x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / mtd / nand / fsl_elbc_nand.c
blobddd37d2554ede02c08044642d4f30c2d3307ee57
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright (c) 2006-2007 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
45 struct fsl_elbc_ctrl;
47 /* mtd information per set */
49 struct fsl_elbc_mtd {
50 struct mtd_info mtd;
51 struct nand_chip chip;
52 struct fsl_elbc_ctrl *ctrl;
54 struct device *dev;
55 int bank; /* Chip select bank number */
56 u8 __iomem *vbase; /* Chip select base virtual address */
57 int page_size; /* NAND page size (0=512, 1=2048) */
58 unsigned int fmr; /* FCM Flash Mode Register value */
61 /* overview of the fsl elbc controller */
63 struct fsl_elbc_ctrl {
64 struct nand_hw_control controller;
65 struct fsl_elbc_mtd *chips[MAX_BANKS];
67 /* device info */
68 struct device *dev;
69 struct fsl_lbc_regs __iomem *regs;
70 int irq;
71 wait_queue_head_t irq_wait;
72 unsigned int irq_status; /* status read from LTESR by irq handler */
73 u8 __iomem *addr; /* Address of assigned FCM buffer */
74 unsigned int page; /* Last page written to / read from */
75 unsigned int read_bytes; /* Number of bytes read during command */
76 unsigned int column; /* Saved column from SEQIN */
77 unsigned int index; /* Pointer to next byte to 'read' */
78 unsigned int status; /* status read from LTESR after last op */
79 unsigned int mdr; /* UPM/FCM Data Register value */
80 unsigned int use_mdr; /* Non zero if the MDR is to be set */
81 unsigned int oob; /* Non zero if operating on OOB data */
82 char *oob_poi; /* Place to write ECC after read back */
85 /* These map to the positions used by the FCM hardware ECC generator */
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89 .eccbytes = 3,
90 .eccpos = {6, 7, 8},
91 .oobfree = { {0, 5}, {9, 7} },
94 /* Small Page FLASH with FMR[ECCM] = 1 */
95 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
96 .eccbytes = 3,
97 .eccpos = {8, 9, 10},
98 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
101 /* Large Page FLASH with FMR[ECCM] = 0 */
102 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
103 .eccbytes = 12,
104 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
105 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
108 /* Large Page FLASH with FMR[ECCM] = 1 */
109 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
110 .eccbytes = 12,
111 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
112 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
116 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
117 * 1, so we have to adjust bad block pattern. This pattern should be used for
118 * x8 chips only. So far hardware does not support x16 chips anyway.
120 static u8 scan_ff_pattern[] = { 0xff, };
122 static struct nand_bbt_descr largepage_memorybased = {
123 .options = 0,
124 .offs = 0,
125 .len = 1,
126 .pattern = scan_ff_pattern,
130 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
131 * interfere with ECC positions, that's why we implement our own descriptors.
132 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
134 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
135 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
137 static struct nand_bbt_descr bbt_main_descr = {
138 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
139 NAND_BBT_2BIT | NAND_BBT_VERSION,
140 .offs = 11,
141 .len = 4,
142 .veroffs = 15,
143 .maxblocks = 4,
144 .pattern = bbt_pattern,
147 static struct nand_bbt_descr bbt_mirror_descr = {
148 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
149 NAND_BBT_2BIT | NAND_BBT_VERSION,
150 .offs = 11,
151 .len = 4,
152 .veroffs = 15,
153 .maxblocks = 4,
154 .pattern = mirror_pattern,
157 /*=================================*/
160 * Set up the FCM hardware block and page address fields, and the fcm
161 * structure addr field to point to the correct FCM buffer in memory
163 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
165 struct nand_chip *chip = mtd->priv;
166 struct fsl_elbc_mtd *priv = chip->priv;
167 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
168 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
169 int buf_num;
171 ctrl->page = page_addr;
173 out_be32(&lbc->fbar,
174 page_addr >> (chip->phys_erase_shift - chip->page_shift));
176 if (priv->page_size) {
177 out_be32(&lbc->fpar,
178 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
179 (oob ? FPAR_LP_MS : 0) | column);
180 buf_num = (page_addr & 1) << 2;
181 } else {
182 out_be32(&lbc->fpar,
183 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
184 (oob ? FPAR_SP_MS : 0) | column);
185 buf_num = page_addr & 7;
188 ctrl->addr = priv->vbase + buf_num * 1024;
189 ctrl->index = column;
191 /* for OOB data point to the second half of the buffer */
192 if (oob)
193 ctrl->index += priv->page_size ? 2048 : 512;
195 dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
196 "index %x, pes %d ps %d\n",
197 buf_num, ctrl->addr, priv->vbase, ctrl->index,
198 chip->phys_erase_shift, chip->page_shift);
202 * execute FCM command and wait for it to complete
204 static int fsl_elbc_run_command(struct mtd_info *mtd)
206 struct nand_chip *chip = mtd->priv;
207 struct fsl_elbc_mtd *priv = chip->priv;
208 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
209 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
211 /* Setup the FMR[OP] to execute without write protection */
212 out_be32(&lbc->fmr, priv->fmr | 3);
213 if (ctrl->use_mdr)
214 out_be32(&lbc->mdr, ctrl->mdr);
216 dev_vdbg(ctrl->dev,
217 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219 dev_vdbg(ctrl->dev,
220 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 "fbcr=%08x bank=%d\n",
222 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223 in_be32(&lbc->fbcr), priv->bank);
225 ctrl->irq_status = 0;
226 /* execute special operation */
227 out_be32(&lbc->lsor, priv->bank);
229 /* wait for FCM complete flag or timeout */
230 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231 FCM_TIMEOUT_MSECS * HZ/1000);
232 ctrl->status = ctrl->irq_status;
234 /* store mdr value in case it was needed */
235 if (ctrl->use_mdr)
236 ctrl->mdr = in_be32(&lbc->mdr);
238 ctrl->use_mdr = 0;
240 dev_vdbg(ctrl->dev,
241 "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
242 ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
244 /* returns 0 on success otherwise non-zero) */
245 return ctrl->status == LTESR_CC ? 0 : -EIO;
248 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
250 struct fsl_elbc_mtd *priv = chip->priv;
251 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
252 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
254 if (priv->page_size) {
255 out_be32(&lbc->fir,
256 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
257 (FIR_OP_CA << FIR_OP1_SHIFT) |
258 (FIR_OP_PA << FIR_OP2_SHIFT) |
259 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
260 (FIR_OP_RBW << FIR_OP4_SHIFT));
262 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
263 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
264 } else {
265 out_be32(&lbc->fir,
266 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
267 (FIR_OP_CA << FIR_OP1_SHIFT) |
268 (FIR_OP_PA << FIR_OP2_SHIFT) |
269 (FIR_OP_RBW << FIR_OP3_SHIFT));
271 if (oob)
272 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
273 else
274 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
278 /* cmdfunc send commands to the FCM */
279 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
280 int column, int page_addr)
282 struct nand_chip *chip = mtd->priv;
283 struct fsl_elbc_mtd *priv = chip->priv;
284 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
285 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
287 ctrl->use_mdr = 0;
289 /* clear the read buffer */
290 ctrl->read_bytes = 0;
291 if (command != NAND_CMD_PAGEPROG)
292 ctrl->index = 0;
294 switch (command) {
295 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
296 case NAND_CMD_READ1:
297 column += 256;
299 /* fall-through */
300 case NAND_CMD_READ0:
301 dev_dbg(ctrl->dev,
302 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
303 " 0x%x, column: 0x%x.\n", page_addr, column);
306 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
307 set_addr(mtd, 0, page_addr, 0);
309 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
310 ctrl->index += column;
