5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8
= {
66 static struct nand_ecclayout nand_oob_16
= {
68 .eccpos
= {0, 1, 2, 3, 6, 7},
74 static struct nand_ecclayout nand_oob_64
= {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
85 static struct nand_ecclayout nand_oob_128
= {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
99 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
102 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
103 struct mtd_oob_ops
*ops
);
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
109 DEFINE_LED_TRIGGER(nand_led_trigger
);
112 * nand_release_device - [GENERIC] release chip
113 * @mtd: MTD device structure
115 * Deselect, release chip lock and wake up anyone waiting on the device
117 static void nand_release_device(struct mtd_info
*mtd
)
119 struct nand_chip
*chip
= mtd
->priv
;
121 /* De-select the NAND device */
122 chip
->select_chip(mtd
, -1);
124 /* Release the controller and the chip */
125 spin_lock(&chip
->controller
->lock
);
126 chip
->controller
->active
= NULL
;
127 chip
->state
= FL_READY
;
128 wake_up(&chip
->controller
->wq
);
129 spin_unlock(&chip
->controller
->lock
);
133 * nand_read_byte - [DEFAULT] read one byte from the chip
134 * @mtd: MTD device structure
136 * Default read function for 8bit buswith
138 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
140 struct nand_chip
*chip
= mtd
->priv
;
141 return readb(chip
->IO_ADDR_R
);
145 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
146 * @mtd: MTD device structure
148 * Default read function for 16bit buswith with
149 * endianess conversion
151 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
153 struct nand_chip
*chip
= mtd
->priv
;
154 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
158 * nand_read_word - [DEFAULT] read one word from the chip
159 * @mtd: MTD device structure
161 * Default read function for 16bit buswith without
162 * endianess conversion
164 static u16
nand_read_word(struct mtd_info
*mtd
)
166 struct nand_chip
*chip
= mtd
->priv
;
167 return readw(chip
->IO_ADDR_R
);
171 * nand_select_chip - [DEFAULT] control CE line
172 * @mtd: MTD device structure
173 * @chipnr: chipnumber to select, -1 for deselect
175 * Default select function for 1 chip devices.
177 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
179 struct nand_chip
*chip
= mtd
->priv
;
183 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
194 * nand_write_buf - [DEFAULT] write buffer to chip
195 * @mtd: MTD device structure
197 * @len: number of bytes to write
199 * Default write function for 8bit buswith
201 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
204 struct nand_chip
*chip
= mtd
->priv
;
206 for (i
= 0; i
< len
; i
++)
207 writeb(buf
[i
], chip
->IO_ADDR_W
);
211 * nand_read_buf - [DEFAULT] read chip data into buffer
212 * @mtd: MTD device structure
213 * @buf: buffer to store date
214 * @len: number of bytes to read
216 * Default read function for 8bit buswith
218 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
221 struct nand_chip
*chip
= mtd
->priv
;
223 for (i
= 0; i
< len
; i
++)
224 buf
[i
] = readb(chip
->IO_ADDR_R
);
228 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
229 * @mtd: MTD device structure
230 * @buf: buffer containing the data to compare
231 * @len: number of bytes to compare
233 * Default verify function for 8bit buswith
235 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
238 struct nand_chip
*chip
= mtd
->priv
;
240 for (i
= 0; i
< len
; i
++)
241 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
247 * nand_write_buf16 - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
250 * @len: number of bytes to write
252 * Default write function for 16bit buswith
254 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
257 struct nand_chip
*chip
= mtd
->priv
;
258 u16
*p
= (u16
*) buf
;
261 for (i
= 0; i
< len
; i
++)
262 writew(p
[i
], chip
->IO_ADDR_W
);
267 * nand_read_buf16 - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
272 * Default read function for 16bit buswith
274 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
277 struct nand_chip
*chip
= mtd
->priv
;
278 u16
*p
= (u16
*) buf
;
281 for (i
= 0; i
< len
; i
++)
282 p
[i
] = readw(chip
->IO_ADDR_R
);
286 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
287 * @mtd: MTD device structure
288 * @buf: buffer containing the data to compare
289 * @len: number of bytes to compare
291 * Default verify function for 16bit buswith
293 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
296 struct nand_chip
*chip
= mtd
->priv
;
297 u16
*p
= (u16
*) buf
;
300 for (i
= 0; i
< len
; i
++)
301 if (p
[i
] != readw(chip
->IO_ADDR_R
))
308 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
309 * @mtd: MTD device structure
310 * @ofs: offset from device start
311 * @getchip: 0, if the chip is already selected
313 * Check, if the block is bad.
315 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
317 int page
, chipnr
, res
= 0;
318 struct nand_chip
*chip
= mtd
->priv
;
321 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
324 chipnr
= (int)(ofs
>> chip
->chip_shift
);
326 nand_get_device(chip
, mtd
, FL_READING
);
328 /* Select the NAND device */
329 chip
->select_chip(mtd
, chipnr
);
332 if (chip
->options
& NAND_BUSWIDTH_16
) {
333 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
335 bad
= cpu_to_le16(chip
->read_word(mtd
));
336 if (chip
->badblockpos
& 0x1)
338 if ((bad
& 0xFF) != 0xff)
341 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
342 if (chip
->read_byte(mtd
) != 0xff)
347 nand_release_device(mtd
);
353 * nand_default_block_markbad - [DEFAULT] mark a block bad
354 * @mtd: MTD device structure
355 * @ofs: offset from device start
357 * This is the default implementation, which can be overridden by
358 * a hardware specific driver.
360 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
362 struct nand_chip
*chip
= mtd
->priv
;
363 uint8_t buf
[2] = { 0, 0 };
366 /* Get block number */
367 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
369 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
371 /* Do we have a flash based bad block table ? */
372 if (chip
->options
& NAND_USE_FLASH_BBT
)
373 ret
= nand_update_bbt(mtd
, ofs
);
375 /* We write two bytes, so we dont have to mess with 16 bit
378 nand_get_device(chip
, mtd
, FL_WRITING
);
380 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
381 chip
->ops
.datbuf
= NULL
;
382 chip
->ops
.oobbuf
= buf
;
383 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
385 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
386 nand_release_device(mtd
);
389 mtd
->ecc_stats
.badblocks
++;
395 * nand_check_wp - [GENERIC] check if the chip is write protected
396 * @mtd: MTD device structure
397 * Check, if the device is write protected
399 * The function expects, that the device is already selected
401 static int nand_check_wp(struct mtd_info
*mtd
)
403 struct nand_chip
*chip
= mtd
->priv
;
404 /* Check the WP bit */
405 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
406 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
410 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
411 * @mtd: MTD device structure
412 * @ofs: offset from device start
413 * @getchip: 0, if the chip is already selected
414 * @allowbbt: 1, if its allowed to access the bbt area
416 * Check, if the block is bad. Either by reading the bad block table or
417 * calling of the scan function.
419 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
422 struct nand_chip
*chip
= mtd
->priv
;
425 return chip
->block_bad(mtd
, ofs
, getchip
);
427 /* Return info from the table */
428 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
432 * Wait for the ready pin, after a command
433 * The timeout is catched later.
435 void nand_wait_ready(struct mtd_info
*mtd
)
437 struct nand_chip
*chip
= mtd
->priv
;
438 unsigned long timeo
= jiffies
+ 2;
440 led_trigger_event(nand_led_trigger
, LED_FULL
);
441 /* wait until command is processed or timeout occures */
443 if (chip
->dev_ready(mtd
))
445 touch_softlockup_watchdog();
446 } while (time_before(jiffies
, timeo
));
447 led_trigger_event(nand_led_trigger
, LED_OFF
);
449 EXPORT_SYMBOL_GPL(nand_wait_ready
);
452 * nand_command - [DEFAULT] Send command to NAND device
453 * @mtd: MTD device structure
454 * @command: the command to be sent
455 * @column: the column address for this command, -1 if none
456 * @page_addr: the page address for this command, -1 if none
458 * Send command to NAND device. This function is used for small page
459 * devices (256/512 Bytes per page)
461 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
462 int column
, int page_addr
)
464 register struct nand_chip
*chip
= mtd
->priv
;
465 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
468 * Write out the command to the device.
