /* Once the state machine's known to be working I'll do that */
1108 timeo = jiffies + (HZ*2);
1109 for (;;) {
1111 status = map_read(map, adr);
1112 if (map_word_andequal(map, status, status_OK, status_OK))
1113 break;
1115 /* OK Still waiting */
1116 if (time_after(jiffies, timeo)) {
1117 map_write(map, CMD(0x70), adr);
1118 chip->state = FL_STATUS;
1119 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1120 DISABLE_VPP(map);
1121 spin_unlock_bh(chip->mutex);
1122 return -EIO;
1125 /* Latency issues. Drop the lock, wait a while and retry */
1126 spin_unlock_bh(chip->mutex);
1127 cfi_udelay(1);
1128 spin_lock_bh(chip->mutex);
1131 /* Done and happy. */
1132 chip->state = FL_STATUS;
1133 DISABLE_VPP(map);
1134 wake_up(&chip->wq);
1135 spin_unlock_bh(chip->mutex);
1136 return 0;
1138 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1140 struct map_info *map = mtd->priv;
1141 struct cfi_private *cfi = map->fldrv_priv;
1142 unsigned long adr;
1143 int chipnum, ret = 0;
1144 #ifdef DEBUG_LOCK_BITS
1145 int ofs_factor = cfi->interleave * cfi->device_type;
1146 #endif
1148 if (ofs & (mtd->erasesize - 1))
1149 return -EINVAL;
1151 if (len & (mtd->erasesize -1))
1152 return -EINVAL;
1154 if ((len + ofs) > mtd->size)
1155 return -EINVAL;
1157 chipnum = ofs >> cfi->chipshift;
1158 adr = ofs - (chipnum << cfi->chipshift);
1160 while(len) {
1162 #ifdef DEBUG_LOCK_BITS
1163 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1164 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1165 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1166 #endif
1168 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1170 #ifdef DEBUG_LOCK_BITS
1171 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1172 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1173 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1174 #endif
1176 if (ret)
1177 return ret;
1179 adr += mtd->erasesize;
1180 len -= mtd->erasesize;
1182 if (adr >> cfi->chipshift) {
1183 adr = 0;
1184 chipnum++;
1186 if (chipnum >= cfi->numchips)
1187 break;
1190 return 0;
1192 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1194 struct cfi_private *cfi = map->fldrv_priv;
1195 map_word status, status_OK;
1196 unsigned long timeo = jiffies + HZ;
1197 DECLARE_WAITQUEUE(wait, current);
1199 adr += chip->start;
1201 /* Let's determine this according to the interleave only once */
1202 status_OK = CMD(0x80);
1204 timeo = jiffies + HZ;
1205 retry:
1206 spin_lock_bh(chip->mutex);
1208 /* Check that the chip's ready to talk to us. */
1209 switch (chip->state) {
1210 case FL_CFI_QUERY:
1211 case FL_JEDEC_QUERY:
1212 case FL_READY:
1213 map_write(map, CMD(0x70), adr);
1214 chip->state = FL_STATUS;
1216 case FL_STATUS:
1217 status = map_read(map, adr);
1218 if (map_word_andequal(map, status, status_OK, status_OK))
1219 break;
1221 /* Urgh. Chip not yet ready to talk to us. */
1222 if (time_after(jiffies, timeo)) {
1223 spin_unlock_bh(chip->mutex);
1224 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1225 return -EIO;
1228 /* Latency issues. Drop the lock, wait a while and retry */
1229 spin_unlock_bh(chip->mutex);
1230 cfi_udelay(1);
1231 goto retry;
1233 default:
1234 /* Stick ourselves on a wait queue to be woken when
1235 someone changes the status */
1236 set_current_state(TASK_UNINTERRUPTIBLE);
1237 add_wait_queue(&chip->wq, &wait);
1238 spin_unlock_bh(chip->mutex);
1239 schedule();
1240 remove_wait_queue(&chip->wq, &wait);
1241 timeo = jiffies + HZ;
1242 goto retry;
1245 ENABLE_VPP(map);
1246 map_write(map, CMD(0x60), adr);
1247 map_write(map, CMD(0xD0), adr);
1248 chip->state = FL_UNLOCKING;
1250 spin_unlock_bh(chip->mutex);
1251 msleep(1000);
1252 spin_lock_bh(chip->mutex);
1254 /* FIXME. Use a timer to check this, and return immediately. */