312 fsl_elbc_do_read(chip, 0);
313 fsl_elbc_run_command(mtd);
314 return;
316 /* READOOB reads only the OOB because no ECC is performed. */
317 case NAND_CMD_READOOB:
318 dev_vdbg(ctrl->dev,
319 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
320 " 0x%x, column: 0x%x.\n", page_addr, column);
322 out_be32(&lbc->fbcr, mtd->oobsize - column);
323 set_addr(mtd, column, page_addr, 1);
325 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
327 fsl_elbc_do_read(chip, 1);
328 fsl_elbc_run_command(mtd);
329 return;
331 /* READID must read all 5 possible bytes while CEB is active */
332 case NAND_CMD_READID:
333 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
335 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
336 (FIR_OP_UA << FIR_OP1_SHIFT) |
337 (FIR_OP_RBW << FIR_OP2_SHIFT));
338 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
339 /* 5 bytes for manuf, device and exts */
340 out_be32(&lbc->fbcr, 5);
341 ctrl->read_bytes = 5;
342 ctrl->use_mdr = 1;
343 ctrl->mdr = 0;
345 set_addr(mtd, 0, 0, 0);
346 fsl_elbc_run_command(mtd);
347 return;
349 /* ERASE1 stores the block and page address */
350 case NAND_CMD_ERASE1:
351 dev_vdbg(ctrl->dev,
352 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
353 "page_addr: 0x%x.\n", page_addr);
354 set_addr(mtd, 0, page_addr, 0);
355 return;
357 /* ERASE2 uses the block and page address from ERASE1 */
358 case NAND_CMD_ERASE2:
359 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
361 out_be32(&lbc->fir,
362 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
363 (FIR_OP_PA << FIR_OP1_SHIFT) |
364 (FIR_OP_CM1 << FIR_OP2_SHIFT));
366 out_be32(&lbc->fcr,
367 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
368 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
370 out_be32(&lbc->fbcr, 0);
371 ctrl->read_bytes = 0;
373 fsl_elbc_run_command(mtd);
374 return;
376 /* SEQIN sets up the addr buffer and all registers except the length */
377 case NAND_CMD_SEQIN: {
378 __be32 fcr;
379 dev_vdbg(ctrl->dev,
380 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
381 "page_addr: 0x%x, column: 0x%x.\n",
382 page_addr, column);
384 ctrl->column = column;
385 ctrl->oob = 0;
387 if (priv->page_size) {
388 fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
389 (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
391 out_be32(&lbc->fir,
392 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
393 (FIR_OP_CA << FIR_OP1_SHIFT) |
394 (FIR_OP_PA << FIR_OP2_SHIFT) |
395 (FIR_OP_WB << FIR_OP3_SHIFT) |
396 (FIR_OP_CW1 << FIR_OP4_SHIFT));
397 } else {
398 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
399 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
401 out_be32(&lbc->fir,
402 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
403 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
404 (FIR_OP_CA << FIR_OP2_SHIFT) |
405 (FIR_OP_PA << FIR_OP3_SHIFT) |
406 (FIR_OP_WB << FIR_OP4_SHIFT) |
407 (FIR_OP_CW1 << FIR_OP5_SHIFT));
409 if (column >= mtd->writesize) {
410 /* OOB area --> READOOB */
411 column -= mtd->writesize;
412 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
413 ctrl->oob = 1;
414 } else if (column < 256) {
415 /* First 256 bytes --> READ0 */
416 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
417 } else {
418 /* Second 256 bytes --> READ1 */
419 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
423 out_be32(&lbc->fcr, fcr);
424 set_addr(mtd, column, page_addr, ctrl->oob);
425 return;
428 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
429 case NAND_CMD_PAGEPROG: {
430 int full_page;
431 dev_vdbg(ctrl->dev,
432 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
433 "writing %d bytes.\n", ctrl->index);
435 /* if the write did not start at 0 or is not a full page
436 * then set the exact length, otherwise use a full page
437 * write so the HW generates the ECC.
439 if (ctrl->oob || ctrl->column != 0 ||
440 ctrl->index != mtd->writesize + mtd->oobsize) {
441 out_be32(&lbc->fbcr, ctrl->index);
442 full_page = 0;
443 } else {
444 out_be32(&lbc->fbcr, 0);
445 full_page = 1;
448 fsl_elbc_run_command(mtd);
450 /* Read back the page in order to fill in the ECC for the
451 * caller. Is this really needed?