470 if (command
== NAND_CMD_SEQIN
) {
473 if (column
>= mtd
->writesize
) {
475 column
-= mtd
->writesize
;
476 readcmd
= NAND_CMD_READOOB
;
477 } else if (column
< 256) {
478 /* First 256 bytes --> READ0 */
479 readcmd
= NAND_CMD_READ0
;
482 readcmd
= NAND_CMD_READ1
;
484 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
485 ctrl
&= ~NAND_CTRL_CHANGE
;
487 chip
->cmd_ctrl(mtd
, command
, ctrl
);
490 * Address cycle, when necessary
492 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
493 /* Serially input address */
495 /* Adjust columns for 16 bit buswidth */
496 if (chip
->options
& NAND_BUSWIDTH_16
)
498 chip
->cmd_ctrl(mtd
, column
, ctrl
);
499 ctrl
&= ~NAND_CTRL_CHANGE
;
501 if (page_addr
!= -1) {
502 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
503 ctrl
&= ~NAND_CTRL_CHANGE
;
504 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
505 /* One more address cycle for devices > 32MiB */
506 if (chip
->chipsize
> (32 << 20))
507 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
509 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
512 * program and erase have their own busy handlers
513 * status and sequential in needs no delay
517 case NAND_CMD_PAGEPROG
:
518 case NAND_CMD_ERASE1
:
519 case NAND_CMD_ERASE2
:
521 case NAND_CMD_STATUS
:
527 udelay(chip
->chip_delay
);
528 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
529 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
531 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
532 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
535 /* This applies to read commands */
538 * If we don't have access to the busy pin, we apply the given
541 if (!chip
->dev_ready
) {
542 udelay(chip
->chip_delay
);
546 /* Apply this short delay always to ensure that we do wait tWB in
547 * any case on any machine. */
550 nand_wait_ready(mtd
);
554 * nand_command_lp - [DEFAULT] Send command to NAND large page device
555 * @mtd: MTD device structure
556 * @command: the command to be sent
557 * @column: the column address for this command, -1 if none
558 * @page_addr: the page address for this command, -1 if none
560 * Send command to NAND device. This is the version for the new large page
561 * devices We dont have the separate regions as we have in the small page
562 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
564 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
565 int column
, int page_addr
)
567 register struct nand_chip
*chip
= mtd
->priv
;
569 /* Emulate NAND_CMD_READOOB */
570 if (command
== NAND_CMD_READOOB
) {
571 column
+= mtd
->writesize
;
572 command
= NAND_CMD_READ0
;
575 /* Command latch cycle */
576 chip
->cmd_ctrl(mtd
, command
& 0xff,
577 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
579 if (column
!= -1 || page_addr
!= -1) {
580 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
582 /* Serially input address */
584 /* Adjust columns for 16 bit buswidth */
585 if (chip
->options
& NAND_BUSWIDTH_16
)
587 chip
->cmd_ctrl(mtd
, column
, ctrl
);
588 ctrl
&= ~NAND_CTRL_CHANGE
;
589 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
591 if (page_addr
!= -1) {
592 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
593 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
594 NAND_NCE
| NAND_ALE
);
595 /* One more address cycle for devices > 128MiB */
596 if (chip
->chipsize
> (128 << 20))
597 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
598 NAND_NCE
| NAND_ALE
);
601 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
604 * program and erase have their own busy handlers
605 * status, sequential in, and deplete1 need no delay
609 case NAND_CMD_CACHEDPROG
:
610 case NAND_CMD_PAGEPROG
:
611 case NAND_CMD_ERASE1
:
612 case NAND_CMD_ERASE2
:
615 case NAND_CMD_STATUS
:
616 case NAND_CMD_DEPLETE1
:
620 * read error status commands require only a short delay
622 case NAND_CMD_STATUS_ERROR
:
623 case NAND_CMD_STATUS_ERROR0
:
624 case NAND_CMD_STATUS_ERROR1
:
625 case NAND_CMD_STATUS_ERROR2
:
626 case NAND_CMD_STATUS_ERROR3
:
627 udelay(chip
->chip_delay
);
633 udelay(chip
->chip_delay
);
634 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
635 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
636 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
637 NAND_NCE
| NAND_CTRL_CHANGE
);
638 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
641 case NAND_CMD_RNDOUT
:
642 /* No ready / busy check necessary */
643 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
644 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
645 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
646 NAND_NCE
| NAND_CTRL_CHANGE
);
650 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
651 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
652 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
653 NAND_NCE
| NAND_CTRL_CHANGE
);
655 /* This applies to read commands */
658 * If we don't have access to the busy pin, we apply the given
661 if (!chip
->dev_ready
) {
662 udelay(chip
->chip_delay
);
667 /* Apply this short delay always to ensure that we do wait tWB in
668 * any case on any machine. */
671 nand_wait_ready(mtd
);
675 * nand_get_device - [GENERIC] Get chip for selected access
676 * @chip: the nand chip descriptor
677 * @mtd: MTD device structure
678 * @new_state: the state which is requested
680 * Get the device and lock it for exclusive access
683 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
685 spinlock_t
*lock
= &chip
->controller
->lock
;
686 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
687 DECLARE_WAITQUEUE(wait
, current
);
691 /* Hardware controller shared among independent devices */
692 if (!chip
->controller
->active
)
693 chip
->controller
->active
= chip
;
695 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
696 chip
->state
= new_state
;
700 if (new_state
== FL_PM_SUSPENDED
) {
702 return (chip
->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
704 set_current_state(TASK_UNINTERRUPTIBLE
);
705 add_wait_queue(wq
, &wait
);
708 remove_wait_queue(wq
, &wait
);
713 * nand_wait - [DEFAULT] wait until the command is done
714 * @mtd: MTD device structure
715 * @chip: NAND chip structure
717 * Wait for command done. This applies to erase and program only
718 * Erase can take up to 400ms and program up to 20ms according to
719 * general NAND and SmartMedia specs
721 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
724 unsigned long timeo
= jiffies
;
725 int status
, state
= chip
->state
;
727 if (state
== FL_ERASING
)
728 timeo
+= (HZ
* 400) / 1000;
730 timeo
+= (HZ
* 20) / 1000;
732 led_trigger_event(nand_led_trigger
, LED_FULL
);
734 /* Apply this short delay always to ensure that we do wait tWB in
735 * any case on any machine. */
738 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
739 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
741 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
743 while (time_before(jiffies
, timeo
)) {
744 if (chip
->dev_ready
) {
745 if (chip
->dev_ready(mtd
))
748 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
753 led_trigger_event(nand_led_trigger
, LED_OFF
);
755 status
= (int)chip
->read_byte(mtd
);
760 * nand_read_page_raw - [Intern] read raw page data without ecc
761 * @mtd: mtd info structure
762 * @chip: nand chip info structure
763 * @buf: buffer to store read data
764 * @page: page number to read
766 * Not for syndrome calculating ecc controllers, which use a special oob layout
768 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
769 uint8_t *buf
, int page
)
771 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
772 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
777 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
778 * @mtd: mtd info structure
779 * @chip: nand chip info structure
780 * @buf: buffer to store read data
781 * @page: page number to read
783 * We need a special oob layout and handling even when OOB isn't used.
