x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / irda / au1k_ir.c
blobeb424681202d2aaefefa3c729b87d4868151a0a6
1 /*
2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/init.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/interrupt.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
32 #include <asm/irq.h>
33 #include <asm/io.h>
34 #include <asm/au1000.h>
35 #if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
36 #include <asm/pb1000.h>
37 #elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
38 #include <asm/db1x00.h>
39 #else
40 #error au1k_ir: unsupported board
41 #endif
43 #include <net/irda/irda.h>
44 #include <net/irda/irmod.h>
45 #include <net/irda/wrapper.h>
46 #include <net/irda/irda_device.h>
47 #include "au1000_ircc.h"
49 static int au1k_irda_net_init(struct net_device *);
50 static int au1k_irda_start(struct net_device *);
51 static int au1k_irda_stop(struct net_device *dev);
52 static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
53 static int au1k_irda_rx(struct net_device *);
54 static void au1k_irda_interrupt(int, void *);
55 static void au1k_tx_timeout(struct net_device *);
56 static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
57 static int au1k_irda_set_speed(struct net_device *dev, int speed);
59 static void *dma_alloc(size_t, dma_addr_t *);
60 static void dma_free(void *, size_t);
62 static int qos_mtt_bits = 0x07; /* 1 ms or more */
63 static struct net_device *ir_devs[NUM_IR_IFF];
64 static char version[] __devinitdata =
65 "au1k_ircc:1.2 ppopov@mvista.com\n";
67 #define RUN_AT(x) (jiffies + (x))
69 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
70 static BCSR * const bcsr = (BCSR *)0xAE000000;
71 #endif
73 static DEFINE_SPINLOCK(ir_lock);
76 * IrDA peripheral bug. You have to read the register
77 * twice to get the right value.
79 u32 read_ir_reg(u32 addr)
81 readl(addr);
82 return readl(addr);
87 * Buffer allocation/deallocation routines. The buffer descriptor returned
88 * has the virtual and dma address of a buffer suitable for
89 * both, receive and transmit operations.
91 static db_dest_t *GetFreeDB(struct au1k_private *aup)
93 db_dest_t *pDB;
94 pDB = aup->pDBfree;
96 if (pDB) {
97 aup->pDBfree = pDB->pnext;
99 return pDB;
102 static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
104 db_dest_t *pDBfree = aup->pDBfree;
105 if (pDBfree)
106 pDBfree->pnext = pDB;
107 aup->pDBfree = pDB;
112 DMA memory allocation, derived from pci_alloc_consistent.
113 However, the Au1000 data cache is coherent (when programmed
114 so), therefore we return KSEG0 address, not KSEG1.
116 static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
118 void *ret;
119 int gfp = GFP_ATOMIC | GFP_DMA;
121 ret = (void *) __get_free_pages(gfp, get_order(size));
123 if (ret != NULL) {
124 memset(ret, 0, size);
125 *dma_handle = virt_to_bus(ret);
126 ret = (void *)KSEG0ADDR(ret);
128 return ret;
132 static void dma_free(void *vaddr, size_t size)
134 vaddr = (void *)KSEG0ADDR(vaddr);
135 free_pages((unsigned long) vaddr, get_order(size));
139 static void
140 setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
142 int i;
143 for (i=0; i<NUM_IR_DESC; i++) {
144 aup->rx_ring[i] = (volatile ring_dest_t *)
145 (rx_base + sizeof(ring_dest_t)*i);
147 for (i=0; i<NUM_IR_DESC; i++) {
148 aup->tx_ring[i] = (volatile ring_dest_t *)
149 (tx_base + sizeof(ring_dest_t)*i);
153 static int au1k_irda_init(void)
155 static unsigned version_printed = 0;
156 struct au1k_private *aup;
157 struct net_device *dev;
158 int err;
160 if (version_printed++ == 0) printk(version);
162 dev = alloc_irdadev(sizeof(struct au1k_private));
163 if (!dev)
164 return -ENOMEM;
166 dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
167 err = au1k_irda_net_init(dev);
168 if (err)
169 goto out;
170 err = register_netdev(dev);
171 if (err)
172 goto out1;
173 ir_devs[0] = dev;
174 printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
175 return 0;
177 out1:
178 aup = netdev_priv(dev);
179 dma_free((void *)aup->db[0].vaddr,
180 MAX_BUF_SIZE * 2*NUM_IR_DESC);
181 dma_free((void *)aup->rx_ring[0],
182 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
183 kfree(aup->rx_buff.head);
184 out:
185 free_netdev(dev);
186 return err;
189 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
191 io->head = kmalloc(size, GFP_KERNEL);
192 if (io->head != NULL) {
193 io->truesize = size;
194 io->in_frame = FALSE;
195 io->state = OUTSIDE_FRAME;
196 io->data = io->head;
198 return io->head ? 0 : -ENOMEM;
201 static const struct net_device_ops au1k_irda_netdev_ops = {
202 .ndo_open = au1k_irda_start,
203 .ndo_stop = au1k_irda_stop,
204 .ndo_start_xmit = au1k_irda_hard_xmit,
205 .ndo_tx_timeout = au1k_tx_timeout,
206 .ndo_do_ioctl = au1k_irda_ioctl,
209 static int au1k_irda_net_init(struct net_device *dev)
211 struct au1k_private *aup = netdev_priv(dev);
212 int i, retval = 0, err;
213 db_dest_t *pDB, *pDBfree;
214 dma_addr_t temp;
216 err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
217 if (err)
218 goto out1;
220 dev->netdev_ops = &au1k_irda_netdev_ops;
222 irda_init_max_qos_capabilies(&aup->qos);
224 /* The only value we must override it the baudrate */
225 aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
226 IR_115200|IR_576000 |(IR_4000000 << 8);
228 aup->qos.min_turn_time.bits = qos_mtt_bits;
229 irda_qos_bits_to_value(&aup->qos);
231 retval = -ENOMEM;
233 /* Tx ring follows rx ring + 512 bytes */
234 /* we need a 1k aligned buffer */
235 aup->rx_ring[0] = (ring_dest_t *)
236 dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
237 if (!aup->rx_ring[0])
238 goto out2;
240 /* allocate the data buffers */
241 aup->db[0].vaddr =
242 (void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
243 if (!aup->db[0].vaddr)
244 goto out3;
246 setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
248 pDBfree = NULL;
249 pDB = aup->db;
250 for (i=0; i<(2*NUM_IR_DESC); i++) {
251 pDB->pnext = pDBfree;
252 pDBfree = pDB;
253 pDB->vaddr =
254 (u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
255 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
256 pDB++;
258 aup->pDBfree = pDBfree;
260 /* attach a data buffer to each descriptor */
261 for (i=0; i<NUM_IR_DESC; i++) {
262 pDB = GetFreeDB(aup);
263 if (!pDB) goto out;
264 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
265 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
266 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
267 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
268 aup->rx_db_inuse[i] = pDB;
270 for (i=0; i<NUM_IR_DESC; i++) {
271 pDB = GetFreeDB(aup);
272 if (!pDB) goto out;
273 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
274 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
275 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
276 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
277 aup->tx_ring[i]->count_0 = 0;
278 aup->tx_ring[i]->count_1 = 0;
279 aup->tx_ring[i]->flags = 0;
280 aup->tx_db_inuse[i] = pDB;
283 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
284 /* power on */
285 bcsr->resets &= ~BCSR_RESETS_IRDA_MODE_MASK;
286 bcsr->resets |= BCSR_RESETS_IRDA_MODE_FULL;
287 au_sync();
288 #endif
290 return 0;
292 out3:
293 dma_free((void *)aup->rx_ring[0],
294 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
295 out2:
296 kfree(aup->rx_buff.head);
297 out1:
298 printk(KERN_ERR "au1k_init_module failed. Returns %d\n", retval);
299 return retval;
303 static int au1k_init(struct net_device *dev)
305 struct au1k_private *aup = netdev_priv(dev);
306 int i;
307 u32 control;
308 u32 ring_address;
310 /* bring the device out of reset */
311 control = 0xe; /* coherent, clock enable, one half system clock */
313 #ifndef CONFIG_CPU_LITTLE_ENDIAN
314 control |= 1;
315 #endif
316 aup->tx_head = 0;