453 if (full_page && ctrl->oob_poi) {
454 out_be32(&lbc->fbcr, 3);
455 set_addr(mtd, 6, page_addr, 1);
457 ctrl->read_bytes = mtd->writesize + 9;
459 fsl_elbc_do_read(chip, 1);
460 fsl_elbc_run_command(mtd);
462 memcpy_fromio(ctrl->oob_poi + 6,
463 &ctrl->addr[ctrl->index], 3);
464 ctrl->index += 3;
467 ctrl->oob_poi = NULL;
468 return;
471 /* CMD_STATUS must read the status byte while CEB is active */
472 /* Note - it does not wait for the ready line */
473 case NAND_CMD_STATUS:
474 out_be32(&lbc->fir,
475 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
476 (FIR_OP_RBW << FIR_OP1_SHIFT));
477 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
478 out_be32(&lbc->fbcr, 1);
479 set_addr(mtd, 0, 0, 0);
480 ctrl->read_bytes = 1;
482 fsl_elbc_run_command(mtd);
484 /* The chip always seems to report that it is
485 * write-protected, even when it is not.
487 setbits8(ctrl->addr, NAND_STATUS_WP);
488 return;
490 /* RESET without waiting for the ready line */
491 case NAND_CMD_RESET:
492 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
493 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
494 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
495 fsl_elbc_run_command(mtd);
496 return;
498 default:
499 dev_err(ctrl->dev,
500 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
501 command);
505 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
507 /* The hardware does not seem to support multiple
508 * chips per bank.
513 * Write buf to the FCM Controller Data Buffer
515 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
517 struct nand_chip *chip = mtd->priv;
518 struct fsl_elbc_mtd *priv = chip->priv;
519 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
520 unsigned int bufsize = mtd->writesize + mtd->oobsize;
522 if (len <= 0) {
523 dev_err(ctrl->dev, "write_buf of %d bytes", len);
524 ctrl->status = 0;
525 return;
528 if ((unsigned int)len > bufsize - ctrl->index) {
529 dev_err(ctrl->dev,
530 "write_buf beyond end of buffer "
531 "(%d requested, %u available)\n",
532 len, bufsize - ctrl->index);
533 len = bufsize - ctrl->index;
536 memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
538 * This is workaround for the weird elbc hangs during nand write,
539 * Scott Wood says: "...perhaps difference in how long it takes a
540 * write to make it through the localbus compared to a write to IMMR
541 * is causing problems, and sync isn't helping for some reason."
542 * Reading back the last byte helps though.
544 in_8(&ctrl->addr[ctrl->index] + len - 1);
546 ctrl->index += len;
550 * read a byte from either the FCM hardware buffer if it has any data left
551 * otherwise issue a command to read a single byte.
553 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
555 struct nand_chip *chip = mtd->priv;
556 struct fsl_elbc_mtd *priv = chip->priv;
557 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
559 /* If there are still bytes in the FCM, then use the next byte. */
560 if (ctrl->index < ctrl->read_bytes)
561 return in_8(&ctrl->addr[ctrl->index++]);
563 dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
564 return ERR_BYTE;
568 * Read from the FCM Controller Data Buffer
570 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
572 struct nand_chip *chip = mtd->priv;
573 struct fsl_elbc_mtd *priv = chip->priv;
574 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
575 int avail;
577 if (len < 0)
578 return;
580 avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
581 memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
582 ctrl->index += avail;
584 if (len > avail)
585 dev_err(ctrl->dev,
586 "read_buf beyond end of buffer "
587 "(%d requested, %d available)\n",
588 len, avail);
592 * Verify buffer against the FCM Controller Data Buffer
594 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
596 struct nand_chip *chip = mtd->priv;
597 struct fsl_elbc_mtd *priv = chip->priv;
598 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
599 int i;
601 if (len < 0) {
602 dev_err(ctrl->dev, "write_buf of %d bytes", len);
603 return -EINVAL;
606 if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
607 dev_err(ctrl->dev,
608 "verify_buf beyond end of buffer "
609 "(%d requested, %u available)\n",
610 len, ctrl->read_bytes - ctrl->index);
612 ctrl->index = ctrl->read_bytes;
613 return -EINVAL;
616 for (i = 0; i < len; i++)
617 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
618 break;
620 ctrl->index += len;
621 return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
624 /* This function is called after Program and Erase Operations to
625 * check for success or failure.
627 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
629 struct fsl_elbc_mtd *priv = chip->priv;
630 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
631 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
633 if (ctrl->status != LTESR_CC)
634 return NAND_STATUS_FAIL;
636 /* Use READ_STATUS command, but wait for the device to be ready */
637 ctrl->use_mdr = 0;
638 out_be32(&lbc->fir,
639 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
640 (FIR_OP_RBW << FIR_OP1_SHIFT));
641 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
642 out_be32(&lbc->fbcr, 1);
643 set_addr(mtd, 0, 0, 0);
644 ctrl->read_bytes = 1;
646 fsl_elbc_run_command(mtd);
648 if (ctrl->status != LTESR_CC)
649 return NAND_STATUS_FAIL;
651 /* The chip always seems to report that it is
652 * write-protected, even when it is not.
654 setbits8(ctrl->addr, NAND_STATUS_WP);
655 return fsl_elbc_read_byte(mtd);
658 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
660 struct nand_chip *chip = mtd->priv;
661 struct fsl_elbc_mtd *priv = chip->priv;
662 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
663 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
664 unsigned int al;
666 /* calculate FMR Address Length field */
667 al = 0;
668 if (chip->pagemask & 0xffff0000)
669 al++;
670 if (chip->pagemask & 0xff000000)
671 al++;
673 /* add to ECCM mode set in fsl_elbc_init */
674 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
675 (al << FMR_AL_SHIFT);
677 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
678 chip->numchips);
679 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
680 chip->chipsize);
681 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
682 chip->pagemask);
683 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
684 chip->chip_delay);
685 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
686 chip->badblockpos);
687 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
688 chip->chip_shift);
689 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
690 chip->page_shift);
691 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
692 chip->phys_erase_shift);
693 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
694 chip->ecclayout);
695 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
696 chip->ecc.mode);
697 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
698 chip->ecc.steps);
699 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
700 chip->ecc.bytes);
701 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
702 chip->ecc.total);
703 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
704 chip->ecc.layout);
705 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
706 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
707 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
708 mtd->erasesize);
709 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
710 mtd->writesize);
711 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
712 mtd->oobsize);
714 /* adjust Option Register and ECC to match Flash page size */
715 if (mtd->writesize == 512) {
716 priv->page_size = 0;
717 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
718 } else if (mtd->writesize == 2048) {
719 priv->page_size = 1;
720 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
721 /* adjust ecc setup if needed */
722 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
723 BR_DECC_CHK_GEN) {
724 chip->ecc.size = 512;
725 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
726 &fsl_elbc_oob_lp_eccm1 :
727 &fsl_elbc_oob_lp_eccm0;
728 chip->badblock_pattern = &largepage_memorybased;
730 } else {
731 dev_err(ctrl->dev,
732 "fsl_elbc_init: page size %d is not supported\n",
733 mtd->writesize);
734 return -1;
737 return 0;
740 static int fsl_elbc_read_page(struct mtd_info *mtd,
741 struct nand_chip *chip,
742 uint8_t *buf,
743 int page)
745 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
746 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
748 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
749 mtd->ecc_stats.failed++;
751 return 0;
754 /* ECC will be calculated automatically, and errors will be detected in
755 * waitfunc.
757 static void fsl_elbc_write_page(struct mtd_info *mtd,
758 struct nand_chip *chip,
759 const uint8_t *buf)
761 struct fsl_elbc_mtd *priv = chip->priv;
762 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
764 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
765 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
767 ctrl->oob_poi = chip->oob_poi;
770 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
772 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
773 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
774 struct nand_chip *chip = &priv->chip;
776 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
778 /* Fill in fsl_elbc_mtd structure */
779 priv->mtd.priv = chip;
780 priv->mtd.owner = THIS_MODULE;
782 /* Set the ECCM according to the settings in bootloader.*/
783 priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
785 /* fill in nand_chip structure */
786 /* set up function call table */
787 chip->read_byte = fsl_elbc_read_byte;
788 chip->write_buf = fsl_elbc_write_buf;
789 chip->read_buf = fsl_elbc_read_buf;
790 chip->verify_buf = fsl_elbc_verify_buf;
791 chip->select_chip = fsl_elbc_select_chip;
792 chip->cmdfunc = fsl_elbc_cmdfunc;
793 chip->waitfunc = fsl_elbc_wait;
795 chip->bbt_td = &bbt_main_descr;
796 chip->bbt_md = &bbt_mirror_descr;
798 /* set up nand options */
799 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
800 NAND_USE_FLASH_BBT;
802 chip->controller = &ctrl->controller;
803 chip->priv = priv;
805 chip->ecc.read_page = fsl_elbc_read_page;
806 chip->ecc.write_page = fsl_elbc_write_page;
808 /* If CS Base Register selects full hardware ECC then use it */
809 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
810 BR_DECC_CHK_GEN) {
811 chip->ecc.mode = NAND_ECC_HW;
812 /* put in small page settings and adjust later if needed */
813 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
814 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
815 chip->ecc.size = 512;
816 chip->ecc.bytes = 3;
817 } else {
818 /* otherwise fall back to default software ECC */
819 chip->ecc.mode = NAND_ECC_SOFT;
822 return 0;
825 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
827 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
829 nand_release(&priv->mtd);
831 kfree(priv->mtd.name);
833 if (priv->vbase)
834 iounmap(priv->vbase);
836 ctrl->chips[priv->bank] = NULL;
837 kfree(priv);
839 return 0;
842 static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
843 struct device_node *node)
845 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
846 struct fsl_elbc_mtd *priv;
847 struct resource res;
848 #ifdef CONFIG_MTD_PARTITIONS
849 static const char *part_probe_types[]
850 = { "cmdlinepart", "RedBoot", NULL };
851 struct mtd_partition *parts;
852 #endif
853 int ret;
854 int bank;
856 /* get, allocate and map the memory resource */
857 ret = of_address_to_resource(node, 0, &res);
858 if (ret) {
859 dev_err(ctrl->dev, "failed to get resource\n");
860 return ret;
863 /* find which chip select it is connected to */
864 for (bank = 0; bank < MAX_BANKS; bank++)
865 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
866 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
867 (in_be32(&lbc->bank[bank].br) &
868 in_be32(&lbc->bank[bank].or) & BR_BA)
869 == res.start)
870 break;
872 if (bank >= MAX_BANKS) {
873 dev_err(ctrl->dev, "address did not match any chip selects\n");
874 return -ENODEV;
877 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
878 if (!priv)
879 return -ENOMEM;
881 ctrl->chips[bank] = priv;
882 priv->bank = bank;
883 priv->ctrl = ctrl;
884 priv->dev = ctrl->dev;
886 priv->vbase = ioremap(res.start, res.end - res.start + 1);
887 if (!priv->vbase) {
888 dev_err(ctrl->dev, "failed to map chip region\n");
889 ret = -ENOMEM;
890 goto err;
893 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
894 if (!priv->mtd.name) {
895 ret = -ENOMEM;
896 goto err;
899 ret = fsl_elbc_chip_init(priv);
900 if (ret)
901 goto err;
903 ret = nand_scan_ident(&priv->mtd, 1);
904 if (ret)
905 goto err;
907 ret = fsl_elbc_chip_init_tail(&priv->mtd);
908 if (ret)
909 goto err;
911 ret = nand_scan_tail(&priv->mtd);
912 if (ret)
913 goto err;
915 #ifdef CONFIG_MTD_PARTITIONS
916 /* First look for RedBoot table or partitions on the command
917 * line, these take precedence over device tree information */
