x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / mtd / ubi / wl.c
blob600c7229d5cf21b0d959ca2d7c1a86ccc676e4af
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling sub-system.
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50 * bad.
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
59 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 * When the WL sub-system returns a physical eraseblock, the physical
62 * eraseblock is protected from being moved for some "time". For this reason,
63 * the physical eraseblock is not directly moved from the @wl->free tree to the
64 * @wl->used tree. There is a protection queue in between where this
65 * physical eraseblock is temporarily stored (@wl->pq).
67 * All this protection stuff is needed because:
68 * o we don't want to move physical eraseblocks just after we have given them
69 * to the user; instead, we first want to let users fill them up with data;
71 * o there is a chance that the user will put the physical eraseblock very
72 * soon, so it makes sense not to move it for some time, but wait; this is
73 * especially important in case of "short term" physical eraseblocks.
75 * Physical eraseblocks stay protected only for limited time. But the "time" is
76 * measured in erase cycles in this case. This is implemented with help of the
77 * protection queue. Eraseblocks are put to the tail of this queue when they
78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
79 * head of the queue on each erase operation (for any eraseblock). So the
80 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 * To put it differently, each physical eraseblock has 2 main states: free and
83 * used. The former state corresponds to the @wl->free tree. The latter state
84 * is split up on several sub-states:
85 * o the WL movement is allowed (@wl->used tree);
86 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
87 * erroneous - e.g., there was a read error;
88 * o the WL movement is temporarily prohibited (@wl->pq queue);
89 * o scrubbing is needed (@wl->scrub tree).
91 * Depending on the sub-state, wear-leveling entries of the used physical
92 * eraseblocks may be kept in one of those structures.
94 * Note, in this implementation, we keep a small in-RAM object for each physical
95 * eraseblock. This is surely not a scalable solution. But it appears to be good
96 * enough for moderately large flashes and it is simple. In future, one may
97 * re-work this sub-system and make it more scalable.
99 * At the moment this sub-system does not utilize the sequence number, which
100 * was introduced relatively recently. But it would be wise to do this because
101 * the sequence number of a logical eraseblock characterizes how old is it. For
102 * example, when we move a PEB with low erase counter, and we need to pick the
103 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
104 * pick target PEB with an average EC if our PEB is not very "old". This is a
105 * room for future re-works of the WL sub-system.
108 #include <linux/slab.h>
109 #include <linux/crc32.h>
110 #include <linux/freezer.h>
111 #include <linux/kthread.h>
112 #include "ubi.h"
114 /* Number of physical eraseblocks reserved for wear-leveling purposes */
115 #define WL_RESERVED_PEBS 1
118 * Maximum difference between two erase counters. If this threshold is
119 * exceeded, the WL sub-system starts moving data from used physical
120 * eraseblocks with low erase counter to free physical eraseblocks with high
121 * erase counter.
123 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
126 * When a physical eraseblock is moved, the WL sub-system has to pick the target
127 * physical eraseblock to move to. The simplest way would be just to pick the
128 * one with the highest erase counter. But in certain workloads this could lead
129 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
130 * situation when the picked physical eraseblock is constantly erased after the
131 * data is written to it. So, we have a constant which limits the highest erase
132 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
133 * does not pick eraseblocks with erase counter greater than the lowest erase
134 * counter plus %WL_FREE_MAX_DIFF.
136 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
139 * Maximum number of consecutive background thread failures which is enough to
140 * switch to read-only mode.
142 #define WL_MAX_FAILURES 32
145 * struct ubi_work - UBI work description data structure.
146 * @list: a link in the list of pending works
147 * @func: worker function
148 * @e: physical eraseblock to erase
149 * @torture: if the physical eraseblock has to be tortured
151 * The @func pointer points to the worker function. If the @cancel argument is
152 * not zero, the worker has to free the resources and exit immediately. The
153 * worker has to return zero in case of success and a negative error code in
154 * case of failure.
156 struct ubi_work {
157 struct list_head list;
158 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
159 /* The below fields are only relevant to erasure works */
160 struct ubi_wl_entry *e;
161 int torture;
164 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
165 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
166 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
167 struct rb_root *root);
168 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e);
169 #else
170 #define paranoid_check_ec(ubi, pnum, ec) 0
171 #define paranoid_check_in_wl_tree(e, root)
172 #define paranoid_check_in_pq(ubi, e) 0
173 #endif
176 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
177 * @e: the wear-leveling entry to add
178 * @root: the root of the tree
180 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
181 * the @ubi->used and @ubi->free RB-trees.
183 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
185 struct rb_node **p, *parent = NULL;
187 p = &root->rb_node;
188 while (*p) {
189 struct ubi_wl_entry *e1;
191 parent = *p;
192 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
194 if (e->ec < e1->ec)
195 p = &(*p)->rb_left;
196 else if (e->ec > e1->ec)
197 p = &(*p)->rb_right;
198 else {
199 ubi_assert(e->pnum != e1->pnum);
200 if (e->pnum < e1->pnum)
201 p = &(*p)->rb_left;
202 else
203 p = &(*p)->rb_right;
207 rb_link_node(&e->u.rb, parent, p);
208 rb_insert_color(&e->u.rb, root);
212 * do_work - do one pending work.
213 * @ubi: UBI device description object
215 * This function returns zero in case of success and a negative error code in
216 * case of failure.
218 static int do_work(struct ubi_device *ubi)
220 int err;
221 struct ubi_work *wrk;
223 cond_resched();
226 * @ubi->work_sem is used to synchronize with the workers. Workers take
227 * it in read mode, so many of them may be doing works at a time. But
228 * the queue flush code has to be sure the whole queue of works is
229 * done, and it takes the mutex in write mode.
231 down_read(&ubi->work_sem);
232 spin_lock(&ubi->wl_lock);
233 if (list_empty(&ubi->works)) {
234 spin_unlock(&ubi->wl_lock);
235 up_read(&ubi->work_sem);
236 return 0;
239 wrk = list_entry(ubi->works.next, struct ubi_work, list);
240 list_del(&wrk->list);
241 ubi->works_count -= 1;
242 ubi_assert(ubi->works_count >= 0);
243 spin_unlock(&ubi->wl_lock);
246 * Call the worker function. Do not touch the work structure
247 * after this call as it will have been freed or reused by that
248 * time by the worker function.
250 err = wrk->func(ubi, wrk, 0);
251 if (err)
252 ubi_err("work failed with error code %d", err);
253 up_read(&ubi->work_sem);
255 return err;
259 * produce_free_peb - produce a free physical eraseblock.
260 * @ubi: UBI device description object
262 * This function tries to make a free PEB by means of synchronous execution of
263 * pending works. This may be needed if, for example the background thread is
264 * disabled. Returns zero in case of success and a negative error code in case
265 * of failure.
267 static int produce_free_peb(struct ubi_device *ubi)
269 int err;
271 spin_lock(&ubi->wl_lock);
272 while (!ubi->free.rb_node) {
273 spin_unlock(&ubi->wl_lock);
275 dbg_wl("do one work synchronously");
276 err = do_work(ubi);
277 if (err)
278 return err;
280 spin_lock(&ubi->wl_lock);
282 spin_unlock(&ubi->wl_lock);
284 return 0;
288 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
289 * @e: the wear-leveling entry to check
290 * @root: the root of the tree
292 * This function returns non-zero if @e is in the @root RB-tree and zero if it
293 * is not.
295 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
297 struct rb_node *p;
299 p = root->rb_node;
300 while (p) {
301 struct ubi_wl_entry *e1;
303 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
305 if (e->pnum == e1->pnum) {
306 ubi_assert(e == e1);
307 return 1;
310 if (e->ec < e1->ec)
311 p = p->rb_left;
312 else if (e->ec > e1->ec)
313 p = p->rb_right;
314 else {
315 ubi_assert(e->pnum != e1->pnum);
316 if (e->pnum < e1->pnum)
317 p = p->rb_left;
318 else
319 p = p->rb_right;
323 return 0;
327 * prot_queue_add - add physical eraseblock to the protection queue.
328 * @ubi: UBI device description object
329 * @e: the physical eraseblock to add
331 * This function adds @e to the tail of the protection queue @ubi->pq, where
332 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
333 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
334 * be locked.
336 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
338 int pq_tail = ubi->pq_head - 1;
340 if (pq_tail < 0)
341 pq_tail = UBI_PROT_QUEUE_LEN - 1;
342 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
343 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
344 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
349 * @root: the RB-tree where to look for
350 * @max: highest possible erase counter
352 * This function looks for a wear leveling entry with erase counter closest to
353 * @max and less then @max.
355 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
357 struct rb_node *p;
358 struct ubi_wl_entry *e;
360 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
361 max += e->ec;
363 p = root->rb_node;
364 while (p) {
365 struct ubi_wl_entry *e1;
367 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
368 if (e1->ec >= max)
369 p = p->rb_left;
370 else {
371 p = p->rb_right;
372 e = e1;
376 return e;
380 * ubi_wl_get_peb - get a physical eraseblock.
381 * @ubi: UBI device description object
382 * @dtype: type of data which will be stored in this physical eraseblock
384 * This function returns a physical eraseblock in case of success and a
385 * negative error code in case of failure. Might sleep.
387 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
389 int err, medium_ec;
390 struct ubi_wl_entry *e, *first, *last;
392 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
393 dtype == UBI_UNKNOWN);
395 retry:
396 spin_lock(&ubi->wl_lock);
397 if (!ubi->free.rb_node) {
398 if (ubi->works_count == 0) {
399 ubi_assert(list_empty(&ubi->works));
400 ubi_err("no free eraseblocks");
401 spin_unlock(&ubi->wl_lock);
402 return -ENOSPC;
404 spin_unlock(&ubi->wl_lock);
406 err = produce_free_peb(ubi);
407 if (err < 0)
408 return err;
409 goto retry;
412 switch (dtype) {
413 case UBI_LONGTERM:
415 * For long term data we pick a physical eraseblock with high
416 * erase counter. But the highest erase counter we can pick is
417 * bounded by the the lowest erase counter plus
418 * %WL_FREE_MAX_DIFF.
420 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
421 break;
422 case UBI_UNKNOWN:
424 * For unknown data we pick a physical eraseblock with medium
425 * erase counter. But we by no means can pick a physical
426 * eraseblock with erase counter greater or equivalent than the
427 * lowest erase counter plus %WL_FREE_MAX_DIFF.
429 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
430 u.rb);
431 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
433 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
434 e = rb_entry(ubi->free.rb_node,
435 struct ubi_wl_entry, u.rb);
436 else {
437 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
438 e = find_wl_entry(&ubi->free, medium_ec);
440 break;
441 case UBI_SHORTTERM:
443 * For short term data we pick a physical eraseblock with the
444 * lowest erase counter as we expect it will be erased soon.
446 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
447 break;
448 default:
449 BUG();
452 paranoid_check_in_wl_tree(e, &ubi->free);
455 * Move the physical eraseblock to the protection queue where it will
456 * be protected from being moved for some time.
458 rb_erase(&e->u.rb, &ubi->free);
459 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
460 prot_queue_add(ubi, e);
461 spin_unlock(&ubi->wl_lock);
463 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
464 ubi->peb_size - ubi->vid_hdr_aloffset);
465 if (err) {
466 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
467 return err > 0 ? -EINVAL : err;
470 return e->pnum;
474 * prot_queue_del - remove a physical eraseblock from the protection queue.
475 * @ubi: UBI device description object
476 * @pnum: the physical eraseblock to remove
478 * This function deletes PEB @pnum from the protection queue and returns zero
479 * in case of success and %-ENODEV if the PEB was not found.
481 static int prot_queue_del(struct ubi_device *ubi, int pnum)
483 struct ubi_wl_entry *e;
485 e = ubi->lookuptbl[pnum];
486 if (!e)
487 return -ENODEV;
489 if (paranoid_check_in_pq(ubi, e))
490 return -ENODEV;
492 list_del(&e->u.list);
493 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
494 return 0;
498 * sync_erase - synchronously erase a physical eraseblock.
499 * @ubi: UBI device description object
500 * @e: the the physical eraseblock to erase
501 * @torture: if the physical eraseblock has to be tortured
503 * This function returns zero in case of success and a negative error code in
504 * case of failure.
506 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
507 int torture)
509 int err;
510 struct ubi_ec_hdr *ec_hdr;
511 unsigned long long ec = e->ec;
513 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
515 err = paranoid_check_ec(ubi, e->pnum, e->ec);
516 if (err > 0)
517 return -EINVAL;
519 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
520 if (!ec_hdr)
521 return -ENOMEM;
523 err = ubi_io_sync_erase(ubi, e->pnum, torture);
524 if (err < 0)
525 goto out_free;
527 ec += err;
528 if (ec > UBI_MAX_ERASECOUNTER) {
530 * Erase counter overflow. Upgrade UBI and use 64-bit
531 * erase counters internally.
533 ubi_err("erase counter overflow at PEB %d, EC %llu",
534 e->pnum, ec);
535 err = -EINVAL;
536 goto out_free;
539 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
541 ec_hdr->ec = cpu_to_be64(ec);
543 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
544 if (err)
545 goto out_free;
547 e->ec = ec;
548 spin_lock(&ubi->wl_lock);
549 if (e->ec > ubi->max_ec)
550 ubi->max_ec = e->ec;
551 spin_unlock(&ubi->wl_lock);
553 out_free:
554 kfree(ec_hdr);
555 return err;
559 * serve_prot_queue - check if it is time to stop protecting PEBs.
560 * @ubi: UBI device description object
562 * This function is called after each erase operation and removes PEBs from the
563 * tail of the protection queue. These PEBs have been protected for long enough
564 * and should be moved to the used tree.
566 static void serve_prot_queue(struct ubi_device *ubi)
568 struct ubi_wl_entry *e, *tmp;
569 int count;
572 * There may be several protected physical eraseblock to remove,
573 * process them all.
575 repeat:
576 count = 0;
577 spin_lock(&ubi->wl_lock);
578 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
579 dbg_wl("PEB %d EC %d protection over, move to used tree",
580 e->pnum, e->ec);
582 list_del(&e->u.list);
583 wl_tree_add(e, &ubi->used);
584 if (count++ > 32) {
586 * Let's be nice and avoid holding the spinlock for
587 * too long.
589 spin_unlock(&ubi->wl_lock);
590 cond_resched();
591 goto repeat;
595 ubi->pq_head += 1;
596 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
597 ubi->pq_head = 0;
598 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
599 spin_unlock(&ubi->wl_lock);
603 * schedule_ubi_work - schedule a work.
604 * @ubi: UBI device description object
605 * @wrk: the work to schedule
607 * This function adds a work defined by @wrk to the tail of the pending works
608 * list.
610 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
612 spin_lock(&ubi->wl_lock);
613 list_add_tail(&wrk->list, &ubi->works);
614 ubi_assert(ubi->works_count >= 0);
615 ubi->works_count += 1;
616 if (ubi->thread_enabled)
617 wake_up_process(ubi->bgt_thread);
618 spin_unlock(&ubi->wl_lock);
621 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
622 int cancel);
625 * schedule_erase - schedule an erase work.
626 * @ubi: UBI device description object
627 * @e: the WL entry of the physical eraseblock to erase
628 * @torture: if the physical eraseblock has to be tortured
630 * This function returns zero in case of success and a %-ENOMEM in case of
631 * failure.
633 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
634 int torture)
636 struct ubi_work *wl_wrk;
638 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
639 e->pnum, e->ec, torture);
641 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
642 if (!wl_wrk)
643 return -ENOMEM;
645 wl_wrk->func = &erase_worker;
646 wl_wrk->e = e;
647 wl_wrk->torture = torture;
649 schedule_ubi_work(ubi, wl_wrk);
650 return 0;
654 * wear_leveling_worker - wear-leveling worker function.
655 * @ubi: UBI device description object
656 * @wrk: the work object
657 * @cancel: non-zero if the worker has to free memory and exit
659 * This function copies a more worn out physical eraseblock to a less worn out
660 * one. Returns zero in case of success and a negative error code in case of
661 * failure.
663 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
664 int cancel)
666 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
667 int vol_id = -1, uninitialized_var(lnum);
668 struct ubi_wl_entry *e1, *e2;
669 struct ubi_vid_hdr *vid_hdr;
671 kfree(wrk);
672 if (cancel)
673 return 0;
675 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
676 if (!vid_hdr)
677 return -ENOMEM;
679 mutex_lock(&ubi->move_mutex);
680 spin_lock(&ubi->wl_lock);
681 ubi_assert(!ubi->move_from && !ubi->move_to);
682 ubi_assert(!ubi->move_to_put);
684 if (!ubi->free.rb_node ||
685 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
687 * No free physical eraseblocks? Well, they must be waiting in
688 * the queue to be erased. Cancel movement - it will be
689 * triggered again when a free physical eraseblock appears.
691 * No used physical eraseblocks? They must be temporarily
692 * protected from being moved. They will be moved to the
693 * @ubi->used tree later and the wear-leveling will be
694 * triggered again.
696 dbg_wl("cancel WL, a list is empty: free %d, used %d",
697 !ubi->free.rb_node, !ubi->used.rb_node);
698 goto out_cancel;
701 if (!ubi->scrub.rb_node) {
703 * Now pick the least worn-out used physical eraseblock and a
704 * highly worn-out free physical eraseblock. If the erase
705 * counters differ much enough, start wear-leveling.
707 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
708 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
710 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
711 dbg_wl("no WL needed: min used EC %d, max free EC %d",
712 e1->ec, e2->ec);
713 goto out_cancel;
715 paranoid_check_in_wl_tree(e1, &ubi->used);
716 rb_erase(&e1->u.rb, &ubi->used);
717 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
718 e1->pnum, e1->ec, e2->pnum, e2->ec);
719 } else {
720 /* Perform scrubbing */
721 scrubbing = 1;
722 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
723 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
724 paranoid_check_in_wl_tree(e1, &ubi->scrub);
725 rb_erase(&e1->u.rb, &ubi->scrub);
726 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
729 paranoid_check_in_wl_tree(e2, &ubi->free);
730 rb_erase(&e2->u.rb, &ubi->free);
731 ubi->move_from = e1;
732 ubi->move_to = e2;
733 spin_unlock(&ubi->wl_lock);
736 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
737 * We so far do not know which logical eraseblock our physical
738 * eraseblock (@e1) belongs to. We have to read the volume identifier
739 * header first.
741 * Note, we are protected from this PEB being unmapped and erased. The
742 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
743 * which is being moved was unmapped.
746 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
747 if (err && err != UBI_IO_BITFLIPS) {
748 if (err == UBI_IO_PEB_FREE) {
750 * We are trying to move PEB without a VID header. UBI
751 * always write VID headers shortly after the PEB was
752 * given, so we have a situation when it has not yet
753 * had a chance to write it, because it was preempted.
754 * So add this PEB to the protection queue so far,
755 * because presumably more data will be written there
756 * (including the missing VID header), and then we'll
757 * move it.
759 dbg_wl("PEB %d has no VID header", e1->pnum);
760 protect = 1;
761 goto out_not_moved;
764 ubi_err("error %d while reading VID header from PEB %d",
765 err, e1->pnum);
766 goto out_error;
769 vol_id = be32_to_cpu(vid_hdr->vol_id);
770 lnum = be32_to_cpu(vid_hdr->lnum);
772 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
773 if (err) {
774 if (err == MOVE_CANCEL_RACE) {
776 * The LEB has not been moved because the volume is
777 * being deleted or the PEB has been put meanwhile. We
778 * should prevent this PEB from being selected for
779 * wear-leveling movement again, so put it to the
780 * protection queue.
782 protect = 1;
783 goto out_not_moved;
786 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
787 err == MOVE_TARGET_RD_ERR) {
789 * Target PEB had bit-flips or write error - torture it.
791 torture = 1;
792 goto out_not_moved;
795 if (err == MOVE_SOURCE_RD_ERR) {
797 * An error happened while reading the source PEB. Do
798 * not switch to R/O mode in this case, and give the
799 * upper layers a possibility to recover from this,
800 * e.g. by unmapping corresponding LEB. Instead, just
801 * put this PEB to the @ubi->erroneous list to prevent
802 * UBI from trying to move it over and over again.
804 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
805 ubi_err("too many erroneous eraseblocks (%d)",
806 ubi->erroneous_peb_count);
807 goto out_error;
809 erroneous = 1;
810 goto out_not_moved;
813 if (err < 0)
814 goto out_error;
816 ubi_assert(0);
819 /* The PEB has been successfully moved */
820 if (scrubbing)
821 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
822 e1->pnum, vol_id, lnum, e2->pnum);
823 ubi_free_vid_hdr(ubi, vid_hdr);
825 spin_lock(&ubi->wl_lock);
826 if (!ubi->move_to_put) {
827 wl_tree_add(e2, &ubi->used);
828 e2 = NULL;
830 ubi->move_from = ubi->move_to = NULL;
831 ubi->move_to_put = ubi->wl_scheduled = 0;
832 spin_unlock(&ubi->wl_lock);
834 err = schedule_erase(ubi, e1, 0);
835 if (err) {
836 kmem_cache_free(ubi_wl_entry_slab, e1);
837 if (e2)
838 kmem_cache_free(ubi_wl_entry_slab, e2);
839 goto out_ro;
842 if (e2) {
844 * Well, the target PEB was put meanwhile, schedule it for
845 * erasure.
847 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
848 e2->pnum, vol_id, lnum);
849 err = schedule_erase(ubi, e2, 0);
850 if (err) {
851 kmem_cache_free(ubi_wl_entry_slab, e2);
852 goto out_ro;
856 dbg_wl("done");
857 mutex_unlock(&ubi->move_mutex);
858 return 0;
861 * For some reasons the LEB was not moved, might be an error, might be
862 * something else. @e1 was not changed, so return it back. @e2 might
863 * have been changed, schedule it for erasure.