317 aup->tx_tail = 0;
318 aup->rx_head = 0;
320 for (i=0; i<NUM_IR_DESC; i++) {
321 aup->rx_ring[i]->flags = AU_OWN;
324 writel(control, IR_INTERFACE_CONFIG);
325 au_sync_delay(10);
327 writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
328 au_sync_delay(1);
330 writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
332 ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
333 writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
334 writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
336 writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
338 writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
339 writel(0, IR_RING_ADDR_CMPR);
341 au1k_irda_set_speed(dev, 9600);
342 return 0;
345 static int au1k_irda_start(struct net_device *dev)
347 int retval;
348 char hwname[32];
349 struct au1k_private *aup = netdev_priv(dev);
351 if ((retval = au1k_init(dev))) {
352 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
353 return retval;
356 if ((retval = request_irq(AU1000_IRDA_TX_INT, &au1k_irda_interrupt,
357 0, dev->name, dev))) {
358 printk(KERN_ERR "%s: unable to get IRQ %d\n",
359 dev->name, dev->irq);
360 return retval;
362 if ((retval = request_irq(AU1000_IRDA_RX_INT, &au1k_irda_interrupt,
363 0, dev->name, dev))) {
364 free_irq(AU1000_IRDA_TX_INT, dev);
365 printk(KERN_ERR "%s: unable to get IRQ %d\n",
366 dev->name, dev->irq);
367 return retval;
370 /* Give self a hardware name */
371 sprintf(hwname, "Au1000 SIR/FIR");
372 aup->irlap = irlap_open(dev, &aup->qos, hwname);
373 netif_start_queue(dev);
375 writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
377 aup->timer.expires = RUN_AT((3*HZ));
378 aup->timer.data = (unsigned long)dev;
379 return 0;
382 static int au1k_irda_stop(struct net_device *dev)
384 struct au1k_private *aup = netdev_priv(dev);
386 /* disable interrupts */
387 writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
388 writel(0, IR_CONFIG_1);
389 writel(0, IR_INTERFACE_CONFIG); /* disable clock */
390 au_sync();
392 if (aup->irlap) {
393 irlap_close(aup->irlap);
394 aup->irlap = NULL;
397 netif_stop_queue(dev);
398 del_timer(&aup->timer);
400 /* disable the interrupt */
401 free_irq(AU1000_IRDA_TX_INT, dev);
402 free_irq(AU1000_IRDA_RX_INT, dev);
403 return 0;
406 static void __exit au1k_irda_exit(void)
408 struct net_device *dev = ir_devs[0];
409 struct au1k_private *aup = netdev_priv(dev);
411 unregister_netdev(dev);
413 dma_free((void *)aup->db[0].vaddr,
414 MAX_BUF_SIZE * 2*NUM_IR_DESC);
415 dma_free((void *)aup->rx_ring[0],
416 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
417 kfree(aup->rx_buff.head);
418 free_netdev(dev);
422 static inline void
423 update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
425 struct au1k_private *aup = netdev_priv(dev);
426 struct net_device_stats *ps = &aup->stats;
428 ps->tx_packets++;
429 ps->tx_bytes += pkt_len;
431 if (status & IR_TX_ERROR) {
432 ps->tx_errors++;
433 ps->tx_aborted_errors++;
438 static void au1k_tx_ack(struct net_device *dev)
440 struct au1k_private *aup = netdev_priv(dev);
441 volatile ring_dest_t *ptxd;
443 ptxd = aup->tx_ring[aup->tx_tail];
444 while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
445 update_tx_stats(dev, ptxd->flags,
446 ptxd->count_1<<8 | ptxd->count_0);
447 ptxd->count_0 = 0;
448 ptxd->count_1 = 0;
449 au_sync();
451 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
452 ptxd = aup->tx_ring[aup->tx_tail];
454 if (aup->tx_full) {
455 aup->tx_full = 0;
456 netif_wake_queue(dev);
460 if (aup->tx_tail == aup->tx_head) {
461 if (aup->newspeed) {
462 au1k_irda_set_speed(dev, aup->newspeed);
463 aup->newspeed = 0;
465 else {
466 writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
467 IR_CONFIG_1);
468 au_sync();
469 writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
470 IR_CONFIG_1);
471 writel(0, IR_RING_PROMPT);
472 au_sync();
479 * Au1000 transmit routine.
481 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
483 struct au1k_private *aup = netdev_priv(dev);
484 int speed = irda_get_next_speed(skb);
485 volatile ring_dest_t *ptxd;
486 u32 len;
488 u32 flags;
489 db_dest_t *pDB;
491 if (speed != aup->speed && speed != -1) {
492 aup->newspeed = speed;
495 if ((skb->len == 0) && (aup->newspeed)) {
496 if (aup->tx_tail == aup->tx_head) {
497 au1k_irda_set_speed(dev, speed);
498 aup->newspeed = 0;
500 dev_kfree_skb(skb);
501 return NETDEV_TX_OK;
504 ptxd = aup->tx_ring[aup->tx_head];
505 flags = ptxd->flags;
507 if (flags & AU_OWN) {
508 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
509 netif_stop_queue(dev);
510 aup->tx_full = 1;
511 return NETDEV_TX_BUSY;
513 else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
514 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
515 netif_stop_queue(dev);
516 aup->tx_full = 1;
517 return NETDEV_TX_BUSY;
520 pDB = aup->tx_db_inuse[aup->tx_head];
522 #if 0
523 if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
524 printk("tx warning: rx byte cnt %x\n",
525 read_ir_reg(IR_RX_BYTE_CNT));
527 #endif
529 if (aup->speed == 4000000) {
530 /* FIR */
531 skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
532 ptxd->count_0 = skb->len & 0xff;
533 ptxd->count_1 = (skb->len >> 8) & 0xff;
536 else {
537 /* SIR */
538 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
539 ptxd->count_0 = len & 0xff;
540 ptxd->count_1 = (len >> 8) & 0xff;
541 ptxd->flags |= IR_DIS_CRC;
542 au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
544 ptxd->flags |= AU_OWN;
545 au_sync();
547 writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
548 writel(0, IR_RING_PROMPT);
549 au_sync();
551 dev_kfree_skb(skb);
552 aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
553 dev->trans_start = jiffies;
554 return NETDEV_TX_OK;
558 static inline void
559 update_rx_stats(struct net_device *dev, u32 status, u32 count)
561 struct au1k_private *aup = netdev_priv(dev);
562 struct net_device_stats *ps = &aup->stats;
564 ps->rx_packets++;
566 if (status & IR_RX_ERROR) {
567 ps->rx_errors++;
568 if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
569 ps->rx_missed_errors++;
570 if (status & IR_MAX_LEN)
571 ps->rx_length_errors++;
572 if (status & IR_CRC_ERROR)
573 ps->rx_crc_errors++;
575 else
576 ps->rx_bytes += count;
580 * Au1000 receive routine.
582 static int au1k_irda_rx(struct net_device *dev)
584 struct au1k_private *aup = netdev_priv(dev);
585 struct sk_buff *skb;
586 volatile ring_dest_t *prxd;
587 u32 flags, count;
588 db_dest_t *pDB;
590 prxd = aup->rx_ring[aup->rx_head];
591 flags = prxd->flags;
593 while (!(flags & AU_OWN)) {
594 pDB = aup->rx_db_inuse[aup->rx_head];
595 count = prxd->count_1<<8 | prxd->count_0;
596 if (!(flags & IR_RX_ERROR)) {
597 /* good frame */
598 update_rx_stats(dev, flags, count);
599 skb=alloc_skb(count+1,GFP_ATOMIC);
600 if (skb == NULL) {
601 aup->netdev->stats.rx_dropped++;
602 continue;
604 skb_reserve(skb, 1);
605 if (aup->speed == 4000000)
606 skb_put(skb, count);
607 else
608 skb_put(skb, count-2);
609 skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
610 skb->dev = dev;
611 skb_reset_mac_header(skb);
612 skb->protocol = htons(ETH_P_IRDA);
613 netif_rx(skb);
614 prxd->count_0 = 0;
615 prxd->count_1 = 0;
617 prxd->flags |= AU_OWN;
618 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
619 writel(0, IR_RING_PROMPT);
620 au_sync();
622 /* next descriptor */
623 prxd = aup->rx_ring[aup->rx_head];
624 flags = prxd->flags;
627 return 0;
631 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
633 struct net_device *dev = dev_id;
635 writel(0, IR_INT_CLEAR); /* ack irda interrupts */
637 au1k_irda_rx(dev);
638 au1k_tx_ack(dev);
640 return IRQ_HANDLED;
645 * The Tx ring has been full longer than the watchdog timeout
646 * value. The transmitter must be hung?
648 static void au1k_tx_timeout(struct net_device *dev)
650 u32 speed;
651 struct au1k_private *aup = netdev_priv(dev);
653 printk(KERN_ERR "%s: tx timeout\n", dev->name);
654 speed = aup->speed;
655 aup->speed = 0;
656 au1k_irda_set_speed(dev, speed);
657 aup->tx_full = 0;
658 netif_wake_queue(dev);
663 * Set the IrDA communications speed.
665 static int
666 au1k_irda_set_speed(struct net_device *dev, int speed)
668 unsigned long flags;
669 struct au1k_private *aup = netdev_priv(dev);
670 u32 control;
671 int ret = 0, timeout = 10, i;
672 volatile ring_dest_t *ptxd;
673 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
674 unsigned long irda_resets;
675 #endif
677 if (speed == aup->speed)
678 return ret;
680 spin_lock_irqsave(&ir_lock, flags);
682 /* disable PHY first */
683 writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
685 /* disable RX/TX */
686 writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
687 IR_CONFIG_1);
688 au_sync_delay(1);
689 while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
690 mdelay(1);
691 if (!timeout--) {
692 printk(KERN_ERR "%s: rx/tx disable timeout\n",
693 dev->name);
694 break;
698 /* disable DMA */
699 writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
700 au_sync_delay(1);
703 * After we disable tx/rx. the index pointers
704 * go back to zero.
706 aup->tx_head = aup->tx_tail = aup->rx_head = 0;
707 for (i=0; i<NUM_IR_DESC; i++) {
708 ptxd = aup->tx_ring[i];
709 ptxd->flags = 0;
710 ptxd->count_0 = 0;
711 ptxd->count_1 = 0;
714 for (i=0; i<NUM_IR_DESC; i++) {
715 ptxd = aup->rx_ring[i];
716 ptxd->count_0 = 0;
717 ptxd->count_1 = 0;
718 ptxd->flags = AU_OWN;
721 if (speed == 4000000) {
722 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
723 bcsr->resets |= BCSR_RESETS_FIR_SEL;
724 #else /* Pb1000 and Pb1100 */
725 writel(1<<13, CPLD_AUX1);
726 #endif
728 else {
729 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
730 bcsr->resets &= ~BCSR_RESETS_FIR_SEL;
731 #else /* Pb1000 and Pb1100 */
732 writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
733 #endif
736 switch (speed) {
737 case 9600:
738 writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
739 writel(IR_SIR_MODE, IR_CONFIG_1);
740 break;
741 case 19200:
742 writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
743 writel(IR_SIR_MODE, IR_CONFIG_1);
744 break;
745 case 38400:
746 writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
747 writel(IR_SIR_MODE, IR_CONFIG_1);
748 break;
749 case 57600:
750 writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
751 writel(IR_SIR_MODE, IR_CONFIG_1);
752 break;
753 case 115200:
754 writel(12<<5, IR_WRITE_PHY_CONFIG);
755 writel(IR_SIR_MODE, IR_CONFIG_1);
756 break;
757 case 4000000:
758 writel(0xF, IR_WRITE_PHY_CONFIG);
759 writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
760 break;
761 default:
762 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
763 ret = -EINVAL;
764 break;
767 aup->speed = speed;
768 writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
769 au_sync();
771 control = read_ir_reg(IR_ENABLE);
772 writel(0, IR_RING_PROMPT);
773 au_sync();
775 if (control & (1<<14)) {
776 printk(KERN_ERR "%s: configuration error\n", dev->name);
778 else {
779 if (control & (1<<11))
780 printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
781 if (control & (1<<12))
782 printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
783 if (control & (1<<13))
784 printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
785 if (control & (1<<10))
786 printk(KERN_DEBUG "%s TX enabled\n", dev->name);
787 if (control & (1<<9))
788 printk(KERN_DEBUG "%s RX enabled\n", dev->name);
791 spin_unlock_irqrestore(&ir_lock, flags);
792 return ret;
795 static int
796 au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
798 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
799 struct au1k_private *aup = netdev_priv(dev);
800 int ret = -EOPNOTSUPP;
802 switch (cmd) {
803 case SIOCSBANDWIDTH:
804 if (capable(CAP_NET_ADMIN)) {
806 * We are unable to set the speed if the
807 * device is not running.
809 if (aup->open)
810 ret = au1k_irda_set_speed(dev,
811 rq->ifr_baudrate);
812 else {
813 printk(KERN_ERR "%s ioctl: !netif_running\n",
814 dev->name);
815 ret = 0;
818 break;
820 case SIOCSMEDIABUSY:
821 ret = -EPERM;
822 if (capable(CAP_NET_ADMIN)) {
823 irda_device_set_media_busy(dev, TRUE);
824 ret = 0;
826 break;
828 case SIOCGRECEIVING:
829 rq->ifr_receiving = 0;
830 break;
831 default:
832 break;
834 return ret;
837 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
838 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
840 module_init(au1k_irda_init);
841 module_exit(au1k_irda_exit);