918 ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
919 if (ret < 0)
920 goto err;
922 #ifdef CONFIG_MTD_OF_PARTS
923 if (ret == 0) {
924 ret = of_mtd_parse_partitions(priv->dev, node, &parts);
925 if (ret < 0)
926 goto err;
928 #endif
930 if (ret > 0)
931 add_mtd_partitions(&priv->mtd, parts, ret);
932 else
933 #endif
934 add_mtd_device(&priv->mtd);
936 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
937 (unsigned long long)res.start, priv->bank);
938 return 0;
940 err:
941 fsl_elbc_chip_remove(priv);
942 return ret;
945 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
947 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
949 /* clear event registers */
950 setbits32(&lbc->ltesr, LTESR_NAND_MASK);
951 out_be32(&lbc->lteatr, 0);
953 /* Enable interrupts for any detected events */
954 out_be32(&lbc->lteir, LTESR_NAND_MASK);
956 ctrl->read_bytes = 0;
957 ctrl->index = 0;
958 ctrl->addr = NULL;
960 return 0;
963 static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
965 struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
966 int i;
968 for (i = 0; i < MAX_BANKS; i++)
969 if (ctrl->chips[i])
970 fsl_elbc_chip_remove(ctrl->chips[i]);
972 if (ctrl->irq)
973 free_irq(ctrl->irq, ctrl);
975 if (ctrl->regs)
976 iounmap(ctrl->regs);
978 dev_set_drvdata(&ofdev->dev, NULL);
979 kfree(ctrl);
980 return 0;
983 /* NOTE: This interrupt is also used to report other localbus events,
984 * such as transaction errors on other chipselects. If we want to
985 * capture those, we'll need to move the IRQ code into a shared
986 * LBC driver.
989 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
991 struct fsl_elbc_ctrl *ctrl = data;
992 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
993 __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
995 if (status) {
996 out_be32(&lbc->ltesr, status);
997 out_be32(&lbc->lteatr, 0);
999 ctrl->irq_status = status;
1000 smp_wmb();
1001 wake_up(&ctrl->irq_wait);
1003 return IRQ_HANDLED;
1006 return IRQ_NONE;
1009 /* fsl_elbc_ctrl_probe
1011 * called by device layer when it finds a device matching
1012 * one our driver can handled. This code allocates all of
1013 * the resources needed for the controller only. The
1014 * resources for the NAND banks themselves are allocated
1015 * in the chip probe function.
1018 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
1019 const struct of_device_id *match)
1021 struct device_node *child;
1022 struct fsl_elbc_ctrl *ctrl;
1023 int ret;
1025 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1026 if (!ctrl)
1027 return -ENOMEM;
1029 dev_set_drvdata(&ofdev->dev, ctrl);
1031 spin_lock_init(&ctrl->controller.lock);
1032 init_waitqueue_head(&ctrl->controller.wq);
1033 init_waitqueue_head(&ctrl->irq_wait);
1035 ctrl->regs = of_iomap(ofdev->node, 0);
1036 if (!ctrl->regs) {
1037 dev_err(&ofdev->dev, "failed to get memory region\n");
1038 ret = -ENODEV;
1039 goto err;
1042 ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1043 if (ctrl->irq == NO_IRQ) {
1044 dev_err(&ofdev->dev, "failed to get irq resource\n");
1045 ret = -ENODEV;
1046 goto err;
1049 ctrl->dev = &ofdev->dev;
1051 ret = fsl_elbc_ctrl_init(ctrl);
1052 if (ret < 0)
1053 goto err;
1055 ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1056 if (ret != 0) {
1057 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1058 ctrl->irq);
1059 ret = ctrl->irq;
1060 goto err;
1063 for_each_child_of_node(ofdev->node, child)
1064 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1065 fsl_elbc_chip_probe(ctrl, child);
1067 return 0;
1069 err:
1070 fsl_elbc_ctrl_remove(ofdev);
1071 return ret;
1074 static const struct of_device_id fsl_elbc_match[] = {
1076 .compatible = "fsl,elbc",
1081 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1082 .driver = {
1083 .name = "fsl-elbc",
1085 .match_table = fsl_elbc_match,
1086 .probe = fsl_elbc_ctrl_probe,
1087 .remove = fsl_elbc_ctrl_remove,
1090 static int __init fsl_elbc_init(void)
1092 return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1095 static void __exit fsl_elbc_exit(void)
1097 of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1100 module_init(fsl_elbc_init);
1101 module_exit(fsl_elbc_exit);
1103 MODULE_LICENSE("GPL");
1104 MODULE_AUTHOR("Freescale");
1105 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");