865 out_not_moved:
866 if (vol_id != -1)
867 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
868 e1->pnum, vol_id, lnum, e2->pnum, err);
869 else
870 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
871 e1->pnum, e2->pnum, err);
872 spin_lock(&ubi->wl_lock);
873 if (protect)
874 prot_queue_add(ubi, e1);
875 else if (erroneous) {
876 wl_tree_add(e1, &ubi->erroneous);
877 ubi->erroneous_peb_count += 1;
878 } else if (scrubbing)
879 wl_tree_add(e1, &ubi->scrub);
880 else
881 wl_tree_add(e1, &ubi->used);
882 ubi_assert(!ubi->move_to_put);
883 ubi->move_from = ubi->move_to = NULL;
884 ubi->wl_scheduled = 0;
885 spin_unlock(&ubi->wl_lock);
887 ubi_free_vid_hdr(ubi, vid_hdr);
888 err = schedule_erase(ubi, e2, torture);
889 if (err) {
890 kmem_cache_free(ubi_wl_entry_slab, e2);
891 goto out_ro;
893 mutex_unlock(&ubi->move_mutex);
894 return 0;
896 out_error:
897 if (vol_id != -1)
898 ubi_err("error %d while moving PEB %d to PEB %d",
899 err, e1->pnum, e2->pnum);
900 else
901 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
902 err, e1->pnum, vol_id, lnum, e2->pnum);
903 spin_lock(&ubi->wl_lock);
904 ubi->move_from = ubi->move_to = NULL;
905 ubi->move_to_put = ubi->wl_scheduled = 0;
906 spin_unlock(&ubi->wl_lock);
908 ubi_free_vid_hdr(ubi, vid_hdr);
909 kmem_cache_free(ubi_wl_entry_slab, e1);
910 kmem_cache_free(ubi_wl_entry_slab, e2);
912 out_ro:
913 ubi_ro_mode(ubi);
914 mutex_unlock(&ubi->move_mutex);
915 ubi_assert(err != 0);
916 return err < 0 ? err : -EIO;
918 out_cancel:
919 ubi->wl_scheduled = 0;
920 spin_unlock(&ubi->wl_lock);
921 mutex_unlock(&ubi->move_mutex);
922 ubi_free_vid_hdr(ubi, vid_hdr);
923 return 0;
927 * ensure_wear_leveling - schedule wear-leveling if it is needed.
928 * @ubi: UBI device description object
930 * This function checks if it is time to start wear-leveling and schedules it
931 * if yes. This function returns zero in case of success and a negative error
932 * code in case of failure.
934 static int ensure_wear_leveling(struct ubi_device *ubi)
936 int err = 0;
937 struct ubi_wl_entry *e1;
938 struct ubi_wl_entry *e2;
939 struct ubi_work *wrk;
941 spin_lock(&ubi->wl_lock);
942 if (ubi->wl_scheduled)
943 /* Wear-leveling is already in the work queue */
944 goto out_unlock;
947 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
948 * the WL worker has to be scheduled anyway.
950 if (!ubi->scrub.rb_node) {
951 if (!ubi->used.rb_node || !ubi->free.rb_node)
952 /* No physical eraseblocks - no deal */
953 goto out_unlock;
956 * We schedule wear-leveling only if the difference between the
957 * lowest erase counter of used physical eraseblocks and a high
958 * erase counter of free physical eraseblocks is greater than
959 * %UBI_WL_THRESHOLD.
961 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
962 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
964 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
965 goto out_unlock;
966 dbg_wl("schedule wear-leveling");
967 } else
968 dbg_wl("schedule scrubbing");
970 ubi->wl_scheduled = 1;
971 spin_unlock(&ubi->wl_lock);
973 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
974 if (!wrk) {
975 err = -ENOMEM;
976 goto out_cancel;
979 wrk->func = &wear_leveling_worker;
980 schedule_ubi_work(ubi, wrk);
981 return err;
983 out_cancel:
984 spin_lock(&ubi->wl_lock);
985 ubi->wl_scheduled = 0;
986 out_unlock:
987 spin_unlock(&ubi->wl_lock);
988 return err;
992 * erase_worker - physical eraseblock erase worker function.
993 * @ubi: UBI device description object
994 * @wl_wrk: the work object
995 * @cancel: non-zero if the worker has to free memory and exit
997 * This function erases a physical eraseblock and perform torture testing if
998 * needed. It also takes care about marking the physical eraseblock bad if
999 * needed. Returns zero in case of success and a negative error code in case of
1000 * failure.
1002 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1003 int cancel)
1005 struct ubi_wl_entry *e = wl_wrk->e;
1006 int pnum = e->pnum, err, need;
1008 if (cancel) {
1009 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1010 kfree(wl_wrk);
1011 kmem_cache_free(ubi_wl_entry_slab, e);
1012 return 0;
1015 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1017 err = sync_erase(ubi, e, wl_wrk->torture);
1018 if (!err) {
1019 /* Fine, we've erased it successfully */
1020 kfree(wl_wrk);
1022 spin_lock(&ubi->wl_lock);
1023 wl_tree_add(e, &ubi->free);
1024 spin_unlock(&ubi->wl_lock);
1027 * One more erase operation has happened, take care about
1028 * protected physical eraseblocks.
1030 serve_prot_queue(ubi);
1032 /* And take care about wear-leveling */
1033 err = ensure_wear_leveling(ubi);
1034 return err;
1037 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1038 kfree(wl_wrk);
1039 kmem_cache_free(ubi_wl_entry_slab, e);
1041 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1042 err == -EBUSY) {
1043 int err1;
1045 /* Re-schedule the LEB for erasure */
1046 err1 = schedule_erase(ubi, e, 0);
1047 if (err1) {
1048 err = err1;
1049 goto out_ro;
1051 return err;
1052 } else if (err != -EIO) {
1054 * If this is not %-EIO, we have no idea what to do. Scheduling
1055 * this physical eraseblock for erasure again would cause
1056 * errors again and again. Well, lets switch to R/O mode.
1058 goto out_ro;
1061 /* It is %-EIO, the PEB went bad */
1063 if (!ubi->bad_allowed) {
1064 ubi_err("bad physical eraseblock %d detected", pnum);
1065 goto out_ro;
1068 spin_lock(&ubi->volumes_lock);
1069 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1070 if (need > 0) {
1071 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1072 ubi->avail_pebs -= need;
1073 ubi->rsvd_pebs += need;
1074 ubi->beb_rsvd_pebs += need;
1075 if (need > 0)
1076 ubi_msg("reserve more %d PEBs", need);
1079 if (ubi->beb_rsvd_pebs == 0) {
1080 spin_unlock(&ubi->volumes_lock);
1081 ubi_err("no reserved physical eraseblocks");
1082 goto out_ro;
1084 spin_unlock(&ubi->volumes_lock);
1086 ubi_msg("mark PEB %d as bad", pnum);
1087 err = ubi_io_mark_bad(ubi, pnum);
1088 if (err)
1089 goto out_ro;
1091 spin_lock(&ubi->volumes_lock);
1092 ubi->beb_rsvd_pebs -= 1;
1093 ubi->bad_peb_count += 1;
1094 ubi->good_peb_count -= 1;
1095 ubi_calculate_reserved(ubi);
1096 if (ubi->beb_rsvd_pebs)
1097 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1098 else
1099 ubi_warn("last PEB from the reserved pool was used");
1100 spin_unlock(&ubi->volumes_lock);
1102 return err;
1104 out_ro:
1105 ubi_ro_mode(ubi);
1106 return err;
1110 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1111 * @ubi: UBI device description object
1112 * @pnum: physical eraseblock to return
1113 * @torture: if this physical eraseblock has to be tortured
1115 * This function is called to return physical eraseblock @pnum to the pool of
1116 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1117 * occurred to this @pnum and it has to be tested. This function returns zero
1118 * in case of success, and a negative error code in case of failure.
1120 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1122 int err;
1123 struct ubi_wl_entry *e;
1125 dbg_wl("PEB %d", pnum);
1126 ubi_assert(pnum >= 0);
1127 ubi_assert(pnum < ubi->peb_count);
1129 retry:
1130 spin_lock(&ubi->wl_lock);
1131 e = ubi->lookuptbl[pnum];
1132 if (e == ubi->move_from) {
1134 * User is putting the physical eraseblock which was selected to
1135 * be moved. It will be scheduled for erasure in the
1136 * wear-leveling worker.
1138 dbg_wl("PEB %d is being moved, wait", pnum);
1139 spin_unlock(&ubi->wl_lock);
1141 /* Wait for the WL worker by taking the @ubi->move_mutex */
1142 mutex_lock(&ubi->move_mutex);
1143 mutex_unlock(&ubi->move_mutex);
1144 goto retry;
1145 } else if (e == ubi->move_to) {
1147 * User is putting the physical eraseblock which was selected
1148 * as the target the data is moved to. It may happen if the EBA
1149 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1150 * but the WL sub-system has not put the PEB to the "used" tree
1151 * yet, but it is about to do this. So we just set a flag which
1152 * will tell the WL worker that the PEB is not needed anymore
1153 * and should be scheduled for erasure.
1155 dbg_wl("PEB %d is the target of data moving", pnum);
1156 ubi_assert(!ubi->move_to_put);
1157 ubi->move_to_put = 1;
1158 spin_unlock(&ubi->wl_lock);
1159 return 0;
1160 } else {
1161 if (in_wl_tree(e, &ubi->used)) {
1162 paranoid_check_in_wl_tree(e, &ubi->used);
1163 rb_erase(&e->u.rb, &ubi->used);
1164 } else if (in_wl_tree(e, &ubi->scrub)) {
1165 paranoid_check_in_wl_tree(e, &ubi->scrub);
1166 rb_erase(&e->u.rb, &ubi->scrub);
1167 } else if (in_wl_tree(e, &ubi->erroneous)) {
1168 paranoid_check_in_wl_tree(e, &ubi->erroneous);
1169 rb_erase(&e->u.rb, &ubi->erroneous);
1170 ubi->erroneous_peb_count -= 1;
1171 ubi_assert(ubi->erroneous_peb_count >= 0);
1172 /* Erroneous PEBs should be tortured */
1173 torture = 1;
1174 } else {
1175 err = prot_queue_del(ubi, e->pnum);
1176 if (err) {
1177 ubi_err("PEB %d not found", pnum);
1178 ubi_ro_mode(ubi);
1179 spin_unlock(&ubi->wl_lock);
1180 return err;
1184 spin_unlock(&ubi->wl_lock);
1186 err = schedule_erase(ubi, e, torture);
1187 if (err) {
1188 spin_lock(&ubi->wl_lock);
1189 wl_tree_add(e, &ubi->used);
1190 spin_unlock(&ubi->wl_lock);
1193 return err;
1197 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1198 * @ubi: UBI device description object
1199 * @pnum: the physical eraseblock to schedule
1201 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1202 * needs scrubbing. This function schedules a physical eraseblock for
1203 * scrubbing which is done in background. This function returns zero in case of
1204 * success and a negative error code in case of failure.
1206 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1208 struct ubi_wl_entry *e;
1210 dbg_msg("schedule PEB %d for scrubbing", pnum);
1212 retry:
1213 spin_lock(&ubi->wl_lock);
1214 e = ubi->lookuptbl[pnum];
1215 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1216 spin_unlock(&ubi->wl_lock);
1217 return 0;
1220 if (e == ubi->move_to) {
1222 * This physical eraseblock was used to move data to. The data
1223 * was moved but the PEB was not yet inserted to the proper
1224 * tree. We should just wait a little and let the WL worker
1225 * proceed.
1227 spin_unlock(&ubi->wl_lock);
1228 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1229 yield();
1230 goto retry;
1233 if (in_wl_tree(e, &ubi->used)) {
1234 paranoid_check_in_wl_tree(e, &ubi->used);
1235 rb_erase(&e->u.rb, &ubi->used);
1236 } else {
1237 int err;
1239 err = prot_queue_del(ubi, e->pnum);
1240 if (err) {
1241 ubi_err("PEB %d not found", pnum);
1242 ubi_ro_mode(ubi);
1243 spin_unlock(&ubi->wl_lock);
1244 return err;
1248 wl_tree_add(e, &ubi->scrub);
1249 spin_unlock(&ubi->wl_lock);
1252 * Technically scrubbing is the same as wear-leveling, so it is done
1253 * by the WL worker.
1255 return ensure_wear_leveling(ubi);
1259 * ubi_wl_flush - flush all pending works.
1260 * @ubi: UBI device description object
1262 * This function returns zero in case of success and a negative error code in
1263 * case of failure.
1265 int ubi_wl_flush(struct ubi_device *ubi)
1267 int err;
1270 * Erase while the pending works queue is not empty, but not more than
1271 * the number of currently pending works.
1273 dbg_wl("flush (%d pending works)", ubi->works_count);
1274 while (ubi->works_count) {
1275 err = do_work(ubi);
1276 if (err)
1277 return err;
1281 * Make sure all the works which have been done in parallel are
1282 * finished.
1284 down_write(&ubi->work_sem);
1285 up_write(&ubi->work_sem);
1288 * And in case last was the WL worker and it canceled the LEB
1289 * movement, flush again.
1291 while (ubi->works_count) {
1292 dbg_wl("flush more (%d pending works)", ubi->works_count);
1293 err = do_work(ubi);
1294 if (err)
1295 return err;
1298 return 0;
1302 * tree_destroy - destroy an RB-tree.
1303 * @root: the root of the tree to destroy
1305 static void tree_destroy(struct rb_root *root)
1307 struct rb_node *rb;
1308 struct ubi_wl_entry *e;
1310 rb = root->rb_node;
1311 while (rb) {
1312 if (rb->rb_left)
1313 rb = rb->rb_left;
1314 else if (rb->rb_right)
1315 rb = rb->rb_right;
1316 else {
1317 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1319 rb = rb_parent(rb);
1320 if (rb) {
1321 if (rb->rb_left == &e->u.rb)
1322 rb->rb_left = NULL;
1323 else
1324 rb->rb_right = NULL;
1327 kmem_cache_free(ubi_wl_entry_slab, e);
1333 * ubi_thread - UBI background thread.
1334 * @u: the UBI device description object pointer
1336 int ubi_thread(void *u)
1338 int failures = 0;
1339 struct ubi_device *ubi = u;
1341 ubi_msg("background thread \"%s\" started, PID %d",
1342 ubi->bgt_name, task_pid_nr(current));
1344 set_freezable();
1345 for (;;) {
1346 int err;
1348 if (kthread_should_stop())
1349 break;
1351 if (try_to_freeze())
1352 continue;
1354 spin_lock(&ubi->wl_lock);
1355 if (list_empty(&ubi->works) || ubi->ro_mode ||
1356 !ubi->thread_enabled) {
1357 set_current_state(TASK_INTERRUPTIBLE);
1358 spin_unlock(&ubi->wl_lock);
1359 schedule();
1360 continue;
1362 spin_unlock(&ubi->wl_lock);
1364 err = do_work(ubi);
1365 if (err) {
1366 ubi_err("%s: work failed with error code %d",
1367 ubi->bgt_name, err);
1368 if (failures++ > WL_MAX_FAILURES) {
1370 * Too many failures, disable the thread and
1371 * switch to read-only mode.
1373 ubi_msg("%s: %d consecutive failures",
1374 ubi->bgt_name, WL_MAX_FAILURES);
1375 ubi_ro_mode(ubi);
1376 ubi->thread_enabled = 0;
1377 continue;
1379 } else
1380 failures = 0;
1382 cond_resched();
1385 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1386 return 0;
1390 * cancel_pending - cancel all pending works.
1391 * @ubi: UBI device description object
1393 static void cancel_pending(struct ubi_device *ubi)
1395 while (!list_empty(&ubi->works)) {
1396 struct ubi_work *wrk;
1398 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1399 list_del(&wrk->list);
1400 wrk->func(ubi, wrk, 1);
1401 ubi->works_count -= 1;
1402 ubi_assert(ubi->works_count >= 0);
1407 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1408 * @ubi: UBI device description object
1409 * @si: scanning information
1411 * This function returns zero in case of success, and a negative error code in
1412 * case of failure.
