1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
32 #include <asm/uaccess.h>
35 char stat_string
[ETH_GSTRING_LEN
];
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41 offsetof(struct e1000_adapter, m)
42 static const struct e1000_stats e1000_gstrings_stats
[] = {
43 { "rx_packets", E1000_STAT(stats
.gprc
) },
44 { "tx_packets", E1000_STAT(stats
.gptc
) },
45 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
46 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
47 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
48 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
49 { "rx_multicast", E1000_STAT(stats
.mprc
) },
50 { "tx_multicast", E1000_STAT(stats
.mptc
) },
51 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
52 { "tx_errors", E1000_STAT(stats
.txerrc
) },
53 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
54 { "multicast", E1000_STAT(stats
.mprc
) },
55 { "collisions", E1000_STAT(stats
.colc
) },
56 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
57 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
58 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
59 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
60 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
61 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
62 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
63 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
64 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
65 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
66 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
67 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
68 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
69 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
70 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
71 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
72 { "tx_restart_queue", E1000_STAT(restart_queue
) },
73 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
74 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
75 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
76 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
77 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
78 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
79 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
80 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
81 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
82 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
83 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
84 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
85 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
86 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
87 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
88 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
91 #define E1000_QUEUE_STATS_LEN 0
92 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
93 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
94 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
95 "Register test (offline)", "Eeprom test (offline)",
96 "Interrupt test (offline)", "Loopback test (offline)",
97 "Link test (on/offline)"
99 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
101 static int e1000_get_settings(struct net_device
*netdev
,
102 struct ethtool_cmd
*ecmd
)
104 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
105 struct e1000_hw
*hw
= &adapter
->hw
;
107 if (hw
->media_type
== e1000_media_type_copper
) {
109 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
110 SUPPORTED_10baseT_Full
|
111 SUPPORTED_100baseT_Half
|
112 SUPPORTED_100baseT_Full
|
113 SUPPORTED_1000baseT_Full
|
116 ecmd
->advertising
= ADVERTISED_TP
;
118 if (hw
->autoneg
== 1) {
119 ecmd
->advertising
|= ADVERTISED_Autoneg
;
120 /* the e1000 autoneg seems to match ethtool nicely */
121 ecmd
->advertising
|= hw
->autoneg_advertised
;
124 ecmd
->port
= PORT_TP
;
125 ecmd
->phy_address
= hw
->phy_addr
;
127 if (hw
->mac_type
== e1000_82543
)
128 ecmd
->transceiver
= XCVR_EXTERNAL
;
130 ecmd
->transceiver
= XCVR_INTERNAL
;
133 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
137 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
141 ecmd
->port
= PORT_FIBRE
;
143 if (hw
->mac_type
>= e1000_82545
)
144 ecmd
->transceiver
= XCVR_INTERNAL
;
146 ecmd
->transceiver
= XCVR_EXTERNAL
;
149 if (er32(STATUS
) & E1000_STATUS_LU
) {
151 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
152 &adapter
->link_duplex
);
153 ecmd
->speed
= adapter
->link_speed
;
155 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
156 * and HALF_DUPLEX != DUPLEX_HALF */
158 if (adapter
->link_duplex
== FULL_DUPLEX
)
159 ecmd
->duplex
= DUPLEX_FULL
;
161 ecmd
->duplex
= DUPLEX_HALF
;
167 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
168 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
172 static int e1000_set_settings(struct net_device
*netdev
,
173 struct ethtool_cmd
*ecmd
)
175 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
176 struct e1000_hw
*hw
= &adapter
->hw
;
178 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
181 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
183 if (hw
->media_type
== e1000_media_type_fiber
)
184 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
188 hw
->autoneg_advertised
= ecmd
->advertising
|
191 ecmd
->advertising
= hw
->autoneg_advertised
;
193 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
194 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
200 if (netif_running(adapter
->netdev
)) {
204 e1000_reset(adapter
);
206 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
210 static void e1000_get_pauseparam(struct net_device
*netdev
,
211 struct ethtool_pauseparam
*pause
)
213 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
214 struct e1000_hw
*hw
= &adapter
->hw
;
217 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
219 if (hw
->fc
== E1000_FC_RX_PAUSE
)
221 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
223 else if (hw
->fc
== E1000_FC_FULL
) {
229 static int e1000_set_pauseparam(struct net_device
*netdev
,
230 struct ethtool_pauseparam
*pause
)
232 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
233 struct e1000_hw
*hw
= &adapter
->hw
;
236 adapter
->fc_autoneg
= pause
->autoneg
;
238 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
241 if (pause
->rx_pause
&& pause
->tx_pause
)
242 hw
->fc
= E1000_FC_FULL
;
243 else if (pause
->rx_pause
&& !pause
->tx_pause
)
244 hw
->fc
= E1000_FC_RX_PAUSE
;
245 else if (!pause
->rx_pause
&& pause
->tx_pause
)
246 hw
->fc
= E1000_FC_TX_PAUSE
;
247 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
248 hw
->fc
= E1000_FC_NONE
;
250 hw
->original_fc
= hw
->fc
;
252 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
253 if (netif_running(adapter
->netdev
)) {
257 e1000_reset(adapter
);
259 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
260 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
262 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
266 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
268 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
269 return adapter
->rx_csum
;
272 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
274 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
275 adapter
->rx_csum
= data
;
277 if (netif_running(netdev
))
278 e1000_reinit_locked(adapter
);
280 e1000_reset(adapter
);
284 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
286 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
289 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
291 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
292 struct e1000_hw
*hw
= &adapter
->hw
;
294 if (hw
->mac_type
< e1000_82543
) {
301 netdev
->features
|= NETIF_F_HW_CSUM
;
303 netdev
->features
&= ~NETIF_F_HW_CSUM
;
308 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
310 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
311 struct e1000_hw
*hw
= &adapter
->hw
;
313 if ((hw
->mac_type
< e1000_82544
) ||
314 (hw
->mac_type
== e1000_82547
))
315 return data
? -EINVAL
: 0;
318 netdev
->features
|= NETIF_F_TSO
;
320 netdev
->features
&= ~NETIF_F_TSO
;
322 netdev
->features
&= ~NETIF_F_TSO6
;
324 DPRINTK(PROBE
, INFO
, "TSO is %s\n", data
? "Enabled" : "Disabled");
325 adapter
->tso_force
= true;
329 static u32
e1000_get_msglevel(struct net_device
*netdev
)
331 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
332 return adapter
->msg_enable
;
335 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
337 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
338 adapter
->msg_enable
= data
;
341 static int e1000_get_regs_len(struct net_device
*netdev
)
343 #define E1000_REGS_LEN 32
344 return E1000_REGS_LEN
* sizeof(u32
);
347 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
350 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
351 struct e1000_hw
*hw
= &adapter
->hw
;
355 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
357 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
359 regs_buff
[0] = er32(CTRL
);
360 regs_buff
[1] = er32(STATUS
);
362 regs_buff
[2] = er32(RCTL
);
363 regs_buff
[3] = er32(RDLEN
);
364 regs_buff
[4] = er32(RDH
);
365 regs_buff
[5] = er32(RDT
);
366 regs_buff
[6] = er32(RDTR
);
368 regs_buff
[7] = er32(TCTL
);
369 regs_buff
[8] = er32(TDLEN
);
370 regs_buff
[9] = er32(TDH
);
371 regs_buff
[10] = er32(TDT
);
372 regs_buff
[11] = er32(TIDV
);
374 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
375 if (hw
->phy_type
== e1000_phy_igp
) {
376 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
377 IGP01E1000_PHY_AGC_A
);
378 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
379 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
380 regs_buff
[13] = (u32
)phy_data
; /* cable length */
381 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
382 IGP01E1000_PHY_AGC_B
);
383 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
384 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
385 regs_buff
[14] = (u32
)phy_data
; /* cable length */
386 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
387 IGP01E1000_PHY_AGC_C
);
388 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
389 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
390 regs_buff
[15] = (u32
)phy_data
; /* cable length */
391 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
392 IGP01E1000_PHY_AGC_D
);
393 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
394 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
395 regs_buff
[16] = (u32
)phy_data
; /* cable length */
396 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
397 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
398 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
399 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
400 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
401 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
402 IGP01E1000_PHY_PCS_INIT_REG
);
403 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
404 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
405 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
406 regs_buff
[20] = 0; /* polarity correction enabled (always) */
407 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
408 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
409 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
411 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
412 regs_buff
[13] = (u32
)phy_data
; /* cable length */
413 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
415 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
416 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
417 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
418 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
419 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
420 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
421 /* phy receive errors */
422 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
423 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
425 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
426 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
427 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
428 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
429 if (hw
->mac_type
>= e1000_82540
&&
430 hw
->media_type
== e1000_media_type_copper
) {
431 regs_buff
[26] = er32(MANC
);
435 static int e1000_get_eeprom_len(struct net_device
*netdev
)
437 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
438 struct e1000_hw
*hw
= &adapter
->hw
;
440 return hw
->eeprom
.word_size
* 2;
443 static int e1000_get_eeprom(struct net_device
*netdev
,
444 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
446 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
447 struct e1000_hw
*hw
= &adapter
->hw
;
449 int first_word
, last_word
;
453 if (eeprom
->len
== 0)
456 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
458 first_word
= eeprom
->offset
>> 1;
459 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
461 eeprom_buff
= kmalloc(sizeof(u16
) *
462 (last_word
- first_word
+ 1), GFP_KERNEL
);
466 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
467 ret_val
= e1000_read_eeprom(hw
, first_word
,
468 last_word
- first_word
+ 1,
471 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
472 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
479 /* Device's eeprom is always little-endian, word addressable */
480 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