1255 /* Once the state machine's known to be working I'll do that */
1257 timeo = jiffies + (HZ*2);
1258 for (;;) {
1260 status = map_read(map, adr);
1261 if (map_word_andequal(map, status, status_OK, status_OK))
1262 break;
1264 /* OK Still waiting */
1265 if (time_after(jiffies, timeo)) {
1266 map_write(map, CMD(0x70), adr);
1267 chip->state = FL_STATUS;
1268 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1269 DISABLE_VPP(map);
1270 spin_unlock_bh(chip->mutex);
1271 return -EIO;
1274 /* Latency issues. Drop the unlock, wait a while and retry */
1275 spin_unlock_bh(chip->mutex);
1276 cfi_udelay(1);
1277 spin_lock_bh(chip->mutex);
1280 /* Done and happy. */
1281 chip->state = FL_STATUS;
1282 DISABLE_VPP(map);
1283 wake_up(&chip->wq);
1284 spin_unlock_bh(chip->mutex);
1285 return 0;
1287 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1289 struct map_info *map = mtd->priv;
1290 struct cfi_private *cfi = map->fldrv_priv;
1291 unsigned long adr;
1292 int chipnum, ret = 0;
1293 #ifdef DEBUG_LOCK_BITS
1294 int ofs_factor = cfi->interleave * cfi->device_type;
1295 #endif
1297 chipnum = ofs >> cfi->chipshift;
1298 adr = ofs - (chipnum << cfi->chipshift);
1300 #ifdef DEBUG_LOCK_BITS
1302 unsigned long temp_adr = adr;
1303 unsigned long temp_len = len;
1305 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1306 while (temp_len) {
1307 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1308 temp_adr += mtd->erasesize;
1309 temp_len -= mtd->erasesize;
1311 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1313 #endif
1315 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1317 #ifdef DEBUG_LOCK_BITS
1318 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1319 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1320 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1321 #endif
1323 return ret;
1326 static int cfi_staa_suspend(struct mtd_info *mtd)
1328 struct map_info *map = mtd->priv;
1329 struct cfi_private *cfi = map->fldrv_priv;
1330 int i;
1331 struct flchip *chip;
1332 int ret = 0;
1334 for (i=0; !ret && i<cfi->numchips; i++) {
1335 chip = &cfi->chips[i];
1337 spin_lock_bh(chip->mutex);
1339 switch(chip->state) {
1340 case FL_READY:
1341 case FL_STATUS:
1342 case FL_CFI_QUERY:
1343 case FL_JEDEC_QUERY:
1344 chip->oldstate = chip->state;
1345 chip->state = FL_PM_SUSPENDED;
1346 /* No need to wake_up() on this state change -
1347 * as the whole point is that nobody can do anything
1348 * with the chip now anyway.
1350 case FL_PM_SUSPENDED:
1351 break;
1353 default:
1354 ret = -EAGAIN;
1355 break;
1357 spin_unlock_bh(chip->mutex);
1360 /* Unlock the chips again */
1362 if (ret) {
1363 for (i--; i >=0; i--) {
1364 chip = &cfi->chips[i];
1366 spin_lock_bh(chip->mutex);
1368 if (chip->state == FL_PM_SUSPENDED) {
1369 /* No need to force it into a known state here,
1370 because we're returning failure, and it didn't
1371 get power cycled */
1372 chip->state = chip->oldstate;
1373 wake_up(&chip->wq);
1375 spin_unlock_bh(chip->mutex);
1379 return ret;
1382 static void cfi_staa_resume(struct mtd_info *mtd)
1384 struct map_info *map = mtd->priv;
1385 struct cfi_private *cfi = map->fldrv_priv;
1386 int i;
1387 struct flchip *chip;
1389 for (i=0; i<cfi->numchips; i++) {
1391 chip = &cfi->chips[i];
1393 spin_lock_bh(chip->mutex);
1395 /* Go to known state. Chip may have been power cycled */
1396 if (chip->state == FL_PM_SUSPENDED) {
1397 map_write(map, CMD(0xFF), 0);
1398 chip->state = FL_READY;
1399 wake_up(&chip->wq);
1402 spin_unlock_bh(chip->mutex);
1406 static void cfi_staa_destroy(struct mtd_info *mtd)
1408 struct map_info *map = mtd->priv;
1409 struct cfi_private *cfi = map->fldrv_priv;
1410 kfree(cfi->cmdset_priv);
1411 kfree(cfi);
1414 MODULE_LICENSE("GPL");