785 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
786 uint8_t *buf
, int page
)
788 int eccsize
= chip
->ecc
.size
;
789 int eccbytes
= chip
->ecc
.bytes
;
790 uint8_t *oob
= chip
->oob_poi
;
793 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
794 chip
->read_buf(mtd
, buf
, eccsize
);
797 if (chip
->ecc
.prepad
) {
798 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
799 oob
+= chip
->ecc
.prepad
;
802 chip
->read_buf(mtd
, oob
, eccbytes
);
805 if (chip
->ecc
.postpad
) {
806 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
807 oob
+= chip
->ecc
.postpad
;
811 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
813 chip
->read_buf(mtd
, oob
, size
);
819 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
820 * @mtd: mtd info structure
821 * @chip: nand chip info structure
822 * @buf: buffer to store read data
823 * @page: page number to read
825 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
826 uint8_t *buf
, int page
)
828 int i
, eccsize
= chip
->ecc
.size
;
829 int eccbytes
= chip
->ecc
.bytes
;
830 int eccsteps
= chip
->ecc
.steps
;
832 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
833 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
834 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
836 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, page
);
838 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
839 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
841 for (i
= 0; i
< chip
->ecc
.total
; i
++)
842 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
844 eccsteps
= chip
->ecc
.steps
;
847 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
850 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
852 mtd
->ecc_stats
.failed
++;
854 mtd
->ecc_stats
.corrected
+= stat
;
860 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
861 * @mtd: mtd info structure
862 * @chip: nand chip info structure
863 * @data_offs: offset of requested data within the page
864 * @readlen: data length
865 * @bufpoi: buffer to store read data
867 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
, uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
869 int start_step
, end_step
, num_steps
;
870 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
872 int data_col_addr
, i
, gaps
= 0;
873 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
874 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
876 /* Column address wihin the page aligned to ECC size (256bytes). */
877 start_step
= data_offs
/ chip
->ecc
.size
;
878 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
879 num_steps
= end_step
- start_step
+ 1;
881 /* Data size aligned to ECC ecc.size*/
882 datafrag_len
= num_steps
* chip
->ecc
.size
;
883 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
885 data_col_addr
= start_step
* chip
->ecc
.size
;
886 /* If we read not a page aligned data */
887 if (data_col_addr
!= 0)
888 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
890 p
= bufpoi
+ data_col_addr
;
891 chip
->read_buf(mtd
, p
, datafrag_len
);
894 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
895 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
897 /* The performance is faster if to position offsets
898 according to ecc.pos. Let make sure here that
899 there are no gaps in ecc positions */
900 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
901 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
902 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
908 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
909 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
911 /* send the command to read the particular ecc bytes */
912 /* take care about buswidth alignment in read_buf */
913 aligned_pos
= eccpos
[start_step
* chip
->ecc
.bytes
] & ~(busw
- 1);
914 aligned_len
= eccfrag_len
;
915 if (eccpos
[start_step
* chip
->ecc
.bytes
] & (busw
- 1))
917 if (eccpos
[(start_step
+ num_steps
) * chip
->ecc
.bytes
] & (busw
- 1))
920 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
+ aligned_pos
, -1);
921 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
924 for (i
= 0; i
< eccfrag_len
; i
++)
925 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ start_step
* chip
->ecc
.bytes
]];
927 p
= bufpoi
+ data_col_addr
;
928 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
931 stat
= chip
->ecc
.correct(mtd
, p
, &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
933 mtd
->ecc_stats
.failed
++;
935 mtd
->ecc_stats
.corrected
+= stat
;
941 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
942 * @mtd: mtd info structure
943 * @chip: nand chip info structure
944 * @buf: buffer to store read data
945 * @page: page number to read
947 * Not for syndrome calculating ecc controllers which need a special oob layout
949 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
950 uint8_t *buf
, int page
)
952 int i
, eccsize
= chip
->ecc
.size
;
953 int eccbytes
= chip
->ecc
.bytes
;
954 int eccsteps
= chip
->ecc
.steps
;
956 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
957 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
958 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
960 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
961 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
962 chip
->read_buf(mtd
, p
, eccsize
);
963 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
965 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
967 for (i
= 0; i
< chip
->ecc
.total
; i
++)
968 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
970 eccsteps
= chip
->ecc
.steps
;
973 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
976 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
978 mtd
->ecc_stats
.failed
++;
980 mtd
->ecc_stats
.corrected
+= stat
;
986 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
987 * @mtd: mtd info structure
988 * @chip: nand chip info structure
989 * @buf: buffer to store read data
990 * @page: page number to read
992 * Hardware ECC for large page chips, require OOB to be read first.
993 * For this ECC mode, the write_page method is re-used from ECC_HW.
994 * These methods read/write ECC from the OOB area, unlike the
995 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
996 * "infix ECC" scheme and reads/writes ECC from the data area, by
997 * overwriting the NAND manufacturer bad block markings.
999 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1000 struct nand_chip
*chip
, uint8_t *buf
, int page
)
1002 int i
, eccsize
= chip
->ecc
.size
;
1003 int eccbytes
= chip
->ecc
.bytes
;
1004 int eccsteps
= chip
->ecc
.steps
;
1006 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1007 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1008 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1010 /* Read the OOB area first */
1011 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1012 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1013 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1015 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1016 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1018 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1021 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1022 chip
->read_buf(mtd
, p
, eccsize
);
1023 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1025 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1027 mtd
->ecc_stats
.failed
++;
1029 mtd
->ecc_stats
.corrected
+= stat
;
1035 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1036 * @mtd: mtd info structure
1037 * @chip: nand chip info structure
1038 * @buf: buffer to store read data
1039 * @page: page number to read
1041 * The hw generator calculates the error syndrome automatically. Therefor
1042 * we need a special oob layout and handling.
1044 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1045 uint8_t *buf
, int page
)
1047 int i
, eccsize
= chip
->ecc
.size
;
1048 int eccbytes
= chip
->ecc
.bytes
;
1049 int eccsteps
= chip
->ecc
.steps
;
1051 uint8_t *oob
= chip
->oob_poi
;
1053 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1056 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1057 chip
->read_buf(mtd
, p
, eccsize
);
1059 if (chip
->ecc
.prepad
) {
1060 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1061 oob
+= chip
->ecc
.prepad
;
1064 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1065 chip
->read_buf(mtd
, oob
, eccbytes
);
1066 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1069 mtd
->ecc_stats
.failed
++;
1071 mtd
->ecc_stats
.corrected
+= stat
;
1075 if (chip
->ecc
.postpad
) {
1076 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1077 oob
+= chip
->ecc
.postpad
;
1081 /* Calculate remaining oob bytes */
1082 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1084 chip
->read_buf(mtd
, oob
, i
);
1090 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1091 * @chip: nand chip structure
1092 * @oob: oob destination address
1093 * @ops: oob ops structure
1094 * @len: size of oob to transfer
1096 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1097 struct mtd_oob_ops
*ops
, size_t len
)
1103 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1106 case MTD_OOB_AUTO
: {
1107 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1108 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1111 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1112 /* Read request not from offset 0 ? */
1113 if (unlikely(roffs
)) {
1114 if (roffs
>= free
->length
) {
1115 roffs
-= free
->length
;
1118 boffs
= free
->offset
+ roffs
;
1119 bytes
= min_t(size_t, len
,
1120 (free
->length
- roffs
));
1123 bytes
= min_t(size_t, len
, free
->length
);
1124 boffs
= free
->offset
;
1126 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1138 * nand_do_read_ops - [Internal] Read data with ECC
1140 * @mtd: MTD device structure
1141 * @from: offset to read from
1142 * @ops: oob ops structure
1144 * Internal function. Called with chip held.
1146 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1147 struct mtd_oob_ops
*ops
)
1149 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1150 struct nand_chip
*chip
= mtd
->priv
;
1151 struct mtd_ecc_stats stats
;
1152 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1155 uint32_t readlen
= ops
->len
;
1156 uint32_t oobreadlen
= ops
->ooblen
;
1157 uint8_t *bufpoi
, *oob
, *buf
;
1159 stats
= mtd
->ecc_stats
;
1161 chipnr
= (int)(from
>> chip
->chip_shift
);
1162 chip
->select_chip(mtd
, chipnr
);
1164 realpage
= (int)(from
>> chip
->page_shift
);
1165 page
= realpage
& chip
->pagemask
;
1167 col
= (int)(from
& (mtd
->writesize
- 1));
1173 bytes
= min(mtd
->writesize
- col
, readlen
);
1174 aligned
= (bytes
== mtd
->writesize
);
1176 /* Is the current page in the buffer ? */
1177 if (realpage
!= chip
->pagebuf
|| oob
) {
1178 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1180 if (likely(sndcmd
)) {
1181 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1185 /* Now read the page into the buffer */
1186 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1187 ret
= chip
->ecc
.read_page_raw(mtd
, chip
,
1189 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1190 ret
= chip
->ecc
.read_subpage(mtd
, chip
, col
, bytes
, bufpoi
);
1192 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1197 /* Transfer not aligned data */
1199 if (!NAND_SUBPAGE_READ(chip
) && !oob
)
1200 chip
->pagebuf
= realpage
;
1201 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1206 if (unlikely(oob
)) {
1207 /* Raw mode does data:oob:data:oob */
1208 if (ops
->mode
!= MTD_OOB_RAW
) {
1209 int toread
= min(oobreadlen
,
1210 chip
->ecc
.layout
->oobavail
);
1212 oob
= nand_transfer_oob(chip
,
1214 oobreadlen
-= toread
;
1217 buf
= nand_transfer_oob(chip
,
1218 buf
, ops
, mtd
->oobsize
);
1221 if (!(chip
->options
& NAND_NO_READRDY
)) {
1223 * Apply delay or wait for ready/busy pin. Do
1224 * this before the AUTOINCR check, so no
1225 * problems arise if a chip which does auto
1226 * increment is marked as NOAUTOINCR by the
1229 if (!chip
->dev_ready
)
1230 udelay(chip
->chip_delay
);
1232 nand_wait_ready(mtd
);
1235 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1244 /* For subsequent reads align to page boundary. */
1246 /* Increment page address */
1249 page
= realpage
& chip
->pagemask
;
1250 /* Check, if we cross a chip boundary */
1253 chip
->select_chip(mtd
, -1);
1254 chip
->select_chip(mtd
, chipnr
);
1257 /* Check, if the chip supports auto page increment
1258 * or if we have hit a block boundary.
1260 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1264 ops
->retlen
= ops
->len
- (size_t) readlen
;
1266 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1271 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1274 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1278 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1279 * @mtd: MTD device structure
1280 * @from: offset to read from
1281 * @len: number of bytes to read
1282 * @retlen: pointer to variable to store the number of read bytes
1283 * @buf: the databuffer to put data
1285 * Get hold of the chip and call nand_do_read
1287 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1288 size_t *retlen
, uint8_t *buf
)
1290 struct nand_chip
*chip
= mtd
->priv
;
1293 /* Do not allow reads past end of device */
1294 if ((from
+ len
) > mtd
->size
)
1299 nand_get_device(chip
, mtd
, FL_READING
);
1301 chip
->ops
.len
= len
;
1302 chip
->ops
.datbuf
= buf
;
1303 chip
->ops
.oobbuf
= NULL
;
1305 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1307 *retlen
= chip
->ops
.retlen
;
1309 nand_release_device(mtd
);
1315 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1316 * @mtd: mtd info structure
1317 * @chip: nand chip info structure
1318 * @page: page number to read
1319 * @sndcmd: flag whether to issue read command or not
1321 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1322 int page
, int sndcmd
)
1325 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1328 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1333 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1335 * @mtd: mtd info structure
1336 * @chip: nand chip info structure
1337 * @page: page number to read
1338 * @sndcmd: flag whether to issue read command or not
1340 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1341 int page
, int sndcmd
)
1343 uint8_t *buf
= chip
->oob_poi
;
1344 int length
= mtd
->oobsize
;
1345 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1346 int eccsize
= chip
->ecc
.size
;
1347 uint8_t *bufpoi
= buf
;
1348 int i
, toread
, sndrnd
= 0, pos
;
1350 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1351 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1353 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1354 if (mtd
->writesize
> 512)
1355 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1357 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1360 toread
= min_t(int, length
, chunk
);
1361 chip
->read_buf(mtd
, bufpoi
, toread
);
1366 chip
->read_buf(mtd
, bufpoi
, length
);
1372 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1373 * @mtd: mtd info structure
1374 * @chip: nand chip info structure
1375 * @page: page number to write
1377 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1381 const uint8_t *buf
= chip
->oob_poi
;
1382 int length
= mtd
->oobsize
;
1384 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1385 chip
->write_buf(mtd
, buf
, length
);
1386 /* Send command to program the OOB data */
1387 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1389 status
= chip
->waitfunc(mtd
, chip
);
1391 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1395 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1396 * with syndrome - only for large page flash !
1397 * @mtd: mtd info structure
1398 * @chip: nand chip info structure
1399 * @page: page number to write
1401 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1402 struct nand_chip
*chip
, int page
)
1404 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1405 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1406 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1407 const uint8_t *bufpoi
= chip
->oob_poi
;
1410 * data-ecc-data-ecc ... ecc-oob
1412 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1414 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1415 pos
= steps
* (eccsize
+ chunk
);
1420 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1421 for (i
= 0; i
< steps
; i
++) {
1423 if (mtd
->writesize
<= 512) {
1424 uint32_t fill
= 0xFFFFFFFF;
1428 int num
= min_t(int, len
, 4);
1429 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1434 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1435 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1439 len
= min_t(int, length
, chunk
);
1440 chip
->write_buf(mtd
, bufpoi
, len
);
1445 chip
->write_buf(mtd
, bufpoi
, length
);
1447 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1448 status
= chip
->waitfunc(mtd
, chip
);
1450 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1454 * nand_do_read_oob - [Intern] NAND read out-of-band
1455 * @mtd: MTD device structure
1456 * @from: offset to read from
1457 * @ops: oob operations description structure
1459 * NAND read out-of-band data from the spare area
1461 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1462 struct mtd_oob_ops
*ops
)
1464 int page
, realpage
, chipnr
, sndcmd
= 1;
1465 struct nand_chip
*chip
= mtd
->priv
;
1466 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1467 int readlen
= ops
->ooblen
;
1469 uint8_t *buf
= ops
->oobbuf
;
1471 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08Lx, len = %i\n",
1472 __func__
, (unsigned long long)from
, readlen
);
1474 if (ops
->mode
== MTD_OOB_AUTO
)
1475 len
= chip
->ecc
.layout
->oobavail
;
1479 if (unlikely(ops
->ooboffs
>= len
)) {
1480 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start read "
1481 "outside oob\n", __func__
);
1485 /* Do not allow reads past end of device */
1486 if (unlikely(from
>= mtd
->size
||
1487 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1488 (from
>> chip
->page_shift
)) * len
)) {
1489 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read beyond end "
1490 "of device\n", __func__
);
1494 chipnr
= (int)(from
>> chip
->chip_shift
);
1495 chip
->select_chip(mtd
, chipnr
);
1497 /* Shift to get page */
1498 realpage
= (int)(from
>> chip
->page_shift
);
1499 page
= realpage
& chip
->pagemask
;
1502 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1504 len
= min(len
, readlen
);
1505 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1507 if (!(chip
->options
& NAND_NO_READRDY
)) {
1509 * Apply delay or wait for ready/busy pin. Do this
1510 * before the AUTOINCR check, so no problems arise if a
1511 * chip which does auto increment is marked as
1512 * NOAUTOINCR by the board driver.
1514 if (!chip
->dev_ready
)
1515 udelay(chip
->chip_delay
);
1517 nand_wait_ready(mtd
);
1524 /* Increment page address */
1527 page
= realpage
& chip
->pagemask
;
1528 /* Check, if we cross a chip boundary */
1531 chip
->select_chip(mtd
, -1);
1532 chip
->select_chip(mtd
, chipnr
);
1535 /* Check, if the chip supports auto page increment
1536 * or if we have hit a block boundary.
1538 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1542 ops
->oobretlen
= ops
->ooblen
;
1547 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1548 * @mtd: MTD device structure
1549 * @from: offset to read from
1550 * @ops: oob operation description structure
1552 * NAND read data and/or out-of-band data
1554 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1555 struct mtd_oob_ops
*ops
)
1557 struct nand_chip
*chip
= mtd
->priv
;
1558 int ret
= -ENOTSUPP
;
1562 /* Do not allow reads past end of device */
1563 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1564 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read "
1565 "beyond end of device\n", __func__
);
1569 nand_get_device(chip
, mtd
, FL_READING
);
1582 ret
= nand_do_read_oob(mtd
, from
, ops
);
1584 ret
= nand_do_read_ops(mtd
, from
, ops
);
1587 nand_release_device(mtd
);
1593 * nand_write_page_raw - [Intern] raw page write function
1594 * @mtd: mtd info structure
1595 * @chip: nand chip info structure
1598 * Not for syndrome calculating ecc controllers, which use a special oob layout
1600 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1603 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1604 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1608 * nand_write_page_raw_syndrome - [Intern] raw page write function
1609 * @mtd: mtd info structure
1610 * @chip: nand chip info structure
1613 * We need a special oob layout and handling even when ECC isn't checked.
1615 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1618 int eccsize
= chip
->ecc
.size
;
1619 int eccbytes
= chip
->ecc
.bytes
;
1620 uint8_t *oob
= chip
->oob_poi
;
1623 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1624 chip
->write_buf(mtd
, buf
, eccsize
);
1627 if (chip
->ecc
.prepad
) {
1628 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1629 oob
+= chip
->ecc
.prepad
;
1632 chip
->read_buf(mtd
, oob
, eccbytes
);
1635 if (chip
->ecc
.postpad
) {
1636 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1637 oob
+= chip
->ecc
.postpad
;
1641 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1643 chip
->write_buf(mtd
, oob
, size
);
1646 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1647 * @mtd: mtd info structure
1648 * @chip: nand chip info structure
1651 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1654 int i
, eccsize
= chip
->ecc
.size
;
1655 int eccbytes
= chip
->ecc
.bytes
;
1656 int eccsteps
= chip
->ecc
.steps
;
1657 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1658 const uint8_t *p
= buf
;
1659 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1661 /* Software ecc calculation */
1662 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1663 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1665 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1666 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1668 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1672 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1673 * @mtd: mtd info structure
1674 * @chip: nand chip info structure
1677 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1680 int i
, eccsize
= chip
->ecc
.size
;
1681 int eccbytes
= chip
->ecc
.bytes
;
1682 int eccsteps
= chip
->ecc
.steps
;
1683 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1684 const uint8_t *p
= buf
;
1685 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1687 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1688 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1689 chip
->write_buf(mtd
, p
, eccsize
);
1690 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1693 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1694 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1696 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1700 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1701 * @mtd: mtd info structure
1702 * @chip: nand chip info structure
1705 * The hw generator calculates the error syndrome automatically. Therefor
1706 * we need a special oob layout and handling.
1708 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
1709 struct nand_chip
*chip
, const uint8_t *buf
)
1711 int i
, eccsize
= chip
->ecc
.size
;
1712 int eccbytes
= chip
->ecc
.bytes
;
1713 int eccsteps
= chip
->ecc
.steps
;
1714 const uint8_t *p
= buf
;
1715 uint8_t *oob
= chip
->oob_poi
;
1717 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1719 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1720 chip
->write_buf(mtd
, p
, eccsize
);
1722 if (chip
->ecc
.prepad
) {
1723 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1724 oob
+= chip
->ecc
.prepad
;
1727 chip
->ecc
.calculate(mtd
, p
, oob
);
1728 chip
->write_buf(mtd
, oob
, eccbytes
);
1731 if (chip
->ecc
.postpad
) {
1732 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1733 oob
+= chip
->ecc
.postpad
;
1737 /* Calculate remaining oob bytes */
1738 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1740 chip
->write_buf(mtd
, oob
, i
);
1744 * nand_write_page - [REPLACEABLE] write one page
1745 * @mtd: MTD device structure
1746 * @chip: NAND chip descriptor
1747 * @buf: the data to write
1748 * @page: page number to write
1749 * @cached: cached programming
1750 * @raw: use _raw version of write_page
1752 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1753 const uint8_t *buf
, int page
, int cached
, int raw
)
1757 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1760 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1762 chip
->ecc
.write_page(mtd
, chip
, buf
);
1765 * Cached progamming disabled for now, Not sure if its worth the
1766 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1770 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
1772 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1773 status
= chip
->waitfunc(mtd
, chip
);
1775 * See if operation failed and additional status checks are
1778 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
1779 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
1782 if (status
& NAND_STATUS_FAIL
)
1785 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
1786 status
= chip
->waitfunc(mtd
, chip
);
1789 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1790 /* Send command to read back the data */
1791 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1793 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
1800 * nand_fill_oob - [Internal] Transfer client buffer to oob
1801 * @chip: nand chip structure
1802 * @oob: oob data buffer
1803 * @ops: oob ops structure
1805 static uint8_t *nand_fill_oob(struct nand_chip
*chip
, uint8_t *oob
,
1806 struct mtd_oob_ops
*ops
)
1808 size_t len
= ops
->ooblen
;
1814 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
1817 case MTD_OOB_AUTO
: {
1818 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1819 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
1822 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1823 /* Write request not from offset 0 ? */
1824 if (unlikely(woffs
)) {
1825 if (woffs
>= free
->length
) {
1826 woffs
-= free
->length
;
1829 boffs
= free
->offset
+ woffs
;
1830 bytes
= min_t(size_t, len
,
1831 (free
->length
- woffs
));
1834 bytes
= min_t(size_t, len
, free
->length
);
1835 boffs
= free
->offset
;
1837 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
1848 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1851 * nand_do_write_ops - [Internal] NAND write with ECC
1852 * @mtd: MTD device structure
1853 * @to: offset to write to
1854 * @ops: oob operations description structure
1856 * NAND write with ECC
1858 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
1859 struct mtd_oob_ops
*ops
)
1861 int chipnr
, realpage
, page
, blockmask
, column
;
1862 struct nand_chip
*chip
= mtd
->priv
;
1863 uint32_t writelen
= ops
->len
;
1864 uint8_t *oob
= ops
->oobbuf
;
1865 uint8_t *buf
= ops
->datbuf
;
1872 /* reject writes, which are not page aligned */
1873 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
1874 printk(KERN_NOTICE
"%s: Attempt to write not "
1875 "page aligned data\n", __func__
);
1879 column
= to
& (mtd
->writesize
- 1);
1880 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
1885 chipnr
= (int)(to
>> chip
->chip_shift
);
1886 chip
->select_chip(mtd
, chipnr
);
1888 /* Check, if it is write protected */
1889 if (nand_check_wp(mtd
))
1892 realpage
= (int)(to
>> chip
->page_shift
);
1893 page
= realpage
& chip
->pagemask
;
1894 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1896 /* Invalidate the page cache, when we write to the cached page */
1897 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
1898 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
1901 /* If we're not given explicit OOB data, let it be 0xFF */
1903 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
1906 int bytes
= mtd
->writesize
;
1907 int cached
= writelen
> bytes
&& page
!= blockmask
;
1908 uint8_t *wbuf
= buf
;
1910 /* Partial page write ? */
1911 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
1913 bytes
= min_t(int, bytes
- column
, (int) writelen
);
1915 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
1916 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
1917 wbuf
= chip
->buffers
->databuf
;
1921 oob
= nand_fill_oob(chip
, oob
, ops
);
1923 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
1924 (ops
->mode
== MTD_OOB_RAW
));
1936 page
= realpage
& chip
->pagemask
;
1937 /* Check, if we cross a chip boundary */
1940 chip
->select_chip(mtd
, -1);
1941 chip
->select_chip(mtd
, chipnr
);
1945 ops
->retlen
= ops
->len
- writelen
;
1947 ops
->oobretlen
= ops
->ooblen
;
1952 * nand_write - [MTD Interface] NAND write with ECC
1953 * @mtd: MTD device structure
1954 * @to: offset to write to
1955 * @len: number of bytes to write
1956 * @retlen: pointer to variable to store the number of written bytes
1957 * @buf: the data to write
1959 * NAND write with ECC
1961 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1962 size_t *retlen
, const uint8_t *buf
)
1964 struct nand_chip
*chip
= mtd
->priv
;
1967 /* Do not allow reads past end of device */
1968 if ((to
+ len
) > mtd
->size
)
1973 nand_get_device(chip
, mtd
, FL_WRITING
);
1975 chip
->ops
.len
= len
;
1976 chip
->ops
.datbuf
= (uint8_t *)buf
;
1977 chip
->ops
.oobbuf
= NULL
;
1979 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
1981 *retlen
= chip
->ops
.retlen
;
1983 nand_release_device(mtd
);
1989 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1990 * @mtd: MTD device structure
1991 * @to: offset to write to
1992 * @ops: oob operation description structure
1994 * NAND write out-of-band
1996 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
1997 struct mtd_oob_ops
*ops
)
1999 int chipnr
, page
, status
, len
;
2000 struct nand_chip
*chip
= mtd
->priv
;
2002 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
2003 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2005 if (ops
->mode
== MTD_OOB_AUTO
)
2006 len
= chip
->ecc
.layout
->oobavail
;
2010 /* Do not allow write past end of page */
2011 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2012 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to write "
2013 "past end of page\n", __func__
);
2017 if (unlikely(ops
->ooboffs
>= len
)) {
2018 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start "
2019 "write outside oob\n", __func__
);
2023 /* Do not allow reads past end of device */
2024 if (unlikely(to
>= mtd
->size
||
2025 ops
->ooboffs
+ ops
->ooblen
>
2026 ((mtd
->size
>> chip
->page_shift
) -
2027 (to
>> chip
->page_shift
)) * len
)) {
2028 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2029 "end of device\n", __func__
);
2033 chipnr
= (int)(to
>> chip
->chip_shift
);
2034 chip
->select_chip(mtd
, chipnr
);
2036 /* Shift to get page */
2037 page
= (int)(to
>> chip
->page_shift
);
2040 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2041 * of my DiskOnChip 2000 test units) will clear the whole data page too
2042 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2043 * it in the doc2000 driver in August 1999. dwmw2.
2045 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2047 /* Check, if it is write protected */
2048 if (nand_check_wp(mtd
))
2051 /* Invalidate the page cache, if we write to the cached page */
2052 if (page
== chip
->pagebuf
)
2055 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2056 nand_fill_oob(chip
, ops
->oobbuf
, ops
);
2057 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2058 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2063 ops
->oobretlen
= ops
->ooblen
;
2069 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2070 * @mtd: MTD device structure
2071 * @to: offset to write to
2072 * @ops: oob operation description structure
2074 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2075 struct mtd_oob_ops
*ops
)
2077 struct nand_chip
*chip
= mtd
->priv
;
2078 int ret
= -ENOTSUPP
;
2082 /* Do not allow writes past end of device */
2083 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2084 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2085 "end of device\n", __func__
);
2089 nand_get_device(chip
, mtd
, FL_WRITING
);
2102 ret
= nand_do_write_oob(mtd
, to
, ops
);
2104 ret
= nand_do_write_ops(mtd
, to
, ops
);
2107 nand_release_device(mtd
);
2112 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2113 * @mtd: MTD device structure
2114 * @page: the page address of the block which will be erased
2116 * Standard erase command for NAND chips
2118 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2120 struct nand_chip
*chip
= mtd
->priv
;
2121 /* Send commands to erase a block */
2122 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2123 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2127 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2128 * @mtd: MTD device structure
2129 * @page: the page address of the block which will be erased
2131 * AND multi block erase command function
2132 * Erase 4 consecutive blocks
2134 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2136 struct nand_chip
*chip
= mtd
->priv
;
2137 /* Send commands to erase a block */
2138 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2139 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2140 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2141 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2142 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2146 * nand_erase - [MTD Interface] erase block(s)
2147 * @mtd: MTD device structure
2148 * @instr: erase instruction
2150 * Erase one ore more blocks
2152 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2154 return nand_erase_nand(mtd
, instr
, 0);
2157 #define BBT_PAGE_MASK 0xffffff3f
2159 * nand_erase_nand - [Internal] erase block(s)
2160 * @mtd: MTD device structure
2161 * @instr: erase instruction
2162 * @allowbbt: allow erasing the bbt area
2164 * Erase one ore more blocks
2166 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2169 int page
, status
, pages_per_block
, ret
, chipnr
;
2170 struct nand_chip
*chip
= mtd
->priv
;
2171 loff_t rewrite_bbt
[NAND_MAX_CHIPS
]={0};
2172 unsigned int bbt_masked_page
= 0xffffffff;
2175 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
2176 __func__
, (unsigned long long)instr
->addr
,
2177 (unsigned long long)instr
->len
);
2179 /* Start address must align on block boundary */
2180 if (instr
->addr
& ((1 << chip
->phys_erase_shift
) - 1)) {
2181 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Unaligned address\n", __func__
);
2185 /* Length must align on block boundary */
2186 if (instr
->len
& ((1 << chip
->phys_erase_shift
) - 1)) {
2187 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Length not block aligned\n",
2192 /* Do not allow erase past end of device */
2193 if ((instr
->len
+ instr
->addr
) > mtd
->size
) {
2194 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Erase past end of device\n",
2199 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2201 /* Grab the lock and see if the device is available */
2202 nand_get_device(chip
, mtd
, FL_ERASING
);
2204 /* Shift to get first page */
2205 page
= (int)(instr
->addr
>> chip
->page_shift
);
2206 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2208 /* Calculate pages in each block */
2209 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2211 /* Select the NAND device */
2212 chip
->select_chip(mtd
, chipnr
);
2214 /* Check, if it is write protected */
2215 if (nand_check_wp(mtd
)) {
2216 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
2218 instr
->state
= MTD_ERASE_FAILED
;
2223 * If BBT requires refresh, set the BBT page mask to see if the BBT
2224 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2225 * can not be matched. This is also done when the bbt is actually
2226 * erased to avoid recusrsive updates
2228 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2229 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2231 /* Loop through the pages */
2234 instr
->state
= MTD_ERASING
;
2238 * heck if we have a bad block, we do not erase bad blocks !
2240 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2241 chip
->page_shift
, 0, allowbbt
)) {
2242 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2243 "at page 0x%08x\n", __func__
, page
);
2244 instr
->state
= MTD_ERASE_FAILED
;
2249 * Invalidate the page cache, if we erase the block which
2250 * contains the current cached page
2252 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2253 (page
+ pages_per_block
))
2256 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2258 status
= chip
->waitfunc(mtd
, chip
);
2261 * See if operation failed and additional status checks are
2264 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2265 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2268 /* See if block erase succeeded */
2269 if (status
& NAND_STATUS_FAIL
) {
2270 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Failed erase, "
2271 "page 0x%08x\n", __func__
, page
);
2272 instr
->state
= MTD_ERASE_FAILED
;
2274 ((loff_t
)page
<< chip
->page_shift
);
2279 * If BBT requires refresh, set the BBT rewrite flag to the
2282 if (bbt_masked_page
!= 0xffffffff &&
2283 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2284 rewrite_bbt
[chipnr
] =
2285 ((loff_t
)page
<< chip
->page_shift
);
2287 /* Increment page address and decrement length */
2288 len
-= (1 << chip
->phys_erase_shift
);
2289 page
+= pages_per_block
;
2291 /* Check, if we cross a chip boundary */
2292 if (len
&& !(page
& chip
->pagemask
)) {
2294 chip
->select_chip(mtd
, -1);
2295 chip
->select_chip(mtd
, chipnr
);
2298 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2299 * page mask to see if this BBT should be rewritten
2301 if (bbt_masked_page
!= 0xffffffff &&
2302 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2303 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2307 instr
->state
= MTD_ERASE_DONE
;
2311 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2313 /* Deselect and wake up anyone waiting on the device */
2314 nand_release_device(mtd
);
2316 /* Do call back function */
2318 mtd_erase_callback(instr
);
2321 * If BBT requires refresh and erase was successful, rewrite any
2322 * selected bad block tables
2324 if (bbt_masked_page
== 0xffffffff || ret
)
2327 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2328 if (!rewrite_bbt
[chipnr
])
2330 /* update the BBT for chip */
2331 DEBUG(MTD_DEBUG_LEVEL0
, "%s: nand_update_bbt "
2332 "(%d:0x%0llx 0x%0x)\n", __func__
, chipnr
,
2333 rewrite_bbt
[chipnr
], chip
->bbt_td
->pages
[chipnr
]);
2334 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2337 /* Return more or less happy */
2342 * nand_sync - [MTD Interface] sync
2343 * @mtd: MTD device structure
2345 * Sync is actually a wait for chip ready function
2347 static void nand_sync(struct mtd_info
*mtd
)
2349 struct nand_chip
*chip
= mtd
->priv
;
2351 DEBUG(MTD_DEBUG_LEVEL3
, "%s: called\n", __func__
);
2353 /* Grab the lock and see if the device is available */
2354 nand_get_device(chip
, mtd
, FL_SYNCING
);
2355 /* Release it and go back */
2356 nand_release_device(mtd
);
2360 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2361 * @mtd: MTD device structure
2362 * @offs: offset relative to mtd start
2364 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2366 /* Check for invalid offset */
2367 if (offs
> mtd
->size
)
2370 return nand_block_checkbad(mtd
, offs
, 1, 0);
2374 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2375 * @mtd: MTD device structure
2376 * @ofs: offset relative to mtd start
2378 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2380 struct nand_chip
*chip
= mtd
->priv
;
2383 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2384 /* If it was bad already, return success and do nothing. */
2390 return chip
->block_markbad(mtd
, ofs
);
2394 * nand_suspend - [MTD Interface] Suspend the NAND flash
2395 * @mtd: MTD device structure
2397 static int nand_suspend(struct mtd_info
*mtd
)
2399 struct nand_chip
*chip
= mtd
->priv
;
2401 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2405 * nand_resume - [MTD Interface] Resume the NAND flash
2406 * @mtd: MTD device structure
2408 static void nand_resume(struct mtd_info
*mtd
)
2410 struct nand_chip
*chip
= mtd
->priv
;
2412 if (chip
->state
== FL_PM_SUSPENDED
)
2413 nand_release_device(mtd
);
2415 printk(KERN_ERR
"%s called for a chip which is not "
2416 "in suspended state\n", __func__
);
2420 * Set default functions
2422 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2424 /* check for proper chip_delay setup, set 20us if not */
2425 if (!chip
->chip_delay
)
2426 chip
->chip_delay
= 20;
2428 /* check, if a user supplied command function given */
2429 if (chip
->cmdfunc
== NULL
)
2430 chip
->cmdfunc
= nand_command
;
2432 /* check, if a user supplied wait function given */
2433 if (chip
->waitfunc
== NULL
)
2434 chip
->waitfunc
= nand_wait
;
2436 if (!chip
->select_chip
)
2437 chip
->select_chip
= nand_select_chip
;
2438 if (!chip
->read_byte
)
2439 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2440 if (!chip
->read_word
)
2441 chip
->read_word
= nand_read_word
;
2442 if (!chip
->block_bad
)
2443 chip
->block_bad
= nand_block_bad
;
2444 if (!chip
->block_markbad
)
2445 chip
->block_markbad
= nand_default_block_markbad
;
2446 if (!chip
->write_buf
)
2447 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2448 if (!chip
->read_buf
)
2449 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2450 if (!chip
->verify_buf
)
2451 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2452 if (!chip
->scan_bbt
)
2453 chip
->scan_bbt
= nand_default_bbt
;
2455 if (!chip
->controller
) {
2456 chip
->controller
= &chip
->hwcontrol
;
2457 spin_lock_init(&chip
->controller
->lock
);
2458 init_waitqueue_head(&chip
->controller
->wq
);
2464 * Get the flash and manufacturer id and lookup if the type is supported
2466 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2467 struct nand_chip
*chip
,
2468 int busw
, int *maf_id
)
2470 struct nand_flash_dev
*type
= NULL
;
2471 int i
, dev_id
, maf_idx
;
2472 int tmp_id
, tmp_manf
;
2474 /* Select the device */
2475 chip
->select_chip(mtd
, 0);
2478 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2481 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2483 /* Send the command for reading device ID */
2484 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2486 /* Read manufacturer and device IDs */
2487 *maf_id
= chip
->read_byte(mtd
);
2488 dev_id
= chip
->read_byte(mtd
);
2490 /* Try again to make sure, as some systems the bus-hold or other
2491 * interface concerns can cause random data which looks like a
2492 * possibly credible NAND flash to appear. If the two results do
2493 * not match, ignore the device completely.
2496 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2498 /* Read manufacturer and device IDs */
2500 tmp_manf
= chip
->read_byte(mtd
);
2501 tmp_id
= chip
->read_byte(mtd
);
2503 if (tmp_manf
!= *maf_id
|| tmp_id
!= dev_id
) {
2504 printk(KERN_INFO
"%s: second ID read did not match "
2505 "%02x,%02x against %02x,%02x\n", __func__
,
2506 *maf_id
, dev_id
, tmp_manf
, tmp_id
);
2507 return ERR_PTR(-ENODEV
);
2510 /* Lookup the flash id */
2511 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
2512 if (dev_id
== nand_flash_ids
[i
].id
) {
2513 type
= &nand_flash_ids
[i
];
2519 return ERR_PTR(-ENODEV
);
2522 mtd
->name
= type
->name
;
2524 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2526 /* Newer devices have all the information in additional id bytes */
2527 if (!type
->pagesize
) {
2529 /* The 3rd id byte holds MLC / multichip data */
2530 chip
->cellinfo
= chip
->read_byte(mtd
);
2531 /* The 4th id byte is the important one */
2532 extid
= chip
->read_byte(mtd
);
2534 mtd
->writesize
= 1024 << (extid
& 0x3);
2537 mtd
->oobsize
= (8 << (extid
& 0x01)) * (mtd
->writesize
>> 9);
2539 /* Calc blocksize. Blocksize is multiples of 64KiB */
2540 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2542 /* Get buswidth information */
2543 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2547 * Old devices have chip data hardcoded in the device id table
2549 mtd
->erasesize
= type
->erasesize
;
2550 mtd
->writesize
= type
->pagesize
;
2551 mtd
->oobsize
= mtd
->writesize
/ 32;
2552 busw
= type
->options
& NAND_BUSWIDTH_16
;
2555 /* Try to identify manufacturer */
2556 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
2557 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
2562 * Check, if buswidth is correct. Hardware drivers should set
2565 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
2566 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2567 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
2568 dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
2569 printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
2570 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
2572 return ERR_PTR(-EINVAL
);
2575 /* Calculate the address shift from the page size */
2576 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
2577 /* Convert chipsize to number of pages per chip -1. */
2578 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2580 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
2581 ffs(mtd
->erasesize
) - 1;
2582 if (chip
->chipsize
& 0xffffffff)
2583 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
2585 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32)) + 32 - 1;
2587 /* Set the bad block position */
2588 chip
->badblockpos
= mtd
->writesize
> 512 ?
2589 NAND_LARGE_BADBLOCK_POS
: NAND_SMALL_BADBLOCK_POS
;
2591 /* Get chip options, preserve non chip based options */
2592 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2593 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
2596 * Set chip as a default. Board drivers can override it, if necessary
2598 chip
->options
|= NAND_NO_AUTOINCR
;
2600 /* Check if chip is a not a samsung device. Do not clear the
2601 * options for chips which are not having an extended id.
2603 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
2604 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2606 /* Check for AND chips with 4 page planes */
2607 if (chip
->options
& NAND_4PAGE_ARRAY
)
2608 chip
->erase_cmd
= multi_erase_cmd
;
2610 chip
->erase_cmd
= single_erase_cmd
;
2612 /* Do not replace user supplied command function ! */
2613 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
2614 chip
->cmdfunc
= nand_command_lp
;
2616 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2617 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, dev_id
,
2618 nand_manuf_ids
[maf_idx
].name
, type
->name
);
2624 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2625 * @mtd: MTD device structure
2626 * @maxchips: Number of chips to scan for
2628 * This is the first phase of the normal nand_scan() function. It
2629 * reads the flash ID and sets up MTD fields accordingly.
2631 * The mtd->owner field must be set to the module of the caller.
2633 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
)
2635 int i
, busw
, nand_maf_id
;
2636 struct nand_chip
*chip
= mtd
->priv
;
2637 struct nand_flash_dev
*type
;
2639 /* Get buswidth to select the correct functions */
2640 busw
= chip
->options
& NAND_BUSWIDTH_16
;
2641 /* Set the default functions */
2642 nand_set_defaults(chip
, busw
);
2644 /* Read the flash type */
2645 type
= nand_get_flash_type(mtd
, chip
, busw
, &nand_maf_id
);
2648 printk(KERN_WARNING
"No NAND device found!!!\n");
2649 chip
->select_chip(mtd
, -1);
2650 return PTR_ERR(type
);
2653 /* Check for a chip array */
2654 for (i
= 1; i
< maxchips
; i
++) {
2655 chip
->select_chip(mtd
, i
);
2656 /* See comment in nand_get_flash_type for reset */
2657 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2658 /* Send the command for reading device ID */
2659 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2660 /* Read manufacturer and device IDs */
2661 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
2662 type
->id
!= chip
->read_byte(mtd
))
2666 printk(KERN_INFO
"%d NAND chips detected\n", i
);
2668 /* Store the number of chips and calc total size for mtd */
2670 mtd
->size
= i
* chip
->chipsize
;
2677 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2678 * @mtd: MTD device structure
2680 * This is the second phase of the normal nand_scan() function. It
2681 * fills out all the uninitialized function pointers with the defaults
2682 * and scans for a bad block table if appropriate.
2684 int nand_scan_tail(struct mtd_info
*mtd
)
2687 struct nand_chip
*chip
= mtd
->priv
;
2689 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2690 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
2694 /* Set the internal oob buffer location, just after the page data */
2695 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
2698 * If no default placement scheme is given, select an appropriate one
2700 if (!chip
->ecc
.layout
) {
2701 switch (mtd
->oobsize
) {
2703 chip
->ecc
.layout
= &nand_oob_8
;
2706 chip
->ecc
.layout
= &nand_oob_16
;
2709 chip
->ecc
.layout
= &nand_oob_64
;
2712 chip
->ecc
.layout
= &nand_oob_128
;
2715 printk(KERN_WARNING
"No oob scheme defined for "
2716 "oobsize %d\n", mtd
->oobsize
);
2721 if (!chip
->write_page
)
2722 chip
->write_page
= nand_write_page
;
2725 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2726 * selected and we have 256 byte pagesize fallback to software ECC
2729 switch (chip
->ecc
.mode
) {
2730 case NAND_ECC_HW_OOB_FIRST
:
2731 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2732 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2734 printk(KERN_WARNING
"No ECC functions supplied; "
2735 "Hardware ECC not possible\n");
2738 if (!chip
->ecc
.read_page
)
2739 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
2742 /* Use standard hwecc read page function ? */
2743 if (!chip
->ecc
.read_page
)
2744 chip
->ecc
.read_page
= nand_read_page_hwecc
;
2745 if (!chip
->ecc
.write_page
)
2746 chip
->ecc
.write_page
= nand_write_page_hwecc
;
2747 if (!chip
->ecc
.read_page_raw
)
2748 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2749 if (!chip
->ecc
.write_page_raw
)
2750 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2751 if (!chip
->ecc
.read_oob
)
2752 chip
->ecc
.read_oob
= nand_read_oob_std
;
2753 if (!chip
->ecc
.write_oob
)
2754 chip
->ecc
.write_oob
= nand_write_oob_std
;
2756 case NAND_ECC_HW_SYNDROME
:
2757 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2758 !chip
->ecc
.hwctl
) &&
2759 (!chip
->ecc
.read_page
||
2760 chip
->ecc
.read_page
== nand_read_page_hwecc
||
2761 !chip
->ecc
.write_page
||
2762 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
2763 printk(KERN_WARNING
"No ECC functions supplied; "
2764 "Hardware ECC not possible\n");
2767 /* Use standard syndrome read/write page function ? */
2768 if (!chip
->ecc
.read_page
)
2769 chip
->ecc
.read_page
= nand_read_page_syndrome
;
2770 if (!chip
->ecc
.write_page
)
2771 chip
->ecc
.write_page
= nand_write_page_syndrome
;
2772 if (!chip
->ecc
.read_page_raw
)
2773 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
2774 if (!chip
->ecc
.write_page_raw
)
2775 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
2776 if (!chip
->ecc
.read_oob
)
2777 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
2778 if (!chip
->ecc
.write_oob
)
2779 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
2781 if (mtd
->writesize
>= chip
->ecc
.size
)
2783 printk(KERN_WARNING
"%d byte HW ECC not possible on "
2784 "%d byte page size, fallback to SW ECC\n",
2785 chip
->ecc
.size
, mtd
->writesize
);
2786 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2789 chip
->ecc
.calculate
= nand_calculate_ecc
;
2790 chip
->ecc
.correct
= nand_correct_data
;
2791 chip
->ecc
.read_page
= nand_read_page_swecc
;
2792 chip
->ecc
.read_subpage
= nand_read_subpage
;
2793 chip
->ecc
.write_page
= nand_write_page_swecc
;
2794 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2795 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2796 chip
->ecc
.read_oob
= nand_read_oob_std
;
2797 chip
->ecc
.write_oob
= nand_write_oob_std
;
2798 if (!chip
->ecc
.size
)
2799 chip
->ecc
.size
= 256;
2800 chip
->ecc
.bytes
= 3;
2804 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. "
2805 "This is not recommended !!\n");
2806 chip
->ecc
.read_page
= nand_read_page_raw
;
2807 chip
->ecc
.write_page
= nand_write_page_raw
;
2808 chip
->ecc
.read_oob
= nand_read_oob_std
;
2809 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2810 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2811 chip
->ecc
.write_oob
= nand_write_oob_std
;
2812 chip
->ecc
.size
= mtd
->writesize
;
2813 chip
->ecc
.bytes
= 0;
2817 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n",
2823 * The number of bytes available for a client to place data into
2824 * the out of band area
2826 chip
->ecc
.layout
->oobavail
= 0;
2827 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
2828 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
2829 chip
->ecc
.layout
->oobavail
+=
2830 chip
->ecc
.layout
->oobfree
[i
].length
;
2831 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
2834 * Set the number of read / write steps for one page depending on ECC
2837 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
2838 if(chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
2839 printk(KERN_WARNING
"Invalid ecc parameters\n");
2842 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
2845 * Allow subpage writes up to ecc.steps. Not possible for MLC
2848 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2849 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
2850 switch(chip
->ecc
.steps
) {
2852 mtd
->subpage_sft
= 1;
2857 mtd
->subpage_sft
= 2;
2861 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
2863 /* Initialize state */
2864 chip
->state
= FL_READY
;
2866 /* De-select the device */
2867 chip
->select_chip(mtd
, -1);
2869 /* Invalidate the pagebuffer reference */
2872 /* Fill in remaining MTD driver data */
2873 mtd
->type
= MTD_NANDFLASH
;
2874 mtd
->flags
= MTD_CAP_NANDFLASH
;
2875 mtd
->erase
= nand_erase
;
2877 mtd
->unpoint
= NULL
;
2878 mtd
->read
= nand_read
;
2879 mtd
->write
= nand_write
;
2880 mtd
->read_oob
= nand_read_oob
;
2881 mtd
->write_oob
= nand_write_oob
;
2882 mtd
->sync
= nand_sync
;
2885 mtd
->suspend
= nand_suspend
;
2886 mtd
->resume
= nand_resume
;
2887 mtd
->block_isbad
= nand_block_isbad
;
2888 mtd
->block_markbad
= nand_block_markbad
;
2890 /* propagate ecc.layout to mtd_info */
2891 mtd
->ecclayout
= chip
->ecc
.layout
;
2893 /* Check, if we should skip the bad block table scan */
2894 if (chip
->options
& NAND_SKIP_BBTSCAN
)
2897 /* Build bad block table */
2898 return chip
->scan_bbt(mtd
);
2901 /* is_module_text_address() isn't exported, and it's mostly a pointless
2902 test if this is a module _anyway_ -- they'd have to try _really_ hard
2903 to call us from in-kernel code if the core NAND support is modular. */
2905 #define caller_is_module() (1)
2907 #define caller_is_module() \
2908 is_module_text_address((unsigned long)__builtin_return_address(0))
2912 * nand_scan - [NAND Interface] Scan for the NAND device
2913 * @mtd: MTD device structure
2914 * @maxchips: Number of chips to scan for
2916 * This fills out all the uninitialized function pointers
2917 * with the defaults.
2918 * The flash ID is read and the mtd/chip structures are
2919 * filled with the appropriate values.
2920 * The mtd->owner field must be set to the module of the caller
2923 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
2927 /* Many callers got this wrong, so check for it for a while... */
2928 if (!mtd
->owner
&& caller_is_module()) {
2929 printk(KERN_CRIT
"%s called with NULL mtd->owner!\n",
2934 ret
= nand_scan_ident(mtd
, maxchips
);
2936 ret
= nand_scan_tail(mtd
);
2941 * nand_release - [NAND Interface] Free resources held by the NAND device
2942 * @mtd: MTD device structure
2944 void nand_release(struct mtd_info
*mtd
)
2946 struct nand_chip
*chip
= mtd
->priv
;
2948 #ifdef CONFIG_MTD_PARTITIONS
2949 /* Deregister partitions */
2950 del_mtd_partitions(mtd
);
2952 /* Deregister the device */
2953 del_mtd_device(mtd
);
2955 /* Free bad block table memory */
2957 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2958 kfree(chip
->buffers
);
2961 EXPORT_SYMBOL_GPL(nand_scan
);
2962 EXPORT_SYMBOL_GPL(nand_scan_ident
);
2963 EXPORT_SYMBOL_GPL(nand_scan_tail
);
2964 EXPORT_SYMBOL_GPL(nand_release
);
2966 static int __init
nand_base_init(void)
2968 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
2972 static void __exit
nand_base_exit(void)
2974 led_trigger_unregister_simple(nand_led_trigger
);
2977 module_init(nand_base_init
);
2978 module_exit(nand_base_exit
);
2980 MODULE_LICENSE("GPL");
2981 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2982 MODULE_DESCRIPTION("Generic NAND flash driver code");