1414 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1416 int err, i;
1417 struct rb_node *rb1, *rb2;
1418 struct ubi_scan_volume *sv;
1419 struct ubi_scan_leb *seb, *tmp;
1420 struct ubi_wl_entry *e;
1422 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1423 spin_lock_init(&ubi->wl_lock);
1424 mutex_init(&ubi->move_mutex);
1425 init_rwsem(&ubi->work_sem);
1426 ubi->max_ec = si->max_ec;
1427 INIT_LIST_HEAD(&ubi->works);
1429 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1431 err = -ENOMEM;
1432 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1433 if (!ubi->lookuptbl)
1434 return err;
1436 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1437 INIT_LIST_HEAD(&ubi->pq[i]);
1438 ubi->pq_head = 0;
1440 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1441 cond_resched();
1443 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1444 if (!e)
1445 goto out_free;
1447 e->pnum = seb->pnum;
1448 e->ec = seb->ec;
1449 ubi->lookuptbl[e->pnum] = e;
1450 if (schedule_erase(ubi, e, 0)) {
1451 kmem_cache_free(ubi_wl_entry_slab, e);
1452 goto out_free;
1456 list_for_each_entry(seb, &si->free, u.list) {
1457 cond_resched();
1459 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1460 if (!e)
1461 goto out_free;
1463 e->pnum = seb->pnum;
1464 e->ec = seb->ec;
1465 ubi_assert(e->ec >= 0);
1466 wl_tree_add(e, &ubi->free);
1467 ubi->lookuptbl[e->pnum] = e;
1470 list_for_each_entry(seb, &si->corr, u.list) {
1471 cond_resched();
1473 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1474 if (!e)
1475 goto out_free;
1477 e->pnum = seb->pnum;
1478 e->ec = seb->ec;
1479 ubi->lookuptbl[e->pnum] = e;
1480 if (schedule_erase(ubi, e, 0)) {
1481 kmem_cache_free(ubi_wl_entry_slab, e);
1482 goto out_free;
1486 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1487 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1488 cond_resched();
1490 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1491 if (!e)
1492 goto out_free;
1494 e->pnum = seb->pnum;
1495 e->ec = seb->ec;
1496 ubi->lookuptbl[e->pnum] = e;
1497 if (!seb->scrub) {
1498 dbg_wl("add PEB %d EC %d to the used tree",
1499 e->pnum, e->ec);
1500 wl_tree_add(e, &ubi->used);
1501 } else {
1502 dbg_wl("add PEB %d EC %d to the scrub tree",
1503 e->pnum, e->ec);
1504 wl_tree_add(e, &ubi->scrub);
1509 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1510 ubi_err("no enough physical eraseblocks (%d, need %d)",
1511 ubi->avail_pebs, WL_RESERVED_PEBS);
1512 goto out_free;
1514 ubi->avail_pebs -= WL_RESERVED_PEBS;
1515 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1517 /* Schedule wear-leveling if needed */
1518 err = ensure_wear_leveling(ubi);
1519 if (err)
1520 goto out_free;
1522 return 0;
1524 out_free:
1525 cancel_pending(ubi);
1526 tree_destroy(&ubi->used);
1527 tree_destroy(&ubi->free);
1528 tree_destroy(&ubi->scrub);
1529 kfree(ubi->lookuptbl);
1530 return err;
1534 * protection_queue_destroy - destroy the protection queue.
1535 * @ubi: UBI device description object
1537 static void protection_queue_destroy(struct ubi_device *ubi)
1539 int i;
1540 struct ubi_wl_entry *e, *tmp;
1542 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1543 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1544 list_del(&e->u.list);
1545 kmem_cache_free(ubi_wl_entry_slab, e);
1551 * ubi_wl_close - close the wear-leveling sub-system.
1552 * @ubi: UBI device description object
1554 void ubi_wl_close(struct ubi_device *ubi)
1556 dbg_wl("close the WL sub-system");
1557 cancel_pending(ubi);
1558 protection_queue_destroy(ubi);
1559 tree_destroy(&ubi->used);
1560 tree_destroy(&ubi->erroneous);
1561 tree_destroy(&ubi->free);
1562 tree_destroy(&ubi->scrub);
1563 kfree(ubi->lookuptbl);
1566 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1569 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1570 * @ubi: UBI device description object
1571 * @pnum: the physical eraseblock number to check
1572 * @ec: the erase counter to check
1574 * This function returns zero if the erase counter of physical eraseblock @pnum
1575 * is equivalent to @ec, %1 if not, and a negative error code if an error
1576 * occurred.
1578 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1580 int err;
1581 long long read_ec;
1582 struct ubi_ec_hdr *ec_hdr;
1584 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1585 if (!ec_hdr)
1586 return -ENOMEM;
1588 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1589 if (err && err != UBI_IO_BITFLIPS) {
1590 /* The header does not have to exist */
1591 err = 0;
1592 goto out_free;
1595 read_ec = be64_to_cpu(ec_hdr->ec);
1596 if (ec != read_ec) {
1597 ubi_err("paranoid check failed for PEB %d", pnum);
1598 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1599 ubi_dbg_dump_stack();
1600 err = 1;
1601 } else
1602 err = 0;
1604 out_free:
1605 kfree(ec_hdr);
1606 return err;
1610 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1611 * @e: the wear-leveling entry to check
1612 * @root: the root of the tree
1614 * This function returns zero if @e is in the @root RB-tree and %1 if it is
1615 * not.
1617 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1618 struct rb_root *root)
1620 if (in_wl_tree(e, root))
1621 return 0;
1623 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1624 e->pnum, e->ec, root);
1625 ubi_dbg_dump_stack();
1626 return 1;
1630 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1631 * queue.
1632 * @ubi: UBI device description object
1633 * @e: the wear-leveling entry to check
1635 * This function returns zero if @e is in @ubi->pq and %1 if it is not.
1637 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e)
1639 struct ubi_wl_entry *p;
1640 int i;
1642 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1643 list_for_each_entry(p, &ubi->pq[i], u.list)
1644 if (p == e)
1645 return 0;
1647 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1648 e->pnum, e->ec);
1649 ubi_dbg_dump_stack();
1650 return 1;
1652 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */