2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * UBI scanning sub-system.
24 * This sub-system is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
27 * The scanning information is represented by a &struct ubi_scan_info' object.
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include <linux/math64.h>
48 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
49 static int paranoid_check_si(struct ubi_device
*ubi
, struct ubi_scan_info
*si
);
51 #define paranoid_check_si(ubi, si) 0
54 /* Temporary variables used during scanning */
55 static struct ubi_ec_hdr
*ech
;
56 static struct ubi_vid_hdr
*vidh
;
59 * add_to_list - add physical eraseblock to a list.
60 * @si: scanning information
61 * @pnum: physical eraseblock number to add
62 * @ec: erase counter of the physical eraseblock
63 * @list: the list to add to
65 * This function adds physical eraseblock @pnum to free, erase, corrupted or
66 * alien lists. Returns zero in case of success and a negative error code in
69 static int add_to_list(struct ubi_scan_info
*si
, int pnum
, int ec
,
70 struct list_head
*list
)
72 struct ubi_scan_leb
*seb
;
74 if (list
== &si
->free
)
75 dbg_bld("add to free: PEB %d, EC %d", pnum
, ec
);
76 else if (list
== &si
->erase
)
77 dbg_bld("add to erase: PEB %d, EC %d", pnum
, ec
);
78 else if (list
== &si
->corr
) {
79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum
, ec
);
81 } else if (list
== &si
->alien
)
82 dbg_bld("add to alien: PEB %d, EC %d", pnum
, ec
);
86 seb
= kmalloc(sizeof(struct ubi_scan_leb
), GFP_KERNEL
);
92 list_add_tail(&seb
->u
.list
, list
);
97 * validate_vid_hdr - check volume identifier header.
98 * @vid_hdr: the volume identifier header to check
99 * @sv: information about the volume this logical eraseblock belongs to
100 * @pnum: physical eraseblock number the VID header came from
102 * This function checks that data stored in @vid_hdr is consistent. Returns
103 * non-zero if an inconsistency was found and zero if not.
105 * Note, UBI does sanity check of everything it reads from the flash media.
106 * Most of the checks are done in the I/O sub-system. Here we check that the
107 * information in the VID header is consistent to the information in other VID
108 * headers of the same volume.
110 static int validate_vid_hdr(const struct ubi_vid_hdr
*vid_hdr
,
111 const struct ubi_scan_volume
*sv
, int pnum
)
113 int vol_type
= vid_hdr
->vol_type
;
114 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
115 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
116 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
118 if (sv
->leb_count
!= 0) {
122 * This is not the first logical eraseblock belonging to this
123 * volume. Ensure that the data in its VID header is consistent
124 * to the data in previous logical eraseblock headers.
127 if (vol_id
!= sv
->vol_id
) {
128 dbg_err("inconsistent vol_id");
132 if (sv
->vol_type
== UBI_STATIC_VOLUME
)
133 sv_vol_type
= UBI_VID_STATIC
;
135 sv_vol_type
= UBI_VID_DYNAMIC
;
137 if (vol_type
!= sv_vol_type
) {
138 dbg_err("inconsistent vol_type");
142 if (used_ebs
!= sv
->used_ebs
) {
143 dbg_err("inconsistent used_ebs");
147 if (data_pad
!= sv
->data_pad
) {
148 dbg_err("inconsistent data_pad");
156 ubi_err("inconsistent VID header at PEB %d", pnum
);
157 ubi_dbg_dump_vid_hdr(vid_hdr
);
163 * add_volume - add volume to the scanning information.
164 * @si: scanning information
165 * @vol_id: ID of the volume to add
166 * @pnum: physical eraseblock number
167 * @vid_hdr: volume identifier header
169 * If the volume corresponding to the @vid_hdr logical eraseblock is already
170 * present in the scanning information, this function does nothing. Otherwise
171 * it adds corresponding volume to the scanning information. Returns a pointer
172 * to the scanning volume object in case of success and a negative error code
173 * in case of failure.
175 static struct ubi_scan_volume
*add_volume(struct ubi_scan_info
*si
, int vol_id
,
177 const struct ubi_vid_hdr
*vid_hdr
)
179 struct ubi_scan_volume
*sv
;
180 struct rb_node
**p
= &si
->volumes
.rb_node
, *parent
= NULL
;
182 ubi_assert(vol_id
== be32_to_cpu(vid_hdr
->vol_id
));
184 /* Walk the volume RB-tree to look if this volume is already present */
187 sv
= rb_entry(parent
, struct ubi_scan_volume
, rb
);
189 if (vol_id
== sv
->vol_id
)
192 if (vol_id
> sv
->vol_id
)
198 /* The volume is absent - add it */
199 sv
= kmalloc(sizeof(struct ubi_scan_volume
), GFP_KERNEL
);
201 return ERR_PTR(-ENOMEM
);
203 sv
->highest_lnum
= sv
->leb_count
= 0;
206 sv
->used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
207 sv
->data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
208 sv
->compat
= vid_hdr
->compat
;
209 sv
->vol_type
= vid_hdr
->vol_type
== UBI_VID_DYNAMIC
? UBI_DYNAMIC_VOLUME
211 if (vol_id
> si
->highest_vol_id
)
212 si
->highest_vol_id
= vol_id
;
214 rb_link_node(&sv
->rb
, parent
, p
);
215 rb_insert_color(&sv
->rb
, &si
->volumes
);
217 dbg_bld("added volume %d", vol_id
);
222 * compare_lebs - find out which logical eraseblock is newer.
223 * @ubi: UBI device description object
224 * @seb: first logical eraseblock to compare
225 * @pnum: physical eraseblock number of the second logical eraseblock to
227 * @vid_hdr: volume identifier header of the second logical eraseblock
229 * This function compares 2 copies of a LEB and informs which one is newer. In
230 * case of success this function returns a positive value, in case of failure, a
231 * negative error code is returned. The success return codes use the following
233 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
234 * second PEB (described by @pnum and @vid_hdr);
235 * o bit 0 is set: the second PEB is newer;
236 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
237 * o bit 1 is set: bit-flips were detected in the newer LEB;
238 * o bit 2 is cleared: the older LEB is not corrupted;
239 * o bit 2 is set: the older LEB is corrupted.
241 static int compare_lebs(struct ubi_device
*ubi
, const struct ubi_scan_leb
*seb
,
242 int pnum
, const struct ubi_vid_hdr
*vid_hdr
)
245 int len
, err
, second_is_newer
, bitflips
= 0, corrupted
= 0;
246 uint32_t data_crc
, crc
;
247 struct ubi_vid_hdr
*vh
= NULL
;
248 unsigned long long sqnum2
= be64_to_cpu(vid_hdr
->sqnum
);
250 if (sqnum2
== seb
->sqnum
) {
252 * This must be a really ancient UBI image which has been
253 * created before sequence numbers support has been added. At
254 * that times we used 32-bit LEB versions stored in logical
255 * eraseblocks. That was before UBI got into mainline. We do not
256 * support these images anymore. Well, those images will work
257 * still work, but only if no unclean reboots happened.
259 ubi_err("unsupported on-flash UBI format\n");
263 /* Obviously the LEB with lower sequence counter is older */
264 second_is_newer
= !!(sqnum2
> seb
->sqnum
);
267 * Now we know which copy is newer. If the copy flag of the PEB with
268 * newer version is not set, then we just return, otherwise we have to
269 * check data CRC. For the second PEB we already have the VID header,
270 * for the first one - we'll need to re-read it from flash.
272 * Note: this may be optimized so that we wouldn't read twice.
275 if (second_is_newer
) {
276 if (!vid_hdr
->copy_flag
) {
277 /* It is not a copy, so it is newer */
278 dbg_bld("second PEB %d is newer, copy_flag is unset",
285 vh
= ubi_zalloc_vid_hdr(ubi
, GFP_KERNEL
);
289 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vh
, 0);
291 if (err
== UBI_IO_BITFLIPS
)
294 dbg_err("VID of PEB %d header is bad, but it "
295 "was OK earlier", pnum
);
303 if (!vh
->copy_flag
) {
304 /* It is not a copy, so it is newer */
305 dbg_bld("first PEB %d is newer, copy_flag is unset",
314 /* Read the data of the copy and check the CRC */
316 len
= be32_to_cpu(vid_hdr
->data_size
);
323 err
= ubi_io_read_data(ubi
, buf
, pnum
, 0, len
);
324 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
327 data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
328 crc
= crc32(UBI_CRC32_INIT
, buf
, len
);
329 if (crc
!= data_crc
) {
330 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
331 pnum
, crc
, data_crc
);
334 second_is_newer
= !second_is_newer
;
336 dbg_bld("PEB %d CRC is OK", pnum
);
341 ubi_free_vid_hdr(ubi
, vh
);
344 dbg_bld("second PEB %d is newer, copy_flag is set", pnum
);
346 dbg_bld("first PEB %d is newer, copy_flag is set", pnum
);
348 return second_is_newer
| (bitflips
<< 1) | (corrupted
<< 2);
353 ubi_free_vid_hdr(ubi
, vh
);
358 * ubi_scan_add_used - add physical eraseblock to the scanning information.
359 * @ubi: UBI device description object
360 * @si: scanning information
361 * @pnum: the physical eraseblock number
363 * @vid_hdr: the volume identifier header
364 * @bitflips: if bit-flips were detected when this physical eraseblock was read
366 * This function adds information about a used physical eraseblock to the
367 * 'used' tree of the corresponding volume. The function is rather complex
368 * because it has to handle cases when this is not the first physical
369 * eraseblock belonging to the same logical eraseblock, and the newer one has
370 * to be picked, while the older one has to be dropped. This function returns
371 * zero in case of success and a negative error code in case of failure.
373 int ubi_scan_add_used(struct ubi_device
*ubi
, struct ubi_scan_info
*si
,
374 int pnum
, int ec
, const struct ubi_vid_hdr
*vid_hdr
,
377 int err
, vol_id
, lnum
;
378 unsigned long long sqnum
;
379 struct ubi_scan_volume
*sv
;
380 struct ubi_scan_leb
*seb
;
381 struct rb_node
**p
, *parent
= NULL
;
383 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
384 lnum
= be32_to_cpu(vid_hdr
->lnum
);
385 sqnum
= be64_to_cpu(vid_hdr
->sqnum
);
387 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
388 pnum
, vol_id
, lnum
, ec
, sqnum
, bitflips
);
390 sv
= add_volume(si
, vol_id
, pnum
, vid_hdr
);
394 if (si
->max_sqnum
< sqnum
)
395 si
->max_sqnum
= sqnum
;
398 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
399 * if this is the first instance of this logical eraseblock or not.
401 p
= &sv
->root
.rb_node
;
406 seb
= rb_entry(parent
, struct ubi_scan_leb
, u
.rb
);
407 if (lnum
!= seb
->lnum
) {
408 if (lnum
< seb
->lnum
)
416 * There is already a physical eraseblock describing the same
417 * logical eraseblock present.
420 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
421 "EC %d", seb
->pnum
, seb
->sqnum
, seb
->ec
);
424 * Make sure that the logical eraseblocks have different
425 * sequence numbers. Otherwise the image is bad.
427 * However, if the sequence number is zero, we assume it must
428 * be an ancient UBI image from the era when UBI did not have
429 * sequence numbers. We still can attach these images, unless
430 * there is a need to distinguish between old and new
431 * eraseblocks, in which case we'll refuse the image in
432 * 'compare_lebs()'. In other words, we attach old clean
433 * images, but refuse attaching old images with duplicated
434 * logical eraseblocks because there was an unclean reboot.
436 if (seb
->sqnum
== sqnum
&& sqnum
!= 0) {
437 ubi_err("two LEBs with same sequence number %llu",
439 ubi_dbg_dump_seb(seb
, 0);
440 ubi_dbg_dump_vid_hdr(vid_hdr
);
445 * Now we have to drop the older one and preserve the newer
448 cmp_res
= compare_lebs(ubi
, seb
, pnum
, vid_hdr
);
454 * This logical eraseblock is newer then the one
457 err
= validate_vid_hdr(vid_hdr
, sv
, pnum
);
462 err
= add_to_list(si
, seb
->pnum
, seb
->ec
,
465 err
= add_to_list(si
, seb
->pnum
, seb
->ec
,
472 seb
->scrub
= ((cmp_res
& 2) || bitflips
);
475 if (sv
->highest_lnum
== lnum
)
477 be32_to_cpu(vid_hdr
->data_size
);
482 * This logical eraseblock is older than the one found
486 return add_to_list(si
, pnum
, ec
, &si
->corr
);
488 return add_to_list(si
, pnum
, ec
, &si
->erase
);
493 * We've met this logical eraseblock for the first time, add it to the
494 * scanning information.