481 le16_to_cpus(&eeprom_buff
[i
]);
483 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
490 static int e1000_set_eeprom(struct net_device
*netdev
,
491 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
493 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
494 struct e1000_hw
*hw
= &adapter
->hw
;
497 int max_len
, first_word
, last_word
, ret_val
= 0;
500 if (eeprom
->len
== 0)
503 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
506 max_len
= hw
->eeprom
.word_size
* 2;
508 first_word
= eeprom
->offset
>> 1;
509 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
510 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
514 ptr
= (void *)eeprom_buff
;
516 if (eeprom
->offset
& 1) {
517 /* need read/modify/write of first changed EEPROM word */
518 /* only the second byte of the word is being modified */
519 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
523 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
524 /* need read/modify/write of last changed EEPROM word */
525 /* only the first byte of the word is being modified */
526 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
527 &eeprom_buff
[last_word
- first_word
]);
530 /* Device's eeprom is always little-endian, word addressable */
531 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
532 le16_to_cpus(&eeprom_buff
[i
]);
534 memcpy(ptr
, bytes
, eeprom
->len
);
536 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
537 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
539 ret_val
= e1000_write_eeprom(hw
, first_word
,
540 last_word
- first_word
+ 1, eeprom_buff
);
542 /* Update the checksum over the first part of the EEPROM if needed */
543 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
544 e1000_update_eeprom_checksum(hw
);
550 static void e1000_get_drvinfo(struct net_device
*netdev
,
551 struct ethtool_drvinfo
*drvinfo
)
553 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
554 char firmware_version
[32];
556 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
557 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
559 sprintf(firmware_version
, "N/A");
560 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
561 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
562 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
563 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
566 static void e1000_get_ringparam(struct net_device
*netdev
,
567 struct ethtool_ringparam
*ring
)
569 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
570 struct e1000_hw
*hw
= &adapter
->hw
;
571 e1000_mac_type mac_type
= hw
->mac_type
;
572 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
573 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
575 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
577 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
579 ring
->rx_mini_max_pending
= 0;
580 ring
->rx_jumbo_max_pending
= 0;
581 ring
->rx_pending
= rxdr
->count
;
582 ring
->tx_pending
= txdr
->count
;
583 ring
->rx_mini_pending
= 0;
584 ring
->rx_jumbo_pending
= 0;
587 static int e1000_set_ringparam(struct net_device
*netdev
,
588 struct ethtool_ringparam
*ring
)
590 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
591 struct e1000_hw
*hw
= &adapter
->hw
;
592 e1000_mac_type mac_type
= hw
->mac_type
;
593 struct e1000_tx_ring
*txdr
, *tx_old
;
594 struct e1000_rx_ring
*rxdr
, *rx_old
;
597 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
600 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
603 if (netif_running(adapter
->netdev
))
606 tx_old
= adapter
->tx_ring
;
607 rx_old
= adapter
->rx_ring
;
610 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
614 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
618 adapter
->tx_ring
= txdr
;
619 adapter
->rx_ring
= rxdr
;
621 rxdr
->count
= max(ring
->rx_pending
,(u32
)E1000_MIN_RXD
);
622 rxdr
->count
= min(rxdr
->count
,(u32
)(mac_type
< e1000_82544
?
623 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
624 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
626 txdr
->count
= max(ring
->tx_pending
,(u32
)E1000_MIN_TXD
);
627 txdr
->count
= min(txdr
->count
,(u32
)(mac_type
< e1000_82544
?
628 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
629 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
631 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
632 txdr
[i
].count
= txdr
->count
;
633 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
634 rxdr
[i
].count
= rxdr
->count
;
636 if (netif_running(adapter
->netdev
)) {
637 /* Try to get new resources before deleting old */
638 err
= e1000_setup_all_rx_resources(adapter
);
641 err
= e1000_setup_all_tx_resources(adapter
);
645 /* save the new, restore the old in order to free it,
646 * then restore the new back again */
648 adapter
->rx_ring
= rx_old
;
649 adapter
->tx_ring
= tx_old
;
650 e1000_free_all_rx_resources(adapter
);
651 e1000_free_all_tx_resources(adapter
);
654 adapter
->rx_ring
= rxdr
;
655 adapter
->tx_ring
= txdr
;
656 err
= e1000_up(adapter
);
661 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
664 e1000_free_all_rx_resources(adapter
);
666 adapter
->rx_ring
= rx_old
;
667 adapter
->tx_ring
= tx_old
;
674 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
678 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
681 struct e1000_hw
*hw
= &adapter
->hw
;
682 static const u32 test
[] =
683 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
684 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
688 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
689 writel(write
& test
[i
], address
);
690 read
= readl(address
);
691 if (read
!= (write
& test
[i
] & mask
)) {
692 DPRINTK(DRV
, ERR
, "pattern test reg %04X failed: "
693 "got 0x%08X expected 0x%08X\n",
694 reg
, read
, (write
& test
[i
] & mask
));
702 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
705 struct e1000_hw
*hw
= &adapter
->hw
;
706 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
709 writel(write
& mask
, address
);
710 read
= readl(address
);
711 if ((read
& mask
) != (write
& mask
)) {
712 DPRINTK(DRV
, ERR
, "set/check reg %04X test failed: "
713 "got 0x%08X expected 0x%08X\n",
714 reg
, (read
& mask
), (write
& mask
));
721 #define REG_PATTERN_TEST(reg, mask, write) \
723 if (reg_pattern_test(adapter, data, \
724 (hw->mac_type >= e1000_82543) \
725 ? E1000_##reg : E1000_82542_##reg, \
730 #define REG_SET_AND_CHECK(reg, mask, write) \
732 if (reg_set_and_check(adapter, data, \
733 (hw->mac_type >= e1000_82543) \
734 ? E1000_##reg : E1000_82542_##reg, \
739 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
741 u32 value
, before
, after
;
743 struct e1000_hw
*hw
= &adapter
->hw
;
745 /* The status register is Read Only, so a write should fail.
746 * Some bits that get toggled are ignored.
749 /* there are several bits on newer hardware that are r/w */
752 before
= er32(STATUS
);
753 value
= (er32(STATUS
) & toggle
);
754 ew32(STATUS
, toggle
);
755 after
= er32(STATUS
) & toggle
;
756 if (value
!= after
) {
757 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
758 "0x%08X expected: 0x%08X\n", after
, value
);
762 /* restore previous status */
763 ew32(STATUS
, before
);
765 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
766 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
770 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
771 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
772 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
773 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
775 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
776 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
777 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
778 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
781 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
784 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
785 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
787 if (hw
->mac_type
>= e1000_82543
) {
789 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
790 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
791 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
793 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
794 value
= E1000_RAR_ENTRIES
;
795 for (i
= 0; i
< value
; i
++) {
796 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
802 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
803 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
804 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
805 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
809 value
= E1000_MC_TBL_SIZE
;
810 for (i
= 0; i
< value
; i
++)
811 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
817 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
819 struct e1000_hw
*hw
= &adapter
->hw
;
825 /* Read and add up the contents of the EEPROM */
826 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
827 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
834 /* If Checksum is not Correct return error else test passed */
835 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
841 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
843 struct net_device
*netdev
= (struct net_device
*)data
;
844 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
845 struct e1000_hw
*hw
= &adapter
->hw
;
847 adapter
->test_icr
|= er32(ICR
);
852 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
854 struct net_device
*netdev
= adapter
->netdev
;
856 bool shared_int
= true;
857 u32 irq
= adapter
->pdev
->irq
;
858 struct e1000_hw
*hw
= &adapter
->hw
;
862 /* NOTE: we don't test MSI interrupts here, yet */
863 /* Hook up test interrupt handler just for this test */
864 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
867 else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
868 netdev
->name
, netdev
)) {
872 DPRINTK(HW
, INFO
, "testing %s interrupt\n",
873 (shared_int
? "shared" : "unshared"));
875 /* Disable all the interrupts */
876 ew32(IMC
, 0xFFFFFFFF);
879 /* Test each interrupt */
880 for (; i
< 10; i
++) {
882 /* Interrupt to test */
886 /* Disable the interrupt to be reported in
887 * the cause register and then force the same
888 * interrupt and see if one gets posted. If
889 * an interrupt was posted to the bus, the
892 adapter
->test_icr
= 0;
897 if (adapter
->test_icr
& mask
) {
903 /* Enable the interrupt to be reported in
904 * the cause register and then force the same
905 * interrupt and see if one gets posted. If
906 * an interrupt was not posted to the bus, the
909 adapter
->test_icr
= 0;
914 if (!(adapter
->test_icr
& mask
)) {
920 /* Disable the other interrupts to be reported in
921 * the cause register and then force the other
922 * interrupts and see if any get posted. If
923 * an interrupt was posted to the bus, the
926 adapter
->test_icr
= 0;
927 ew32(IMC
, ~mask
& 0x00007FFF);
928 ew32(ICS
, ~mask
& 0x00007FFF);
931 if (adapter
->test_icr
) {
938 /* Disable all the interrupts */
939 ew32(IMC
, 0xFFFFFFFF);
942 /* Unhook test interrupt handler */
943 free_irq(irq
, netdev
);
948 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
950 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
951 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
952 struct pci_dev
*pdev
= adapter
->pdev
;
955 if (txdr
->desc
&& txdr
->buffer_info
) {
956 for (i
= 0; i
< txdr
->count
; i
++) {
957 if (txdr
->buffer_info
[i
].dma
)
958 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
959 txdr
->buffer_info
[i
].length
,
961 if (txdr
->buffer_info
[i
].skb
)
962 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
966 if (rxdr
->desc
&& rxdr
->buffer_info
) {
967 for (i
= 0; i
< rxdr
->count
; i
++) {
968 if (rxdr
->buffer_info
[i
].dma
)
969 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
970 rxdr
->buffer_info
[i
].length
,
972 if (rxdr
->buffer_info
[i
].skb
)
973 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
978 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
982 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
986 kfree(txdr
->buffer_info
);
987 txdr
->buffer_info
= NULL
;
988 kfree(rxdr
->buffer_info
);
989 rxdr
->buffer_info
= NULL
;
994 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
996 struct e1000_hw
*hw
= &adapter
->hw
;
997 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
998 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
999 struct pci_dev
*pdev
= adapter
->pdev
;
1003 /* Setup Tx descriptor ring and Tx buffers */
1006 txdr
->count
= E1000_DEFAULT_TXD
;
1008 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_buffer
),
1010 if (!txdr
->buffer_info
) {
1015 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1016 txdr
->size
= ALIGN(txdr
->size
, 4096);
1017 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1022 memset(txdr
->desc
, 0, txdr
->size
);
1023 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1025 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1026 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1027 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1030 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1031 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1032 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1034 for (i
= 0; i
< txdr
->count
; i
++) {
1035 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1036 struct sk_buff
*skb
;
1037 unsigned int size
= 1024;
1039 skb
= alloc_skb(size
, GFP_KERNEL
);
1045 txdr
->buffer_info
[i
].skb
= skb
;
1046 txdr
->buffer_info
[i
].length
= skb
->len
;
1047 txdr
->buffer_info
[i
].dma
=
1048 pci_map_single(pdev
, skb
->data
, skb
->len
,
1050 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1051 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1052 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1053 E1000_TXD_CMD_IFCS
|
1055 tx_desc
->upper
.data
= 0;
1058 /* Setup Rx descriptor ring and Rx buffers */
1061 rxdr
->count
= E1000_DEFAULT_RXD
;
1063 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_buffer
),
1065 if (!rxdr
->buffer_info
) {
1070 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1071 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1076 memset(rxdr
->desc
, 0, rxdr
->size
);
1077 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1080 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1081 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1082 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1083 ew32(RDLEN
, rxdr
->size
);
1086 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1087 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1088 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1091 for (i
= 0; i
< rxdr
->count
; i
++) {
1092 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1093 struct sk_buff
*skb
;
1095 skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
, GFP_KERNEL
);
1100 skb_reserve(skb
, NET_IP_ALIGN
);
1101 rxdr
->buffer_info
[i
].skb
= skb
;
1102 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1103 rxdr
->buffer_info
[i
].dma
=
1104 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1105 PCI_DMA_FROMDEVICE
);
1106 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1107 memset(skb
->data
, 0x00, skb
->len
);
1113 e1000_free_desc_rings(adapter
);
1117 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1119 struct e1000_hw
*hw
= &adapter
->hw
;
1121 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1122 e1000_write_phy_reg(hw
, 29, 0x001F);
1123 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1124 e1000_write_phy_reg(hw
, 29, 0x001A);
1125 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1128 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1130 struct e1000_hw
*hw
= &adapter
->hw
;
1133 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1134 * Extended PHY Specific Control Register to 25MHz clock. This
1135 * value defaults back to a 2.5MHz clock when the PHY is reset.
1137 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1138 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1139 e1000_write_phy_reg(hw
,
1140 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1142 /* In addition, because of the s/w reset above, we need to enable
1143 * CRS on TX. This must be set for both full and half duplex
1146 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1147 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1148 e1000_write_phy_reg(hw
,
1149 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1152 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1154 struct e1000_hw
*hw
= &adapter
->hw
;
1158 /* Setup the Device Control Register for PHY loopback test. */
1160 ctrl_reg
= er32(CTRL
);
1161 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1162 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1163 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1164 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1165 E1000_CTRL_FD
); /* Force Duplex to FULL */
1167 ew32(CTRL
, ctrl_reg
);
1169 /* Read the PHY Specific Control Register (0x10) */
1170 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1172 /* Clear Auto-Crossover bits in PHY Specific Control Register
1175 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1176 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1178 /* Perform software reset on the PHY */
1179 e1000_phy_reset(hw
);
1181 /* Have to setup TX_CLK and TX_CRS after software reset */
1182 e1000_phy_reset_clk_and_crs(adapter
);
1184 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1186 /* Wait for reset to complete. */
1189 /* Have to setup TX_CLK and TX_CRS after software reset */
1190 e1000_phy_reset_clk_and_crs(adapter
);
1192 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1193 e1000_phy_disable_receiver(adapter
);
1195 /* Set the loopback bit in the PHY control register. */
1196 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1197 phy_reg
|= MII_CR_LOOPBACK
;
1198 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1200 /* Setup TX_CLK and TX_CRS one more time. */
1201 e1000_phy_reset_clk_and_crs(adapter
);
1203 /* Check Phy Configuration */
1204 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1205 if (phy_reg
!= 0x4100)
1208 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1209 if (phy_reg
!= 0x0070)
1212 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1213 if (phy_reg
!= 0x001A)
1219 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1221 struct e1000_hw
*hw
= &adapter
->hw
;
1225 hw
->autoneg
= false;
1227 if (hw
->phy_type
== e1000_phy_m88
) {
1228 /* Auto-MDI/MDIX Off */
1229 e1000_write_phy_reg(hw
,
1230 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1231 /* reset to update Auto-MDI/MDIX */
1232 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1234 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1237 ctrl_reg
= er32(CTRL
);
1239 /* force 1000, set loopback */
1240 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1242 /* Now set up the MAC to the same speed/duplex as the PHY. */
1243 ctrl_reg
= er32(CTRL
);
1244 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1245 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1246 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1247 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1248 E1000_CTRL_FD
); /* Force Duplex to FULL */
1250 if (hw
->media_type
== e1000_media_type_copper
&&
1251 hw
->phy_type
== e1000_phy_m88
)
1252 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1254 /* Set the ILOS bit on the fiber Nic is half
1255 * duplex link is detected. */
1256 stat_reg
= er32(STATUS
);
1257 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1258 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1261 ew32(CTRL
, ctrl_reg
);
1263 /* Disable the receiver on the PHY so when a cable is plugged in, the
1264 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1266 if (hw
->phy_type
== e1000_phy_m88
)
1267 e1000_phy_disable_receiver(adapter
);
1274 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1276 struct e1000_hw
*hw
= &adapter
->hw
;
1280 switch (hw
->mac_type
) {
1282 if (hw
->media_type
== e1000_media_type_copper
) {
1283 /* Attempt to setup Loopback mode on Non-integrated PHY.
1284 * Some PHY registers get corrupted at random, so
1285 * attempt this 10 times.
1287 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1297 case e1000_82545_rev_3
:
1299 case e1000_82546_rev_3
:
1301 case e1000_82541_rev_2
:
1303 case e1000_82547_rev_2
:
1304 return e1000_integrated_phy_loopback(adapter
);
1307 /* Default PHY loopback work is to read the MII
1308 * control register and assert bit 14 (loopback mode).
1310 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1311 phy_reg
|= MII_CR_LOOPBACK
;
1312 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1320 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1322 struct e1000_hw
*hw
= &adapter
->hw
;
1325 if (hw
->media_type
== e1000_media_type_fiber
||
1326 hw
->media_type
== e1000_media_type_internal_serdes
) {
1327 switch (hw
->mac_type
) {
1330 case e1000_82545_rev_3
:
1331 case e1000_82546_rev_3
:
1332 return e1000_set_phy_loopback(adapter
);
1336 rctl
|= E1000_RCTL_LBM_TCVR
;
1340 } else if (hw
->media_type
== e1000_media_type_copper
)
1341 return e1000_set_phy_loopback(adapter
);
1346 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1348 struct e1000_hw
*hw
= &adapter
->hw
;
1353 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1356 switch (hw
->mac_type
) {
1359 case e1000_82545_rev_3
:
1360 case e1000_82546_rev_3
:
1363 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1364 if (phy_reg
& MII_CR_LOOPBACK
) {
1365 phy_reg
&= ~MII_CR_LOOPBACK
;
1366 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1367 e1000_phy_reset(hw
);
1373 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1374 unsigned int frame_size
)
1376 memset(skb
->data
, 0xFF, frame_size
);
1378 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1379 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1380 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1383 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1384 unsigned int frame_size
)
1387 if (*(skb
->data
+ 3) == 0xFF) {
1388 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1389 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1396 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1398 struct e1000_hw
*hw
= &adapter
->hw
;
1399 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1400 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1401 struct pci_dev
*pdev
= adapter
->pdev
;
1402 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1405 ew32(RDT
, rxdr
->count
- 1);
1407 /* Calculate the loop count based on the largest descriptor ring
1408 * The idea is to wrap the largest ring a number of times using 64
1409 * send/receive pairs during each loop
1412 if (rxdr
->count
<= txdr
->count
)
1413 lc
= ((txdr
->count
/ 64) * 2) + 1;
1415 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1418 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1419 for (i
= 0; i
< 64; i
++) { /* send the packets */
1420 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1422 pci_dma_sync_single_for_device(pdev
,
1423 txdr
->buffer_info
[k
].dma
,
1424 txdr
->buffer_info
[k
].length
,
1426 if (unlikely(++k
== txdr
->count
)) k
= 0;
1430 time
= jiffies
; /* set the start time for the receive */
1432 do { /* receive the sent packets */
1433 pci_dma_sync_single_for_cpu(pdev
,
1434 rxdr
->buffer_info
[l
].dma
,
1435 rxdr
->buffer_info
[l
].length
,
1436 PCI_DMA_FROMDEVICE
);
1438 ret_val
= e1000_check_lbtest_frame(
1439 rxdr
->buffer_info
[l
].skb
,
1443 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1444 /* time + 20 msecs (200 msecs on 2.4) is more than
1445 * enough time to complete the receives, if it's
1446 * exceeded, break and error off
1448 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1449 if (good_cnt
!= 64) {
1450 ret_val
= 13; /* ret_val is the same as mis-compare */
1453 if (jiffies
>= (time
+ 2)) {
1454 ret_val
= 14; /* error code for time out error */
1457 } /* end loop count loop */
1461 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1463 *data
= e1000_setup_desc_rings(adapter
);
1466 *data
= e1000_setup_loopback_test(adapter
);
1469 *data
= e1000_run_loopback_test(adapter
);
1470 e1000_loopback_cleanup(adapter
);
1473 e1000_free_desc_rings(adapter
);
1478 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1480 struct e1000_hw
*hw
= &adapter
->hw
;
1482 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1484 hw
->serdes_has_link
= false;
1486 /* On some blade server designs, link establishment
1487 * could take as long as 2-3 minutes */
1489 e1000_check_for_link(hw
);
1490 if (hw
->serdes_has_link
)
1493 } while (i
++ < 3750);
1497 e1000_check_for_link(hw
);
1498 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1501 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
1508 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1512 return E1000_TEST_LEN
;
1514 return E1000_STATS_LEN
;
1520 static void e1000_diag_test(struct net_device
*netdev
,
1521 struct ethtool_test
*eth_test
, u64
*data
)
1523 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1524 struct e1000_hw
*hw
= &adapter
->hw
;
1525 bool if_running
= netif_running(netdev
);
1527 set_bit(__E1000_TESTING
, &adapter
->flags
);
1528 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1531 /* save speed, duplex, autoneg settings */
1532 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1533 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1534 u8 autoneg
= hw
->autoneg
;
1536 DPRINTK(HW
, INFO
, "offline testing starting\n");
1538 /* Link test performed before hardware reset so autoneg doesn't
1539 * interfere with test result */
1540 if (e1000_link_test(adapter
, &data
[4]))
1541 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1544 /* indicate we're in test mode */
1547 e1000_reset(adapter
);
1549 if (e1000_reg_test(adapter
, &data
[0]))
1550 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1552 e1000_reset(adapter
);
1553 if (e1000_eeprom_test(adapter
, &data
[1]))
1554 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1556 e1000_reset(adapter
);
1557 if (e1000_intr_test(adapter
, &data
[2]))
1558 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1560 e1000_reset(adapter
);
1561 /* make sure the phy is powered up */
1562 e1000_power_up_phy(adapter
);
1563 if (e1000_loopback_test(adapter
, &data
[3]))
1564 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1566 /* restore speed, duplex, autoneg settings */
1567 hw
->autoneg_advertised
= autoneg_advertised
;
1568 hw
->forced_speed_duplex
= forced_speed_duplex
;
1569 hw
->autoneg
= autoneg
;
1571 e1000_reset(adapter
);
1572 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1576 DPRINTK(HW
, INFO
, "online testing starting\n");
1578 if (e1000_link_test(adapter
, &data
[4]))
1579 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1581 /* Online tests aren't run; pass by default */
1587 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1589 msleep_interruptible(4 * 1000);
1592 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1593 struct ethtool_wolinfo
*wol
)
1595 struct e1000_hw
*hw
= &adapter
->hw
;
1596 int retval
= 1; /* fail by default */
1598 switch (hw
->device_id
) {
1599 case E1000_DEV_ID_82542
:
1600 case E1000_DEV_ID_82543GC_FIBER
:
1601 case E1000_DEV_ID_82543GC_COPPER
:
1602 case E1000_DEV_ID_82544EI_FIBER
:
1603 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1604 case E1000_DEV_ID_82545EM_FIBER
:
1605 case E1000_DEV_ID_82545EM_COPPER
:
1606 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1607 case E1000_DEV_ID_82546GB_PCIE
:
1608 /* these don't support WoL at all */
1611 case E1000_DEV_ID_82546EB_FIBER
:
1612 case E1000_DEV_ID_82546GB_FIBER
:
1613 /* Wake events not supported on port B */
1614 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1618 /* return success for non excluded adapter ports */
1621 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1622 /* quad port adapters only support WoL on port A */
1623 if (!adapter
->quad_port_a
) {
1627 /* return success for non excluded adapter ports */
1631 /* dual port cards only support WoL on port A from now on
1632 * unless it was enabled in the eeprom for port B
1633 * so exclude FUNC_1 ports from having WoL enabled */
1634 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1635 !adapter
->eeprom_wol
) {
1646 static void e1000_get_wol(struct net_device
*netdev
,
1647 struct ethtool_wolinfo
*wol
)
1649 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1650 struct e1000_hw
*hw
= &adapter
->hw
;
1652 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1653 WAKE_BCAST
| WAKE_MAGIC
;
1656 /* this function will set ->supported = 0 and return 1 if wol is not
1657 * supported by this hardware */
1658 if (e1000_wol_exclusion(adapter
, wol
) ||
1659 !device_can_wakeup(&adapter
->pdev
->dev
))
1662 /* apply any specific unsupported masks here */
1663 switch (hw
->device_id
) {
1664 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1665 /* KSP3 does not suppport UCAST wake-ups */
1666 wol
->supported
&= ~WAKE_UCAST
;
1668 if (adapter
->wol
& E1000_WUFC_EX
)
1669 DPRINTK(DRV
, ERR
, "Interface does not support "
1670 "directed (unicast) frame wake-up packets\n");
1676 if (adapter
->wol
& E1000_WUFC_EX
)
1677 wol
->wolopts
|= WAKE_UCAST
;
1678 if (adapter
->wol
& E1000_WUFC_MC
)
1679 wol
->wolopts
|= WAKE_MCAST
;
1680 if (adapter
->wol
& E1000_WUFC_BC
)
1681 wol
->wolopts
|= WAKE_BCAST
;
1682 if (adapter
->wol
& E1000_WUFC_MAG
)
1683 wol
->wolopts
|= WAKE_MAGIC
;
1688 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1690 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1691 struct e1000_hw
*hw
= &adapter
->hw
;
1693 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1696 if (e1000_wol_exclusion(adapter
, wol
) ||
1697 !device_can_wakeup(&adapter
->pdev
->dev
))
1698 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1700 switch (hw
->device_id
) {
1701 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1702 if (wol
->wolopts
& WAKE_UCAST
) {
1703 DPRINTK(DRV
, ERR
, "Interface does not support "
1704 "directed (unicast) frame wake-up packets\n");
1712 /* these settings will always override what we currently have */
1715 if (wol
->wolopts
& WAKE_UCAST
)
1716 adapter
->wol
|= E1000_WUFC_EX
;
1717 if (wol
->wolopts
& WAKE_MCAST
)
1718 adapter
->wol
|= E1000_WUFC_MC
;
1719 if (wol
->wolopts
& WAKE_BCAST
)
1720 adapter
->wol
|= E1000_WUFC_BC
;
1721 if (wol
->wolopts
& WAKE_MAGIC
)
1722 adapter
->wol
|= E1000_WUFC_MAG
;
1724 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1729 /* toggle LED 4 times per second = 2 "blinks" per second */
1730 #define E1000_ID_INTERVAL (HZ/4)
1732 /* bit defines for adapter->led_status */
1733 #define E1000_LED_ON 0
1735 static void e1000_led_blink_callback(unsigned long data
)
1737 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1738 struct e1000_hw
*hw
= &adapter
->hw
;
1740 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1745 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1748 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1750 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1751 struct e1000_hw
*hw
= &adapter
->hw
;
1756 if (!adapter
->blink_timer
.function
) {
1757 init_timer(&adapter
->blink_timer
);
1758 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1759 adapter
->blink_timer
.data
= (unsigned long)adapter
;
1761 e1000_setup_led(hw
);
1762 mod_timer(&adapter
->blink_timer
, jiffies
);
1763 msleep_interruptible(data
* 1000);
1764 del_timer_sync(&adapter
->blink_timer
);
1767 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1768 e1000_cleanup_led(hw
);
1773 static int e1000_get_coalesce(struct net_device
*netdev
,
1774 struct ethtool_coalesce
*ec
)
1776 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1778 if (adapter
->hw
.mac_type
< e1000_82545
)
1781 if (adapter
->itr_setting
<= 3)
1782 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1784 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1789 static int e1000_set_coalesce(struct net_device
*netdev
,
1790 struct ethtool_coalesce
*ec
)
1792 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1793 struct e1000_hw
*hw
= &adapter
->hw
;
1795 if (hw
->mac_type
< e1000_82545
)
1798 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1799 ((ec
->rx_coalesce_usecs
> 3) &&
1800 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1801 (ec
->rx_coalesce_usecs
== 2))
1804 if (ec
->rx_coalesce_usecs
<= 3) {
1805 adapter
->itr
= 20000;
1806 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1808 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1809 adapter
->itr_setting
= adapter
->itr
& ~3;
1812 if (adapter
->itr_setting
!= 0)
1813 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1820 static int e1000_nway_reset(struct net_device
*netdev
)
1822 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1823 if (netif_running(netdev
))
1824 e1000_reinit_locked(adapter
);
1828 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1829 struct ethtool_stats
*stats
, u64
*data
)
1831 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1834 e1000_update_stats(adapter
);
1835 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1836 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1837 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1838 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1840 /* BUG_ON(i != E1000_STATS_LEN); */
1843 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1849 switch (stringset
) {
1851 memcpy(data
, *e1000_gstrings_test
,
1852 sizeof(e1000_gstrings_test
));
1855 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1856 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1858 p
+= ETH_GSTRING_LEN
;
1860 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1865 static const struct ethtool_ops e1000_ethtool_ops
= {
1866 .get_settings
= e1000_get_settings
,
1867 .set_settings
= e1000_set_settings
,
1868 .get_drvinfo
= e1000_get_drvinfo
,
1869 .get_regs_len
= e1000_get_regs_len
,
1870 .get_regs
= e1000_get_regs
,
1871 .get_wol
= e1000_get_wol
,
1872 .set_wol
= e1000_set_wol
,
1873 .get_msglevel
= e1000_get_msglevel
,
1874 .set_msglevel
= e1000_set_msglevel
,
1875 .nway_reset
= e1000_nway_reset
,
1876 .get_link
= ethtool_op_get_link
,
1877 .get_eeprom_len
= e1000_get_eeprom_len
,
1878 .get_eeprom
= e1000_get_eeprom
,
1879 .set_eeprom
= e1000_set_eeprom
,
1880 .get_ringparam
= e1000_get_ringparam
,
1881 .set_ringparam
= e1000_set_ringparam
,
1882 .get_pauseparam
= e1000_get_pauseparam
,
1883 .set_pauseparam
= e1000_set_pauseparam
,
1884 .get_rx_csum
= e1000_get_rx_csum
,
1885 .set_rx_csum
= e1000_set_rx_csum
,
1886 .get_tx_csum
= e1000_get_tx_csum
,
1887 .set_tx_csum
= e1000_set_tx_csum
,
1888 .set_sg
= ethtool_op_set_sg
,
1889 .set_tso
= e1000_set_tso
,
1890 .self_test
= e1000_diag_test
,
1891 .get_strings
= e1000_get_strings
,
1892 .phys_id
= e1000_phys_id
,
1893 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1894 .get_sset_count
= e1000_get_sset_count
,
1895 .get_coalesce
= e1000_get_coalesce
,
1896 .set_coalesce
= e1000_set_coalesce
,
1899 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1901 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);