x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / e1000e / ich8lan.c
blob51ddb04ab19588adcb16e460f7beecd1261b8e69
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
62 #include "e1000.h"
64 #define ICH_FLASH_GFPREG 0x0000
65 #define ICH_FLASH_HSFSTS 0x0004
66 #define ICH_FLASH_HSFCTL 0x0006
67 #define ICH_FLASH_FADDR 0x0008
68 #define ICH_FLASH_FDATA0 0x0010
69 #define ICH_FLASH_PR0 0x0074
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
77 #define ICH_CYCLE_READ 0
78 #define ICH_CYCLE_WRITE 2
79 #define ICH_CYCLE_ERASE 3
81 #define FLASH_GFPREG_BASE_MASK 0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT 12
84 #define ICH_FLASH_SEG_SIZE_256 256
85 #define ICH_FLASH_SEG_SIZE_4K 4096
86 #define ICH_FLASH_SEG_SIZE_8K 8192
87 #define ICH_FLASH_SEG_SIZE_64K 65536
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
92 #define E1000_ICH_MNG_IAMT_MODE 0x2
94 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
99 #define E1000_ICH_NVM_SIG_WORD 0x13
100 #define E1000_ICH_NVM_SIG_MASK 0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102 #define E1000_ICH_NVM_SIG_VALUE 0x80
104 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
106 #define E1000_FEXTNVM_SW_CONFIG 1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
109 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
111 #define E1000_ICH_RAR_ENTRIES 7
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
123 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
125 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
127 /* SMBus Address Phy Register */
128 #define HV_SMB_ADDR PHY_REG(768, 26)
129 #define HV_SMB_ADDR_PEC_EN 0x0200
130 #define HV_SMB_ADDR_VALID 0x0080
132 /* Strapping Option Register - RO */
133 #define E1000_STRAP 0x0000C
134 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
135 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
137 /* OEM Bits Phy Register */
138 #define HV_OEM_BITS PHY_REG(768, 25)
139 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
140 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
141 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
143 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
144 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
146 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
147 /* Offset 04h HSFSTS */
148 union ich8_hws_flash_status {
149 struct ich8_hsfsts {
150 u16 flcdone :1; /* bit 0 Flash Cycle Done */
151 u16 flcerr :1; /* bit 1 Flash Cycle Error */
152 u16 dael :1; /* bit 2 Direct Access error Log */
153 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
154 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
155 u16 reserved1 :2; /* bit 13:6 Reserved */
156 u16 reserved2 :6; /* bit 13:6 Reserved */
157 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
158 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
159 } hsf_status;
160 u16 regval;
163 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
164 /* Offset 06h FLCTL */
165 union ich8_hws_flash_ctrl {
166 struct ich8_hsflctl {
167 u16 flcgo :1; /* 0 Flash Cycle Go */
168 u16 flcycle :2; /* 2:1 Flash Cycle */
169 u16 reserved :5; /* 7:3 Reserved */
170 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
171 u16 flockdn :6; /* 15:10 Reserved */
172 } hsf_ctrl;
173 u16 regval;
176 /* ICH Flash Region Access Permissions */
177 union ich8_hws_flash_regacc {
178 struct ich8_flracc {
179 u32 grra :8; /* 0:7 GbE region Read Access */
180 u32 grwa :8; /* 8:15 GbE region Write Access */
181 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
182 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
183 } hsf_flregacc;
184 u16 regval;
187 /* ICH Flash Protected Region */
188 union ich8_flash_protected_range {
189 struct ich8_pr {
190 u32 base:13; /* 0:12 Protected Range Base */
191 u32 reserved1:2; /* 13:14 Reserved */
192 u32 rpe:1; /* 15 Read Protection Enable */
193 u32 limit:13; /* 16:28 Protected Range Limit */
194 u32 reserved2:2; /* 29:30 Reserved */
195 u32 wpe:1; /* 31 Write Protection Enable */
196 } range;
197 u32 regval;
200 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
201 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
202 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
203 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
204 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
205 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
206 u32 offset, u8 byte);
207 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
208 u8 *data);
209 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
210 u16 *data);
211 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
212 u8 size, u16 *data);
213 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
214 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
216 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
217 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
219 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
220 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
221 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
222 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
223 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
224 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
225 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
226 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
227 static s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
229 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
231 return readw(hw->flash_address + reg);
234 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
236 return readl(hw->flash_address + reg);
239 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
241 writew(val, hw->flash_address + reg);
244 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
246 writel(val, hw->flash_address + reg);
249 #define er16flash(reg) __er16flash(hw, (reg))
250 #define er32flash(reg) __er32flash(hw, (reg))
251 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
252 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
255 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
256 * @hw: pointer to the HW structure
258 * Initialize family-specific PHY parameters and function pointers.
260 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
262 struct e1000_phy_info *phy = &hw->phy;
263 s32 ret_val = 0;
265 phy->addr = 1;
266 phy->reset_delay_us = 100;
268 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
269 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
270 phy->ops.read_phy_reg_locked = e1000_read_phy_reg_hv_locked;
271 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
272 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
273 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
274 phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked;
275 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
277 phy->id = e1000_phy_unknown;
278 e1000e_get_phy_id(hw);
279 phy->type = e1000e_get_phy_type_from_id(phy->id);
281 if (phy->type == e1000_phy_82577) {
282 phy->ops.check_polarity = e1000_check_polarity_82577;
283 phy->ops.force_speed_duplex =
284 e1000_phy_force_speed_duplex_82577;
285 phy->ops.get_cable_length = e1000_get_cable_length_82577;
286 phy->ops.get_phy_info = e1000_get_phy_info_82577;
287 phy->ops.commit_phy = e1000e_phy_sw_reset;
290 return ret_val;
294 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
295 * @hw: pointer to the HW structure
297 * Initialize family-specific PHY parameters and function pointers.
299 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
301 struct e1000_phy_info *phy = &hw->phy;
302 s32 ret_val;
303 u16 i = 0;
305 phy->addr = 1;
306 phy->reset_delay_us = 100;
309 * We may need to do this twice - once for IGP and if that fails,
310 * we'll set BM func pointers and try again
312 ret_val = e1000e_determine_phy_address(hw);
313 if (ret_val) {
314 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
315 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
316 ret_val = e1000e_determine_phy_address(hw);
317 if (ret_val)
318 return ret_val;
321 phy->id = 0;
322 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
323 (i++ < 100)) {
324 msleep(1);
325 ret_val = e1000e_get_phy_id(hw);
326 if (ret_val)
327 return ret_val;
330 /* Verify phy id */
331 switch (phy->id) {
332 case IGP03E1000_E_PHY_ID:
333 phy->type = e1000_phy_igp_3;
334 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
335 phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked;
336 phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked;
337 break;
338 case IFE_E_PHY_ID:
339 case IFE_PLUS_E_PHY_ID:
340 case IFE_C_E_PHY_ID:
341 phy->type = e1000_phy_ife;
342 phy->autoneg_mask = E1000_ALL_NOT_GIG;
343 break;
344 case BME1000_E_PHY_ID:
345 phy->type = e1000_phy_bm;
346 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
347 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
348 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
349 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
350 break;
351 default:
352 return -E1000_ERR_PHY;
353 break;
356 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
358 return 0;
362 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
363 * @hw: pointer to the HW structure
365 * Initialize family-specific NVM parameters and function
366 * pointers.
368 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
370 struct e1000_nvm_info *nvm = &hw->nvm;
371 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
372 u32 gfpreg, sector_base_addr, sector_end_addr;
373 u16 i;
375 /* Can't read flash registers if the register set isn't mapped. */
376 if (!hw->flash_address) {
377 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
378 return -E1000_ERR_CONFIG;
381 nvm->type = e1000_nvm_flash_sw;
383 gfpreg = er32flash(ICH_FLASH_GFPREG);
386 * sector_X_addr is a "sector"-aligned address (4096 bytes)
387 * Add 1 to sector_end_addr since this sector is included in
388 * the overall size.
390 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
391 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
393 /* flash_base_addr is byte-aligned */
394 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
397 * find total size of the NVM, then cut in half since the total
398 * size represents two separate NVM banks.
400 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
401 << FLASH_SECTOR_ADDR_SHIFT;
402 nvm->flash_bank_size /= 2;
403 /* Adjust to word count */
404 nvm->flash_bank_size /= sizeof(u16);
406 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
408 /* Clear shadow ram */
409 for (i = 0; i < nvm->word_size; i++) {
410 dev_spec->shadow_ram[i].modified = 0;
411 dev_spec->shadow_ram[i].value = 0xFFFF;
414 return 0;
418 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
419 * @hw: pointer to the HW structure
421 * Initialize family-specific MAC parameters and function
422 * pointers.
424 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
426 struct e1000_hw *hw = &adapter->hw;
427 struct e1000_mac_info *mac = &hw->mac;
429 /* Set media type function pointer */
430 hw->phy.media_type = e1000_media_type_copper;
432 /* Set mta register count */
433 mac->mta_reg_count = 32;
434 /* Set rar entry count */
435 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
436 if (mac->type == e1000_ich8lan)
437 mac->rar_entry_count--;
438 /* Set if manageability features are enabled. */
439 mac->arc_subsystem_valid = 1;
441 /* LED operations */
442 switch (mac->type) {
443 case e1000_ich8lan:
444 case e1000_ich9lan:
445 case e1000_ich10lan:
446 /* ID LED init */
447 mac->ops.id_led_init = e1000e_id_led_init;
448 /* setup LED */
449 mac->ops.setup_led = e1000e_setup_led_generic;
450 /* cleanup LED */
451 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
452 /* turn on/off LED */
453 mac->ops.led_on = e1000_led_on_ich8lan;
454 mac->ops.led_off = e1000_led_off_ich8lan;
455 break;
456 case e1000_pchlan:
457 /* ID LED init */
458 mac->ops.id_led_init = e1000_id_led_init_pchlan;
459 /* setup LED */
460 mac->ops.setup_led = e1000_setup_led_pchlan;
461 /* cleanup LED */
462 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
463 /* turn on/off LED */
464 mac->ops.led_on = e1000_led_on_pchlan;
465 mac->ops.led_off = e1000_led_off_pchlan;
466 break;
467 default:
468 break;
471 /* Enable PCS Lock-loss workaround for ICH8 */
472 if (mac->type == e1000_ich8lan)
473 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
475 return 0;
479 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
480 * @hw: pointer to the HW structure
482 * Checks to see of the link status of the hardware has changed. If a
483 * change in link status has been detected, then we read the PHY registers
484 * to get the current speed/duplex if link exists.
486 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
488 struct e1000_mac_info *mac = &hw->mac;
489 s32 ret_val;
490 bool link;
493 * We only want to go out to the PHY registers to see if Auto-Neg
494 * has completed and/or if our link status has changed. The
495 * get_link_status flag is set upon receiving a Link Status
496 * Change or Rx Sequence Error interrupt.
498 if (!mac->get_link_status) {
499 ret_val = 0;
500 goto out;
504 * First we want to see if the MII Status Register reports
505 * link. If so, then we want to get the current speed/duplex
506 * of the PHY.
508 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
509 if (ret_val)
510 goto out;
512 if (hw->mac.type == e1000_pchlan) {
513 ret_val = e1000_k1_gig_workaround_hv(hw, link);
514 if (ret_val)
515 goto out;
518 if (!link)
519 goto out; /* No link detected */
521 mac->get_link_status = false;
523 if (hw->phy.type == e1000_phy_82578) {
524 ret_val = e1000_link_stall_workaround_hv(hw);
525 if (ret_val)
526 goto out;
530 * Check if there was DownShift, must be checked
531 * immediately after link-up
533 e1000e_check_downshift(hw);
536 * If we are forcing speed/duplex, then we simply return since
537 * we have already determined whether we have link or not.
539 if (!mac->autoneg) {
540 ret_val = -E1000_ERR_CONFIG;
541 goto out;
545 * Auto-Neg is enabled. Auto Speed Detection takes care
546 * of MAC speed/duplex configuration. So we only need to
547 * configure Collision Distance in the MAC.
549 e1000e_config_collision_dist(hw);
552 * Configure Flow Control now that Auto-Neg has completed.
553 * First, we need to restore the desired flow control
554 * settings because we may have had to re-autoneg with a
555 * different link partner.
557 ret_val = e1000e_config_fc_after_link_up(hw);
558 if (ret_val)
559 hw_dbg(hw, "Error configuring flow control\n");
561 out:
562 return ret_val;
565 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
567 struct e1000_hw *hw = &adapter->hw;
568 s32 rc;
570 rc = e1000_init_mac_params_ich8lan(adapter);
571 if (rc)
572 return rc;
574 rc = e1000_init_nvm_params_ich8lan(hw);
575 if (rc)
576 return rc;
578 if (hw->mac.type == e1000_pchlan)
579 rc = e1000_init_phy_params_pchlan(hw);
580 else
581 rc = e1000_init_phy_params_ich8lan(hw);
582 if (rc)
583 return rc;
585 if (adapter->hw.phy.type == e1000_phy_ife) {
586 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
587 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
590 if ((adapter->hw.mac.type == e1000_ich8lan) &&
591 (adapter->hw.phy.type == e1000_phy_igp_3))
592 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
594 return 0;
597 static DEFINE_MUTEX(nvm_mutex);
600 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
601 * @hw: pointer to the HW structure
603 * Acquires the mutex for performing NVM operations.
605 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
607 mutex_lock(&nvm_mutex);
609 return 0;
613 * e1000_release_nvm_ich8lan - Release NVM mutex
614 * @hw: pointer to the HW structure
616 * Releases the mutex used while performing NVM operations.
618 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
620 mutex_unlock(&nvm_mutex);
622 return;
625 static DEFINE_MUTEX(swflag_mutex);
628 * e1000_acquire_swflag_ich8lan - Acquire software control flag
629 * @hw: pointer to the HW structure
631 * Acquires the software control flag for performing PHY and select
632 * MAC CSR accesses.
634 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
636 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
637 s32 ret_val = 0;
639 might_sleep();
641 mutex_lock(&swflag_mutex);
643 while (timeout) {
644 extcnf_ctrl = er32(EXTCNF_CTRL);
645 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
646 break;
648 mdelay(1);
649 timeout--;
652 if (!timeout) {
653 hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n");
654 ret_val = -E1000_ERR_CONFIG;
655 goto out;
658 timeout = SW_FLAG_TIMEOUT;
660 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
661 ew32(EXTCNF_CTRL, extcnf_ctrl);
663 while (timeout) {
664 extcnf_ctrl = er32(EXTCNF_CTRL);
665 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
666 break;
668 mdelay(1);
669 timeout--;
672 if (!timeout) {
673 hw_dbg(hw, "Failed to acquire the semaphore.\n");
674 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
675 ew32(EXTCNF_CTRL, extcnf_ctrl);
676 ret_val = -E1000_ERR_CONFIG;
677 goto out;
680 out:
681 if (ret_val)
682 mutex_unlock(&swflag_mutex);
684 return ret_val;
688 * e1000_release_swflag_ich8lan - Release software control flag
689 * @hw: pointer to the HW structure
691 * Releases the software control flag for performing PHY and select
692 * MAC CSR accesses.
694 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
696 u32 extcnf_ctrl;
698 extcnf_ctrl = er32(EXTCNF_CTRL);
699 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
700 ew32(EXTCNF_CTRL, extcnf_ctrl);
702 mutex_unlock(&swflag_mutex);
704 return;
708 * e1000_check_mng_mode_ich8lan - Checks management mode
709 * @hw: pointer to the HW structure
711 * This checks if the adapter has manageability enabled.
712 * This is a function pointer entry point only called by read/write
713 * routines for the PHY and NVM parts.
715 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
717 u32 fwsm = er32(FWSM);
719 return (fwsm & E1000_FWSM_MODE_MASK) ==
720 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
724 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
725 * @hw: pointer to the HW structure
727 * Checks if firmware is blocking the reset of the PHY.
728 * This is a function pointer entry point only called by
729 * reset routines.
731 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
733 u32 fwsm;
735 fwsm = er32(FWSM);
737 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
741 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
742 * @hw: pointer to the HW structure
744 * Forces the speed and duplex settings of the PHY.
745 * This is a function pointer entry point only called by
746 * PHY setup routines.
748 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
750 struct e1000_phy_info *phy = &hw->phy;
751 s32 ret_val;
752 u16 data;
753 bool link;
755 if (phy->type != e1000_phy_ife) {
756 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
757 return ret_val;
760 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
761 if (ret_val)
762 return ret_val;
764 e1000e_phy_force_speed_duplex_setup(hw, &data);
766 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
767 if (ret_val)
768 return ret_val;
770 /* Disable MDI-X support for 10/100 */
771 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
772 if (ret_val)
773 return ret_val;
775 data &= ~IFE_PMC_AUTO_MDIX;
776 data &= ~IFE_PMC_FORCE_MDIX;
778 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
779 if (ret_val)
780 return ret_val;
782 hw_dbg(hw, "IFE PMC: %X\n", data);
784 udelay(1);
786 if (phy->autoneg_wait_to_complete) {
787 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
789 ret_val = e1000e_phy_has_link_generic(hw,
790 PHY_FORCE_LIMIT,
791 100000,
792 &link);
793 if (ret_val)
794 return ret_val;
796 if (!link)
797 hw_dbg(hw, "Link taking longer than expected.\n");
799 /* Try once more */
800 ret_val = e1000e_phy_has_link_generic(hw,
801 PHY_FORCE_LIMIT,
802 100000,
803 &link);
804 if (ret_val)
805 return ret_val;
808 return 0;
812 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
813 * @hw: pointer to the HW structure
815 * SW should configure the LCD from the NVM extended configuration region
816 * as a workaround for certain parts.
818 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
820 struct e1000_phy_info *phy = &hw->phy;
821 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
822 s32 ret_val;
823 u16 word_addr, reg_data, reg_addr, phy_page = 0;
825 ret_val = hw->phy.ops.acquire_phy(hw);
826 if (ret_val)
827 return ret_val;
830 * Initialize the PHY from the NVM on ICH platforms. This
831 * is needed due to an issue where the NVM configuration is
832 * not properly autoloaded after power transitions.
833 * Therefore, after each PHY reset, we will load the
834 * configuration data out of the NVM manually.
836 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
837 (hw->mac.type == e1000_pchlan)) {
838 struct e1000_adapter *adapter = hw->adapter;
840 /* Check if SW needs to configure the PHY */
841 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
842 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
843 (hw->mac.type == e1000_pchlan))
844 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
845 else
846 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
848 data = er32(FEXTNVM);
849 if (!(data & sw_cfg_mask))
850 goto out;
852 /* Wait for basic configuration completes before proceeding */
853 e1000_lan_init_done_ich8lan(hw);
856 * Make sure HW does not configure LCD from PHY
857 * extended configuration before SW configuration
859 data = er32(EXTCNF_CTRL);
860 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
861 goto out;
863 cnf_size = er32(EXTCNF_SIZE);
864 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
865 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
866 if (!cnf_size)
867 goto out;
869 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
870 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
872 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
873 (hw->mac.type == e1000_pchlan)) {
875 * HW configures the SMBus address and LEDs when the
876 * OEM and LCD Write Enable bits are set in the NVM.
877 * When both NVM bits are cleared, SW will configure
878 * them instead.
880 data = er32(STRAP);
881 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
882 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
883 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
884 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
885 reg_data);
886 if (ret_val)
887 goto out;
889 data = er32(LEDCTL);
890 ret_val = e1000_write_phy_reg_hv_locked(hw,
891 HV_LED_CONFIG,
892 (u16)data);
893 if (ret_val)
894 goto out;
896 /* Configure LCD from extended configuration region. */
898 /* cnf_base_addr is in DWORD */
899 word_addr = (u16)(cnf_base_addr << 1);
901 for (i = 0; i < cnf_size; i++) {
902 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
903 &reg_data);
904 if (ret_val)
905 goto out;
907 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
908 1, &reg_addr);
909 if (ret_val)
910 goto out;
912 /* Save off the PHY page for future writes. */
913 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
914 phy_page = reg_data;
915 continue;
918 reg_addr &= PHY_REG_MASK;
919 reg_addr |= phy_page;
921 ret_val = phy->ops.write_phy_reg_locked(hw,
922 (u32)reg_addr,
923 reg_data);
924 if (ret_val)
925 goto out;
929 out:
930 hw->phy.ops.release_phy(hw);
931 return ret_val;
935 * e1000_k1_gig_workaround_hv - K1 Si workaround
936 * @hw: pointer to the HW structure
937 * @link: link up bool flag
939 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
940 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
941 * If link is down, the function will restore the default K1 setting located
942 * in the NVM.
944 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
946 s32 ret_val = 0;
947 u16 status_reg = 0;
948 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
950 if (hw->mac.type != e1000_pchlan)
951 goto out;
953 /* Wrap the whole flow with the sw flag */
954 ret_val = hw->phy.ops.acquire_phy(hw);
955 if (ret_val)
956 goto out;
958 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
959 if (link) {
960 if (hw->phy.type == e1000_phy_82578) {
961 ret_val = hw->phy.ops.read_phy_reg_locked(hw,
962 BM_CS_STATUS,
963 &status_reg);
964 if (ret_val)
965 goto release;
967 status_reg &= BM_CS_STATUS_LINK_UP |
968 BM_CS_STATUS_RESOLVED |
969 BM_CS_STATUS_SPEED_MASK;
971 if (status_reg == (BM_CS_STATUS_LINK_UP |
972 BM_CS_STATUS_RESOLVED |
973 BM_CS_STATUS_SPEED_1000))
974 k1_enable = false;
977 if (hw->phy.type == e1000_phy_82577) {
978 ret_val = hw->phy.ops.read_phy_reg_locked(hw,
979 HV_M_STATUS,
980 &status_reg);
981 if (ret_val)
982 goto release;
984 status_reg &= HV_M_STATUS_LINK_UP |
985 HV_M_STATUS_AUTONEG_COMPLETE |
986 HV_M_STATUS_SPEED_MASK;
988 if (status_reg == (HV_M_STATUS_LINK_UP |
989 HV_M_STATUS_AUTONEG_COMPLETE |
990 HV_M_STATUS_SPEED_1000))
991 k1_enable = false;
994 /* Link stall fix for link up */
995 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
996 0x0100);
997 if (ret_val)
998 goto release;
1000 } else {
1001 /* Link stall fix for link down */
1002 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
1003 0x4100);
1004 if (ret_val)
1005 goto release;
1008 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1010 release:
1011 hw->phy.ops.release_phy(hw);
1012 out:
1013 return ret_val;
1017 * e1000_configure_k1_ich8lan - Configure K1 power state
1018 * @hw: pointer to the HW structure
1019 * @enable: K1 state to configure
1021 * Configure the K1 power state based on the provided parameter.
1022 * Assumes semaphore already acquired.
1024 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1026 static s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1028 s32 ret_val = 0;
1029 u32 ctrl_reg = 0;
1030 u32 ctrl_ext = 0;
1031 u32 reg = 0;
1032 u16 kmrn_reg = 0;
1034 ret_val = e1000e_read_kmrn_reg_locked(hw,
1035 E1000_KMRNCTRLSTA_K1_CONFIG,
1036 &kmrn_reg);
1037 if (ret_val)
1038 goto out;
1040 if (k1_enable)
1041 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1042 else
1043 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1045 ret_val = e1000e_write_kmrn_reg_locked(hw,
1046 E1000_KMRNCTRLSTA_K1_CONFIG,
1047 kmrn_reg);
1048 if (ret_val)
1049 goto out;
1051 udelay(20);
1052 ctrl_ext = er32(CTRL_EXT);
1053 ctrl_reg = er32(CTRL);
1055 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1056 reg |= E1000_CTRL_FRCSPD;
1057 ew32(CTRL, reg);
1059 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1060 udelay(20);
1061 ew32(CTRL, ctrl_reg);
1062 ew32(CTRL_EXT, ctrl_ext);
1063 udelay(20);
1065 out:
1066 return ret_val;
1070 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1071 * @hw: pointer to the HW structure
1072 * @d0_state: boolean if entering d0 or d3 device state
1074 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1075 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1076 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1078 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1080 s32 ret_val = 0;
1081 u32 mac_reg;
1082 u16 oem_reg;
1084 if (hw->mac.type != e1000_pchlan)
1085 return ret_val;
1087 ret_val = hw->phy.ops.acquire_phy(hw);
1088 if (ret_val)
1089 return ret_val;
1091 mac_reg = er32(EXTCNF_CTRL);
1092 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1093 goto out;
1095 mac_reg = er32(FEXTNVM);
1096 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1097 goto out;
1099 mac_reg = er32(PHY_CTRL);
1101 ret_val = hw->phy.ops.read_phy_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1102 if (ret_val)
1103 goto out;
1105 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1107 if (d0_state) {
1108 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1109 oem_reg |= HV_OEM_BITS_GBE_DIS;
1111 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1112 oem_reg |= HV_OEM_BITS_LPLU;
1113 } else {
1114 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1115 oem_reg |= HV_OEM_BITS_GBE_DIS;
1117 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1118 oem_reg |= HV_OEM_BITS_LPLU;
1120 /* Restart auto-neg to activate the bits */
1121 oem_reg |= HV_OEM_BITS_RESTART_AN;
1122 ret_val = hw->phy.ops.write_phy_reg_locked(hw, HV_OEM_BITS, oem_reg);
1124 out:
1125 hw->phy.ops.release_phy(hw);
1127 return ret_val;
1132 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1133 * done after every PHY reset.
1135 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1137 s32 ret_val = 0;
1139 if (hw->mac.type != e1000_pchlan)
1140 return ret_val;
1142 if (((hw->phy.type == e1000_phy_82577) &&
1143 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1144 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1145 /* Disable generation of early preamble */
1146 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1147 if (ret_val)
1148 return ret_val;
1150 /* Preamble tuning for SSC */
1151 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1152 if (ret_val)
1153 return ret_val;
1156 if (hw->phy.type == e1000_phy_82578) {
1158 * Return registers to default by doing a soft reset then
1159 * writing 0x3140 to the control register.
1161 if (hw->phy.revision < 2) {
1162 e1000e_phy_sw_reset(hw);
1163 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1167 /* Select page 0 */
1168 ret_val = hw->phy.ops.acquire_phy(hw);
1169 if (ret_val)
1170 return ret_val;
1172 hw->phy.addr = 1;
1173 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1174 if (ret_val)
1175 goto out;
1176 hw->phy.ops.release_phy(hw);
1179 * Configure the K1 Si workaround during phy reset assuming there is
1180 * link so that it disables K1 if link is in 1Gbps.
1182 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1184 out:
1185 return ret_val;
1189 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1190 * @hw: pointer to the HW structure
1192 * Check the appropriate indication the MAC has finished configuring the
1193 * PHY after a software reset.
1195 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1197 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1199 /* Wait for basic configuration completes before proceeding */
1200 do {
1201 data = er32(STATUS);
1202 data &= E1000_STATUS_LAN_INIT_DONE;
1203 udelay(100);
1204 } while ((!data) && --loop);
1207 * If basic configuration is incomplete before the above loop
1208 * count reaches 0, loading the configuration from NVM will
1209 * leave the PHY in a bad state possibly resulting in no link.
1211 if (loop == 0)
1212 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
1214 /* Clear the Init Done bit for the next init event */
1215 data = er32(STATUS);
1216 data &= ~E1000_STATUS_LAN_INIT_DONE;
1217 ew32(STATUS, data);
1221 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1222 * @hw: pointer to the HW structure
1224 * Resets the PHY
1225 * This is a function pointer entry point called by drivers
1226 * or other shared routines.
1228 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1230 s32 ret_val = 0;
1231 u16 reg;
1233 ret_val = e1000e_phy_hw_reset_generic(hw);
1234 if (ret_val)
1235 return ret_val;
1237 /* Allow time for h/w to get to a quiescent state after reset */
1238 mdelay(10);
1240 if (hw->mac.type == e1000_pchlan) {
1241 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1242 if (ret_val)
1243 return ret_val;
1246 /* Dummy read to clear the phy wakeup bit after lcd reset */
1247 if (hw->mac.type == e1000_pchlan)
1248 e1e_rphy(hw, BM_WUC, &reg);
1250 /* Configure the LCD with the extended configuration region in NVM */
1251 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1252 if (ret_val)
1253 goto out;
1255 /* Configure the LCD with the OEM bits in NVM */
1256 if (hw->mac.type == e1000_pchlan)
1257 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1259 out:
1260 return 0;
1264 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1265 * @hw: pointer to the HW structure
1267 * Populates "phy" structure with various feature states.
1268 * This function is only called by other family-specific
1269 * routines.
1271 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1273 struct e1000_phy_info *phy = &hw->phy;
1274 s32 ret_val;
1275 u16 data;
1276 bool link;
1278 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1279 if (ret_val)
1280 return ret_val;
1282 if (!link) {
1283 hw_dbg(hw, "Phy info is only valid if link is up\n");
1284 return -E1000_ERR_CONFIG;
1287 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1288 if (ret_val)
1289 return ret_val;
1290 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1292 if (phy->polarity_correction) {
1293 ret_val = phy->ops.check_polarity(hw);
1294 if (ret_val)
1295 return ret_val;
1296 } else {
1297 /* Polarity is forced */
1298 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1299 ? e1000_rev_polarity_reversed
1300 : e1000_rev_polarity_normal;
1303 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1304 if (ret_val)
1305 return ret_val;
1307 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1309 /* The following parameters are undefined for 10/100 operation. */
1310 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1311 phy->local_rx = e1000_1000t_rx_status_undefined;
1312 phy->remote_rx = e1000_1000t_rx_status_undefined;
1314 return 0;
1318 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1319 * @hw: pointer to the HW structure
1321 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1322 * This is a function pointer entry point called by drivers
1323 * or other shared routines.
1325 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1327 switch (hw->phy.type) {
1328 case e1000_phy_ife:
1329 return e1000_get_phy_info_ife_ich8lan(hw);
1330 break;
1331 case e1000_phy_igp_3:
1332 case e1000_phy_bm:
1333 case e1000_phy_82578:
1334 case e1000_phy_82577:
1335 return e1000e_get_phy_info_igp(hw);
1336 break;
1337 default:
1338 break;
1341 return -E1000_ERR_PHY_TYPE;
1345 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1346 * @hw: pointer to the HW structure
1348 * Polarity is determined on the polarity reversal feature being enabled.
1349 * This function is only called by other family-specific
1350 * routines.
1352 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1354 struct e1000_phy_info *phy = &hw->phy;
1355 s32 ret_val;
1356 u16 phy_data, offset, mask;
1359 * Polarity is determined based on the reversal feature being enabled.
1361 if (phy->polarity_correction) {
1362 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1363 mask = IFE_PESC_POLARITY_REVERSED;
1364 } else {
1365 offset = IFE_PHY_SPECIAL_CONTROL;
1366 mask = IFE_PSC_FORCE_POLARITY;
1369 ret_val = e1e_rphy(hw, offset, &phy_data);
1371 if (!ret_val)
1372 phy->cable_polarity = (phy_data & mask)
1373 ? e1000_rev_polarity_reversed
1374 : e1000_rev_polarity_normal;
1376 return ret_val;
1380 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1381 * @hw: pointer to the HW structure
1382 * @active: true to enable LPLU, false to disable
1384 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1385 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1386 * the phy speed. This function will manually set the LPLU bit and restart
1387 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1388 * since it configures the same bit.
1390 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1392 s32 ret_val = 0;
1393 u16 oem_reg;
1395 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1396 if (ret_val)
1397 goto out;
1399 if (active)
1400 oem_reg |= HV_OEM_BITS_LPLU;
1401 else
1402 oem_reg &= ~HV_OEM_BITS_LPLU;
1404 oem_reg |= HV_OEM_BITS_RESTART_AN;
1405 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1407 out:
1408 return ret_val;
1412 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1413 * @hw: pointer to the HW structure
1414 * @active: TRUE to enable LPLU, FALSE to disable
1416 * Sets the LPLU D0 state according to the active flag. When
1417 * activating LPLU this function also disables smart speed
1418 * and vice versa. LPLU will not be activated unless the
1419 * device autonegotiation advertisement meets standards of
1420 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1421 * This is a function pointer entry point only called by
1422 * PHY setup routines.
1424 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1426 struct e1000_phy_info *phy = &hw->phy;
1427 u32 phy_ctrl;
1428 s32 ret_val = 0;
1429 u16 data;
1431 if (phy->type == e1000_phy_ife)
1432 return ret_val;
1434 phy_ctrl = er32(PHY_CTRL);
1436 if (active) {
1437 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1438 ew32(PHY_CTRL, phy_ctrl);
1440 if (phy->type != e1000_phy_igp_3)
1441 return 0;
1444 * Call gig speed drop workaround on LPLU before accessing
1445 * any PHY registers
1447 if (hw->mac.type == e1000_ich8lan)
1448 e1000e_gig_downshift_workaround_ich8lan(hw);
1450 /* When LPLU is enabled, we should disable SmartSpeed */
1451 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1452 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1453 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1454 if (ret_val)
1455 return ret_val;
1456 } else {
1457 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1458 ew32(PHY_CTRL, phy_ctrl);
1460 if (phy->type != e1000_phy_igp_3)
1461 return 0;
1464 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1465 * during Dx states where the power conservation is most
1466 * important. During driver activity we should enable
1467 * SmartSpeed, so performance is maintained.
1469 if (phy->smart_speed == e1000_smart_speed_on) {
1470 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1471 &data);
1472 if (ret_val)
1473 return ret_val;
1475 data |= IGP01E1000_PSCFR_SMART_SPEED;
1476 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1477 data);
1478 if (ret_val)
1479 return ret_val;
1480 } else if (phy->smart_speed == e1000_smart_speed_off) {
1481 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1482 &data);
1483 if (ret_val)
1484 return ret_val;
1486 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1487 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1488 data);
1489 if (ret_val)
1490 return ret_val;
1494 return 0;
1498 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1499 * @hw: pointer to the HW structure
1500 * @active: TRUE to enable LPLU, FALSE to disable
1502 * Sets the LPLU D3 state according to the active flag. When
1503 * activating LPLU this function also disables smart speed
1504 * and vice versa. LPLU will not be activated unless the
1505 * device autonegotiation advertisement meets standards of
1506 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1507 * This is a function pointer entry point only called by
1508 * PHY setup routines.
1510 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1512 struct e1000_phy_info *phy = &hw->phy;
1513 u32 phy_ctrl;
1514 s32 ret_val;
1515 u16 data;
1517 phy_ctrl = er32(PHY_CTRL);
1519 if (!active) {
1520 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1521 ew32(PHY_CTRL, phy_ctrl);
1523 if (phy->type != e1000_phy_igp_3)
1524 return 0;
1527 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1528 * during Dx states where the power conservation is most
1529 * important. During driver activity we should enable
1530 * SmartSpeed, so performance is maintained.
1532 if (phy->smart_speed == e1000_smart_speed_on) {
1533 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1534 &data);
1535 if (ret_val)
1536 return ret_val;
1538 data |= IGP01E1000_PSCFR_SMART_SPEED;
1539 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1540 data);
1541 if (ret_val)
1542 return ret_val;
1543 } else if (phy->smart_speed == e1000_smart_speed_off) {
1544 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1545 &data);
1546 if (ret_val)
1547 return ret_val;
1549 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1550 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1551 data);
1552 if (ret_val)
1553 return ret_val;
1555 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1556 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1557 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1558 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1559 ew32(PHY_CTRL, phy_ctrl);
1561 if (phy->type != e1000_phy_igp_3)
1562 return 0;
1565 * Call gig speed drop workaround on LPLU before accessing
1566 * any PHY registers
1568 if (hw->mac.type == e1000_ich8lan)
1569 e1000e_gig_downshift_workaround_ich8lan(hw);
1571 /* When LPLU is enabled, we should disable SmartSpeed */
1572 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1573 if (ret_val)
1574 return ret_val;
1576 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1577 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1580 return 0;
1584 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1585 * @hw: pointer to the HW structure
1586 * @bank: pointer to the variable that returns the active bank
1588 * Reads signature byte from the NVM using the flash access registers.
1589 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1591 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1593 u32 eecd;
1594 struct e1000_nvm_info *nvm = &hw->nvm;
1595 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1596 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1597 u8 sig_byte = 0;
1598 s32 ret_val = 0;
1600 switch (hw->mac.type) {
1601 case e1000_ich8lan:
1602 case e1000_ich9lan:
1603 eecd = er32(EECD);
1604 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1605 E1000_EECD_SEC1VAL_VALID_MASK) {
1606 if (eecd & E1000_EECD_SEC1VAL)
1607 *bank = 1;
1608 else
1609 *bank = 0;
1611 return 0;
1613 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1614 "reading flash signature\n");
1615 /* fall-thru */
1616 default:
1617 /* set bank to 0 in case flash read fails */
1618 *bank = 0;
1620 /* Check bank 0 */
1621 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1622 &sig_byte);
1623 if (ret_val)
1624 return ret_val;
1625 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1626 E1000_ICH_NVM_SIG_VALUE) {
1627 *bank = 0;
1628 return 0;
1631 /* Check bank 1 */
1632 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1633 bank1_offset,
1634 &sig_byte);
1635 if (ret_val)
1636 return ret_val;
1637 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1638 E1000_ICH_NVM_SIG_VALUE) {
1639 *bank = 1;
1640 return 0;
1643 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1644 return -E1000_ERR_NVM;
1647 return 0;
1651 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1652 * @hw: pointer to the HW structure
1653 * @offset: The offset (in bytes) of the word(s) to read.
1654 * @words: Size of data to read in words
1655 * @data: Pointer to the word(s) to read at offset.
1657 * Reads a word(s) from the NVM using the flash access registers.
1659 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1660 u16 *data)
1662 struct e1000_nvm_info *nvm = &hw->nvm;
1663 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1664 u32 act_offset;
1665 s32 ret_val = 0;
1666 u32 bank = 0;
1667 u16 i, word;
1669 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1670 (words == 0)) {
1671 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1672 ret_val = -E1000_ERR_NVM;
1673 goto out;
1676 nvm->ops.acquire_nvm(hw);
1678 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1679 if (ret_val) {
1680 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1681 bank = 0;
1684 act_offset = (bank) ? nvm->flash_bank_size : 0;
1685 act_offset += offset;
1687 ret_val = 0;
1688 for (i = 0; i < words; i++) {
1689 if ((dev_spec->shadow_ram) &&
1690 (dev_spec->shadow_ram[offset+i].modified)) {
1691 data[i] = dev_spec->shadow_ram[offset+i].value;
1692 } else {
1693 ret_val = e1000_read_flash_word_ich8lan(hw,
1694 act_offset + i,
1695 &word);
1696 if (ret_val)
1697 break;
1698 data[i] = word;
1702 nvm->ops.release_nvm(hw);
1704 out:
1705 if (ret_val)
1706 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1708 return ret_val;
1712 * e1000_flash_cycle_init_ich8lan - Initialize flash
1713 * @hw: pointer to the HW structure
1715 * This function does initial flash setup so that a new read/write/erase cycle
1716 * can be started.
1718 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1720 union ich8_hws_flash_status hsfsts;
1721 s32 ret_val = -E1000_ERR_NVM;
1722 s32 i = 0;
1724 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1726 /* Check if the flash descriptor is valid */
1727 if (hsfsts.hsf_status.fldesvalid == 0) {
1728 hw_dbg(hw, "Flash descriptor invalid. "
1729 "SW Sequencing must be used.");
1730 return -E1000_ERR_NVM;
1733 /* Clear FCERR and DAEL in hw status by writing 1 */
1734 hsfsts.hsf_status.flcerr = 1;
1735 hsfsts.hsf_status.dael = 1;
1737 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1740 * Either we should have a hardware SPI cycle in progress
1741 * bit to check against, in order to start a new cycle or
1742 * FDONE bit should be changed in the hardware so that it
1743 * is 1 after hardware reset, which can then be used as an
1744 * indication whether a cycle is in progress or has been
1745 * completed.
1748 if (hsfsts.hsf_status.flcinprog == 0) {
1750 * There is no cycle running at present,
1751 * so we can start a cycle
1752 * Begin by setting Flash Cycle Done.
1754 hsfsts.hsf_status.flcdone = 1;
1755 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1756 ret_val = 0;
1757 } else {
1759 * otherwise poll for sometime so the current
1760 * cycle has a chance to end before giving up.
1762 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1763 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1764 if (hsfsts.hsf_status.flcinprog == 0) {
1765 ret_val = 0;
1766 break;
1768 udelay(1);
1770 if (ret_val == 0) {
1772 * Successful in waiting for previous cycle to timeout,
1773 * now set the Flash Cycle Done.
1775 hsfsts.hsf_status.flcdone = 1;
1776 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1777 } else {
1778 hw_dbg(hw, "Flash controller busy, cannot get access");
1782 return ret_val;
1786 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1787 * @hw: pointer to the HW structure
1788 * @timeout: maximum time to wait for completion
1790 * This function starts a flash cycle and waits for its completion.
1792 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1794 union ich8_hws_flash_ctrl hsflctl;
1795 union ich8_hws_flash_status hsfsts;
1796 s32 ret_val = -E1000_ERR_NVM;
1797 u32 i = 0;
1799 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1800 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1801 hsflctl.hsf_ctrl.flcgo = 1;
1802 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1804 /* wait till FDONE bit is set to 1 */
1805 do {
1806 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1807 if (hsfsts.hsf_status.flcdone == 1)
1808 break;
1809 udelay(1);
1810 } while (i++ < timeout);
1812 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1813 return 0;
1815 return ret_val;
1819 * e1000_read_flash_word_ich8lan - Read word from flash
1820 * @hw: pointer to the HW structure
1821 * @offset: offset to data location
1822 * @data: pointer to the location for storing the data
1824 * Reads the flash word at offset into data. Offset is converted
1825 * to bytes before read.
1827 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1828 u16 *data)
1830 /* Must convert offset into bytes. */
1831 offset <<= 1;
1833 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1837 * e1000_read_flash_byte_ich8lan - Read byte from flash
1838 * @hw: pointer to the HW structure
1839 * @offset: The offset of the byte to read.
1840 * @data: Pointer to a byte to store the value read.
1842 * Reads a single byte from the NVM using the flash access registers.
1844 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1845 u8 *data)
1847 s32 ret_val;
1848 u16 word = 0;
1850 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1851 if (ret_val)
1852 return ret_val;
1854 *data = (u8)word;
1856 return 0;
1860 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1861 * @hw: pointer to the HW structure
1862 * @offset: The offset (in bytes) of the byte or word to read.
1863 * @size: Size of data to read, 1=byte 2=word
1864 * @data: Pointer to the word to store the value read.
1866 * Reads a byte or word from the NVM using the flash access registers.
1868 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1869 u8 size, u16 *data)
1871 union ich8_hws_flash_status hsfsts;
1872 union ich8_hws_flash_ctrl hsflctl;
1873 u32 flash_linear_addr;
1874 u32 flash_data = 0;
1875 s32 ret_val = -E1000_ERR_NVM;
1876 u8 count = 0;
1878 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1879 return -E1000_ERR_NVM;
1881 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1882 hw->nvm.flash_base_addr;
1884 do {
1885 udelay(1);
1886 /* Steps */
1887 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1888 if (ret_val != 0)
1889 break;
1891 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1892 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1893 hsflctl.hsf_ctrl.fldbcount = size - 1;
1894 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1895 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1897 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1899 ret_val = e1000_flash_cycle_ich8lan(hw,
1900 ICH_FLASH_READ_COMMAND_TIMEOUT);
1903 * Check if FCERR is set to 1, if set to 1, clear it
1904 * and try the whole sequence a few more times, else
1905 * read in (shift in) the Flash Data0, the order is
1906 * least significant byte first msb to lsb
1908 if (ret_val == 0) {
1909 flash_data = er32flash(ICH_FLASH_FDATA0);
1910 if (size == 1) {
1911 *data = (u8)(flash_data & 0x000000FF);
1912 } else if (size == 2) {
1913 *data = (u16)(flash_data & 0x0000FFFF);
1915 break;
1916 } else {
1918 * If we've gotten here, then things are probably
1919 * completely hosed, but if the error condition is
1920 * detected, it won't hurt to give it another try...
1921 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1923 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1924 if (hsfsts.hsf_status.flcerr == 1) {
1925 /* Repeat for some time before giving up. */
1926 continue;
1927 } else if (hsfsts.hsf_status.flcdone == 0) {
1928 hw_dbg(hw, "Timeout error - flash cycle "
1929 "did not complete.");
1930 break;
1933 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1935 return ret_val;
1939 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1940 * @hw: pointer to the HW structure
1941 * @offset: The offset (in bytes) of the word(s) to write.
1942 * @words: Size of data to write in words
1943 * @data: Pointer to the word(s) to write at offset.
1945 * Writes a byte or word to the NVM using the flash access registers.
1947 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1948 u16 *data)
1950 struct e1000_nvm_info *nvm = &hw->nvm;
1951 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1952 u16 i;
1954 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1955 (words == 0)) {
1956 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1957 return -E1000_ERR_NVM;
1960 nvm->ops.acquire_nvm(hw);
1962 for (i = 0; i < words; i++) {
1963 dev_spec->shadow_ram[offset+i].modified = 1;
1964 dev_spec->shadow_ram[offset+i].value = data[i];
1967 nvm->ops.release_nvm(hw);
1969 return 0;
1973 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1974 * @hw: pointer to the HW structure
1976 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1977 * which writes the checksum to the shadow ram. The changes in the shadow
1978 * ram are then committed to the EEPROM by processing each bank at a time
1979 * checking for the modified bit and writing only the pending changes.
1980 * After a successful commit, the shadow ram is cleared and is ready for
1981 * future writes.
1983 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1985 struct e1000_nvm_info *nvm = &hw->nvm;
1986 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1987 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1988 s32 ret_val;
1989 u16 data;
1991 ret_val = e1000e_update_nvm_checksum_generic(hw);
1992 if (ret_val)
1993 goto out;
1995 if (nvm->type != e1000_nvm_flash_sw)
1996 goto out;
1998 nvm->ops.acquire_nvm(hw);
2001 * We're writing to the opposite bank so if we're on bank 1,
2002 * write to bank 0 etc. We also need to erase the segment that
2003 * is going to be written
2005 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2006 if (ret_val) {
2007 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
2008 bank = 0;
2011 if (bank == 0) {
2012 new_bank_offset = nvm->flash_bank_size;
2013 old_bank_offset = 0;
2014 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2015 if (ret_val) {
2016 nvm->ops.release_nvm(hw);
2017 goto out;
2019 } else {
2020 old_bank_offset = nvm->flash_bank_size;
2021 new_bank_offset = 0;
2022 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2023 if (ret_val) {
2024 nvm->ops.release_nvm(hw);
2025 goto out;
2029 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2031 * Determine whether to write the value stored
2032 * in the other NVM bank or a modified value stored
2033 * in the shadow RAM
2035 if (dev_spec->shadow_ram[i].modified) {
2036 data = dev_spec->shadow_ram[i].value;
2037 } else {
2038 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2039 old_bank_offset,
2040 &data);
2041 if (ret_val)
2042 break;
2046 * If the word is 0x13, then make sure the signature bits
2047 * (15:14) are 11b until the commit has completed.
2048 * This will allow us to write 10b which indicates the
2049 * signature is valid. We want to do this after the write
2050 * has completed so that we don't mark the segment valid
2051 * while the write is still in progress
2053 if (i == E1000_ICH_NVM_SIG_WORD)
2054 data |= E1000_ICH_NVM_SIG_MASK;
2056 /* Convert offset to bytes. */
2057 act_offset = (i + new_bank_offset) << 1;
2059 udelay(100);
2060 /* Write the bytes to the new bank. */
2061 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2062 act_offset,
2063 (u8)data);
2064 if (ret_val)
2065 break;
2067 udelay(100);
2068 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2069 act_offset + 1,
2070 (u8)(data >> 8));
2071 if (ret_val)
2072 break;
2076 * Don't bother writing the segment valid bits if sector
2077 * programming failed.
2079 if (ret_val) {
2080 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2081 hw_dbg(hw, "Flash commit failed.\n");
2082 nvm->ops.release_nvm(hw);
2083 goto out;
2087 * Finally validate the new segment by setting bit 15:14
2088 * to 10b in word 0x13 , this can be done without an
2089 * erase as well since these bits are 11 to start with
2090 * and we need to change bit 14 to 0b
2092 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2093 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2094 if (ret_val) {
2095 nvm->ops.release_nvm(hw);
2096 goto out;
2098 data &= 0xBFFF;
2099 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2100 act_offset * 2 + 1,
2101 (u8)(data >> 8));
2102 if (ret_val) {
2103 nvm->ops.release_nvm(hw);
2104 goto out;
2108 * And invalidate the previously valid segment by setting
2109 * its signature word (0x13) high_byte to 0b. This can be
2110 * done without an erase because flash erase sets all bits
2111 * to 1's. We can write 1's to 0's without an erase
2113 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2114 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2115 if (ret_val) {
2116 nvm->ops.release_nvm(hw);
2117 goto out;
2120 /* Great! Everything worked, we can now clear the cached entries. */
2121 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2122 dev_spec->shadow_ram[i].modified = 0;
2123 dev_spec->shadow_ram[i].value = 0xFFFF;
2126 nvm->ops.release_nvm(hw);
2129 * Reload the EEPROM, or else modifications will not appear
2130 * until after the next adapter reset.
2132 e1000e_reload_nvm(hw);
2133 msleep(10);
2135 out:
2136 if (ret_val)
2137 hw_dbg(hw, "NVM update error: %d\n", ret_val);
2139 return ret_val;
2143 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2144 * @hw: pointer to the HW structure
2146 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2147 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2148 * calculated, in which case we need to calculate the checksum and set bit 6.
2150 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2152 s32 ret_val;
2153 u16 data;
2156 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2157 * needs to be fixed. This bit is an indication that the NVM
2158 * was prepared by OEM software and did not calculate the
2159 * checksum...a likely scenario.
2161 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2162 if (ret_val)
2163 return ret_val;
2165 if ((data & 0x40) == 0) {
2166 data |= 0x40;
2167 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2168 if (ret_val)
2169 return ret_val;
2170 ret_val = e1000e_update_nvm_checksum(hw);
2171 if (ret_val)
2172 return ret_val;
2175 return e1000e_validate_nvm_checksum_generic(hw);
2179 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2180 * @hw: pointer to the HW structure
2182 * To prevent malicious write/erase of the NVM, set it to be read-only
2183 * so that the hardware ignores all write/erase cycles of the NVM via
2184 * the flash control registers. The shadow-ram copy of the NVM will
2185 * still be updated, however any updates to this copy will not stick
2186 * across driver reloads.
2188 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2190 struct e1000_nvm_info *nvm = &hw->nvm;
2191 union ich8_flash_protected_range pr0;
2192 union ich8_hws_flash_status hsfsts;
2193 u32 gfpreg;
2195 nvm->ops.acquire_nvm(hw);
2197 gfpreg = er32flash(ICH_FLASH_GFPREG);
2199 /* Write-protect GbE Sector of NVM */
2200 pr0.regval = er32flash(ICH_FLASH_PR0);
2201 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2202 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2203 pr0.range.wpe = true;
2204 ew32flash(ICH_FLASH_PR0, pr0.regval);
2207 * Lock down a subset of GbE Flash Control Registers, e.g.
2208 * PR0 to prevent the write-protection from being lifted.
2209 * Once FLOCKDN is set, the registers protected by it cannot
2210 * be written until FLOCKDN is cleared by a hardware reset.
2212 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2213 hsfsts.hsf_status.flockdn = true;
2214 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2216 nvm->ops.release_nvm(hw);
2220 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2221 * @hw: pointer to the HW structure
2222 * @offset: The offset (in bytes) of the byte/word to read.
2223 * @size: Size of data to read, 1=byte 2=word
2224 * @data: The byte(s) to write to the NVM.
2226 * Writes one/two bytes to the NVM using the flash access registers.
2228 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2229 u8 size, u16 data)
2231 union ich8_hws_flash_status hsfsts;
2232 union ich8_hws_flash_ctrl hsflctl;
2233 u32 flash_linear_addr;
2234 u32 flash_data = 0;
2235 s32 ret_val;
2236 u8 count = 0;
2238 if (size < 1 || size > 2 || data > size * 0xff ||
2239 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2240 return -E1000_ERR_NVM;
2242 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2243 hw->nvm.flash_base_addr;
2245 do {
2246 udelay(1);
2247 /* Steps */
2248 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2249 if (ret_val)
2250 break;
2252 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2253 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2254 hsflctl.hsf_ctrl.fldbcount = size -1;
2255 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2256 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2258 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2260 if (size == 1)
2261 flash_data = (u32)data & 0x00FF;
2262 else
2263 flash_data = (u32)data;
2265 ew32flash(ICH_FLASH_FDATA0, flash_data);
2268 * check if FCERR is set to 1 , if set to 1, clear it
2269 * and try the whole sequence a few more times else done
2271 ret_val = e1000_flash_cycle_ich8lan(hw,
2272 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2273 if (!ret_val)
2274 break;
2277 * If we're here, then things are most likely
2278 * completely hosed, but if the error condition
2279 * is detected, it won't hurt to give it another
2280 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2282 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2283 if (hsfsts.hsf_status.flcerr == 1)
2284 /* Repeat for some time before giving up. */
2285 continue;
2286 if (hsfsts.hsf_status.flcdone == 0) {
2287 hw_dbg(hw, "Timeout error - flash cycle "
2288 "did not complete.");
2289 break;
2291 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2293 return ret_val;
2297 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2298 * @hw: pointer to the HW structure
2299 * @offset: The index of the byte to read.
2300 * @data: The byte to write to the NVM.
2302 * Writes a single byte to the NVM using the flash access registers.
2304 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2305 u8 data)
2307 u16 word = (u16)data;
2309 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2313 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2314 * @hw: pointer to the HW structure
2315 * @offset: The offset of the byte to write.
2316 * @byte: The byte to write to the NVM.
2318 * Writes a single byte to the NVM using the flash access registers.
2319 * Goes through a retry algorithm before giving up.
2321 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2322 u32 offset, u8 byte)
2324 s32 ret_val;
2325 u16 program_retries;
2327 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2328 if (!ret_val)
2329 return ret_val;
2331 for (program_retries = 0; program_retries < 100; program_retries++) {
2332 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
2333 udelay(100);
2334 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2335 if (!ret_val)
2336 break;
2338 if (program_retries == 100)
2339 return -E1000_ERR_NVM;
2341 return 0;
2345 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2346 * @hw: pointer to the HW structure
2347 * @bank: 0 for first bank, 1 for second bank, etc.
2349 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2350 * bank N is 4096 * N + flash_reg_addr.
2352 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2354 struct e1000_nvm_info *nvm = &hw->nvm;
2355 union ich8_hws_flash_status hsfsts;
2356 union ich8_hws_flash_ctrl hsflctl;
2357 u32 flash_linear_addr;
2358 /* bank size is in 16bit words - adjust to bytes */
2359 u32 flash_bank_size = nvm->flash_bank_size * 2;
2360 s32 ret_val;
2361 s32 count = 0;
2362 s32 iteration;
2363 s32 sector_size;
2364 s32 j;
2366 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2369 * Determine HW Sector size: Read BERASE bits of hw flash status
2370 * register
2371 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2372 * consecutive sectors. The start index for the nth Hw sector
2373 * can be calculated as = bank * 4096 + n * 256
2374 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2375 * The start index for the nth Hw sector can be calculated
2376 * as = bank * 4096
2377 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2378 * (ich9 only, otherwise error condition)
2379 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2381 switch (hsfsts.hsf_status.berasesz) {
2382 case 0:
2383 /* Hw sector size 256 */
2384 sector_size = ICH_FLASH_SEG_SIZE_256;
2385 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2386 break;
2387 case 1:
2388 sector_size = ICH_FLASH_SEG_SIZE_4K;
2389 iteration = 1;
2390 break;
2391 case 2:
2392 sector_size = ICH_FLASH_SEG_SIZE_8K;
2393 iteration = 1;
2394 break;
2395 case 3:
2396 sector_size = ICH_FLASH_SEG_SIZE_64K;
2397 iteration = 1;
2398 break;
2399 default:
2400 return -E1000_ERR_NVM;
2403 /* Start with the base address, then add the sector offset. */
2404 flash_linear_addr = hw->nvm.flash_base_addr;
2405 flash_linear_addr += (bank) ? flash_bank_size : 0;
2407 for (j = 0; j < iteration ; j++) {
2408 do {
2409 /* Steps */
2410 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2411 if (ret_val)
2412 return ret_val;
2415 * Write a value 11 (block Erase) in Flash
2416 * Cycle field in hw flash control
2418 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2419 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2420 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2423 * Write the last 24 bits of an index within the
2424 * block into Flash Linear address field in Flash
2425 * Address.
2427 flash_linear_addr += (j * sector_size);
2428 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2430 ret_val = e1000_flash_cycle_ich8lan(hw,
2431 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2432 if (ret_val == 0)
2433 break;
2436 * Check if FCERR is set to 1. If 1,
2437 * clear it and try the whole sequence
2438 * a few more times else Done
2440 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2441 if (hsfsts.hsf_status.flcerr == 1)
2442 /* repeat for some time before giving up */
2443 continue;
2444 else if (hsfsts.hsf_status.flcdone == 0)
2445 return ret_val;
2446 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2449 return 0;
2453 * e1000_valid_led_default_ich8lan - Set the default LED settings
2454 * @hw: pointer to the HW structure
2455 * @data: Pointer to the LED settings
2457 * Reads the LED default settings from the NVM to data. If the NVM LED
2458 * settings is all 0's or F's, set the LED default to a valid LED default
2459 * setting.
2461 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2463 s32 ret_val;
2465 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2466 if (ret_val) {
2467 hw_dbg(hw, "NVM Read Error\n");
2468 return ret_val;
2471 if (*data == ID_LED_RESERVED_0000 ||
2472 *data == ID_LED_RESERVED_FFFF)
2473 *data = ID_LED_DEFAULT_ICH8LAN;
2475 return 0;
2479 * e1000_id_led_init_pchlan - store LED configurations
2480 * @hw: pointer to the HW structure
2482 * PCH does not control LEDs via the LEDCTL register, rather it uses
2483 * the PHY LED configuration register.
2485 * PCH also does not have an "always on" or "always off" mode which
2486 * complicates the ID feature. Instead of using the "on" mode to indicate
2487 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2488 * use "link_up" mode. The LEDs will still ID on request if there is no
2489 * link based on logic in e1000_led_[on|off]_pchlan().
2491 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2493 struct e1000_mac_info *mac = &hw->mac;
2494 s32 ret_val;
2495 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2496 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2497 u16 data, i, temp, shift;
2499 /* Get default ID LED modes */
2500 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2501 if (ret_val)
2502 goto out;
2504 mac->ledctl_default = er32(LEDCTL);
2505 mac->ledctl_mode1 = mac->ledctl_default;
2506 mac->ledctl_mode2 = mac->ledctl_default;
2508 for (i = 0; i < 4; i++) {
2509 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2510 shift = (i * 5);
2511 switch (temp) {
2512 case ID_LED_ON1_DEF2:
2513 case ID_LED_ON1_ON2:
2514 case ID_LED_ON1_OFF2:
2515 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2516 mac->ledctl_mode1 |= (ledctl_on << shift);
2517 break;
2518 case ID_LED_OFF1_DEF2:
2519 case ID_LED_OFF1_ON2:
2520 case ID_LED_OFF1_OFF2:
2521 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2522 mac->ledctl_mode1 |= (ledctl_off << shift);
2523 break;
2524 default:
2525 /* Do nothing */
2526 break;
2528 switch (temp) {
2529 case ID_LED_DEF1_ON2:
2530 case ID_LED_ON1_ON2:
2531 case ID_LED_OFF1_ON2:
2532 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2533 mac->ledctl_mode2 |= (ledctl_on << shift);
2534 break;
2535 case ID_LED_DEF1_OFF2:
2536 case ID_LED_ON1_OFF2:
2537 case ID_LED_OFF1_OFF2:
2538 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2539 mac->ledctl_mode2 |= (ledctl_off << shift);
2540 break;
2541 default:
2542 /* Do nothing */
2543 break;
2547 out:
2548 return ret_val;
2552 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2553 * @hw: pointer to the HW structure
2555 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2556 * register, so the the bus width is hard coded.
2558 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2560 struct e1000_bus_info *bus = &hw->bus;
2561 s32 ret_val;
2563 ret_val = e1000e_get_bus_info_pcie(hw);
2566 * ICH devices are "PCI Express"-ish. They have
2567 * a configuration space, but do not contain
2568 * PCI Express Capability registers, so bus width
2569 * must be hardcoded.
2571 if (bus->width == e1000_bus_width_unknown)
2572 bus->width = e1000_bus_width_pcie_x1;
2574 return ret_val;
2578 * e1000_reset_hw_ich8lan - Reset the hardware
2579 * @hw: pointer to the HW structure
2581 * Does a full reset of the hardware which includes a reset of the PHY and
2582 * MAC.
2584 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2586 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2587 u16 reg;
2588 u32 ctrl, icr, kab;
2589 s32 ret_val;
2592 * Prevent the PCI-E bus from sticking if there is no TLP connection
2593 * on the last TLP read/write transaction when MAC is reset.
2595 ret_val = e1000e_disable_pcie_master(hw);
2596 if (ret_val) {
2597 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2600 hw_dbg(hw, "Masking off all interrupts\n");
2601 ew32(IMC, 0xffffffff);
2604 * Disable the Transmit and Receive units. Then delay to allow
2605 * any pending transactions to complete before we hit the MAC
2606 * with the global reset.
2608 ew32(RCTL, 0);
2609 ew32(TCTL, E1000_TCTL_PSP);
2610 e1e_flush();
2612 msleep(10);
2614 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2615 if (hw->mac.type == e1000_ich8lan) {
2616 /* Set Tx and Rx buffer allocation to 8k apiece. */
2617 ew32(PBA, E1000_PBA_8K);
2618 /* Set Packet Buffer Size to 16k. */
2619 ew32(PBS, E1000_PBS_16K);
2622 if (hw->mac.type == e1000_pchlan) {
2623 /* Save the NVM K1 bit setting*/
2624 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2625 if (ret_val)
2626 return ret_val;
2628 if (reg & E1000_NVM_K1_ENABLE)
2629 dev_spec->nvm_k1_enabled = true;
2630 else
2631 dev_spec->nvm_k1_enabled = false;
2634 ctrl = er32(CTRL);
2636 if (!e1000_check_reset_block(hw)) {
2637 /* Clear PHY Reset Asserted bit */
2638 if (hw->mac.type >= e1000_pchlan) {
2639 u32 status = er32(STATUS);
2640 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2644 * PHY HW reset requires MAC CORE reset at the same
2645 * time to make sure the interface between MAC and the
2646 * external PHY is reset.
2648 ctrl |= E1000_CTRL_PHY_RST;
2650 ret_val = e1000_acquire_swflag_ich8lan(hw);
2651 /* Whether or not the swflag was acquired, we need to reset the part */
2652 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2653 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2654 msleep(20);
2656 if (!ret_val)
2657 e1000_release_swflag_ich8lan(hw);
2659 if (ctrl & E1000_CTRL_PHY_RST)
2660 ret_val = hw->phy.ops.get_cfg_done(hw);
2662 if (hw->mac.type >= e1000_ich10lan) {
2663 e1000_lan_init_done_ich8lan(hw);
2664 } else {
2665 ret_val = e1000e_get_auto_rd_done(hw);
2666 if (ret_val) {
2668 * When auto config read does not complete, do not
2669 * return with an error. This can happen in situations
2670 * where there is no eeprom and prevents getting link.
2672 hw_dbg(hw, "Auto Read Done did not complete\n");
2675 /* Dummy read to clear the phy wakeup bit after lcd reset */
2676 if (hw->mac.type == e1000_pchlan)
2677 e1e_rphy(hw, BM_WUC, &reg);
2679 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2680 if (ret_val)
2681 goto out;
2683 if (hw->mac.type == e1000_pchlan) {
2684 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2685 if (ret_val)
2686 goto out;
2689 * For PCH, this write will make sure that any noise
2690 * will be detected as a CRC error and be dropped rather than show up
2691 * as a bad packet to the DMA engine.
2693 if (hw->mac.type == e1000_pchlan)
2694 ew32(CRC_OFFSET, 0x65656565);
2696 ew32(IMC, 0xffffffff);
2697 icr = er32(ICR);
2699 kab = er32(KABGTXD);
2700 kab |= E1000_KABGTXD_BGSQLBIAS;
2701 ew32(KABGTXD, kab);
2703 if (hw->mac.type == e1000_pchlan)
2704 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2706 out:
2707 return ret_val;
2711 * e1000_init_hw_ich8lan - Initialize the hardware
2712 * @hw: pointer to the HW structure
2714 * Prepares the hardware for transmit and receive by doing the following:
2715 * - initialize hardware bits
2716 * - initialize LED identification
2717 * - setup receive address registers
2718 * - setup flow control
2719 * - setup transmit descriptors
2720 * - clear statistics
2722 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2724 struct e1000_mac_info *mac = &hw->mac;
2725 u32 ctrl_ext, txdctl, snoop;
2726 s32 ret_val;
2727 u16 i;
2729 e1000_initialize_hw_bits_ich8lan(hw);
2731 /* Initialize identification LED */
2732 ret_val = mac->ops.id_led_init(hw);
2733 if (ret_val) {
2734 hw_dbg(hw, "Error initializing identification LED\n");
2735 return ret_val;
2738 /* Setup the receive address. */
2739 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2741 /* Zero out the Multicast HASH table */
2742 hw_dbg(hw, "Zeroing the MTA\n");
2743 for (i = 0; i < mac->mta_reg_count; i++)
2744 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2747 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2748 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2749 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2751 if (hw->phy.type == e1000_phy_82578) {
2752 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2753 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2754 if (ret_val)
2755 return ret_val;
2758 /* Setup link and flow control */
2759 ret_val = e1000_setup_link_ich8lan(hw);
2761 /* Set the transmit descriptor write-back policy for both queues */
2762 txdctl = er32(TXDCTL(0));
2763 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2764 E1000_TXDCTL_FULL_TX_DESC_WB;
2765 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2766 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2767 ew32(TXDCTL(0), txdctl);
2768 txdctl = er32(TXDCTL(1));
2769 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2770 E1000_TXDCTL_FULL_TX_DESC_WB;
2771 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2772 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2773 ew32(TXDCTL(1), txdctl);
2776 * ICH8 has opposite polarity of no_snoop bits.
2777 * By default, we should use snoop behavior.
2779 if (mac->type == e1000_ich8lan)
2780 snoop = PCIE_ICH8_SNOOP_ALL;
2781 else
2782 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2783 e1000e_set_pcie_no_snoop(hw, snoop);
2785 ctrl_ext = er32(CTRL_EXT);
2786 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2787 ew32(CTRL_EXT, ctrl_ext);
2790 * Clear all of the statistics registers (clear on read). It is
2791 * important that we do this after we have tried to establish link
2792 * because the symbol error count will increment wildly if there
2793 * is no link.
2795 e1000_clear_hw_cntrs_ich8lan(hw);
2797 return 0;
2800 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2801 * @hw: pointer to the HW structure
2803 * Sets/Clears required hardware bits necessary for correctly setting up the
2804 * hardware for transmit and receive.
2806 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2808 u32 reg;
2810 /* Extended Device Control */
2811 reg = er32(CTRL_EXT);
2812 reg |= (1 << 22);
2813 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2814 if (hw->mac.type >= e1000_pchlan)
2815 reg |= E1000_CTRL_EXT_PHYPDEN;
2816 ew32(CTRL_EXT, reg);
2818 /* Transmit Descriptor Control 0 */
2819 reg = er32(TXDCTL(0));
2820 reg |= (1 << 22);
2821 ew32(TXDCTL(0), reg);
2823 /* Transmit Descriptor Control 1 */
2824 reg = er32(TXDCTL(1));
2825 reg |= (1 << 22);
2826 ew32(TXDCTL(1), reg);
2828 /* Transmit Arbitration Control 0 */
2829 reg = er32(TARC(0));
2830 if (hw->mac.type == e1000_ich8lan)
2831 reg |= (1 << 28) | (1 << 29);
2832 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2833 ew32(TARC(0), reg);
2835 /* Transmit Arbitration Control 1 */
2836 reg = er32(TARC(1));
2837 if (er32(TCTL) & E1000_TCTL_MULR)
2838 reg &= ~(1 << 28);
2839 else
2840 reg |= (1 << 28);
2841 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2842 ew32(TARC(1), reg);
2844 /* Device Status */
2845 if (hw->mac.type == e1000_ich8lan) {
2846 reg = er32(STATUS);
2847 reg &= ~(1 << 31);
2848 ew32(STATUS, reg);
2853 * e1000_setup_link_ich8lan - Setup flow control and link settings
2854 * @hw: pointer to the HW structure
2856 * Determines which flow control settings to use, then configures flow
2857 * control. Calls the appropriate media-specific link configuration
2858 * function. Assuming the adapter has a valid link partner, a valid link
2859 * should be established. Assumes the hardware has previously been reset
2860 * and the transmitter and receiver are not enabled.
2862 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2864 s32 ret_val;
2866 if (e1000_check_reset_block(hw))
2867 return 0;
2870 * ICH parts do not have a word in the NVM to determine
2871 * the default flow control setting, so we explicitly
2872 * set it to full.
2874 if (hw->fc.requested_mode == e1000_fc_default) {
2875 /* Workaround h/w hang when Tx flow control enabled */
2876 if (hw->mac.type == e1000_pchlan)
2877 hw->fc.requested_mode = e1000_fc_rx_pause;
2878 else
2879 hw->fc.requested_mode = e1000_fc_full;
2883 * Save off the requested flow control mode for use later. Depending
2884 * on the link partner's capabilities, we may or may not use this mode.
2886 hw->fc.current_mode = hw->fc.requested_mode;
2888 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2889 hw->fc.current_mode);
2891 /* Continue to configure the copper link. */
2892 ret_val = e1000_setup_copper_link_ich8lan(hw);
2893 if (ret_val)
2894 return ret_val;
2896 ew32(FCTTV, hw->fc.pause_time);
2897 if ((hw->phy.type == e1000_phy_82578) ||
2898 (hw->phy.type == e1000_phy_82577)) {
2899 ret_val = hw->phy.ops.write_phy_reg(hw,
2900 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2901 hw->fc.pause_time);
2902 if (ret_val)
2903 return ret_val;
2906 return e1000e_set_fc_watermarks(hw);
2910 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2911 * @hw: pointer to the HW structure
2913 * Configures the kumeran interface to the PHY to wait the appropriate time
2914 * when polling the PHY, then call the generic setup_copper_link to finish
2915 * configuring the copper link.
2917 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2919 u32 ctrl;
2920 s32 ret_val;
2921 u16 reg_data;
2923 ctrl = er32(CTRL);
2924 ctrl |= E1000_CTRL_SLU;
2925 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2926 ew32(CTRL, ctrl);
2929 * Set the mac to wait the maximum time between each iteration
2930 * and increase the max iterations when polling the phy;
2931 * this fixes erroneous timeouts at 10Mbps.
2933 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2934 if (ret_val)
2935 return ret_val;
2936 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2937 if (ret_val)
2938 return ret_val;
2939 reg_data |= 0x3F;
2940 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2941 if (ret_val)
2942 return ret_val;
2944 switch (hw->phy.type) {
2945 case e1000_phy_igp_3:
2946 ret_val = e1000e_copper_link_setup_igp(hw);
2947 if (ret_val)
2948 return ret_val;
2949 break;
2950 case e1000_phy_bm:
2951 case e1000_phy_82578:
2952 ret_val = e1000e_copper_link_setup_m88(hw);
2953 if (ret_val)
2954 return ret_val;
2955 break;
2956 case e1000_phy_82577:
2957 ret_val = e1000_copper_link_setup_82577(hw);
2958 if (ret_val)
2959 return ret_val;
2960 break;
2961 case e1000_phy_ife:
2962 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2963 &reg_data);
2964 if (ret_val)
2965 return ret_val;
2967 reg_data &= ~IFE_PMC_AUTO_MDIX;
2969 switch (hw->phy.mdix) {
2970 case 1:
2971 reg_data &= ~IFE_PMC_FORCE_MDIX;
2972 break;
2973 case 2:
2974 reg_data |= IFE_PMC_FORCE_MDIX;
2975 break;
2976 case 0:
2977 default:
2978 reg_data |= IFE_PMC_AUTO_MDIX;
2979 break;
2981 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2982 reg_data);
2983 if (ret_val)
2984 return ret_val;
2985 break;
2986 default:
2987 break;
2989 return e1000e_setup_copper_link(hw);
2993 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2994 * @hw: pointer to the HW structure
2995 * @speed: pointer to store current link speed
2996 * @duplex: pointer to store the current link duplex
2998 * Calls the generic get_speed_and_duplex to retrieve the current link
2999 * information and then calls the Kumeran lock loss workaround for links at
3000 * gigabit speeds.
3002 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3003 u16 *duplex)
3005 s32 ret_val;
3007 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3008 if (ret_val)
3009 return ret_val;
3011 if ((hw->mac.type == e1000_ich8lan) &&
3012 (hw->phy.type == e1000_phy_igp_3) &&
3013 (*speed == SPEED_1000)) {
3014 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3017 return ret_val;
3021 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3022 * @hw: pointer to the HW structure
3024 * Work-around for 82566 Kumeran PCS lock loss:
3025 * On link status change (i.e. PCI reset, speed change) and link is up and
3026 * speed is gigabit-
3027 * 0) if workaround is optionally disabled do nothing
3028 * 1) wait 1ms for Kumeran link to come up
3029 * 2) check Kumeran Diagnostic register PCS lock loss bit
3030 * 3) if not set the link is locked (all is good), otherwise...
3031 * 4) reset the PHY
3032 * 5) repeat up to 10 times
3033 * Note: this is only called for IGP3 copper when speed is 1gb.
3035 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3037 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3038 u32 phy_ctrl;
3039 s32 ret_val;
3040 u16 i, data;
3041 bool link;
3043 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3044 return 0;
3047 * Make sure link is up before proceeding. If not just return.
3048 * Attempting this while link is negotiating fouled up link
3049 * stability
3051 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3052 if (!link)
3053 return 0;
3055 for (i = 0; i < 10; i++) {
3056 /* read once to clear */
3057 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3058 if (ret_val)
3059 return ret_val;
3060 /* and again to get new status */
3061 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3062 if (ret_val)
3063 return ret_val;
3065 /* check for PCS lock */
3066 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3067 return 0;
3069 /* Issue PHY reset */
3070 e1000_phy_hw_reset(hw);
3071 mdelay(5);
3073 /* Disable GigE link negotiation */
3074 phy_ctrl = er32(PHY_CTRL);
3075 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3076 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3077 ew32(PHY_CTRL, phy_ctrl);
3080 * Call gig speed drop workaround on Gig disable before accessing
3081 * any PHY registers
3083 e1000e_gig_downshift_workaround_ich8lan(hw);
3085 /* unable to acquire PCS lock */
3086 return -E1000_ERR_PHY;
3090 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3091 * @hw: pointer to the HW structure
3092 * @state: boolean value used to set the current Kumeran workaround state
3094 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
3095 * /disabled - FALSE).
3097 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3098 bool state)
3100 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3102 if (hw->mac.type != e1000_ich8lan) {
3103 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
3104 return;
3107 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3111 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3112 * @hw: pointer to the HW structure
3114 * Workaround for 82566 power-down on D3 entry:
3115 * 1) disable gigabit link
3116 * 2) write VR power-down enable
3117 * 3) read it back
3118 * Continue if successful, else issue LCD reset and repeat
3120 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3122 u32 reg;
3123 u16 data;
3124 u8 retry = 0;
3126 if (hw->phy.type != e1000_phy_igp_3)
3127 return;
3129 /* Try the workaround twice (if needed) */
3130 do {
3131 /* Disable link */
3132 reg = er32(PHY_CTRL);
3133 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3134 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3135 ew32(PHY_CTRL, reg);
3138 * Call gig speed drop workaround on Gig disable before
3139 * accessing any PHY registers
3141 if (hw->mac.type == e1000_ich8lan)
3142 e1000e_gig_downshift_workaround_ich8lan(hw);
3144 /* Write VR power-down enable */
3145 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3146 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3147 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3149 /* Read it back and test */
3150 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3151 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3152 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3153 break;
3155 /* Issue PHY reset and repeat at most one more time */
3156 reg = er32(CTRL);
3157 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3158 retry++;
3159 } while (retry);
3163 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3164 * @hw: pointer to the HW structure
3166 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3167 * LPLU, Gig disable, MDIC PHY reset):
3168 * 1) Set Kumeran Near-end loopback
3169 * 2) Clear Kumeran Near-end loopback
3170 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3172 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3174 s32 ret_val;
3175 u16 reg_data;
3177 if ((hw->mac.type != e1000_ich8lan) ||
3178 (hw->phy.type != e1000_phy_igp_3))
3179 return;
3181 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3182 &reg_data);
3183 if (ret_val)
3184 return;
3185 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3186 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3187 reg_data);
3188 if (ret_val)
3189 return;
3190 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3191 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3192 reg_data);
3196 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3197 * @hw: pointer to the HW structure
3199 * During S0 to Sx transition, it is possible the link remains at gig
3200 * instead of negotiating to a lower speed. Before going to Sx, set
3201 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3202 * to a lower speed.
3204 * Should only be called for applicable parts.
3206 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3208 u32 phy_ctrl;
3210 switch (hw->mac.type) {
3211 case e1000_ich9lan:
3212 case e1000_ich10lan:
3213 case e1000_pchlan:
3214 phy_ctrl = er32(PHY_CTRL);
3215 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3216 E1000_PHY_CTRL_GBE_DISABLE;
3217 ew32(PHY_CTRL, phy_ctrl);
3219 if (hw->mac.type == e1000_pchlan)
3220 e1000_phy_hw_reset_ich8lan(hw);
3221 default:
3222 break;
3225 return;
3229 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3230 * @hw: pointer to the HW structure
3232 * Return the LED back to the default configuration.
3234 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3236 if (hw->phy.type == e1000_phy_ife)
3237 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3239 ew32(LEDCTL, hw->mac.ledctl_default);
3240 return 0;
3244 * e1000_led_on_ich8lan - Turn LEDs on
3245 * @hw: pointer to the HW structure
3247 * Turn on the LEDs.
3249 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3251 if (hw->phy.type == e1000_phy_ife)
3252 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3253 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3255 ew32(LEDCTL, hw->mac.ledctl_mode2);
3256 return 0;
3260 * e1000_led_off_ich8lan - Turn LEDs off
3261 * @hw: pointer to the HW structure
3263 * Turn off the LEDs.
3265 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3267 if (hw->phy.type == e1000_phy_ife)
3268 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3269 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3271 ew32(LEDCTL, hw->mac.ledctl_mode1);
3272 return 0;
3276 * e1000_setup_led_pchlan - Configures SW controllable LED
3277 * @hw: pointer to the HW structure
3279 * This prepares the SW controllable LED for use.
3281 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3283 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3284 (u16)hw->mac.ledctl_mode1);
3288 * e1000_cleanup_led_pchlan - Restore the default LED operation
3289 * @hw: pointer to the HW structure
3291 * Return the LED back to the default configuration.
3293 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3295 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3296 (u16)hw->mac.ledctl_default);
3300 * e1000_led_on_pchlan - Turn LEDs on
3301 * @hw: pointer to the HW structure
3303 * Turn on the LEDs.
3305 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3307 u16 data = (u16)hw->mac.ledctl_mode2;
3308 u32 i, led;
3311 * If no link, then turn LED on by setting the invert bit
3312 * for each LED that's mode is "link_up" in ledctl_mode2.
3314 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3315 for (i = 0; i < 3; i++) {
3316 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3317 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3318 E1000_LEDCTL_MODE_LINK_UP)
3319 continue;
3320 if (led & E1000_PHY_LED0_IVRT)
3321 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3322 else
3323 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3327 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3331 * e1000_led_off_pchlan - Turn LEDs off
3332 * @hw: pointer to the HW structure
3334 * Turn off the LEDs.
3336 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3338 u16 data = (u16)hw->mac.ledctl_mode1;
3339 u32 i, led;
3342 * If no link, then turn LED off by clearing the invert bit
3343 * for each LED that's mode is "link_up" in ledctl_mode1.
3345 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3346 for (i = 0; i < 3; i++) {
3347 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3348 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3349 E1000_LEDCTL_MODE_LINK_UP)
3350 continue;
3351 if (led & E1000_PHY_LED0_IVRT)
3352 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3353 else
3354 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3358 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3362 * e1000_get_cfg_done_ich8lan - Read config done bit
3363 * @hw: pointer to the HW structure
3365 * Read the management control register for the config done bit for
3366 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3367 * to read the config done bit, so an error is *ONLY* logged and returns
3368 * 0. If we were to return with error, EEPROM-less silicon
3369 * would not be able to be reset or change link.
3371 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3373 u32 bank = 0;
3375 if (hw->mac.type >= e1000_pchlan) {
3376 u32 status = er32(STATUS);
3378 if (status & E1000_STATUS_PHYRA)
3379 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3380 else
3381 hw_dbg(hw,
3382 "PHY Reset Asserted not set - needs delay\n");
3385 e1000e_get_cfg_done(hw);
3387 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3388 if ((hw->mac.type != e1000_ich10lan) &&
3389 (hw->mac.type != e1000_pchlan)) {
3390 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3391 (hw->phy.type == e1000_phy_igp_3)) {
3392 e1000e_phy_init_script_igp3(hw);
3394 } else {
3395 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3396 /* Maybe we should do a basic PHY config */
3397 hw_dbg(hw, "EEPROM not present\n");
3398 return -E1000_ERR_CONFIG;
3402 return 0;
3406 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3407 * @hw: pointer to the HW structure
3409 * Clears hardware counters specific to the silicon family and calls
3410 * clear_hw_cntrs_generic to clear all general purpose counters.
3412 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3414 u32 temp;
3415 u16 phy_data;
3417 e1000e_clear_hw_cntrs_base(hw);
3419 temp = er32(ALGNERRC);
3420 temp = er32(RXERRC);
3421 temp = er32(TNCRS);
3422 temp = er32(CEXTERR);
3423 temp = er32(TSCTC);
3424 temp = er32(TSCTFC);
3426 temp = er32(MGTPRC);
3427 temp = er32(MGTPDC);
3428 temp = er32(MGTPTC);
3430 temp = er32(IAC);
3431 temp = er32(ICRXOC);
3433 /* Clear PHY statistics registers */
3434 if ((hw->phy.type == e1000_phy_82578) ||
3435 (hw->phy.type == e1000_phy_82577)) {
3436 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3437 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3438 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3439 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3440 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3441 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3442 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3443 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3444 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3445 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3446 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3447 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3448 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3449 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3453 static struct e1000_mac_operations ich8_mac_ops = {
3454 .id_led_init = e1000e_id_led_init,
3455 .check_mng_mode = e1000_check_mng_mode_ich8lan,
3456 .check_for_link = e1000_check_for_copper_link_ich8lan,
3457 /* cleanup_led dependent on mac type */
3458 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3459 .get_bus_info = e1000_get_bus_info_ich8lan,
3460 .get_link_up_info = e1000_get_link_up_info_ich8lan,
3461 /* led_on dependent on mac type */
3462 /* led_off dependent on mac type */
3463 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
3464 .reset_hw = e1000_reset_hw_ich8lan,
3465 .init_hw = e1000_init_hw_ich8lan,
3466 .setup_link = e1000_setup_link_ich8lan,
3467 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3468 /* id_led_init dependent on mac type */
3471 static struct e1000_phy_operations ich8_phy_ops = {
3472 .acquire_phy = e1000_acquire_swflag_ich8lan,
3473 .check_reset_block = e1000_check_reset_block_ich8lan,
3474 .commit_phy = NULL,
3475 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
3476 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3477 .get_cable_length = e1000e_get_cable_length_igp_2,
3478 .get_phy_info = e1000_get_phy_info_ich8lan,
3479 .read_phy_reg = e1000e_read_phy_reg_igp,
3480 .release_phy = e1000_release_swflag_ich8lan,
3481 .reset_phy = e1000_phy_hw_reset_ich8lan,
3482 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3483 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3484 .write_phy_reg = e1000e_write_phy_reg_igp,
3487 static struct e1000_nvm_operations ich8_nvm_ops = {
3488 .acquire_nvm = e1000_acquire_nvm_ich8lan,
3489 .read_nvm = e1000_read_nvm_ich8lan,
3490 .release_nvm = e1000_release_nvm_ich8lan,
3491 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3492 .valid_led_default = e1000_valid_led_default_ich8lan,
3493 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3494 .write_nvm = e1000_write_nvm_ich8lan,
3497 struct e1000_info e1000_ich8_info = {
3498 .mac = e1000_ich8lan,
3499 .flags = FLAG_HAS_WOL
3500 | FLAG_IS_ICH
3501 | FLAG_RX_CSUM_ENABLED
3502 | FLAG_HAS_CTRLEXT_ON_LOAD
3503 | FLAG_HAS_AMT
3504 | FLAG_HAS_FLASH
3505 | FLAG_APME_IN_WUC,
3506 .pba = 8,
3507 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
3508 .get_variants = e1000_get_variants_ich8lan,
3509 .mac_ops = &ich8_mac_ops,
3510 .phy_ops = &ich8_phy_ops,
3511 .nvm_ops = &ich8_nvm_ops,
3514 struct e1000_info e1000_ich9_info = {
3515 .mac = e1000_ich9lan,
3516 .flags = FLAG_HAS_JUMBO_FRAMES
3517 | FLAG_IS_ICH
3518 | FLAG_HAS_WOL
3519 | FLAG_RX_CSUM_ENABLED
3520 | FLAG_HAS_CTRLEXT_ON_LOAD
3521 | FLAG_HAS_AMT
3522 | FLAG_HAS_ERT
3523 | FLAG_HAS_FLASH
3524 | FLAG_APME_IN_WUC,
3525 .pba = 10,
3526 .max_hw_frame_size = DEFAULT_JUMBO,
3527 .get_variants = e1000_get_variants_ich8lan,
3528 .mac_ops = &ich8_mac_ops,
3529 .phy_ops = &ich8_phy_ops,
3530 .nvm_ops = &ich8_nvm_ops,
3533 struct e1000_info e1000_ich10_info = {
3534 .mac = e1000_ich10lan,
3535 .flags = FLAG_HAS_JUMBO_FRAMES
3536 | FLAG_IS_ICH
3537 | FLAG_HAS_WOL
3538 | FLAG_RX_CSUM_ENABLED
3539 | FLAG_HAS_CTRLEXT_ON_LOAD
3540 | FLAG_HAS_AMT
3541 | FLAG_HAS_ERT
3542 | FLAG_HAS_FLASH
3543 | FLAG_APME_IN_WUC,
3544 .pba = 10,
3545 .max_hw_frame_size = DEFAULT_JUMBO,
3546 .get_variants = e1000_get_variants_ich8lan,
3547 .mac_ops = &ich8_mac_ops,
3548 .phy_ops = &ich8_phy_ops,
3549 .nvm_ops = &ich8_nvm_ops,
3552 struct e1000_info e1000_pch_info = {
3553 .mac = e1000_pchlan,
3554 .flags = FLAG_IS_ICH
3555 | FLAG_HAS_WOL
3556 | FLAG_RX_CSUM_ENABLED
3557 | FLAG_HAS_CTRLEXT_ON_LOAD
3558 | FLAG_HAS_AMT
3559 | FLAG_HAS_FLASH
3560 | FLAG_HAS_JUMBO_FRAMES
3561 | FLAG_APME_IN_WUC,
3562 .pba = 26,
3563 .max_hw_frame_size = 4096,
3564 .get_variants = e1000_get_variants_ich8lan,
3565 .mac_ops = &ich8_mac_ops,
3566 .phy_ops = &ich8_phy_ops,
3567 .nvm_ops = &ich8_nvm_ops,