497 err
= validate_vid_hdr(vid_hdr
, sv
, pnum
);
501 seb
= kmalloc(sizeof(struct ubi_scan_leb
), GFP_KERNEL
);
509 seb
->scrub
= bitflips
;
511 if (sv
->highest_lnum
<= lnum
) {
512 sv
->highest_lnum
= lnum
;
513 sv
->last_data_size
= be32_to_cpu(vid_hdr
->data_size
);
517 rb_link_node(&seb
->u
.rb
, parent
, p
);
518 rb_insert_color(&seb
->u
.rb
, &sv
->root
);
523 * ubi_scan_find_sv - find volume in the scanning information.
524 * @si: scanning information
525 * @vol_id: the requested volume ID
527 * This function returns a pointer to the volume description or %NULL if there
528 * are no data about this volume in the scanning information.
530 struct ubi_scan_volume
*ubi_scan_find_sv(const struct ubi_scan_info
*si
,
533 struct ubi_scan_volume
*sv
;
534 struct rb_node
*p
= si
->volumes
.rb_node
;
537 sv
= rb_entry(p
, struct ubi_scan_volume
, rb
);
539 if (vol_id
== sv
->vol_id
)
542 if (vol_id
> sv
->vol_id
)
552 * ubi_scan_find_seb - find LEB in the volume scanning information.
553 * @sv: a pointer to the volume scanning information
554 * @lnum: the requested logical eraseblock
556 * This function returns a pointer to the scanning logical eraseblock or %NULL
557 * if there are no data about it in the scanning volume information.
559 struct ubi_scan_leb
*ubi_scan_find_seb(const struct ubi_scan_volume
*sv
,
562 struct ubi_scan_leb
*seb
;
563 struct rb_node
*p
= sv
->root
.rb_node
;
566 seb
= rb_entry(p
, struct ubi_scan_leb
, u
.rb
);
568 if (lnum
== seb
->lnum
)
571 if (lnum
> seb
->lnum
)
581 * ubi_scan_rm_volume - delete scanning information about a volume.
582 * @si: scanning information
583 * @sv: the volume scanning information to delete
585 void ubi_scan_rm_volume(struct ubi_scan_info
*si
, struct ubi_scan_volume
*sv
)
588 struct ubi_scan_leb
*seb
;
590 dbg_bld("remove scanning information about volume %d", sv
->vol_id
);
592 while ((rb
= rb_first(&sv
->root
))) {
593 seb
= rb_entry(rb
, struct ubi_scan_leb
, u
.rb
);
594 rb_erase(&seb
->u
.rb
, &sv
->root
);
595 list_add_tail(&seb
->u
.list
, &si
->erase
);
598 rb_erase(&sv
->rb
, &si
->volumes
);
604 * ubi_scan_erase_peb - erase a physical eraseblock.
605 * @ubi: UBI device description object
606 * @si: scanning information
607 * @pnum: physical eraseblock number to erase;
608 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
610 * This function erases physical eraseblock 'pnum', and writes the erase
611 * counter header to it. This function should only be used on UBI device
612 * initialization stages, when the EBA sub-system had not been yet initialized.
613 * This function returns zero in case of success and a negative error code in
616 int ubi_scan_erase_peb(struct ubi_device
*ubi
, const struct ubi_scan_info
*si
,
620 struct ubi_ec_hdr
*ec_hdr
;
622 if ((long long)ec
>= UBI_MAX_ERASECOUNTER
) {
624 * Erase counter overflow. Upgrade UBI and use 64-bit
625 * erase counters internally.
627 ubi_err("erase counter overflow at PEB %d, EC %d", pnum
, ec
);
631 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
635 ec_hdr
->ec
= cpu_to_be64(ec
);
637 err
= ubi_io_sync_erase(ubi
, pnum
, 0);
641 err
= ubi_io_write_ec_hdr(ubi
, pnum
, ec_hdr
);
649 * ubi_scan_get_free_peb - get a free physical eraseblock.
650 * @ubi: UBI device description object
651 * @si: scanning information
653 * This function returns a free physical eraseblock. It is supposed to be
654 * called on the UBI initialization stages when the wear-leveling sub-system is
655 * not initialized yet. This function picks a physical eraseblocks from one of
656 * the lists, writes the EC header if it is needed, and removes it from the
659 * This function returns scanning physical eraseblock information in case of
660 * success and an error code in case of failure.
662 struct ubi_scan_leb
*ubi_scan_get_free_peb(struct ubi_device
*ubi
,
663 struct ubi_scan_info
*si
)
666 struct ubi_scan_leb
*seb
;
668 if (!list_empty(&si
->free
)) {
669 seb
= list_entry(si
->free
.next
, struct ubi_scan_leb
, u
.list
);
670 list_del(&seb
->u
.list
);
671 dbg_bld("return free PEB %d, EC %d", seb
->pnum
, seb
->ec
);
675 for (i
= 0; i
< 2; i
++) {
676 struct list_head
*head
;
677 struct ubi_scan_leb
*tmp_seb
;
685 * We try to erase the first physical eraseblock from the @head
686 * list and pick it if we succeed, or try to erase the
687 * next one if not. And so forth. We don't want to take care
688 * about bad eraseblocks here - they'll be handled later.
690 list_for_each_entry_safe(seb
, tmp_seb
, head
, u
.list
) {
691 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
692 seb
->ec
= si
->mean_ec
;
694 err
= ubi_scan_erase_peb(ubi
, si
, seb
->pnum
, seb
->ec
+1);
699 list_del(&seb
->u
.list
);
700 dbg_bld("return PEB %d, EC %d", seb
->pnum
, seb
->ec
);
705 ubi_err("no eraseblocks found");
706 return ERR_PTR(-ENOSPC
);
710 * process_eb - read, check UBI headers, and add them to scanning information.
711 * @ubi: UBI device description object
712 * @si: scanning information
713 * @pnum: the physical eraseblock number
715 * This function returns a zero if the physical eraseblock was successfully
716 * handled and a negative error code in case of failure.
718 static int process_eb(struct ubi_device
*ubi
, struct ubi_scan_info
*si
,
721 long long uninitialized_var(ec
);
722 int err
, bitflips
= 0, vol_id
, ec_corr
= 0;
724 dbg_bld("scan PEB %d", pnum
);
726 /* Skip bad physical eraseblocks */
727 err
= ubi_io_is_bad(ubi
, pnum
);
732 * FIXME: this is actually duty of the I/O sub-system to
733 * initialize this, but MTD does not provide enough
736 si
->bad_peb_count
+= 1;
740 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ech
, 0);
743 else if (err
== UBI_IO_BITFLIPS
)
745 else if (err
== UBI_IO_PEB_EMPTY
)
746 return add_to_list(si
, pnum
, UBI_SCAN_UNKNOWN_EC
, &si
->erase
);
747 else if (err
== UBI_IO_BAD_EC_HDR
) {
749 * We have to also look at the VID header, possibly it is not
750 * corrupted. Set %bitflips flag in order to make this PEB be
751 * moved and EC be re-created.
754 ec
= UBI_SCAN_UNKNOWN_EC
;
763 /* Make sure UBI version is OK */
764 if (ech
->version
!= UBI_VERSION
) {
765 ubi_err("this UBI version is %d, image version is %d",
766 UBI_VERSION
, (int)ech
->version
);
770 ec
= be64_to_cpu(ech
->ec
);
771 if (ec
> UBI_MAX_ERASECOUNTER
) {
773 * Erase counter overflow. The EC headers have 64 bits
774 * reserved, but we anyway make use of only 31 bit
775 * values, as this seems to be enough for any existing
776 * flash. Upgrade UBI and use 64-bit erase counters
779 ubi_err("erase counter overflow, max is %d",
780 UBI_MAX_ERASECOUNTER
);
781 ubi_dbg_dump_ec_hdr(ech
);
786 * Make sure that all PEBs have the same image sequence number.
787 * This allows us to detect situations when users flash UBI
788 * images incorrectly, so that the flash has the new UBI image
789 * and leftovers from the old one. This feature was added
790 * relatively recently, and the sequence number was always
791 * zero, because old UBI implementations always set it to zero.
792 * For this reasons, we do not panic if some PEBs have zero
793 * sequence number, while other PEBs have non-zero sequence
796 image_seq
= be32_to_cpu(ech
->image_seq
);
797 if (!ubi
->image_seq
&& image_seq
)
798 ubi
->image_seq
= image_seq
;
799 if (ubi
->image_seq
&& image_seq
&&
800 ubi
->image_seq
!= image_seq
) {
801 ubi_err("bad image sequence number %d in PEB %d, "
802 "expected %d", image_seq
, pnum
, ubi
->image_seq
);
803 ubi_dbg_dump_ec_hdr(ech
);
808 /* OK, we've done with the EC header, let's look at the VID header */
810 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidh
, 0);
813 else if (err
== UBI_IO_BITFLIPS
)
815 else if (err
== UBI_IO_BAD_VID_HDR
||
816 (err
== UBI_IO_PEB_FREE
&& ec_corr
)) {
817 /* VID header is corrupted */
818 err
= add_to_list(si
, pnum
, ec
, &si
->corr
);
822 } else if (err
== UBI_IO_PEB_FREE
) {
823 /* No VID header - the physical eraseblock is free */
824 err
= add_to_list(si
, pnum
, ec
, &si
->free
);
830 vol_id
= be32_to_cpu(vidh
->vol_id
);
831 if (vol_id
> UBI_MAX_VOLUMES
&& vol_id
!= UBI_LAYOUT_VOLUME_ID
) {
832 int lnum
= be32_to_cpu(vidh
->lnum
);
834 /* Unsupported internal volume */
835 switch (vidh
->compat
) {
836 case UBI_COMPAT_DELETE
:
837 ubi_msg("\"delete\" compatible internal volume %d:%d"
838 " found, remove it", vol_id
, lnum
);
839 err
= add_to_list(si
, pnum
, ec
, &si
->corr
);
845 ubi_msg("read-only compatible internal volume %d:%d"
846 " found, switch to read-only mode",
851 case UBI_COMPAT_PRESERVE
:
852 ubi_msg("\"preserve\" compatible internal volume %d:%d"
853 " found", vol_id
, lnum
);
854 err
= add_to_list(si
, pnum
, ec
, &si
->alien
);
857 si
->alien_peb_count
+= 1;
860 case UBI_COMPAT_REJECT
:
861 ubi_err("incompatible internal volume %d:%d found",
868 ubi_warn("valid VID header but corrupted EC header at PEB %d",
870 err
= ubi_scan_add_used(ubi
, si
, pnum
, ec
, vidh
, bitflips
);
888 * ubi_scan - scan an MTD device.
889 * @ubi: UBI device description object
891 * This function does full scanning of an MTD device and returns complete
892 * information about it. In case of failure, an error code is returned.
894 struct ubi_scan_info
*ubi_scan(struct ubi_device
*ubi
)
897 struct rb_node
*rb1
, *rb2
;
898 struct ubi_scan_volume
*sv
;
899 struct ubi_scan_leb
*seb
;
900 struct ubi_scan_info
*si
;
902 si
= kzalloc(sizeof(struct ubi_scan_info
), GFP_KERNEL
);
904 return ERR_PTR(-ENOMEM
);
906 INIT_LIST_HEAD(&si
->corr
);
907 INIT_LIST_HEAD(&si
->free
);
908 INIT_LIST_HEAD(&si
->erase
);
909 INIT_LIST_HEAD(&si
->alien
);
910 si
->volumes
= RB_ROOT
;
914 ech
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
918 vidh
= ubi_zalloc_vid_hdr(ubi
, GFP_KERNEL
);
922 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++) {
925 dbg_gen("process PEB %d", pnum
);
926 err
= process_eb(ubi
, si
, pnum
);
931 dbg_msg("scanning is finished");
933 /* Calculate mean erase counter */
935 si
->mean_ec
= div_u64(si
->ec_sum
, si
->ec_count
);
938 ubi_msg("empty MTD device detected");
941 * Few corrupted PEBs are not a problem and may be just a result of
942 * unclean reboots. However, many of them may indicate some problems
943 * with the flash HW or driver. Print a warning in this case.
945 if (si
->corr_count
>= 8 || si
->corr_count
>= ubi
->peb_count
/ 4) {
946 ubi_warn("%d PEBs are corrupted", si
->corr_count
);
947 printk(KERN_WARNING
"corrupted PEBs are:");
948 list_for_each_entry(seb
, &si
->corr
, u
.list
)
949 printk(KERN_CONT
" %d", seb
->pnum
);
950 printk(KERN_CONT
"\n");
954 * In case of unknown erase counter we use the mean erase counter
957 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
958 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
)
959 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
960 seb
->ec
= si
->mean_ec
;
963 list_for_each_entry(seb
, &si
->free
, u
.list
) {
964 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
965 seb
->ec
= si
->mean_ec
;
968 list_for_each_entry(seb
, &si
->corr
, u
.list
)
969 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
970 seb
->ec
= si
->mean_ec
;
972 list_for_each_entry(seb
, &si
->erase
, u
.list
)
973 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
974 seb
->ec
= si
->mean_ec
;
976 err
= paranoid_check_si(ubi
, si
);
983 ubi_free_vid_hdr(ubi
, vidh
);
989 ubi_free_vid_hdr(ubi
, vidh
);
993 ubi_scan_destroy_si(si
);
998 * destroy_sv - free the scanning volume information
999 * @sv: scanning volume information
1001 * This function destroys the volume RB-tree (@sv->root) and the scanning
1002 * volume information.
1004 static void destroy_sv(struct ubi_scan_volume
*sv
)
1006 struct ubi_scan_leb
*seb
;
1007 struct rb_node
*this = sv
->root
.rb_node
;
1011 this = this->rb_left
;
1012 else if (this->rb_right
)
1013 this = this->rb_right
;
1015 seb
= rb_entry(this, struct ubi_scan_leb
, u
.rb
);
1016 this = rb_parent(this);
1018 if (this->rb_left
== &seb
->u
.rb
)
1019 this->rb_left
= NULL
;
1021 this->rb_right
= NULL
;
1031 * ubi_scan_destroy_si - destroy scanning information.
1032 * @si: scanning information
1034 void ubi_scan_destroy_si(struct ubi_scan_info
*si
)
1036 struct ubi_scan_leb
*seb
, *seb_tmp
;
1037 struct ubi_scan_volume
*sv
;
1040 list_for_each_entry_safe(seb
, seb_tmp
, &si
->alien
, u
.list
) {
1041 list_del(&seb
->u
.list
);
1044 list_for_each_entry_safe(seb
, seb_tmp
, &si
->erase
, u
.list
) {
1045 list_del(&seb
->u
.list
);
1048 list_for_each_entry_safe(seb
, seb_tmp
, &si
->corr
, u
.list
) {
1049 list_del(&seb
->u
.list
);
1052 list_for_each_entry_safe(seb
, seb_tmp
, &si
->free
, u
.list
) {
1053 list_del(&seb
->u
.list
);
1057 /* Destroy the volume RB-tree */
1058 rb
= si
->volumes
.rb_node
;
1062 else if (rb
->rb_right
)
1065 sv
= rb_entry(rb
, struct ubi_scan_volume
, rb
);
1069 if (rb
->rb_left
== &sv
->rb
)
1072 rb
->rb_right
= NULL
;
1082 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1085 * paranoid_check_si - check the scanning information.
1086 * @ubi: UBI device description object
1087 * @si: scanning information
1089 * This function returns zero if the scanning information is all right, %1 if
1090 * not and a negative error code if an error occurred.
1092 static int paranoid_check_si(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
1094 int pnum
, err
, vols_found
= 0;
1095 struct rb_node
*rb1
, *rb2
;
1096 struct ubi_scan_volume
*sv
;
1097 struct ubi_scan_leb
*seb
, *last_seb
;
1101 * At first, check that scanning information is OK.
1103 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1111 ubi_err("bad is_empty flag");
1115 if (sv
->vol_id
< 0 || sv
->highest_lnum
< 0 ||
1116 sv
->leb_count
< 0 || sv
->vol_type
< 0 || sv
->used_ebs
< 0 ||
1117 sv
->data_pad
< 0 || sv
->last_data_size
< 0) {
1118 ubi_err("negative values");
1122 if (sv
->vol_id
>= UBI_MAX_VOLUMES
&&
1123 sv
->vol_id
< UBI_INTERNAL_VOL_START
) {
1124 ubi_err("bad vol_id");
1128 if (sv
->vol_id
> si
->highest_vol_id
) {
1129 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1130 si
->highest_vol_id
, sv
->vol_id
);
1134 if (sv
->vol_type
!= UBI_DYNAMIC_VOLUME
&&
1135 sv
->vol_type
!= UBI_STATIC_VOLUME
) {
1136 ubi_err("bad vol_type");
1140 if (sv
->data_pad
> ubi
->leb_size
/ 2) {
1141 ubi_err("bad data_pad");
1146 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1152 if (seb
->pnum
< 0 || seb
->ec
< 0) {
1153 ubi_err("negative values");
1157 if (seb
->ec
< si
->min_ec
) {
1158 ubi_err("bad si->min_ec (%d), %d found",
1159 si
->min_ec
, seb
->ec
);
1163 if (seb
->ec
> si
->max_ec
) {
1164 ubi_err("bad si->max_ec (%d), %d found",
1165 si
->max_ec
, seb
->ec
);
1169 if (seb
->pnum
>= ubi
->peb_count
) {
1170 ubi_err("too high PEB number %d, total PEBs %d",
1171 seb
->pnum
, ubi
->peb_count
);
1175 if (sv
->vol_type
== UBI_STATIC_VOLUME
) {
1176 if (seb
->lnum
>= sv
->used_ebs
) {
1177 ubi_err("bad lnum or used_ebs");
1181 if (sv
->used_ebs
!= 0) {
1182 ubi_err("non-zero used_ebs");
1187 if (seb
->lnum
> sv
->highest_lnum
) {
1188 ubi_err("incorrect highest_lnum or lnum");
1193 if (sv
->leb_count
!= leb_count
) {
1194 ubi_err("bad leb_count, %d objects in the tree",
1204 if (seb
->lnum
!= sv
->highest_lnum
) {
1205 ubi_err("bad highest_lnum");
1210 if (vols_found
!= si
->vols_found
) {
1211 ubi_err("bad si->vols_found %d, should be %d",
1212 si
->vols_found
, vols_found
);
1216 /* Check that scanning information is correct */
1217 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1219 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1226 err
= ubi_io_read_vid_hdr(ubi
, seb
->pnum
, vidh
, 1);
1227 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1228 ubi_err("VID header is not OK (%d)", err
);
1234 vol_type
= vidh
->vol_type
== UBI_VID_DYNAMIC
?
1235 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
1236 if (sv
->vol_type
!= vol_type
) {
1237 ubi_err("bad vol_type");
1241 if (seb
->sqnum
!= be64_to_cpu(vidh
->sqnum
)) {
1242 ubi_err("bad sqnum %llu", seb
->sqnum
);
1246 if (sv
->vol_id
!= be32_to_cpu(vidh
->vol_id
)) {
1247 ubi_err("bad vol_id %d", sv
->vol_id
);
1251 if (sv
->compat
!= vidh
->compat
) {
1252 ubi_err("bad compat %d", vidh
->compat
);
1256 if (seb
->lnum
!= be32_to_cpu(vidh
->lnum
)) {
1257 ubi_err("bad lnum %d", seb
->lnum
);
1261 if (sv
->used_ebs
!= be32_to_cpu(vidh
->used_ebs
)) {
1262 ubi_err("bad used_ebs %d", sv
->used_ebs
);
1266 if (sv
->data_pad
!= be32_to_cpu(vidh
->data_pad
)) {
1267 ubi_err("bad data_pad %d", sv
->data_pad
);
1275 if (sv
->highest_lnum
!= be32_to_cpu(vidh
->lnum
)) {
1276 ubi_err("bad highest_lnum %d", sv
->highest_lnum
);
1280 if (sv
->last_data_size
!= be32_to_cpu(vidh
->data_size
)) {
1281 ubi_err("bad last_data_size %d", sv
->last_data_size
);
1287 * Make sure that all the physical eraseblocks are in one of the lists
1290 buf
= kzalloc(ubi
->peb_count
, GFP_KERNEL
);
1294 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++) {
1295 err
= ubi_io_is_bad(ubi
, pnum
);
1303 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
)
1304 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
)
1307 list_for_each_entry(seb
, &si
->free
, u
.list
)
1310 list_for_each_entry(seb
, &si
->corr
, u
.list
)
1313 list_for_each_entry(seb
, &si
->erase
, u
.list
)
1316 list_for_each_entry(seb
, &si
->alien
, u
.list
)
1320 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++)
1322 ubi_err("PEB %d is not referred", pnum
);
1332 ubi_err("bad scanning information about LEB %d", seb
->lnum
);
1333 ubi_dbg_dump_seb(seb
, 0);
1334 ubi_dbg_dump_sv(sv
);
1338 ubi_err("bad scanning information about volume %d", sv
->vol_id
);
1339 ubi_dbg_dump_sv(sv
);
1343 ubi_err("bad scanning information about volume %d", sv
->vol_id
);
1344 ubi_dbg_dump_sv(sv
);
1345 ubi_dbg_dump_vid_hdr(vidh
);
1348 ubi_dbg_dump_stack();
1352 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */